blob: abae8ff346db4de20410221a48db988642edcf4a [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "large_object_space.h"
#include <memory>
#include "gc/accounting/space_bitmap-inl.h"
#include "base/logging.h"
#include "base/mutex-inl.h"
#include "base/stl_util.h"
#include "image.h"
#include "os.h"
#include "space-inl.h"
#include "thread-inl.h"
#include "utils.h"
namespace art {
namespace gc {
namespace space {
class ValgrindLargeObjectMapSpace FINAL : public LargeObjectMapSpace {
public:
explicit ValgrindLargeObjectMapSpace(const std::string& name) : LargeObjectMapSpace(name) {
}
virtual mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
size_t* usable_size) OVERRIDE {
mirror::Object* obj =
LargeObjectMapSpace::Alloc(self, num_bytes + kValgrindRedZoneBytes * 2, bytes_allocated,
usable_size);
mirror::Object* object_without_rdz = reinterpret_cast<mirror::Object*>(
reinterpret_cast<uintptr_t>(obj) + kValgrindRedZoneBytes);
VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<void*>(obj), kValgrindRedZoneBytes);
VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<byte*>(object_without_rdz) + num_bytes,
kValgrindRedZoneBytes);
if (usable_size != nullptr) {
*usable_size = num_bytes; // Since we have redzones, shrink the usable size.
}
return object_without_rdz;
}
virtual size_t AllocationSize(mirror::Object* obj, size_t* usable_size) OVERRIDE {
mirror::Object* object_with_rdz = reinterpret_cast<mirror::Object*>(
reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes);
return LargeObjectMapSpace::AllocationSize(object_with_rdz, usable_size);
}
virtual size_t Free(Thread* self, mirror::Object* obj) OVERRIDE {
mirror::Object* object_with_rdz = reinterpret_cast<mirror::Object*>(
reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes);
VALGRIND_MAKE_MEM_UNDEFINED(object_with_rdz, AllocationSize(obj, nullptr));
return LargeObjectMapSpace::Free(self, object_with_rdz);
}
bool Contains(const mirror::Object* obj) const OVERRIDE {
mirror::Object* object_with_rdz = reinterpret_cast<mirror::Object*>(
reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes);
return LargeObjectMapSpace::Contains(object_with_rdz);
}
private:
static constexpr size_t kValgrindRedZoneBytes = kPageSize;
};
void LargeObjectSpace::SwapBitmaps() {
live_bitmap_.swap(mark_bitmap_);
// Swap names to get more descriptive diagnostics.
std::string temp_name = live_bitmap_->GetName();
live_bitmap_->SetName(mark_bitmap_->GetName());
mark_bitmap_->SetName(temp_name);
}
LargeObjectSpace::LargeObjectSpace(const std::string& name, byte* begin, byte* end)
: DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect),
num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0),
total_objects_allocated_(0), begin_(begin), end_(end) {
}
void LargeObjectSpace::CopyLiveToMarked() {
mark_bitmap_->CopyFrom(live_bitmap_.get());
}
LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name)
: LargeObjectSpace(name, nullptr, nullptr),
lock_("large object map space lock", kAllocSpaceLock) {}
LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) {
if (Runtime::Current()->RunningOnValgrind()) {
return new ValgrindLargeObjectMapSpace(name);
} else {
return new LargeObjectMapSpace(name);
}
}
mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes,
size_t* bytes_allocated, size_t* usable_size) {
std::string error_msg;
MemMap* mem_map = MemMap::MapAnonymous("large object space allocation", NULL, num_bytes,
PROT_READ | PROT_WRITE, true, &error_msg);
if (UNLIKELY(mem_map == NULL)) {
LOG(WARNING) << "Large object allocation failed: " << error_msg;
return NULL;
}
MutexLock mu(self, lock_);
mirror::Object* obj = reinterpret_cast<mirror::Object*>(mem_map->Begin());
large_objects_.push_back(obj);
mem_maps_.Put(obj, mem_map);
size_t allocation_size = mem_map->Size();
DCHECK(bytes_allocated != nullptr);
begin_ = std::min(begin_, reinterpret_cast<byte*>(obj));
byte* obj_end = reinterpret_cast<byte*>(obj) + allocation_size;
if (end_ == nullptr || obj_end > end_) {
end_ = obj_end;
}
*bytes_allocated = allocation_size;
if (usable_size != nullptr) {
*usable_size = allocation_size;
}
num_bytes_allocated_ += allocation_size;
total_bytes_allocated_ += allocation_size;
++num_objects_allocated_;
++total_objects_allocated_;
return obj;
}
size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) {
MutexLock mu(self, lock_);
MemMaps::iterator found = mem_maps_.find(ptr);
if (UNLIKELY(found == mem_maps_.end())) {
Runtime::Current()->GetHeap()->DumpSpaces(LOG(ERROR));
LOG(FATAL) << "Attempted to free large object " << ptr << " which was not live";
}
DCHECK_GE(num_bytes_allocated_, found->second->Size());
size_t allocation_size = found->second->Size();
num_bytes_allocated_ -= allocation_size;
--num_objects_allocated_;
delete found->second;
mem_maps_.erase(found);
return allocation_size;
}
size_t LargeObjectMapSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
MutexLock mu(Thread::Current(), lock_);
auto found = mem_maps_.find(obj);
CHECK(found != mem_maps_.end()) << "Attempted to get size of a large object which is not live";
return found->second->Size();
}
size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
size_t total = 0;
for (size_t i = 0; i < num_ptrs; ++i) {
if (kDebugSpaces) {
CHECK(Contains(ptrs[i]));
}
total += Free(self, ptrs[i]);
}
return total;
}
void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
MutexLock mu(Thread::Current(), lock_);
for (auto it = mem_maps_.begin(); it != mem_maps_.end(); ++it) {
MemMap* mem_map = it->second;
callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg);
callback(NULL, NULL, 0, arg);
}
}
bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const {
Thread* self = Thread::Current();
if (lock_.IsExclusiveHeld(self)) {
// We hold lock_ so do the check.
return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end();
} else {
MutexLock mu(self, lock_);
return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end();
}
}
FreeListSpace* FreeListSpace::Create(const std::string& name, byte* requested_begin, size_t size) {
CHECK_EQ(size % kAlignment, 0U);
std::string error_msg;
MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size,
PROT_READ | PROT_WRITE, true, &error_msg);
CHECK(mem_map != NULL) << "Failed to allocate large object space mem map: " << error_msg;
return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End());
}
FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, byte* begin, byte* end)
: LargeObjectSpace(name, begin, end),
mem_map_(mem_map),
lock_("free list space lock", kAllocSpaceLock) {
free_end_ = end - begin;
}
FreeListSpace::~FreeListSpace() {}
void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
MutexLock mu(Thread::Current(), lock_);
uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
AllocationHeader* cur_header = reinterpret_cast<AllocationHeader*>(Begin());
while (reinterpret_cast<uintptr_t>(cur_header) < free_end_start) {
cur_header = cur_header->GetNextNonFree();
size_t alloc_size = cur_header->AllocationSize();
byte* byte_start = reinterpret_cast<byte*>(cur_header->GetObjectAddress());
byte* byte_end = byte_start + alloc_size - sizeof(AllocationHeader);
callback(byte_start, byte_end, alloc_size, arg);
callback(NULL, NULL, 0, arg);
cur_header = reinterpret_cast<AllocationHeader*>(byte_end);
}
}
void FreeListSpace::RemoveFreePrev(AllocationHeader* header) {
CHECK(!header->IsFree());
CHECK_GT(header->GetPrevFree(), size_t(0));
FreeBlocks::iterator found = free_blocks_.lower_bound(header);
CHECK(found != free_blocks_.end());
CHECK_EQ(*found, header);
free_blocks_.erase(found);
}
FreeListSpace::AllocationHeader* FreeListSpace::GetAllocationHeader(const mirror::Object* obj) {
DCHECK(Contains(obj));
return reinterpret_cast<AllocationHeader*>(reinterpret_cast<uintptr_t>(obj) -
sizeof(AllocationHeader));
}
FreeListSpace::AllocationHeader* FreeListSpace::AllocationHeader::GetNextNonFree() {
// We know that there has to be at least one object after us or else we would have
// coalesced with the free end region. May be worth investigating a better way to do this
// as it may be expensive for large allocations.
for (uintptr_t pos = reinterpret_cast<uintptr_t>(this);; pos += kAlignment) {
AllocationHeader* cur = reinterpret_cast<AllocationHeader*>(pos);
if (!cur->IsFree()) return cur;
}
}
size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) {
MutexLock mu(self, lock_);
DCHECK(Contains(obj));
AllocationHeader* header = GetAllocationHeader(obj);
CHECK(IsAligned<kAlignment>(header));
size_t allocation_size = header->AllocationSize();
DCHECK_GT(allocation_size, size_t(0));
DCHECK(IsAligned<kAlignment>(allocation_size));
// Look at the next chunk.
AllocationHeader* next_header = header->GetNextAllocationHeader();
// Calculate the start of the end free block.
uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
size_t header_prev_free = header->GetPrevFree();
size_t new_free_size = allocation_size;
if (header_prev_free) {
new_free_size += header_prev_free;
RemoveFreePrev(header);
}
if (reinterpret_cast<uintptr_t>(next_header) >= free_end_start) {
// Easy case, the next chunk is the end free region.
CHECK_EQ(reinterpret_cast<uintptr_t>(next_header), free_end_start);
free_end_ += new_free_size;
} else {
AllocationHeader* new_free_header;
DCHECK(IsAligned<kAlignment>(next_header));
if (next_header->IsFree()) {
// Find the next chunk by reading each page until we hit one with non-zero chunk.
AllocationHeader* next_next_header = next_header->GetNextNonFree();
DCHECK(IsAligned<kAlignment>(next_next_header));
DCHECK(IsAligned<kAlignment>(next_next_header->AllocationSize()));
RemoveFreePrev(next_next_header);
new_free_header = next_next_header;
new_free_size += next_next_header->GetPrevFree();
} else {
new_free_header = next_header;
}
new_free_header->prev_free_ = new_free_size;
free_blocks_.insert(new_free_header);
}
--num_objects_allocated_;
DCHECK_LE(allocation_size, num_bytes_allocated_);
num_bytes_allocated_ -= allocation_size;
madvise(header, allocation_size, MADV_DONTNEED);
if (kIsDebugBuild) {
// Can't disallow reads since we use them to find next chunks during coalescing.
mprotect(header, allocation_size, PROT_READ);
}
return allocation_size;
}
bool FreeListSpace::Contains(const mirror::Object* obj) const {
return mem_map_->HasAddress(obj);
}
size_t FreeListSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
AllocationHeader* header = GetAllocationHeader(obj);
DCHECK(Contains(obj));
DCHECK(!header->IsFree());
size_t alloc_size = header->AllocationSize();
if (usable_size != nullptr) {
*usable_size = alloc_size - sizeof(AllocationHeader);
}
return alloc_size;
}
mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
size_t* usable_size) {
MutexLock mu(self, lock_);
size_t allocation_size = RoundUp(num_bytes + sizeof(AllocationHeader), kAlignment);
AllocationHeader temp;
temp.SetPrevFree(allocation_size);
temp.SetAllocationSize(0);
AllocationHeader* new_header;
// Find the smallest chunk at least num_bytes in size.
FreeBlocks::iterator found = free_blocks_.lower_bound(&temp);
if (found != free_blocks_.end()) {
AllocationHeader* header = *found;
free_blocks_.erase(found);
// Fit our object in the previous free header space.
new_header = header->GetPrevFreeAllocationHeader();
// Remove the newly allocated block from the header and update the prev_free_.
header->prev_free_ -= allocation_size;
if (header->prev_free_ > 0) {
// If there is remaining space, insert back into the free set.
free_blocks_.insert(header);
}
} else {
// Try to steal some memory from the free space at the end of the space.
if (LIKELY(free_end_ >= allocation_size)) {
// Fit our object at the start of the end free block.
new_header = reinterpret_cast<AllocationHeader*>(end_ - free_end_);
free_end_ -= allocation_size;
} else {
return nullptr;
}
}
DCHECK(bytes_allocated != nullptr);
*bytes_allocated = allocation_size;
if (usable_size != nullptr) {
*usable_size = allocation_size - sizeof(AllocationHeader);
}
// Need to do these inside of the lock.
++num_objects_allocated_;
++total_objects_allocated_;
num_bytes_allocated_ += allocation_size;
total_bytes_allocated_ += allocation_size;
// We always put our object at the start of the free block, there can not be another free block
// before it.
if (kIsDebugBuild) {
mprotect(new_header, allocation_size, PROT_READ | PROT_WRITE);
}
new_header->SetPrevFree(0);
new_header->SetAllocationSize(allocation_size);
return new_header->GetObjectAddress();
}
void FreeListSpace::Dump(std::ostream& os) const {
MutexLock mu(Thread::Current(), const_cast<Mutex&>(lock_));
os << GetName() << " -"
<< " begin: " << reinterpret_cast<void*>(Begin())
<< " end: " << reinterpret_cast<void*>(End()) << "\n";
uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
AllocationHeader* cur_header = reinterpret_cast<AllocationHeader*>(Begin());
while (reinterpret_cast<uintptr_t>(cur_header) < free_end_start) {
byte* free_start = reinterpret_cast<byte*>(cur_header);
cur_header = cur_header->GetNextNonFree();
byte* free_end = reinterpret_cast<byte*>(cur_header);
if (free_start != free_end) {
os << "Free block at address: " << reinterpret_cast<const void*>(free_start)
<< " of length " << free_end - free_start << " bytes\n";
}
size_t alloc_size = cur_header->AllocationSize();
byte* byte_start = reinterpret_cast<byte*>(cur_header->GetObjectAddress());
byte* byte_end = byte_start + alloc_size - sizeof(AllocationHeader);
os << "Large object at address: " << reinterpret_cast<const void*>(free_start)
<< " of length " << byte_end - byte_start << " bytes\n";
cur_header = reinterpret_cast<AllocationHeader*>(byte_end);
}
if (free_end_) {
os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start)
<< " of length " << free_end_ << " bytes\n";
}
}
void LargeObjectSpace::SweepCallback(size_t num_ptrs, mirror::Object** ptrs, void* arg) {
SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
space::LargeObjectSpace* space = context->space->AsLargeObjectSpace();
Thread* self = context->self;
Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
// If the bitmaps aren't swapped we need to clear the bits since the GC isn't going to re-swap
// the bitmaps as an optimization.
if (!context->swap_bitmaps) {
accounting::LargeObjectBitmap* bitmap = space->GetLiveBitmap();
for (size_t i = 0; i < num_ptrs; ++i) {
bitmap->Clear(ptrs[i]);
}
}
context->freed.objects += num_ptrs;
context->freed.bytes += space->FreeList(self, num_ptrs, ptrs);
}
collector::ObjectBytePair LargeObjectSpace::Sweep(bool swap_bitmaps) {
if (Begin() >= End()) {
return collector::ObjectBytePair(0, 0);
}
accounting::LargeObjectBitmap* live_bitmap = GetLiveBitmap();
accounting::LargeObjectBitmap* mark_bitmap = GetMarkBitmap();
if (swap_bitmaps) {
std::swap(live_bitmap, mark_bitmap);
}
AllocSpace::SweepCallbackContext scc(swap_bitmaps, this);
accounting::LargeObjectBitmap::SweepWalk(*live_bitmap, *mark_bitmap,
reinterpret_cast<uintptr_t>(Begin()),
reinterpret_cast<uintptr_t>(End()), SweepCallback, &scc);
return scc.freed;
}
} // namespace space
} // namespace gc
} // namespace art