blob: 529fa0c05f10974f8abdbf31cc4453a01e6c00bd [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_INSTRUCTION_SET_H_
#define ART_RUNTIME_INSTRUCTION_SET_H_
#include <iosfwd>
#include <string>
#include "base/logging.h" // Logging is required for FATAL in the helper functions.
#include "base/macros.h"
#include "base/value_object.h"
#include "globals.h" // For KB.
namespace art {
enum InstructionSet {
kNone,
kArm,
kArm64,
kThumb2,
kX86,
kX86_64,
kMips,
kMips64
};
std::ostream& operator<<(std::ostream& os, const InstructionSet& rhs);
#if defined(__arm__)
static constexpr InstructionSet kRuntimeISA = kArm;
#elif defined(__aarch64__)
static constexpr InstructionSet kRuntimeISA = kArm64;
#elif defined(__mips__)
static constexpr InstructionSet kRuntimeISA = kMips;
#elif defined(__i386__)
static constexpr InstructionSet kRuntimeISA = kX86;
#elif defined(__x86_64__)
static constexpr InstructionSet kRuntimeISA = kX86_64;
#else
static constexpr InstructionSet kRuntimeISA = kNone;
#endif
// Architecture-specific pointer sizes
static constexpr size_t kArmPointerSize = 4;
static constexpr size_t kArm64PointerSize = 8;
static constexpr size_t kMipsPointerSize = 4;
static constexpr size_t kMips64PointerSize = 8;
static constexpr size_t kX86PointerSize = 4;
static constexpr size_t kX86_64PointerSize = 8;
// ARM instruction alignment. ARM processors require code to be 4-byte aligned,
// but ARM ELF requires 8..
static constexpr size_t kArmAlignment = 8;
// ARM64 instruction alignment. This is the recommended alignment for maximum performance.
static constexpr size_t kArm64Alignment = 16;
// MIPS instruction alignment. MIPS processors require code to be 4-byte aligned.
// TODO: Can this be 4?
static constexpr size_t kMipsAlignment = 8;
// X86 instruction alignment. This is the recommended alignment for maximum performance.
static constexpr size_t kX86Alignment = 16;
const char* GetInstructionSetString(InstructionSet isa);
// Note: Returns kNone when the string cannot be parsed to a known value.
InstructionSet GetInstructionSetFromString(const char* instruction_set);
static inline size_t GetInstructionSetPointerSize(InstructionSet isa) {
switch (isa) {
case kArm:
// Fall-through.
case kThumb2:
return kArmPointerSize;
case kArm64:
return kArm64PointerSize;
case kX86:
return kX86PointerSize;
case kX86_64:
return kX86_64PointerSize;
case kMips:
return kMipsPointerSize;
case kMips64:
return kMips64PointerSize;
case kNone:
LOG(FATAL) << "ISA kNone does not have pointer size.";
return 0;
default:
LOG(FATAL) << "Unknown ISA " << isa;
return 0;
}
}
size_t GetInstructionSetAlignment(InstructionSet isa);
static inline bool Is64BitInstructionSet(InstructionSet isa) {
switch (isa) {
case kArm:
case kThumb2:
case kX86:
case kMips:
return false;
case kArm64:
case kX86_64:
case kMips64:
return true;
case kNone:
LOG(FATAL) << "ISA kNone does not have bit width.";
return 0;
default:
LOG(FATAL) << "Unknown ISA " << isa;
return 0;
}
}
static inline size_t GetBytesPerGprSpillLocation(InstructionSet isa) {
switch (isa) {
case kArm:
// Fall-through.
case kThumb2:
return 4;
case kArm64:
return 8;
case kX86:
return 4;
case kX86_64:
return 8;
case kMips:
return 4;
case kNone:
LOG(FATAL) << "ISA kNone does not have spills.";
return 0;
default:
LOG(FATAL) << "Unknown ISA " << isa;
return 0;
}
}
static inline size_t GetBytesPerFprSpillLocation(InstructionSet isa) {
switch (isa) {
case kArm:
// Fall-through.
case kThumb2:
return 4;
case kArm64:
return 8;
case kX86:
return 8;
case kX86_64:
return 8;
case kMips:
return 4;
case kNone:
LOG(FATAL) << "ISA kNone does not have spills.";
return 0;
default:
LOG(FATAL) << "Unknown ISA " << isa;
return 0;
}
}
size_t GetStackOverflowReservedBytes(InstructionSet isa);
class ArmInstructionSetFeatures;
// Abstraction used to describe features of a different instruction sets.
class InstructionSetFeatures {
public:
// Process a CPU variant string for the given ISA and create an InstructionSetFeatures.
static const InstructionSetFeatures* FromVariant(InstructionSet isa,
const std::string& variant,
std::string* error_msg);
// Parse a string of the form "div,lpae" and create an InstructionSetFeatures.
static const InstructionSetFeatures* FromFeatureString(InstructionSet isa,
const std::string& feature_list,
std::string* error_msg);
// Parse a bitmap for the given isa and create an InstructionSetFeatures.
static const InstructionSetFeatures* FromBitmap(InstructionSet isa, uint32_t bitmap);
// Turn C pre-processor #defines into the equivalent instruction set features for kRuntimeISA.
static const InstructionSetFeatures* FromCppDefines();
// Process /proc/cpuinfo and use kRuntimeISA to produce InstructionSetFeatures.
static const InstructionSetFeatures* FromCpuInfo();
// Process the auxiliary vector AT_HWCAP entry and use kRuntimeISA to produce
// InstructionSetFeatures.
static const InstructionSetFeatures* FromHwcap();
// Use assembly tests of the current runtime (ie kRuntimeISA) to determine the
// InstructionSetFeatures. This works around kernel bugs in AT_HWCAP and /proc/cpuinfo.
static const InstructionSetFeatures* FromAssembly();
// Are these features the same as the other given features?
virtual bool Equals(const InstructionSetFeatures* other) const = 0;
// Return the ISA these features relate to.
virtual InstructionSet GetInstructionSet() const = 0;
// Return a bitmap that represents the features. ISA specific.
virtual uint32_t AsBitmap() const = 0;
// Return a string of the form "div,lpae" or "none".
virtual std::string GetFeatureString() const = 0;
// Down cast this ArmInstructionFeatures.
const ArmInstructionSetFeatures* AsArmInstructionSetFeatures() const;
virtual ~InstructionSetFeatures() {}
protected:
InstructionSetFeatures() {}
private:
DISALLOW_COPY_AND_ASSIGN(InstructionSetFeatures);
};
std::ostream& operator<<(std::ostream& os, const InstructionSetFeatures& rhs);
// Instruction set features relevant to the ARM architecture.
class ArmInstructionSetFeatures FINAL : public InstructionSetFeatures {
public:
// Process a CPU variant string like "krait" or "cortex-a15" and create InstructionSetFeatures.
static const ArmInstructionSetFeatures* FromVariant(const std::string& variant,
std::string* error_msg);
// Parse a string of the form "div,lpae" and create an InstructionSetFeatures.
static const ArmInstructionSetFeatures* FromFeatureString(const std::string& feature_list,
std::string* error_msg);
// Parse a bitmap and create an InstructionSetFeatures.
static const ArmInstructionSetFeatures* FromBitmap(uint32_t bitmap);
// Turn C pre-processor #defines into the equivalent instruction set features.
static const ArmInstructionSetFeatures* FromCppDefines();
// Process /proc/cpuinfo and use kRuntimeISA to produce InstructionSetFeatures.
static const ArmInstructionSetFeatures* FromCpuInfo();
// Process the auxiliary vector AT_HWCAP entry and use kRuntimeISA to produce
// InstructionSetFeatures.
static const ArmInstructionSetFeatures* FromHwcap();
// Use assembly tests of the current runtime (ie kRuntimeISA) to determine the
// InstructionSetFeatures. This works around kernel bugs in AT_HWCAP and /proc/cpuinfo.
static const ArmInstructionSetFeatures* FromAssembly();
bool Equals(const InstructionSetFeatures* other) const OVERRIDE;
InstructionSet GetInstructionSet() const OVERRIDE {
return kArm;
}
uint32_t AsBitmap() const OVERRIDE;
// Return a string of the form "div,lpae" or "none".
std::string GetFeatureString() const OVERRIDE;
// Is the divide instruction feature enabled?
bool HasDivideInstruction() const {
return has_div_;
}
// Is the Large Physical Address Extension (LPAE) instruction feature enabled? When true code can
// be used that assumes double register loads and stores (ldrd, strd) don't tear.
bool HasLpae() const {
return has_lpae_;
}
virtual ~ArmInstructionSetFeatures() {}
private:
ArmInstructionSetFeatures(bool has_lpae, bool has_div)
: has_lpae_(has_lpae), has_div_(has_div) {
}
// Bitmap positions for encoding features as a bitmap.
enum {
kDivBitfield = 1,
kLpaeBitfield = 2,
};
const bool has_lpae_;
const bool has_div_;
DISALLOW_COPY_AND_ASSIGN(ArmInstructionSetFeatures);
};
// A class used for instruction set features on ISAs that don't yet have any features defined.
class UnknownInstructionSetFeatures FINAL : public InstructionSetFeatures {
public:
static const UnknownInstructionSetFeatures* Unknown(InstructionSet isa) {
return new UnknownInstructionSetFeatures(isa);
}
bool Equals(const InstructionSetFeatures* other) const OVERRIDE {
return isa_ == other->GetInstructionSet();
}
InstructionSet GetInstructionSet() const OVERRIDE {
return isa_;
}
uint32_t AsBitmap() const OVERRIDE {
return 0;
}
std::string GetFeatureString() const OVERRIDE {
return "none";
}
virtual ~UnknownInstructionSetFeatures() {}
private:
explicit UnknownInstructionSetFeatures(InstructionSet isa) : isa_(isa) {}
const InstructionSet isa_;
DISALLOW_COPY_AND_ASSIGN(UnknownInstructionSetFeatures);
};
// The following definitions create return types for two word-sized entities that will be passed
// in registers so that memory operations for the interface trampolines can be avoided. The entities
// are the resolved method and the pointer to the code to be invoked.
//
// On x86, ARM32 and MIPS, this is given for a *scalar* 64bit value. The definition thus *must* be
// uint64_t or long long int.
//
// On x86_64 and ARM64, structs are decomposed for allocation, so we can create a structs of two
// size_t-sized values.
//
// We need two operations:
//
// 1) A flag value that signals failure. The assembly stubs expect the lower part to be "0".
// GetTwoWordFailureValue() will return a value that has lower part == 0.
//
// 2) A value that combines two word-sized values.
// GetTwoWordSuccessValue() constructs this.
//
// IMPORTANT: If you use this to transfer object pointers, it is your responsibility to ensure
// that the object does not move or the value is updated. Simple use of this is NOT SAFE
// when the garbage collector can move objects concurrently. Ensure that required locks
// are held when using!
#if defined(__i386__) || defined(__arm__) || defined(__mips__)
typedef uint64_t TwoWordReturn;
// Encodes method_ptr==nullptr and code_ptr==nullptr
static inline constexpr TwoWordReturn GetTwoWordFailureValue() {
return 0;
}
// Use the lower 32b for the method pointer and the upper 32b for the code pointer.
static inline TwoWordReturn GetTwoWordSuccessValue(uintptr_t hi, uintptr_t lo) {
uint32_t lo32 = static_cast<uint32_t>(lo);
uint64_t hi64 = static_cast<uint64_t>(hi);
return ((hi64 << 32) | lo32);
}
#elif defined(__x86_64__) || defined(__aarch64__)
struct TwoWordReturn {
uintptr_t lo;
uintptr_t hi;
};
// Encodes method_ptr==nullptr. Leaves random value in code pointer.
static inline TwoWordReturn GetTwoWordFailureValue() {
TwoWordReturn ret;
ret.lo = 0;
return ret;
}
// Write values into their respective members.
static inline TwoWordReturn GetTwoWordSuccessValue(uintptr_t hi, uintptr_t lo) {
TwoWordReturn ret;
ret.lo = lo;
ret.hi = hi;
return ret;
}
#else
#error "Unsupported architecture"
#endif
} // namespace art
#endif // ART_RUNTIME_INSTRUCTION_SET_H_