blob: bba92a1f409f184a8120df9109325e14b989f811 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_GC_ALLOCATOR_ROSALLOC_INL_H_
#define ART_RUNTIME_GC_ALLOCATOR_ROSALLOC_INL_H_
#include "rosalloc.h"
namespace art {
namespace gc {
namespace allocator {
inline ALWAYS_INLINE bool RosAlloc::ShouldCheckZeroMemory() {
return kCheckZeroMemory && !running_on_valgrind_;
}
template<bool kThreadSafe>
inline ALWAYS_INLINE void* RosAlloc::Alloc(Thread* self, size_t size, size_t* bytes_allocated,
size_t* usable_size,
size_t* bytes_tl_bulk_allocated) {
if (UNLIKELY(size > kLargeSizeThreshold)) {
return AllocLargeObject(self, size, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
}
void* m;
if (kThreadSafe) {
m = AllocFromRun(self, size, bytes_allocated, usable_size, bytes_tl_bulk_allocated);
} else {
m = AllocFromRunThreadUnsafe(self, size, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
}
// Check if the returned memory is really all zero.
if (ShouldCheckZeroMemory() && m != nullptr) {
uint8_t* bytes = reinterpret_cast<uint8_t*>(m);
for (size_t i = 0; i < size; ++i) {
DCHECK_EQ(bytes[i], 0);
}
}
return m;
}
inline bool RosAlloc::Run::IsFull() {
const size_t num_vec = NumberOfBitmapVectors();
for (size_t v = 0; v < num_vec; ++v) {
if (~alloc_bit_map_[v] != 0) {
return false;
}
}
return true;
}
inline bool RosAlloc::CanAllocFromThreadLocalRun(Thread* self, size_t size) {
if (UNLIKELY(!IsSizeForThreadLocal(size))) {
return false;
}
size_t bracket_size;
size_t idx = SizeToIndexAndBracketSize(size, &bracket_size);
DCHECK_EQ(idx, SizeToIndex(size));
DCHECK_EQ(bracket_size, IndexToBracketSize(idx));
DCHECK_EQ(bracket_size, bracketSizes[idx]);
DCHECK_LE(size, bracket_size);
DCHECK(size > 512 || bracket_size - size < 16);
DCHECK_LT(idx, kNumThreadLocalSizeBrackets);
Run* thread_local_run = reinterpret_cast<Run*>(self->GetRosAllocRun(idx));
if (kIsDebugBuild) {
// Need the lock to prevent race conditions.
MutexLock mu(self, *size_bracket_locks_[idx]);
CHECK(non_full_runs_[idx].find(thread_local_run) == non_full_runs_[idx].end());
CHECK(full_runs_[idx].find(thread_local_run) == full_runs_[idx].end());
}
DCHECK(thread_local_run != nullptr);
DCHECK(thread_local_run->IsThreadLocal() || thread_local_run == dedicated_full_run_);
return !thread_local_run->IsFull();
}
inline void* RosAlloc::AllocFromThreadLocalRun(Thread* self, size_t size,
size_t* bytes_allocated) {
DCHECK(bytes_allocated != nullptr);
if (UNLIKELY(!IsSizeForThreadLocal(size))) {
return nullptr;
}
size_t bracket_size;
size_t idx = SizeToIndexAndBracketSize(size, &bracket_size);
Run* thread_local_run = reinterpret_cast<Run*>(self->GetRosAllocRun(idx));
if (kIsDebugBuild) {
// Need the lock to prevent race conditions.
MutexLock mu(self, *size_bracket_locks_[idx]);
CHECK(non_full_runs_[idx].find(thread_local_run) == non_full_runs_[idx].end());
CHECK(full_runs_[idx].find(thread_local_run) == full_runs_[idx].end());
}
DCHECK(thread_local_run != nullptr);
DCHECK(thread_local_run->IsThreadLocal() || thread_local_run == dedicated_full_run_);
void* slot_addr = thread_local_run->AllocSlot();
if (LIKELY(slot_addr != nullptr)) {
*bytes_allocated = bracket_size;
}
return slot_addr;
}
inline size_t RosAlloc::MaxBytesBulkAllocatedFor(size_t size) {
if (UNLIKELY(!IsSizeForThreadLocal(size))) {
return size;
}
size_t bracket_size;
size_t idx = SizeToIndexAndBracketSize(size, &bracket_size);
return numOfSlots[idx] * bracket_size;
}
inline void* RosAlloc::Run::AllocSlot() {
const size_t idx = size_bracket_idx_;
while (true) {
if (kIsDebugBuild) {
// Make sure that no slots leaked, the bitmap should be full for all previous vectors.
for (size_t i = 0; i < first_search_vec_idx_; ++i) {
CHECK_EQ(~alloc_bit_map_[i], 0U);
}
}
uint32_t* const alloc_bitmap_ptr = &alloc_bit_map_[first_search_vec_idx_];
uint32_t ffz1 = __builtin_ffs(~*alloc_bitmap_ptr);
if (LIKELY(ffz1 != 0)) {
const uint32_t ffz = ffz1 - 1;
const uint32_t slot_idx = ffz +
first_search_vec_idx_ * sizeof(*alloc_bitmap_ptr) * kBitsPerByte;
const uint32_t mask = 1U << ffz;
DCHECK_LT(slot_idx, numOfSlots[idx]) << "out of range";
// Found an empty slot. Set the bit.
DCHECK_EQ(*alloc_bitmap_ptr & mask, 0U);
*alloc_bitmap_ptr |= mask;
DCHECK_NE(*alloc_bitmap_ptr & mask, 0U);
uint8_t* slot_addr = reinterpret_cast<uint8_t*>(this) +
headerSizes[idx] + slot_idx * bracketSizes[idx];
if (kTraceRosAlloc) {
LOG(INFO) << "RosAlloc::Run::AllocSlot() : 0x" << std::hex
<< reinterpret_cast<intptr_t>(slot_addr)
<< ", bracket_size=" << std::dec << bracketSizes[idx]
<< ", slot_idx=" << slot_idx;
}
return slot_addr;
}
const size_t num_words = RoundUp(numOfSlots[idx], 32) / 32;
if (first_search_vec_idx_ + 1 >= num_words) {
DCHECK(IsFull());
// Already at the last word, return null.
return nullptr;
}
// Increase the index to the next word and try again.
++first_search_vec_idx_;
}
}
} // namespace allocator
} // namespace gc
} // namespace art
#endif // ART_RUNTIME_GC_ALLOCATOR_ROSALLOC_INL_H_