blob: b094747470a245018ddc2be1800f5257f263db21 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "base/logging.h"
#include "calling_convention_arm64.h"
#include "handle_scope-inl.h"
#include "utils/arm64/managed_register_arm64.h"
namespace art {
namespace arm64 {
static const XRegister kXArgumentRegisters[] = {
X0, X1, X2, X3, X4, X5, X6, X7
};
static const WRegister kWArgumentRegisters[] = {
W0, W1, W2, W3, W4, W5, W6, W7
};
static const DRegister kDArgumentRegisters[] = {
D0, D1, D2, D3, D4, D5, D6, D7
};
static const SRegister kSArgumentRegisters[] = {
S0, S1, S2, S3, S4, S5, S6, S7
};
static const DRegister kDCalleeSaveRegisters[] = {
D8, D9, D10, D11, D12, D13, D14, D15
};
// Calling convention
ManagedRegister Arm64ManagedRuntimeCallingConvention::InterproceduralScratchRegister() {
return Arm64ManagedRegister::FromXRegister(X20); // saved on entry restored on exit
}
ManagedRegister Arm64JniCallingConvention::InterproceduralScratchRegister() {
return Arm64ManagedRegister::FromXRegister(X20); // saved on entry restored on exit
}
static ManagedRegister ReturnRegisterForShorty(const char* shorty) {
if (shorty[0] == 'F') {
return Arm64ManagedRegister::FromSRegister(S0);
} else if (shorty[0] == 'D') {
return Arm64ManagedRegister::FromDRegister(D0);
} else if (shorty[0] == 'J') {
return Arm64ManagedRegister::FromXRegister(X0);
} else if (shorty[0] == 'V') {
return Arm64ManagedRegister::NoRegister();
} else {
return Arm64ManagedRegister::FromWRegister(W0);
}
}
ManagedRegister Arm64ManagedRuntimeCallingConvention::ReturnRegister() {
return ReturnRegisterForShorty(GetShorty());
}
ManagedRegister Arm64JniCallingConvention::ReturnRegister() {
return ReturnRegisterForShorty(GetShorty());
}
ManagedRegister Arm64JniCallingConvention::IntReturnRegister() {
return Arm64ManagedRegister::FromWRegister(W0);
}
// Managed runtime calling convention
ManagedRegister Arm64ManagedRuntimeCallingConvention::MethodRegister() {
return Arm64ManagedRegister::FromXRegister(X0);
}
bool Arm64ManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
return false; // Everything moved to stack on entry.
}
bool Arm64ManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
return true;
}
ManagedRegister Arm64ManagedRuntimeCallingConvention::CurrentParamRegister() {
LOG(FATAL) << "Should not reach here";
return ManagedRegister::NoRegister();
}
FrameOffset Arm64ManagedRuntimeCallingConvention::CurrentParamStackOffset() {
CHECK(IsCurrentParamOnStack());
FrameOffset result =
FrameOffset(displacement_.Int32Value() + // displacement
kFramePointerSize + // Method ref
(itr_slots_ * sizeof(uint32_t))); // offset into in args
return result;
}
const ManagedRegisterEntrySpills& Arm64ManagedRuntimeCallingConvention::EntrySpills() {
// We spill the argument registers on ARM64 to free them up for scratch use, we then assume
// all arguments are on the stack.
if ((entry_spills_.size() == 0) && (NumArgs() > 0)) {
int gp_reg_index = 1; // we start from X1/W1, X0 holds ArtMethod*.
int fp_reg_index = 0; // D0/S0.
// We need to choose the correct register (D/S or X/W) since the managed
// stack uses 32bit stack slots.
ResetIterator(FrameOffset(0));
while (HasNext()) {
if (IsCurrentParamAFloatOrDouble()) { // FP regs.
if (fp_reg_index < 8) {
if (!IsCurrentParamADouble()) {
entry_spills_.push_back(Arm64ManagedRegister::FromSRegister(kSArgumentRegisters[fp_reg_index]));
} else {
entry_spills_.push_back(Arm64ManagedRegister::FromDRegister(kDArgumentRegisters[fp_reg_index]));
}
fp_reg_index++;
} else { // just increase the stack offset.
if (!IsCurrentParamADouble()) {
entry_spills_.push_back(ManagedRegister::NoRegister(), 4);
} else {
entry_spills_.push_back(ManagedRegister::NoRegister(), 8);
}
}
} else { // GP regs.
if (gp_reg_index < 8) {
if (IsCurrentParamALong() && (!IsCurrentParamAReference())) {
entry_spills_.push_back(Arm64ManagedRegister::FromXRegister(kXArgumentRegisters[gp_reg_index]));
} else {
entry_spills_.push_back(Arm64ManagedRegister::FromWRegister(kWArgumentRegisters[gp_reg_index]));
}
gp_reg_index++;
} else { // just increase the stack offset.
if (IsCurrentParamALong() && (!IsCurrentParamAReference())) {
entry_spills_.push_back(ManagedRegister::NoRegister(), 8);
} else {
entry_spills_.push_back(ManagedRegister::NoRegister(), 4);
}
}
}
Next();
}
}
return entry_spills_;
}
// JNI calling convention
Arm64JniCallingConvention::Arm64JniCallingConvention(bool is_static, bool is_synchronized,
const char* shorty)
: JniCallingConvention(is_static, is_synchronized, shorty, kFramePointerSize) {
uint32_t core_spill_mask = CoreSpillMask();
DCHECK_EQ(XZR, kNumberOfXRegisters - 1); // Exclude XZR from the loop (avoid 1 << 32).
for (int x_reg = 0; x_reg < kNumberOfXRegisters - 1; ++x_reg) {
if (((1 << x_reg) & core_spill_mask) != 0) {
callee_save_regs_.push_back(
Arm64ManagedRegister::FromXRegister(static_cast<XRegister>(x_reg)));
}
}
uint32_t fp_spill_mask = FpSpillMask();
for (int d_reg = 0; d_reg < kNumberOfDRegisters; ++d_reg) {
if (((1 << d_reg) & fp_spill_mask) != 0) {
callee_save_regs_.push_back(
Arm64ManagedRegister::FromDRegister(static_cast<DRegister>(d_reg)));
}
}
}
uint32_t Arm64JniCallingConvention::CoreSpillMask() const {
// Compute spill mask to agree with callee saves initialized in the constructor.
// Note: The native jni function may call to some VM runtime functions which may suspend
// or trigger GC. And the jni method frame will become top quick frame in those cases.
// So we need to satisfy GC to save LR and callee-save registers which is similar to
// CalleeSaveMethod(RefOnly) frame.
// Jni function is the native function which the java code wants to call.
// Jni method is the method that compiled by jni compiler.
// Call chain: managed code(java) --> jni method --> jni function.
// Thread register(X18, scratched by aapcs64) is not saved on stack, it is saved in ETR(X21).
return 1 << X19 | 1 << X20 | 1 << X21 | 1 << X22 | 1 << X23 | 1 << X24 |
1 << X25 | 1 << X26 | 1 << X27 | 1 << X28 | 1 << X29 | 1 << LR;
}
uint32_t Arm64JniCallingConvention::FpSpillMask() const {
// Considering the case, java_method_1 --> jni method --> jni function --> java_method_2, we may
// break on java_method_2 and we still need to find out the values of DEX registers in
// java_method_1. So all callee-saves(in managed code) need to be saved.
uint32_t result = 0;
for (size_t i = 0; i < arraysize(kDCalleeSaveRegisters); ++i) {
result |= (1 << kDCalleeSaveRegisters[i]);
}
return result;
}
ManagedRegister Arm64JniCallingConvention::ReturnScratchRegister() const {
return ManagedRegister::NoRegister();
}
size_t Arm64JniCallingConvention::FrameSize() {
// Method*, callee save area size, local reference segment state
size_t frame_data_size = kFramePointerSize +
CalleeSaveRegisters().size() * kFramePointerSize + sizeof(uint32_t);
// References plus 2 words for HandleScope header
size_t handle_scope_size = HandleScope::SizeOf(kFramePointerSize, ReferenceCount());
// Plus return value spill area size
return RoundUp(frame_data_size + handle_scope_size + SizeOfReturnValue(), kStackAlignment);
}
size_t Arm64JniCallingConvention::OutArgSize() {
return RoundUp(NumberOfOutgoingStackArgs() * kFramePointerSize, kStackAlignment);
}
bool Arm64JniCallingConvention::IsCurrentParamInRegister() {
if (IsCurrentParamAFloatOrDouble()) {
return (itr_float_and_doubles_ < 8);
} else {
return ((itr_args_ - itr_float_and_doubles_) < 8);
}
}
bool Arm64JniCallingConvention::IsCurrentParamOnStack() {
return !IsCurrentParamInRegister();
}
ManagedRegister Arm64JniCallingConvention::CurrentParamRegister() {
CHECK(IsCurrentParamInRegister());
if (IsCurrentParamAFloatOrDouble()) {
CHECK_LT(itr_float_and_doubles_, 8u);
if (IsCurrentParamADouble()) {
return Arm64ManagedRegister::FromDRegister(kDArgumentRegisters[itr_float_and_doubles_]);
} else {
return Arm64ManagedRegister::FromSRegister(kSArgumentRegisters[itr_float_and_doubles_]);
}
} else {
int gp_reg = itr_args_ - itr_float_and_doubles_;
CHECK_LT(static_cast<unsigned int>(gp_reg), 8u);
if (IsCurrentParamALong() || IsCurrentParamAReference() || IsCurrentParamJniEnv()) {
return Arm64ManagedRegister::FromXRegister(kXArgumentRegisters[gp_reg]);
} else {
return Arm64ManagedRegister::FromWRegister(kWArgumentRegisters[gp_reg]);
}
}
}
FrameOffset Arm64JniCallingConvention::CurrentParamStackOffset() {
CHECK(IsCurrentParamOnStack());
size_t args_on_stack = itr_args_
- std::min(8u, itr_float_and_doubles_)
- std::min(8u, (itr_args_ - itr_float_and_doubles_));
size_t offset = displacement_.Int32Value() - OutArgSize() + (args_on_stack * kFramePointerSize);
CHECK_LT(offset, OutArgSize());
return FrameOffset(offset);
}
size_t Arm64JniCallingConvention::NumberOfOutgoingStackArgs() {
// all arguments including JNI args
size_t all_args = NumArgs() + NumberOfExtraArgumentsForJni();
size_t all_stack_args = all_args -
std::min(8u, static_cast<unsigned int>(NumFloatOrDoubleArgs())) -
std::min(8u, static_cast<unsigned int>((all_args - NumFloatOrDoubleArgs())));
return all_stack_args;
}
} // namespace arm64
} // namespace art