blob: ab480cafd5289303159beb806e01b731c28df5c8 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "assembler_mips64.h"
#include "base/bit_utils.h"
#include "base/casts.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "entrypoints/quick/quick_entrypoints_enum.h"
#include "memory_region.h"
#include "thread.h"
namespace art {
namespace mips64 {
void Mips64Assembler::FinalizeCode() {
for (auto& exception_block : exception_blocks_) {
EmitExceptionPoll(&exception_block);
}
PromoteBranches();
}
void Mips64Assembler::FinalizeInstructions(const MemoryRegion& region) {
EmitBranches();
Assembler::FinalizeInstructions(region);
PatchCFI();
}
void Mips64Assembler::PatchCFI() {
if (cfi().NumberOfDelayedAdvancePCs() == 0u) {
return;
}
typedef DebugFrameOpCodeWriterForAssembler::DelayedAdvancePC DelayedAdvancePC;
const auto data = cfi().ReleaseStreamAndPrepareForDelayedAdvancePC();
const std::vector<uint8_t>& old_stream = data.first;
const std::vector<DelayedAdvancePC>& advances = data.second;
// Refill our data buffer with patched opcodes.
cfi().ReserveCFIStream(old_stream.size() + advances.size() + 16);
size_t stream_pos = 0;
for (const DelayedAdvancePC& advance : advances) {
DCHECK_GE(advance.stream_pos, stream_pos);
// Copy old data up to the point where advance was issued.
cfi().AppendRawData(old_stream, stream_pos, advance.stream_pos);
stream_pos = advance.stream_pos;
// Insert the advance command with its final offset.
size_t final_pc = GetAdjustedPosition(advance.pc);
cfi().AdvancePC(final_pc);
}
// Copy the final segment if any.
cfi().AppendRawData(old_stream, stream_pos, old_stream.size());
}
void Mips64Assembler::EmitBranches() {
CHECK(!overwriting_);
// Switch from appending instructions at the end of the buffer to overwriting
// existing instructions (branch placeholders) in the buffer.
overwriting_ = true;
for (auto& branch : branches_) {
EmitBranch(&branch);
}
overwriting_ = false;
}
void Mips64Assembler::Emit(uint32_t value) {
if (overwriting_) {
// Branches to labels are emitted into their placeholders here.
buffer_.Store<uint32_t>(overwrite_location_, value);
overwrite_location_ += sizeof(uint32_t);
} else {
// Other instructions are simply appended at the end here.
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
buffer_.Emit<uint32_t>(value);
}
}
void Mips64Assembler::EmitR(int opcode, GpuRegister rs, GpuRegister rt, GpuRegister rd,
int shamt, int funct) {
CHECK_NE(rs, kNoGpuRegister);
CHECK_NE(rt, kNoGpuRegister);
CHECK_NE(rd, kNoGpuRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
static_cast<uint32_t>(rs) << kRsShift |
static_cast<uint32_t>(rt) << kRtShift |
static_cast<uint32_t>(rd) << kRdShift |
shamt << kShamtShift |
funct;
Emit(encoding);
}
void Mips64Assembler::EmitRsd(int opcode, GpuRegister rs, GpuRegister rd,
int shamt, int funct) {
CHECK_NE(rs, kNoGpuRegister);
CHECK_NE(rd, kNoGpuRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
static_cast<uint32_t>(rs) << kRsShift |
static_cast<uint32_t>(ZERO) << kRtShift |
static_cast<uint32_t>(rd) << kRdShift |
shamt << kShamtShift |
funct;
Emit(encoding);
}
void Mips64Assembler::EmitRtd(int opcode, GpuRegister rt, GpuRegister rd,
int shamt, int funct) {
CHECK_NE(rt, kNoGpuRegister);
CHECK_NE(rd, kNoGpuRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
static_cast<uint32_t>(ZERO) << kRsShift |
static_cast<uint32_t>(rt) << kRtShift |
static_cast<uint32_t>(rd) << kRdShift |
shamt << kShamtShift |
funct;
Emit(encoding);
}
void Mips64Assembler::EmitI(int opcode, GpuRegister rs, GpuRegister rt, uint16_t imm) {
CHECK_NE(rs, kNoGpuRegister);
CHECK_NE(rt, kNoGpuRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
static_cast<uint32_t>(rs) << kRsShift |
static_cast<uint32_t>(rt) << kRtShift |
imm;
Emit(encoding);
}
void Mips64Assembler::EmitI21(int opcode, GpuRegister rs, uint32_t imm21) {
CHECK_NE(rs, kNoGpuRegister);
CHECK(IsUint<21>(imm21)) << imm21;
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
static_cast<uint32_t>(rs) << kRsShift |
imm21;
Emit(encoding);
}
void Mips64Assembler::EmitI26(int opcode, uint32_t imm26) {
CHECK(IsUint<26>(imm26)) << imm26;
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | imm26;
Emit(encoding);
}
void Mips64Assembler::EmitFR(int opcode, int fmt, FpuRegister ft, FpuRegister fs, FpuRegister fd,
int funct) {
CHECK_NE(ft, kNoFpuRegister);
CHECK_NE(fs, kNoFpuRegister);
CHECK_NE(fd, kNoFpuRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
fmt << kFmtShift |
static_cast<uint32_t>(ft) << kFtShift |
static_cast<uint32_t>(fs) << kFsShift |
static_cast<uint32_t>(fd) << kFdShift |
funct;
Emit(encoding);
}
void Mips64Assembler::EmitFI(int opcode, int fmt, FpuRegister ft, uint16_t imm) {
CHECK_NE(ft, kNoFpuRegister);
uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
fmt << kFmtShift |
static_cast<uint32_t>(ft) << kFtShift |
imm;
Emit(encoding);
}
void Mips64Assembler::Addu(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x21);
}
void Mips64Assembler::Addiu(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x9, rs, rt, imm16);
}
void Mips64Assembler::Daddu(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x2d);
}
void Mips64Assembler::Daddiu(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x19, rs, rt, imm16);
}
void Mips64Assembler::Subu(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x23);
}
void Mips64Assembler::Dsubu(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x2f);
}
void Mips64Assembler::MulR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 2, 0x18);
}
void Mips64Assembler::MuhR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 3, 0x18);
}
void Mips64Assembler::DivR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 2, 0x1a);
}
void Mips64Assembler::ModR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 3, 0x1a);
}
void Mips64Assembler::DivuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 2, 0x1b);
}
void Mips64Assembler::ModuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 3, 0x1b);
}
void Mips64Assembler::Dmul(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 2, 0x1c);
}
void Mips64Assembler::Dmuh(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 3, 0x1c);
}
void Mips64Assembler::Ddiv(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 2, 0x1e);
}
void Mips64Assembler::Dmod(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 3, 0x1e);
}
void Mips64Assembler::Ddivu(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 2, 0x1f);
}
void Mips64Assembler::Dmodu(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 3, 0x1f);
}
void Mips64Assembler::And(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x24);
}
void Mips64Assembler::Andi(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0xc, rs, rt, imm16);
}
void Mips64Assembler::Or(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x25);
}
void Mips64Assembler::Ori(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0xd, rs, rt, imm16);
}
void Mips64Assembler::Xor(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x26);
}
void Mips64Assembler::Xori(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0xe, rs, rt, imm16);
}
void Mips64Assembler::Nor(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x27);
}
void Mips64Assembler::Bitswap(GpuRegister rd, GpuRegister rt) {
EmitRtd(0x1f, rt, rd, 0x0, 0x20);
}
void Mips64Assembler::Dbitswap(GpuRegister rd, GpuRegister rt) {
EmitRtd(0x1f, rt, rd, 0x0, 0x24);
}
void Mips64Assembler::Seb(GpuRegister rd, GpuRegister rt) {
EmitR(0x1f, static_cast<GpuRegister>(0), rt, rd, 0x10, 0x20);
}
void Mips64Assembler::Seh(GpuRegister rd, GpuRegister rt) {
EmitR(0x1f, static_cast<GpuRegister>(0), rt, rd, 0x18, 0x20);
}
void Mips64Assembler::Dsbh(GpuRegister rd, GpuRegister rt) {
EmitRtd(0x1f, rt, rd, 0x2, 0x24);
}
void Mips64Assembler::Dshd(GpuRegister rd, GpuRegister rt) {
EmitRtd(0x1f, rt, rd, 0x5, 0x24);
}
void Mips64Assembler::Dext(GpuRegister rt, GpuRegister rs, int pos, int size) {
CHECK(IsUint<5>(pos)) << pos;
CHECK(IsUint<5>(size - 1)) << size;
EmitR(0x1f, rs, rt, static_cast<GpuRegister>(size - 1), pos, 0x3);
}
void Mips64Assembler::Dinsu(GpuRegister rt, GpuRegister rs, int pos, int size) {
CHECK(IsUint<5>(pos - 32)) << pos;
CHECK(IsUint<5>(size - 1)) << size;
CHECK(IsUint<5>(pos + size - 33)) << pos << " + " << size;
EmitR(0x1f, rs, rt, static_cast<GpuRegister>(pos + size - 33), pos - 32, 0x6);
}
void Mips64Assembler::Wsbh(GpuRegister rd, GpuRegister rt) {
EmitRtd(0x1f, rt, rd, 2, 0x20);
}
void Mips64Assembler::Sc(GpuRegister rt, GpuRegister base, int16_t imm9) {
CHECK(IsInt<9>(imm9));
EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x26);
}
void Mips64Assembler::Scd(GpuRegister rt, GpuRegister base, int16_t imm9) {
CHECK(IsInt<9>(imm9));
EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x27);
}
void Mips64Assembler::Ll(GpuRegister rt, GpuRegister base, int16_t imm9) {
CHECK(IsInt<9>(imm9));
EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x36);
}
void Mips64Assembler::Lld(GpuRegister rt, GpuRegister base, int16_t imm9) {
CHECK(IsInt<9>(imm9));
EmitI(0x1f, base, rt, ((imm9 & 0x1FF) << 7) | 0x37);
}
void Mips64Assembler::Sll(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x00);
}
void Mips64Assembler::Srl(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x02);
}
void Mips64Assembler::Rotr(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(1), rt, rd, shamt, 0x02);
}
void Mips64Assembler::Sra(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x03);
}
void Mips64Assembler::Sllv(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 0, 0x04);
}
void Mips64Assembler::Rotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 1, 0x06);
}
void Mips64Assembler::Srlv(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 0, 0x06);
}
void Mips64Assembler::Srav(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 0, 0x07);
}
void Mips64Assembler::Dsll(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x38);
}
void Mips64Assembler::Dsrl(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3a);
}
void Mips64Assembler::Drotr(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(1), rt, rd, shamt, 0x3a);
}
void Mips64Assembler::Dsra(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3b);
}
void Mips64Assembler::Dsll32(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3c);
}
void Mips64Assembler::Dsrl32(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3e);
}
void Mips64Assembler::Drotr32(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(1), rt, rd, shamt, 0x3e);
}
void Mips64Assembler::Dsra32(GpuRegister rd, GpuRegister rt, int shamt) {
EmitR(0, static_cast<GpuRegister>(0), rt, rd, shamt, 0x3f);
}
void Mips64Assembler::Dsllv(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 0, 0x14);
}
void Mips64Assembler::Dsrlv(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 0, 0x16);
}
void Mips64Assembler::Drotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 1, 0x16);
}
void Mips64Assembler::Dsrav(GpuRegister rd, GpuRegister rt, GpuRegister rs) {
EmitR(0, rs, rt, rd, 0, 0x17);
}
void Mips64Assembler::Lb(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x20, rs, rt, imm16);
}
void Mips64Assembler::Lh(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x21, rs, rt, imm16);
}
void Mips64Assembler::Lw(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x23, rs, rt, imm16);
}
void Mips64Assembler::Ld(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x37, rs, rt, imm16);
}
void Mips64Assembler::Lbu(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x24, rs, rt, imm16);
}
void Mips64Assembler::Lhu(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x25, rs, rt, imm16);
}
void Mips64Assembler::Lwu(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x27, rs, rt, imm16);
}
void Mips64Assembler::Lui(GpuRegister rt, uint16_t imm16) {
EmitI(0xf, static_cast<GpuRegister>(0), rt, imm16);
}
void Mips64Assembler::Dahi(GpuRegister rs, uint16_t imm16) {
EmitI(1, rs, static_cast<GpuRegister>(6), imm16);
}
void Mips64Assembler::Dati(GpuRegister rs, uint16_t imm16) {
EmitI(1, rs, static_cast<GpuRegister>(0x1e), imm16);
}
void Mips64Assembler::Sync(uint32_t stype) {
EmitR(0, static_cast<GpuRegister>(0), static_cast<GpuRegister>(0),
static_cast<GpuRegister>(0), stype & 0x1f, 0xf);
}
void Mips64Assembler::Sb(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x28, rs, rt, imm16);
}
void Mips64Assembler::Sh(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x29, rs, rt, imm16);
}
void Mips64Assembler::Sw(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x2b, rs, rt, imm16);
}
void Mips64Assembler::Sd(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0x3f, rs, rt, imm16);
}
void Mips64Assembler::Slt(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x2a);
}
void Mips64Assembler::Sltu(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x2b);
}
void Mips64Assembler::Slti(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0xa, rs, rt, imm16);
}
void Mips64Assembler::Sltiu(GpuRegister rt, GpuRegister rs, uint16_t imm16) {
EmitI(0xb, rs, rt, imm16);
}
void Mips64Assembler::Seleqz(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x35);
}
void Mips64Assembler::Selnez(GpuRegister rd, GpuRegister rs, GpuRegister rt) {
EmitR(0, rs, rt, rd, 0, 0x37);
}
void Mips64Assembler::Clz(GpuRegister rd, GpuRegister rs) {
EmitRsd(0, rs, rd, 0x01, 0x10);
}
void Mips64Assembler::Clo(GpuRegister rd, GpuRegister rs) {
EmitRsd(0, rs, rd, 0x01, 0x11);
}
void Mips64Assembler::Dclz(GpuRegister rd, GpuRegister rs) {
EmitRsd(0, rs, rd, 0x01, 0x12);
}
void Mips64Assembler::Dclo(GpuRegister rd, GpuRegister rs) {
EmitRsd(0, rs, rd, 0x01, 0x13);
}
void Mips64Assembler::Jalr(GpuRegister rd, GpuRegister rs) {
EmitR(0, rs, static_cast<GpuRegister>(0), rd, 0, 0x09);
}
void Mips64Assembler::Jalr(GpuRegister rs) {
Jalr(RA, rs);
}
void Mips64Assembler::Jr(GpuRegister rs) {
Jalr(ZERO, rs);
}
void Mips64Assembler::Auipc(GpuRegister rs, uint16_t imm16) {
EmitI(0x3B, rs, static_cast<GpuRegister>(0x1E), imm16);
}
void Mips64Assembler::Addiupc(GpuRegister rs, uint32_t imm19) {
CHECK(IsUint<19>(imm19)) << imm19;
EmitI21(0x3B, rs, imm19);
}
void Mips64Assembler::Bc(uint32_t imm26) {
EmitI26(0x32, imm26);
}
void Mips64Assembler::Jic(GpuRegister rt, uint16_t imm16) {
EmitI(0x36, static_cast<GpuRegister>(0), rt, imm16);
}
void Mips64Assembler::Jialc(GpuRegister rt, uint16_t imm16) {
EmitI(0x3E, static_cast<GpuRegister>(0), rt, imm16);
}
void Mips64Assembler::Bltc(GpuRegister rs, GpuRegister rt, uint16_t imm16) {
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
EmitI(0x17, rs, rt, imm16);
}
void Mips64Assembler::Bltzc(GpuRegister rt, uint16_t imm16) {
CHECK_NE(rt, ZERO);
EmitI(0x17, rt, rt, imm16);
}
void Mips64Assembler::Bgtzc(GpuRegister rt, uint16_t imm16) {
CHECK_NE(rt, ZERO);
EmitI(0x17, static_cast<GpuRegister>(0), rt, imm16);
}
void Mips64Assembler::Bgec(GpuRegister rs, GpuRegister rt, uint16_t imm16) {
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
EmitI(0x16, rs, rt, imm16);
}
void Mips64Assembler::Bgezc(GpuRegister rt, uint16_t imm16) {
CHECK_NE(rt, ZERO);
EmitI(0x16, rt, rt, imm16);
}
void Mips64Assembler::Blezc(GpuRegister rt, uint16_t imm16) {
CHECK_NE(rt, ZERO);
EmitI(0x16, static_cast<GpuRegister>(0), rt, imm16);
}
void Mips64Assembler::Bltuc(GpuRegister rs, GpuRegister rt, uint16_t imm16) {
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
EmitI(0x7, rs, rt, imm16);
}
void Mips64Assembler::Bgeuc(GpuRegister rs, GpuRegister rt, uint16_t imm16) {
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
EmitI(0x6, rs, rt, imm16);
}
void Mips64Assembler::Beqc(GpuRegister rs, GpuRegister rt, uint16_t imm16) {
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
EmitI(0x8, std::min(rs, rt), std::max(rs, rt), imm16);
}
void Mips64Assembler::Bnec(GpuRegister rs, GpuRegister rt, uint16_t imm16) {
CHECK_NE(rs, ZERO);
CHECK_NE(rt, ZERO);
CHECK_NE(rs, rt);
EmitI(0x18, std::min(rs, rt), std::max(rs, rt), imm16);
}
void Mips64Assembler::Beqzc(GpuRegister rs, uint32_t imm21) {
CHECK_NE(rs, ZERO);
EmitI21(0x36, rs, imm21);
}
void Mips64Assembler::Bnezc(GpuRegister rs, uint32_t imm21) {
CHECK_NE(rs, ZERO);
EmitI21(0x3E, rs, imm21);
}
void Mips64Assembler::Bc1eqz(FpuRegister ft, uint16_t imm16) {
EmitFI(0x11, 0x9, ft, imm16);
}
void Mips64Assembler::Bc1nez(FpuRegister ft, uint16_t imm16) {
EmitFI(0x11, 0xD, ft, imm16);
}
void Mips64Assembler::EmitBcondc(BranchCondition cond,
GpuRegister rs,
GpuRegister rt,
uint32_t imm16_21) {
switch (cond) {
case kCondLT:
Bltc(rs, rt, imm16_21);
break;
case kCondGE:
Bgec(rs, rt, imm16_21);
break;
case kCondLE:
Bgec(rt, rs, imm16_21);
break;
case kCondGT:
Bltc(rt, rs, imm16_21);
break;
case kCondLTZ:
CHECK_EQ(rt, ZERO);
Bltzc(rs, imm16_21);
break;
case kCondGEZ:
CHECK_EQ(rt, ZERO);
Bgezc(rs, imm16_21);
break;
case kCondLEZ:
CHECK_EQ(rt, ZERO);
Blezc(rs, imm16_21);
break;
case kCondGTZ:
CHECK_EQ(rt, ZERO);
Bgtzc(rs, imm16_21);
break;
case kCondEQ:
Beqc(rs, rt, imm16_21);
break;
case kCondNE:
Bnec(rs, rt, imm16_21);
break;
case kCondEQZ:
CHECK_EQ(rt, ZERO);
Beqzc(rs, imm16_21);
break;
case kCondNEZ:
CHECK_EQ(rt, ZERO);
Bnezc(rs, imm16_21);
break;
case kCondLTU:
Bltuc(rs, rt, imm16_21);
break;
case kCondGEU:
Bgeuc(rs, rt, imm16_21);
break;
case kCondF:
CHECK_EQ(rt, ZERO);
Bc1eqz(static_cast<FpuRegister>(rs), imm16_21);
break;
case kCondT:
CHECK_EQ(rt, ZERO);
Bc1nez(static_cast<FpuRegister>(rs), imm16_21);
break;
case kUncond:
LOG(FATAL) << "Unexpected branch condition " << cond;
UNREACHABLE();
}
}
void Mips64Assembler::AddS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x10, ft, fs, fd, 0x0);
}
void Mips64Assembler::SubS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x10, ft, fs, fd, 0x1);
}
void Mips64Assembler::MulS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x10, ft, fs, fd, 0x2);
}
void Mips64Assembler::DivS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x10, ft, fs, fd, 0x3);
}
void Mips64Assembler::AddD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x11, ft, fs, fd, 0x0);
}
void Mips64Assembler::SubD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x11, ft, fs, fd, 0x1);
}
void Mips64Assembler::MulD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x11, ft, fs, fd, 0x2);
}
void Mips64Assembler::DivD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x11, ft, fs, fd, 0x3);
}
void Mips64Assembler::SqrtS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x4);
}
void Mips64Assembler::SqrtD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x4);
}
void Mips64Assembler::AbsS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x5);
}
void Mips64Assembler::AbsD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x5);
}
void Mips64Assembler::MovS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x6);
}
void Mips64Assembler::MovD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x6);
}
void Mips64Assembler::NegS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x7);
}
void Mips64Assembler::NegD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x7);
}
void Mips64Assembler::RoundLS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x8);
}
void Mips64Assembler::RoundLD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x8);
}
void Mips64Assembler::RoundWS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xc);
}
void Mips64Assembler::RoundWD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xc);
}
void Mips64Assembler::TruncLS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x9);
}
void Mips64Assembler::TruncLD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x9);
}
void Mips64Assembler::TruncWS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xd);
}
void Mips64Assembler::TruncWD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xd);
}
void Mips64Assembler::CeilLS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xa);
}
void Mips64Assembler::CeilLD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xa);
}
void Mips64Assembler::CeilWS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xe);
}
void Mips64Assembler::CeilWD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xe);
}
void Mips64Assembler::FloorLS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xb);
}
void Mips64Assembler::FloorLD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xb);
}
void Mips64Assembler::FloorWS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0xf);
}
void Mips64Assembler::FloorWD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0xf);
}
void Mips64Assembler::SelS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x10, ft, fs, fd, 0x10);
}
void Mips64Assembler::SelD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x11, ft, fs, fd, 0x10);
}
void Mips64Assembler::RintS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x1a);
}
void Mips64Assembler::RintD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x1a);
}
void Mips64Assembler::ClassS(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x1b);
}
void Mips64Assembler::ClassD(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x1b);
}
void Mips64Assembler::MinS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x10, ft, fs, fd, 0x1c);
}
void Mips64Assembler::MinD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x11, ft, fs, fd, 0x1c);
}
void Mips64Assembler::MaxS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x10, ft, fs, fd, 0x1e);
}
void Mips64Assembler::MaxD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x11, ft, fs, fd, 0x1e);
}
void Mips64Assembler::CmpUnS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x01);
}
void Mips64Assembler::CmpEqS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x02);
}
void Mips64Assembler::CmpUeqS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x03);
}
void Mips64Assembler::CmpLtS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x04);
}
void Mips64Assembler::CmpUltS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x05);
}
void Mips64Assembler::CmpLeS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x06);
}
void Mips64Assembler::CmpUleS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x07);
}
void Mips64Assembler::CmpOrS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x11);
}
void Mips64Assembler::CmpUneS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x12);
}
void Mips64Assembler::CmpNeS(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x14, ft, fs, fd, 0x13);
}
void Mips64Assembler::CmpUnD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x01);
}
void Mips64Assembler::CmpEqD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x02);
}
void Mips64Assembler::CmpUeqD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x03);
}
void Mips64Assembler::CmpLtD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x04);
}
void Mips64Assembler::CmpUltD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x05);
}
void Mips64Assembler::CmpLeD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x06);
}
void Mips64Assembler::CmpUleD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x07);
}
void Mips64Assembler::CmpOrD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x11);
}
void Mips64Assembler::CmpUneD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x12);
}
void Mips64Assembler::CmpNeD(FpuRegister fd, FpuRegister fs, FpuRegister ft) {
EmitFR(0x11, 0x15, ft, fs, fd, 0x13);
}
void Mips64Assembler::Cvtsw(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x14, static_cast<FpuRegister>(0), fs, fd, 0x20);
}
void Mips64Assembler::Cvtdw(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x14, static_cast<FpuRegister>(0), fs, fd, 0x21);
}
void Mips64Assembler::Cvtsd(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x11, static_cast<FpuRegister>(0), fs, fd, 0x20);
}
void Mips64Assembler::Cvtds(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x10, static_cast<FpuRegister>(0), fs, fd, 0x21);
}
void Mips64Assembler::Cvtsl(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x15, static_cast<FpuRegister>(0), fs, fd, 0x20);
}
void Mips64Assembler::Cvtdl(FpuRegister fd, FpuRegister fs) {
EmitFR(0x11, 0x15, static_cast<FpuRegister>(0), fs, fd, 0x21);
}
void Mips64Assembler::Mfc1(GpuRegister rt, FpuRegister fs) {
EmitFR(0x11, 0x00, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0);
}
void Mips64Assembler::Mfhc1(GpuRegister rt, FpuRegister fs) {
EmitFR(0x11, 0x03, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0);
}
void Mips64Assembler::Mtc1(GpuRegister rt, FpuRegister fs) {
EmitFR(0x11, 0x04, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0);
}
void Mips64Assembler::Mthc1(GpuRegister rt, FpuRegister fs) {
EmitFR(0x11, 0x07, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0);
}
void Mips64Assembler::Dmfc1(GpuRegister rt, FpuRegister fs) {
EmitFR(0x11, 0x01, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0);
}
void Mips64Assembler::Dmtc1(GpuRegister rt, FpuRegister fs) {
EmitFR(0x11, 0x05, static_cast<FpuRegister>(rt), fs, static_cast<FpuRegister>(0), 0x0);
}
void Mips64Assembler::Lwc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) {
EmitI(0x31, rs, static_cast<GpuRegister>(ft), imm16);
}
void Mips64Assembler::Ldc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) {
EmitI(0x35, rs, static_cast<GpuRegister>(ft), imm16);
}
void Mips64Assembler::Swc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) {
EmitI(0x39, rs, static_cast<GpuRegister>(ft), imm16);
}
void Mips64Assembler::Sdc1(FpuRegister ft, GpuRegister rs, uint16_t imm16) {
EmitI(0x3d, rs, static_cast<GpuRegister>(ft), imm16);
}
void Mips64Assembler::Break() {
EmitR(0, static_cast<GpuRegister>(0), static_cast<GpuRegister>(0),
static_cast<GpuRegister>(0), 0, 0xD);
}
void Mips64Assembler::Nop() {
EmitR(0x0, static_cast<GpuRegister>(0), static_cast<GpuRegister>(0),
static_cast<GpuRegister>(0), 0, 0x0);
}
void Mips64Assembler::Move(GpuRegister rd, GpuRegister rs) {
Or(rd, rs, ZERO);
}
void Mips64Assembler::Clear(GpuRegister rd) {
Move(rd, ZERO);
}
void Mips64Assembler::Not(GpuRegister rd, GpuRegister rs) {
Nor(rd, rs, ZERO);
}
void Mips64Assembler::LoadConst32(GpuRegister rd, int32_t value) {
if (IsUint<16>(value)) {
// Use OR with (unsigned) immediate to encode 16b unsigned int.
Ori(rd, ZERO, value);
} else if (IsInt<16>(value)) {
// Use ADD with (signed) immediate to encode 16b signed int.
Addiu(rd, ZERO, value);
} else {
Lui(rd, value >> 16);
if (value & 0xFFFF)
Ori(rd, rd, value);
}
}
void Mips64Assembler::LoadConst64(GpuRegister rd, int64_t value) {
int bit31 = (value & UINT64_C(0x80000000)) != 0;
// Loads with 1 instruction.
if (IsUint<16>(value)) {
Ori(rd, ZERO, value);
} else if (IsInt<16>(value)) {
Daddiu(rd, ZERO, value);
} else if ((value & 0xFFFF) == 0 && IsInt<16>(value >> 16)) {
Lui(rd, value >> 16);
} else if (IsInt<32>(value)) {
// Loads with 2 instructions.
Lui(rd, value >> 16);
Ori(rd, rd, value);
} else if ((value & 0xFFFF0000) == 0 && IsInt<16>(value >> 32)) {
Ori(rd, ZERO, value);
Dahi(rd, value >> 32);
} else if ((value & UINT64_C(0xFFFFFFFF0000)) == 0) {
Ori(rd, ZERO, value);
Dati(rd, value >> 48);
} else if ((value & 0xFFFF) == 0 &&
(-32768 - bit31) <= (value >> 32) && (value >> 32) <= (32767 - bit31)) {
Lui(rd, value >> 16);
Dahi(rd, (value >> 32) + bit31);
} else if ((value & 0xFFFF) == 0 && ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF)) {
Lui(rd, value >> 16);
Dati(rd, (value >> 48) + bit31);
} else if (IsPowerOfTwo(value + UINT64_C(1))) {
int shift_cnt = 64 - CTZ(value + UINT64_C(1));
Daddiu(rd, ZERO, -1);
if (shift_cnt < 32) {
Dsrl(rd, rd, shift_cnt);
} else {
Dsrl32(rd, rd, shift_cnt & 31);
}
} else {
int shift_cnt = CTZ(value);
int64_t tmp = value >> shift_cnt;
if (IsUint<16>(tmp)) {
Ori(rd, ZERO, tmp);
if (shift_cnt < 32) {
Dsll(rd, rd, shift_cnt);
} else {
Dsll32(rd, rd, shift_cnt & 31);
}
} else if (IsInt<16>(tmp)) {
Daddiu(rd, ZERO, tmp);
if (shift_cnt < 32) {
Dsll(rd, rd, shift_cnt);
} else {
Dsll32(rd, rd, shift_cnt & 31);
}
} else if (IsInt<32>(tmp)) {
// Loads with 3 instructions.
Lui(rd, tmp >> 16);
Ori(rd, rd, tmp);
if (shift_cnt < 32) {
Dsll(rd, rd, shift_cnt);
} else {
Dsll32(rd, rd, shift_cnt & 31);
}
} else {
shift_cnt = 16 + CTZ(value >> 16);
tmp = value >> shift_cnt;
if (IsUint<16>(tmp)) {
Ori(rd, ZERO, tmp);
if (shift_cnt < 32) {
Dsll(rd, rd, shift_cnt);
} else {
Dsll32(rd, rd, shift_cnt & 31);
}
Ori(rd, rd, value);
} else if (IsInt<16>(tmp)) {
Daddiu(rd, ZERO, tmp);
if (shift_cnt < 32) {
Dsll(rd, rd, shift_cnt);
} else {
Dsll32(rd, rd, shift_cnt & 31);
}
Ori(rd, rd, value);
} else {
// Loads with 3-4 instructions.
uint64_t tmp2 = value;
bool used_lui = false;
if (((tmp2 >> 16) & 0xFFFF) != 0 || (tmp2 & 0xFFFFFFFF) == 0) {
Lui(rd, tmp2 >> 16);
used_lui = true;
}
if ((tmp2 & 0xFFFF) != 0) {
if (used_lui) {
Ori(rd, rd, tmp2);
} else {
Ori(rd, ZERO, tmp2);
}
}
if (bit31) {
tmp2 += UINT64_C(0x100000000);
}
if (((tmp2 >> 32) & 0xFFFF) != 0) {
Dahi(rd, tmp2 >> 32);
}
if (tmp2 & UINT64_C(0x800000000000)) {
tmp2 += UINT64_C(0x1000000000000);
}
if ((tmp2 >> 48) != 0) {
Dati(rd, tmp2 >> 48);
}
}
}
}
}
void Mips64Assembler::Daddiu64(GpuRegister rt, GpuRegister rs, int64_t value, GpuRegister rtmp) {
if (IsInt<16>(value)) {
Daddiu(rt, rs, value);
} else {
LoadConst64(rtmp, value);
Daddu(rt, rs, rtmp);
}
}
void Mips64Assembler::Branch::InitShortOrLong(Mips64Assembler::Branch::OffsetBits offset_size,
Mips64Assembler::Branch::Type short_type,
Mips64Assembler::Branch::Type long_type) {
type_ = (offset_size <= branch_info_[short_type].offset_size) ? short_type : long_type;
}
void Mips64Assembler::Branch::InitializeType(bool is_call) {
OffsetBits offset_size = GetOffsetSizeNeeded(location_, target_);
if (is_call) {
InitShortOrLong(offset_size, kCall, kLongCall);
} else if (condition_ == kUncond) {
InitShortOrLong(offset_size, kUncondBranch, kLongUncondBranch);
} else {
if (condition_ == kCondEQZ || condition_ == kCondNEZ) {
// Special case for beqzc/bnezc with longer offset than in other b<cond>c instructions.
type_ = (offset_size <= kOffset23) ? kCondBranch : kLongCondBranch;
} else {
InitShortOrLong(offset_size, kCondBranch, kLongCondBranch);
}
}
old_type_ = type_;
}
bool Mips64Assembler::Branch::IsNop(BranchCondition condition, GpuRegister lhs, GpuRegister rhs) {
switch (condition) {
case kCondLT:
case kCondGT:
case kCondNE:
case kCondLTU:
return lhs == rhs;
default:
return false;
}
}
bool Mips64Assembler::Branch::IsUncond(BranchCondition condition,
GpuRegister lhs,
GpuRegister rhs) {
switch (condition) {
case kUncond:
return true;
case kCondGE:
case kCondLE:
case kCondEQ:
case kCondGEU:
return lhs == rhs;
default:
return false;
}
}
Mips64Assembler::Branch::Branch(uint32_t location, uint32_t target)
: old_location_(location),
location_(location),
target_(target),
lhs_reg_(ZERO),
rhs_reg_(ZERO),
condition_(kUncond) {
InitializeType(false);
}
Mips64Assembler::Branch::Branch(uint32_t location,
uint32_t target,
Mips64Assembler::BranchCondition condition,
GpuRegister lhs_reg,
GpuRegister rhs_reg)
: old_location_(location),
location_(location),
target_(target),
lhs_reg_(lhs_reg),
rhs_reg_(rhs_reg),
condition_(condition) {
CHECK_NE(condition, kUncond);
switch (condition) {
case kCondEQ:
case kCondNE:
case kCondLT:
case kCondGE:
case kCondLE:
case kCondGT:
case kCondLTU:
case kCondGEU:
CHECK_NE(lhs_reg, ZERO);
CHECK_NE(rhs_reg, ZERO);
break;
case kCondLTZ:
case kCondGEZ:
case kCondLEZ:
case kCondGTZ:
case kCondEQZ:
case kCondNEZ:
CHECK_NE(lhs_reg, ZERO);
CHECK_EQ(rhs_reg, ZERO);
break;
case kCondF:
case kCondT:
CHECK_EQ(rhs_reg, ZERO);
break;
case kUncond:
UNREACHABLE();
}
CHECK(!IsNop(condition, lhs_reg, rhs_reg));
if (IsUncond(condition, lhs_reg, rhs_reg)) {
// Branch condition is always true, make the branch unconditional.
condition_ = kUncond;
}
InitializeType(false);
}
Mips64Assembler::Branch::Branch(uint32_t location, uint32_t target, GpuRegister indirect_reg)
: old_location_(location),
location_(location),
target_(target),
lhs_reg_(indirect_reg),
rhs_reg_(ZERO),
condition_(kUncond) {
CHECK_NE(indirect_reg, ZERO);
CHECK_NE(indirect_reg, AT);
InitializeType(true);
}
Mips64Assembler::BranchCondition Mips64Assembler::Branch::OppositeCondition(
Mips64Assembler::BranchCondition cond) {
switch (cond) {
case kCondLT:
return kCondGE;
case kCondGE:
return kCondLT;
case kCondLE:
return kCondGT;
case kCondGT:
return kCondLE;
case kCondLTZ:
return kCondGEZ;
case kCondGEZ:
return kCondLTZ;
case kCondLEZ:
return kCondGTZ;
case kCondGTZ:
return kCondLEZ;
case kCondEQ:
return kCondNE;
case kCondNE:
return kCondEQ;
case kCondEQZ:
return kCondNEZ;
case kCondNEZ:
return kCondEQZ;
case kCondLTU:
return kCondGEU;
case kCondGEU:
return kCondLTU;
case kCondF:
return kCondT;
case kCondT:
return kCondF;
case kUncond:
LOG(FATAL) << "Unexpected branch condition " << cond;
}
UNREACHABLE();
}
Mips64Assembler::Branch::Type Mips64Assembler::Branch::GetType() const {
return type_;
}
Mips64Assembler::BranchCondition Mips64Assembler::Branch::GetCondition() const {
return condition_;
}
GpuRegister Mips64Assembler::Branch::GetLeftRegister() const {
return lhs_reg_;
}
GpuRegister Mips64Assembler::Branch::GetRightRegister() const {
return rhs_reg_;
}
uint32_t Mips64Assembler::Branch::GetTarget() const {
return target_;
}
uint32_t Mips64Assembler::Branch::GetLocation() const {
return location_;
}
uint32_t Mips64Assembler::Branch::GetOldLocation() const {
return old_location_;
}
uint32_t Mips64Assembler::Branch::GetLength() const {
return branch_info_[type_].length;
}
uint32_t Mips64Assembler::Branch::GetOldLength() const {
return branch_info_[old_type_].length;
}
uint32_t Mips64Assembler::Branch::GetSize() const {
return GetLength() * sizeof(uint32_t);
}
uint32_t Mips64Assembler::Branch::GetOldSize() const {
return GetOldLength() * sizeof(uint32_t);
}
uint32_t Mips64Assembler::Branch::GetEndLocation() const {
return GetLocation() + GetSize();
}
uint32_t Mips64Assembler::Branch::GetOldEndLocation() const {
return GetOldLocation() + GetOldSize();
}
bool Mips64Assembler::Branch::IsLong() const {
switch (type_) {
// Short branches.
case kUncondBranch:
case kCondBranch:
case kCall:
return false;
// Long branches.
case kLongUncondBranch:
case kLongCondBranch:
case kLongCall:
return true;
}
UNREACHABLE();
}
bool Mips64Assembler::Branch::IsResolved() const {
return target_ != kUnresolved;
}
Mips64Assembler::Branch::OffsetBits Mips64Assembler::Branch::GetOffsetSize() const {
OffsetBits offset_size =
(type_ == kCondBranch && (condition_ == kCondEQZ || condition_ == kCondNEZ))
? kOffset23
: branch_info_[type_].offset_size;
return offset_size;
}
Mips64Assembler::Branch::OffsetBits Mips64Assembler::Branch::GetOffsetSizeNeeded(uint32_t location,
uint32_t target) {
// For unresolved targets assume the shortest encoding
// (later it will be made longer if needed).
if (target == kUnresolved)
return kOffset16;
int64_t distance = static_cast<int64_t>(target) - location;
// To simplify calculations in composite branches consisting of multiple instructions
// bump up the distance by a value larger than the max byte size of a composite branch.
distance += (distance >= 0) ? kMaxBranchSize : -kMaxBranchSize;
if (IsInt<kOffset16>(distance))
return kOffset16;
else if (IsInt<kOffset18>(distance))
return kOffset18;
else if (IsInt<kOffset21>(distance))
return kOffset21;
else if (IsInt<kOffset23>(distance))
return kOffset23;
else if (IsInt<kOffset28>(distance))
return kOffset28;
return kOffset32;
}
void Mips64Assembler::Branch::Resolve(uint32_t target) {
target_ = target;
}
void Mips64Assembler::Branch::Relocate(uint32_t expand_location, uint32_t delta) {
if (location_ > expand_location) {
location_ += delta;
}
if (!IsResolved()) {
return; // Don't know the target yet.
}
if (target_ > expand_location) {
target_ += delta;
}
}
void Mips64Assembler::Branch::PromoteToLong() {
switch (type_) {
// Short branches.
case kUncondBranch:
type_ = kLongUncondBranch;
break;
case kCondBranch:
type_ = kLongCondBranch;
break;
case kCall:
type_ = kLongCall;
break;
default:
// Note: 'type_' is already long.
break;
}
CHECK(IsLong());
}
uint32_t Mips64Assembler::Branch::PromoteIfNeeded(uint32_t max_short_distance) {
// If the branch is still unresolved or already long, nothing to do.
if (IsLong() || !IsResolved()) {
return 0;
}
// Promote the short branch to long if the offset size is too small
// to hold the distance between location_ and target_.
if (GetOffsetSizeNeeded(location_, target_) > GetOffsetSize()) {
PromoteToLong();
uint32_t old_size = GetOldSize();
uint32_t new_size = GetSize();
CHECK_GT(new_size, old_size);
return new_size - old_size;
}
// The following logic is for debugging/testing purposes.
// Promote some short branches to long when it's not really required.
if (UNLIKELY(max_short_distance != std::numeric_limits<uint32_t>::max())) {
int64_t distance = static_cast<int64_t>(target_) - location_;
distance = (distance >= 0) ? distance : -distance;
if (distance >= max_short_distance) {
PromoteToLong();
uint32_t old_size = GetOldSize();
uint32_t new_size = GetSize();
CHECK_GT(new_size, old_size);
return new_size - old_size;
}
}
return 0;
}
uint32_t Mips64Assembler::Branch::GetOffsetLocation() const {
return location_ + branch_info_[type_].instr_offset * sizeof(uint32_t);
}
uint32_t Mips64Assembler::Branch::GetOffset() const {
CHECK(IsResolved());
uint32_t ofs_mask = 0xFFFFFFFF >> (32 - GetOffsetSize());
// Calculate the byte distance between instructions and also account for
// different PC-relative origins.
uint32_t offset = target_ - GetOffsetLocation() - branch_info_[type_].pc_org * sizeof(uint32_t);
// Prepare the offset for encoding into the instruction(s).
offset = (offset & ofs_mask) >> branch_info_[type_].offset_shift;
return offset;
}
Mips64Assembler::Branch* Mips64Assembler::GetBranch(uint32_t branch_id) {
CHECK_LT(branch_id, branches_.size());
return &branches_[branch_id];
}
const Mips64Assembler::Branch* Mips64Assembler::GetBranch(uint32_t branch_id) const {
CHECK_LT(branch_id, branches_.size());
return &branches_[branch_id];
}
void Mips64Assembler::Bind(Mips64Label* label) {
CHECK(!label->IsBound());
uint32_t bound_pc = buffer_.Size();
// Walk the list of branches referring to and preceding this label.
// Store the previously unknown target addresses in them.
while (label->IsLinked()) {
uint32_t branch_id = label->Position();
Branch* branch = GetBranch(branch_id);
branch->Resolve(bound_pc);
uint32_t branch_location = branch->GetLocation();
// Extract the location of the previous branch in the list (walking the list backwards;
// the previous branch ID was stored in the space reserved for this branch).
uint32_t prev = buffer_.Load<uint32_t>(branch_location);
// On to the previous branch in the list...
label->position_ = prev;
}
// Now make the label object contain its own location (relative to the end of the preceding
// branch, if any; it will be used by the branches referring to and following this label).
label->prev_branch_id_plus_one_ = branches_.size();
if (label->prev_branch_id_plus_one_) {
uint32_t branch_id = label->prev_branch_id_plus_one_ - 1;
const Branch* branch = GetBranch(branch_id);
bound_pc -= branch->GetEndLocation();
}
label->BindTo(bound_pc);
}
uint32_t Mips64Assembler::GetLabelLocation(Mips64Label* label) const {
CHECK(label->IsBound());
uint32_t target = label->Position();
if (label->prev_branch_id_plus_one_) {
// Get label location based on the branch preceding it.
uint32_t branch_id = label->prev_branch_id_plus_one_ - 1;
const Branch* branch = GetBranch(branch_id);
target += branch->GetEndLocation();
}
return target;
}
uint32_t Mips64Assembler::GetAdjustedPosition(uint32_t old_position) {
// We can reconstruct the adjustment by going through all the branches from the beginning
// up to the old_position. Since we expect AdjustedPosition() to be called in a loop
// with increasing old_position, we can use the data from last AdjustedPosition() to
// continue where we left off and the whole loop should be O(m+n) where m is the number
// of positions to adjust and n is the number of branches.
if (old_position < last_old_position_) {
last_position_adjustment_ = 0;
last_old_position_ = 0;
last_branch_id_ = 0;
}
while (last_branch_id_ != branches_.size()) {
const Branch* branch = GetBranch(last_branch_id_);
if (branch->GetLocation() >= old_position + last_position_adjustment_) {
break;
}
last_position_adjustment_ += branch->GetSize() - branch->GetOldSize();
++last_branch_id_;
}
last_old_position_ = old_position;
return old_position + last_position_adjustment_;
}
void Mips64Assembler::FinalizeLabeledBranch(Mips64Label* label) {
uint32_t length = branches_.back().GetLength();
if (!label->IsBound()) {
// Branch forward (to a following label), distance is unknown.
// The first branch forward will contain 0, serving as the terminator of
// the list of forward-reaching branches.
Emit(label->position_);
length--;
// Now make the label object point to this branch
// (this forms a linked list of branches preceding this label).
uint32_t branch_id = branches_.size() - 1;
label->LinkTo(branch_id);
}
// Reserve space for the branch.
while (length--) {
Nop();
}
}
void Mips64Assembler::Buncond(Mips64Label* label) {
uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
branches_.emplace_back(buffer_.Size(), target);
FinalizeLabeledBranch(label);
}
void Mips64Assembler::Bcond(Mips64Label* label,
BranchCondition condition,
GpuRegister lhs,
GpuRegister rhs) {
// If lhs = rhs, this can be a NOP.
if (Branch::IsNop(condition, lhs, rhs)) {
return;
}
uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
branches_.emplace_back(buffer_.Size(), target, condition, lhs, rhs);
FinalizeLabeledBranch(label);
}
void Mips64Assembler::Call(Mips64Label* label, GpuRegister indirect_reg) {
uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
branches_.emplace_back(buffer_.Size(), target, indirect_reg);
FinalizeLabeledBranch(label);
}
void Mips64Assembler::PromoteBranches() {
// Promote short branches to long as necessary.
bool changed;
do {
changed = false;
for (auto& branch : branches_) {
CHECK(branch.IsResolved());
uint32_t delta = branch.PromoteIfNeeded();
// If this branch has been promoted and needs to expand in size,
// relocate all branches by the expansion size.
if (delta) {
changed = true;
uint32_t expand_location = branch.GetLocation();
for (auto& branch2 : branches_) {
branch2.Relocate(expand_location, delta);
}
}
}
} while (changed);
// Account for branch expansion by resizing the code buffer
// and moving the code in it to its final location.
size_t branch_count = branches_.size();
if (branch_count > 0) {
// Resize.
Branch& last_branch = branches_[branch_count - 1];
uint32_t size_delta = last_branch.GetEndLocation() - last_branch.GetOldEndLocation();
uint32_t old_size = buffer_.Size();
buffer_.Resize(old_size + size_delta);
// Move the code residing between branch placeholders.
uint32_t end = old_size;
for (size_t i = branch_count; i > 0; ) {
Branch& branch = branches_[--i];
uint32_t size = end - branch.GetOldEndLocation();
buffer_.Move(branch.GetEndLocation(), branch.GetOldEndLocation(), size);
end = branch.GetOldLocation();
}
}
}
// Note: make sure branch_info_[] and EmitBranch() are kept synchronized.
const Mips64Assembler::Branch::BranchInfo Mips64Assembler::Branch::branch_info_[] = {
// Short branches.
{ 1, 0, 1, Mips64Assembler::Branch::kOffset28, 2 }, // kUncondBranch
{ 2, 0, 1, Mips64Assembler::Branch::kOffset18, 2 }, // kCondBranch
// Exception: kOffset23 for beqzc/bnezc
{ 2, 0, 0, Mips64Assembler::Branch::kOffset21, 2 }, // kCall
// Long branches.
{ 2, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kLongUncondBranch
{ 3, 1, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kLongCondBranch
{ 3, 0, 0, Mips64Assembler::Branch::kOffset32, 0 }, // kLongCall
};
// Note: make sure branch_info_[] and EmitBranch() are kept synchronized.
void Mips64Assembler::EmitBranch(Mips64Assembler::Branch* branch) {
CHECK(overwriting_);
overwrite_location_ = branch->GetLocation();
uint32_t offset = branch->GetOffset();
BranchCondition condition = branch->GetCondition();
GpuRegister lhs = branch->GetLeftRegister();
GpuRegister rhs = branch->GetRightRegister();
switch (branch->GetType()) {
// Short branches.
case Branch::kUncondBranch:
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Bc(offset);
break;
case Branch::kCondBranch:
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
EmitBcondc(condition, lhs, rhs, offset);
Nop(); // TODO: improve by filling the forbidden/delay slot.
break;
case Branch::kCall:
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Addiupc(lhs, offset);
Jialc(lhs, 0);
break;
// Long branches.
case Branch::kLongUncondBranch:
offset += (offset & 0x8000) << 1; // Account for sign extension in jic.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Auipc(AT, High16Bits(offset));
Jic(AT, Low16Bits(offset));
break;
case Branch::kLongCondBranch:
EmitBcondc(Branch::OppositeCondition(condition), lhs, rhs, 2);
offset += (offset & 0x8000) << 1; // Account for sign extension in jic.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Auipc(AT, High16Bits(offset));
Jic(AT, Low16Bits(offset));
break;
case Branch::kLongCall:
offset += (offset & 0x8000) << 1; // Account for sign extension in daddiu.
CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
Auipc(lhs, High16Bits(offset));
Daddiu(lhs, lhs, Low16Bits(offset));
Jialc(lhs, 0);
break;
}
CHECK_EQ(overwrite_location_, branch->GetEndLocation());
CHECK_LT(branch->GetSize(), static_cast<uint32_t>(Branch::kMaxBranchSize));
}
void Mips64Assembler::Bc(Mips64Label* label) {
Buncond(label);
}
void Mips64Assembler::Jialc(Mips64Label* label, GpuRegister indirect_reg) {
Call(label, indirect_reg);
}
void Mips64Assembler::Bltc(GpuRegister rs, GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondLT, rs, rt);
}
void Mips64Assembler::Bltzc(GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondLTZ, rt);
}
void Mips64Assembler::Bgtzc(GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondGTZ, rt);
}
void Mips64Assembler::Bgec(GpuRegister rs, GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondGE, rs, rt);
}
void Mips64Assembler::Bgezc(GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondGEZ, rt);
}
void Mips64Assembler::Blezc(GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondLEZ, rt);
}
void Mips64Assembler::Bltuc(GpuRegister rs, GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondLTU, rs, rt);
}
void Mips64Assembler::Bgeuc(GpuRegister rs, GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondGEU, rs, rt);
}
void Mips64Assembler::Beqc(GpuRegister rs, GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondEQ, rs, rt);
}
void Mips64Assembler::Bnec(GpuRegister rs, GpuRegister rt, Mips64Label* label) {
Bcond(label, kCondNE, rs, rt);
}
void Mips64Assembler::Beqzc(GpuRegister rs, Mips64Label* label) {
Bcond(label, kCondEQZ, rs);
}
void Mips64Assembler::Bnezc(GpuRegister rs, Mips64Label* label) {
Bcond(label, kCondNEZ, rs);
}
void Mips64Assembler::Bc1eqz(FpuRegister ft, Mips64Label* label) {
Bcond(label, kCondF, static_cast<GpuRegister>(ft), ZERO);
}
void Mips64Assembler::Bc1nez(FpuRegister ft, Mips64Label* label) {
Bcond(label, kCondT, static_cast<GpuRegister>(ft), ZERO);
}
void Mips64Assembler::LoadFromOffset(LoadOperandType type, GpuRegister reg, GpuRegister base,
int32_t offset) {
if (!IsInt<16>(offset) ||
(type == kLoadDoubleword && !IsAligned<kMips64DoublewordSize>(offset) &&
!IsInt<16>(static_cast<int32_t>(offset + kMips64WordSize)))) {
LoadConst32(AT, offset & ~(kMips64DoublewordSize - 1));
Daddu(AT, AT, base);
base = AT;
offset &= (kMips64DoublewordSize - 1);
}
switch (type) {
case kLoadSignedByte:
Lb(reg, base, offset);
break;
case kLoadUnsignedByte:
Lbu(reg, base, offset);
break;
case kLoadSignedHalfword:
Lh(reg, base, offset);
break;
case kLoadUnsignedHalfword:
Lhu(reg, base, offset);
break;
case kLoadWord:
CHECK_ALIGNED(offset, kMips64WordSize);
Lw(reg, base, offset);
break;
case kLoadUnsignedWord:
CHECK_ALIGNED(offset, kMips64WordSize);
Lwu(reg, base, offset);
break;
case kLoadDoubleword:
if (!IsAligned<kMips64DoublewordSize>(offset)) {
CHECK_ALIGNED(offset, kMips64WordSize);
Lwu(reg, base, offset);
Lwu(TMP2, base, offset + kMips64WordSize);
Dinsu(reg, TMP2, 32, 32);
} else {
Ld(reg, base, offset);
}
break;
}
}
void Mips64Assembler::LoadFpuFromOffset(LoadOperandType type, FpuRegister reg, GpuRegister base,
int32_t offset) {
if (!IsInt<16>(offset) ||
(type == kLoadDoubleword && !IsAligned<kMips64DoublewordSize>(offset) &&
!IsInt<16>(static_cast<int32_t>(offset + kMips64WordSize)))) {
LoadConst32(AT, offset & ~(kMips64DoublewordSize - 1));
Daddu(AT, AT, base);
base = AT;
offset &= (kMips64DoublewordSize - 1);
}
switch (type) {
case kLoadWord:
CHECK_ALIGNED(offset, kMips64WordSize);
Lwc1(reg, base, offset);
break;
case kLoadDoubleword:
if (!IsAligned<kMips64DoublewordSize>(offset)) {
CHECK_ALIGNED(offset, kMips64WordSize);
Lwc1(reg, base, offset);
Lw(TMP2, base, offset + kMips64WordSize);
Mthc1(TMP2, reg);
} else {
Ldc1(reg, base, offset);
}
break;
default:
LOG(FATAL) << "UNREACHABLE";
}
}
void Mips64Assembler::EmitLoad(ManagedRegister m_dst, GpuRegister src_register, int32_t src_offset,
size_t size) {
Mips64ManagedRegister dst = m_dst.AsMips64();
if (dst.IsNoRegister()) {
CHECK_EQ(0u, size) << dst;
} else if (dst.IsGpuRegister()) {
if (size == 4) {
LoadFromOffset(kLoadWord, dst.AsGpuRegister(), src_register, src_offset);
} else if (size == 8) {
CHECK_EQ(8u, size) << dst;
LoadFromOffset(kLoadDoubleword, dst.AsGpuRegister(), src_register, src_offset);
} else {
UNIMPLEMENTED(FATAL) << "We only support Load() of size 4 and 8";
}
} else if (dst.IsFpuRegister()) {
if (size == 4) {
CHECK_EQ(4u, size) << dst;
LoadFpuFromOffset(kLoadWord, dst.AsFpuRegister(), src_register, src_offset);
} else if (size == 8) {
CHECK_EQ(8u, size) << dst;
LoadFpuFromOffset(kLoadDoubleword, dst.AsFpuRegister(), src_register, src_offset);
} else {
UNIMPLEMENTED(FATAL) << "We only support Load() of size 4 and 8";
}
}
}
void Mips64Assembler::StoreToOffset(StoreOperandType type, GpuRegister reg, GpuRegister base,
int32_t offset) {
if (!IsInt<16>(offset) ||
(type == kStoreDoubleword && !IsAligned<kMips64DoublewordSize>(offset) &&
!IsInt<16>(static_cast<int32_t>(offset + kMips64WordSize)))) {
LoadConst32(AT, offset & ~(kMips64DoublewordSize - 1));
Daddu(AT, AT, base);
base = AT;
offset &= (kMips64DoublewordSize - 1);
}
switch (type) {
case kStoreByte:
Sb(reg, base, offset);
break;
case kStoreHalfword:
Sh(reg, base, offset);
break;
case kStoreWord:
CHECK_ALIGNED(offset, kMips64WordSize);
Sw(reg, base, offset);
break;
case kStoreDoubleword:
if (!IsAligned<kMips64DoublewordSize>(offset)) {
CHECK_ALIGNED(offset, kMips64WordSize);
Sw(reg, base, offset);
Dsrl32(TMP2, reg, 0);
Sw(TMP2, base, offset + kMips64WordSize);
} else {
Sd(reg, base, offset);
}
break;
default:
LOG(FATAL) << "UNREACHABLE";
}
}
void Mips64Assembler::StoreFpuToOffset(StoreOperandType type, FpuRegister reg, GpuRegister base,
int32_t offset) {
if (!IsInt<16>(offset) ||
(type == kStoreDoubleword && !IsAligned<kMips64DoublewordSize>(offset) &&
!IsInt<16>(static_cast<int32_t>(offset + kMips64WordSize)))) {
LoadConst32(AT, offset & ~(kMips64DoublewordSize - 1));
Daddu(AT, AT, base);
base = AT;
offset &= (kMips64DoublewordSize - 1);
}
switch (type) {
case kStoreWord:
CHECK_ALIGNED(offset, kMips64WordSize);
Swc1(reg, base, offset);
break;
case kStoreDoubleword:
if (!IsAligned<kMips64DoublewordSize>(offset)) {
CHECK_ALIGNED(offset, kMips64WordSize);
Mfhc1(TMP2, reg);
Swc1(reg, base, offset);
Sw(TMP2, base, offset + kMips64WordSize);
} else {
Sdc1(reg, base, offset);
}
break;
default:
LOG(FATAL) << "UNREACHABLE";
}
}
static dwarf::Reg DWARFReg(GpuRegister reg) {
return dwarf::Reg::Mips64Core(static_cast<int>(reg));
}
constexpr size_t kFramePointerSize = 8;
void Mips64Assembler::BuildFrame(size_t frame_size, ManagedRegister method_reg,
const std::vector<ManagedRegister>& callee_save_regs,
const ManagedRegisterEntrySpills& entry_spills) {
CHECK_ALIGNED(frame_size, kStackAlignment);
DCHECK(!overwriting_);
// Increase frame to required size.
IncreaseFrameSize(frame_size);
// Push callee saves and return address
int stack_offset = frame_size - kFramePointerSize;
StoreToOffset(kStoreDoubleword, RA, SP, stack_offset);
cfi_.RelOffset(DWARFReg(RA), stack_offset);
for (int i = callee_save_regs.size() - 1; i >= 0; --i) {
stack_offset -= kFramePointerSize;
GpuRegister reg = callee_save_regs.at(i).AsMips64().AsGpuRegister();
StoreToOffset(kStoreDoubleword, reg, SP, stack_offset);
cfi_.RelOffset(DWARFReg(reg), stack_offset);
}
// Write out Method*.
StoreToOffset(kStoreDoubleword, method_reg.AsMips64().AsGpuRegister(), SP, 0);
// Write out entry spills.
int32_t offset = frame_size + kFramePointerSize;
for (size_t i = 0; i < entry_spills.size(); ++i) {
Mips64ManagedRegister reg = entry_spills.at(i).AsMips64();
ManagedRegisterSpill spill = entry_spills.at(i);
int32_t size = spill.getSize();
if (reg.IsNoRegister()) {
// only increment stack offset.
offset += size;
} else if (reg.IsFpuRegister()) {
StoreFpuToOffset((size == 4) ? kStoreWord : kStoreDoubleword,
reg.AsFpuRegister(), SP, offset);
offset += size;
} else if (reg.IsGpuRegister()) {
StoreToOffset((size == 4) ? kStoreWord : kStoreDoubleword,
reg.AsGpuRegister(), SP, offset);
offset += size;
}
}
}
void Mips64Assembler::RemoveFrame(size_t frame_size,
const std::vector<ManagedRegister>& callee_save_regs) {
CHECK_ALIGNED(frame_size, kStackAlignment);
DCHECK(!overwriting_);
cfi_.RememberState();
// Pop callee saves and return address
int stack_offset = frame_size - (callee_save_regs.size() * kFramePointerSize) - kFramePointerSize;
for (size_t i = 0; i < callee_save_regs.size(); ++i) {
GpuRegister reg = callee_save_regs.at(i).AsMips64().AsGpuRegister();
LoadFromOffset(kLoadDoubleword, reg, SP, stack_offset);
cfi_.Restore(DWARFReg(reg));
stack_offset += kFramePointerSize;
}
LoadFromOffset(kLoadDoubleword, RA, SP, stack_offset);
cfi_.Restore(DWARFReg(RA));
// Decrease frame to required size.
DecreaseFrameSize(frame_size);
// Then jump to the return address.
Jr(RA);
Nop();
// The CFI should be restored for any code that follows the exit block.
cfi_.RestoreState();
cfi_.DefCFAOffset(frame_size);
}
void Mips64Assembler::IncreaseFrameSize(size_t adjust) {
CHECK_ALIGNED(adjust, kFramePointerSize);
DCHECK(!overwriting_);
Daddiu64(SP, SP, static_cast<int32_t>(-adjust));
cfi_.AdjustCFAOffset(adjust);
}
void Mips64Assembler::DecreaseFrameSize(size_t adjust) {
CHECK_ALIGNED(adjust, kFramePointerSize);
DCHECK(!overwriting_);
Daddiu64(SP, SP, static_cast<int32_t>(adjust));
cfi_.AdjustCFAOffset(-adjust);
}
void Mips64Assembler::Store(FrameOffset dest, ManagedRegister msrc, size_t size) {
Mips64ManagedRegister src = msrc.AsMips64();
if (src.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (src.IsGpuRegister()) {
CHECK(size == 4 || size == 8) << size;
if (size == 8) {
StoreToOffset(kStoreDoubleword, src.AsGpuRegister(), SP, dest.Int32Value());
} else if (size == 4) {
StoreToOffset(kStoreWord, src.AsGpuRegister(), SP, dest.Int32Value());
} else {
UNIMPLEMENTED(FATAL) << "We only support Store() of size 4 and 8";
}
} else if (src.IsFpuRegister()) {
CHECK(size == 4 || size == 8) << size;
if (size == 8) {
StoreFpuToOffset(kStoreDoubleword, src.AsFpuRegister(), SP, dest.Int32Value());
} else if (size == 4) {
StoreFpuToOffset(kStoreWord, src.AsFpuRegister(), SP, dest.Int32Value());
} else {
UNIMPLEMENTED(FATAL) << "We only support Store() of size 4 and 8";
}
}
}
void Mips64Assembler::StoreRef(FrameOffset dest, ManagedRegister msrc) {
Mips64ManagedRegister src = msrc.AsMips64();
CHECK(src.IsGpuRegister());
StoreToOffset(kStoreWord, src.AsGpuRegister(), SP, dest.Int32Value());
}
void Mips64Assembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) {
Mips64ManagedRegister src = msrc.AsMips64();
CHECK(src.IsGpuRegister());
StoreToOffset(kStoreDoubleword, src.AsGpuRegister(), SP, dest.Int32Value());
}
void Mips64Assembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm,
ManagedRegister mscratch) {
Mips64ManagedRegister scratch = mscratch.AsMips64();
CHECK(scratch.IsGpuRegister()) << scratch;
LoadConst32(scratch.AsGpuRegister(), imm);
StoreToOffset(kStoreWord, scratch.AsGpuRegister(), SP, dest.Int32Value());
}
void Mips64Assembler::StoreStackOffsetToThread64(ThreadOffset<kMips64DoublewordSize> thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
Mips64ManagedRegister scratch = mscratch.AsMips64();
CHECK(scratch.IsGpuRegister()) << scratch;
Daddiu64(scratch.AsGpuRegister(), SP, fr_offs.Int32Value());
StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), S1, thr_offs.Int32Value());
}
void Mips64Assembler::StoreStackPointerToThread64(ThreadOffset<kMips64DoublewordSize> thr_offs) {
StoreToOffset(kStoreDoubleword, SP, S1, thr_offs.Int32Value());
}
void Mips64Assembler::StoreSpanning(FrameOffset dest, ManagedRegister msrc,
FrameOffset in_off, ManagedRegister mscratch) {
Mips64ManagedRegister src = msrc.AsMips64();
Mips64ManagedRegister scratch = mscratch.AsMips64();
StoreToOffset(kStoreDoubleword, src.AsGpuRegister(), SP, dest.Int32Value());
LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), SP, in_off.Int32Value());
StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, dest.Int32Value() + 8);
}
void Mips64Assembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) {
return EmitLoad(mdest, SP, src.Int32Value(), size);
}
void Mips64Assembler::LoadFromThread64(ManagedRegister mdest,
ThreadOffset<kMips64DoublewordSize> src,
size_t size) {
return EmitLoad(mdest, S1, src.Int32Value(), size);
}
void Mips64Assembler::LoadRef(ManagedRegister mdest, FrameOffset src) {
Mips64ManagedRegister dest = mdest.AsMips64();
CHECK(dest.IsGpuRegister());
LoadFromOffset(kLoadUnsignedWord, dest.AsGpuRegister(), SP, src.Int32Value());
}
void Mips64Assembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs,
bool unpoison_reference) {
Mips64ManagedRegister dest = mdest.AsMips64();
CHECK(dest.IsGpuRegister() && base.AsMips64().IsGpuRegister());
LoadFromOffset(kLoadUnsignedWord, dest.AsGpuRegister(),
base.AsMips64().AsGpuRegister(), offs.Int32Value());
if (kPoisonHeapReferences && unpoison_reference) {
// TODO: review
// Negate the 32-bit ref
Dsubu(dest.AsGpuRegister(), ZERO, dest.AsGpuRegister());
// And constrain it to 32 bits (zero-extend into bits 32 through 63) as on Arm64 and x86/64
Dext(dest.AsGpuRegister(), dest.AsGpuRegister(), 0, 32);
}
}
void Mips64Assembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base,
Offset offs) {
Mips64ManagedRegister dest = mdest.AsMips64();
CHECK(dest.IsGpuRegister() && base.AsMips64().IsGpuRegister());
LoadFromOffset(kLoadDoubleword, dest.AsGpuRegister(),
base.AsMips64().AsGpuRegister(), offs.Int32Value());
}
void Mips64Assembler::LoadRawPtrFromThread64(ManagedRegister mdest,
ThreadOffset<kMips64DoublewordSize> offs) {
Mips64ManagedRegister dest = mdest.AsMips64();
CHECK(dest.IsGpuRegister());
LoadFromOffset(kLoadDoubleword, dest.AsGpuRegister(), S1, offs.Int32Value());
}
void Mips64Assembler::SignExtend(ManagedRegister mreg ATTRIBUTE_UNUSED,
size_t size ATTRIBUTE_UNUSED) {
UNIMPLEMENTED(FATAL) << "No sign extension necessary for MIPS64";
}
void Mips64Assembler::ZeroExtend(ManagedRegister mreg ATTRIBUTE_UNUSED,
size_t size ATTRIBUTE_UNUSED) {
UNIMPLEMENTED(FATAL) << "No zero extension necessary for MIPS64";
}
void Mips64Assembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) {
Mips64ManagedRegister dest = mdest.AsMips64();
Mips64ManagedRegister src = msrc.AsMips64();
if (!dest.Equals(src)) {
if (dest.IsGpuRegister()) {
CHECK(src.IsGpuRegister()) << src;
Move(dest.AsGpuRegister(), src.AsGpuRegister());
} else if (dest.IsFpuRegister()) {
CHECK(src.IsFpuRegister()) << src;
if (size == 4) {
MovS(dest.AsFpuRegister(), src.AsFpuRegister());
} else if (size == 8) {
MovD(dest.AsFpuRegister(), src.AsFpuRegister());
} else {
UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8";
}
}
}
}
void Mips64Assembler::CopyRef(FrameOffset dest, FrameOffset src,
ManagedRegister mscratch) {
Mips64ManagedRegister scratch = mscratch.AsMips64();
CHECK(scratch.IsGpuRegister()) << scratch;
LoadFromOffset(kLoadWord, scratch.AsGpuRegister(), SP, src.Int32Value());
StoreToOffset(kStoreWord, scratch.AsGpuRegister(), SP, dest.Int32Value());
}
void Mips64Assembler::CopyRawPtrFromThread64(FrameOffset fr_offs,
ThreadOffset<kMips64DoublewordSize> thr_offs,
ManagedRegister mscratch) {
Mips64ManagedRegister scratch = mscratch.AsMips64();
CHECK(scratch.IsGpuRegister()) << scratch;
LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), S1, thr_offs.Int32Value());
StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, fr_offs.Int32Value());
}
void Mips64Assembler::CopyRawPtrToThread64(ThreadOffset<kMips64DoublewordSize> thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
Mips64ManagedRegister scratch = mscratch.AsMips64();
CHECK(scratch.IsGpuRegister()) << scratch;
LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(),
SP, fr_offs.Int32Value());
StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(),
S1, thr_offs.Int32Value());
}
void Mips64Assembler::Copy(FrameOffset dest, FrameOffset src,
ManagedRegister mscratch, size_t size) {
Mips64ManagedRegister scratch = mscratch.AsMips64();
CHECK(scratch.IsGpuRegister()) << scratch;
CHECK(size == 4 || size == 8) << size;
if (size == 4) {
LoadFromOffset(kLoadWord, scratch.AsGpuRegister(), SP, src.Int32Value());
StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, dest.Int32Value());
} else if (size == 8) {
LoadFromOffset(kLoadDoubleword, scratch.AsGpuRegister(), SP, src.Int32Value());
StoreToOffset(kStoreDoubleword, scratch.AsGpuRegister(), SP, dest.Int32Value());
} else {
UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8";
}
}
void Mips64Assembler::Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset,
ManagedRegister mscratch, size_t size) {
GpuRegister scratch = mscratch.AsMips64().AsGpuRegister();
CHECK(size == 4 || size == 8) << size;
if (size == 4) {
LoadFromOffset(kLoadWord, scratch, src_base.AsMips64().AsGpuRegister(),
src_offset.Int32Value());
StoreToOffset(kStoreDoubleword, scratch, SP, dest.Int32Value());
} else if (size == 8) {
LoadFromOffset(kLoadDoubleword, scratch, src_base.AsMips64().AsGpuRegister(),
src_offset.Int32Value());
StoreToOffset(kStoreDoubleword, scratch, SP, dest.Int32Value());
} else {
UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8";
}
}
void Mips64Assembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
ManagedRegister mscratch, size_t size) {
GpuRegister scratch = mscratch.AsMips64().AsGpuRegister();
CHECK(size == 4 || size == 8) << size;
if (size == 4) {
LoadFromOffset(kLoadWord, scratch, SP, src.Int32Value());
StoreToOffset(kStoreDoubleword, scratch, dest_base.AsMips64().AsGpuRegister(),
dest_offset.Int32Value());
} else if (size == 8) {
LoadFromOffset(kLoadDoubleword, scratch, SP, src.Int32Value());
StoreToOffset(kStoreDoubleword, scratch, dest_base.AsMips64().AsGpuRegister(),
dest_offset.Int32Value());
} else {
UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8";
}
}
void Mips64Assembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED,
FrameOffset src_base ATTRIBUTE_UNUSED,
Offset src_offset ATTRIBUTE_UNUSED,
ManagedRegister mscratch ATTRIBUTE_UNUSED,
size_t size ATTRIBUTE_UNUSED) {
UNIMPLEMENTED(FATAL) << "No MIPS64 implementation";
}
void Mips64Assembler::Copy(ManagedRegister dest, Offset dest_offset,
ManagedRegister src, Offset src_offset,
ManagedRegister mscratch, size_t size) {
GpuRegister scratch = mscratch.AsMips64().AsGpuRegister();
CHECK(size == 4 || size == 8) << size;
if (size == 4) {
LoadFromOffset(kLoadWord, scratch, src.AsMips64().AsGpuRegister(), src_offset.Int32Value());
StoreToOffset(kStoreDoubleword, scratch, dest.AsMips64().AsGpuRegister(), dest_offset.Int32Value());
} else if (size == 8) {
LoadFromOffset(kLoadDoubleword, scratch, src.AsMips64().AsGpuRegister(),
src_offset.Int32Value());
StoreToOffset(kStoreDoubleword, scratch, dest.AsMips64().AsGpuRegister(),
dest_offset.Int32Value());
} else {
UNIMPLEMENTED(FATAL) << "We only support Copy() of size 4 and 8";
}
}
void Mips64Assembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED,
Offset dest_offset ATTRIBUTE_UNUSED,
FrameOffset src ATTRIBUTE_UNUSED,
Offset src_offset ATTRIBUTE_UNUSED,
ManagedRegister mscratch ATTRIBUTE_UNUSED,
size_t size ATTRIBUTE_UNUSED) {
UNIMPLEMENTED(FATAL) << "No MIPS64 implementation";
}
void Mips64Assembler::MemoryBarrier(ManagedRegister mreg ATTRIBUTE_UNUSED) {
// TODO: sync?
UNIMPLEMENTED(FATAL) << "No MIPS64 implementation";
}
void Mips64Assembler::CreateHandleScopeEntry(ManagedRegister mout_reg,
FrameOffset handle_scope_offset,
ManagedRegister min_reg,
bool null_allowed) {
Mips64ManagedRegister out_reg = mout_reg.AsMips64();
Mips64ManagedRegister in_reg = min_reg.AsMips64();
CHECK(in_reg.IsNoRegister() || in_reg.IsGpuRegister()) << in_reg;
CHECK(out_reg.IsGpuRegister()) << out_reg;
if (null_allowed) {
Mips64Label null_arg;
// Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is
// the address in the handle scope holding the reference.
// e.g. out_reg = (handle == 0) ? 0 : (SP+handle_offset)
if (in_reg.IsNoRegister()) {
LoadFromOffset(kLoadUnsignedWord, out_reg.AsGpuRegister(),
SP, handle_scope_offset.Int32Value());
in_reg =</