blob: 0bbc76a581cb42984c7b14274ba15f9e4ad3fd02 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_GC_SPACE_REGION_SPACE_H_
#define ART_RUNTIME_GC_SPACE_REGION_SPACE_H_
#include "base/macros.h"
#include "base/mutex.h"
#include "space.h"
#include "thread.h"
namespace art {
namespace gc {
namespace accounting {
class ReadBarrierTable;
} // namespace accounting
namespace space {
// Cyclic region allocation strategy. If `true`, region allocation
// will not try to allocate a new region from the beginning of the
// region space, but from the last allocated region. This allocation
// strategy reduces region reuse and should help catch some GC bugs
// earlier. However, cyclic region allocation can also create memory
// fragmentation at the region level (see b/33795328); therefore, we
// only enable it in debug mode.
static constexpr bool kCyclicRegionAllocation = kIsDebugBuild;
// A space that consists of equal-sized regions.
class RegionSpace final : public ContinuousMemMapAllocSpace {
public:
typedef void(*WalkCallback)(void *start, void *end, size_t num_bytes, void* callback_arg);
enum EvacMode {
kEvacModeNewlyAllocated,
kEvacModeLivePercentNewlyAllocated,
kEvacModeForceAll,
};
SpaceType GetType() const override {
return kSpaceTypeRegionSpace;
}
// Create a region space mem map with the requested sizes. The requested base address is not
// guaranteed to be granted, if it is required, the caller should call Begin on the returned
// space to confirm the request was granted.
static MemMap CreateMemMap(const std::string& name, size_t capacity, uint8_t* requested_begin);
static RegionSpace* Create(const std::string& name, MemMap&& mem_map, bool use_generational_cc);
// Allocate `num_bytes`, returns null if the space is full.
mirror::Object* Alloc(Thread* self,
size_t num_bytes,
/* out */ size_t* bytes_allocated,
/* out */ size_t* usable_size,
/* out */ size_t* bytes_tl_bulk_allocated)
override REQUIRES(!region_lock_);
// Thread-unsafe allocation for when mutators are suspended, used by the semispace collector.
mirror::Object* AllocThreadUnsafe(Thread* self,
size_t num_bytes,
/* out */ size_t* bytes_allocated,
/* out */ size_t* usable_size,
/* out */ size_t* bytes_tl_bulk_allocated)
override REQUIRES(Locks::mutator_lock_) REQUIRES(!region_lock_);
// The main allocation routine.
template<bool kForEvac>
ALWAYS_INLINE mirror::Object* AllocNonvirtual(size_t num_bytes,
/* out */ size_t* bytes_allocated,
/* out */ size_t* usable_size,
/* out */ size_t* bytes_tl_bulk_allocated)
REQUIRES(!region_lock_);
// Allocate/free large objects (objects that are larger than the region size).
template<bool kForEvac>
mirror::Object* AllocLarge(size_t num_bytes,
/* out */ size_t* bytes_allocated,
/* out */ size_t* usable_size,
/* out */ size_t* bytes_tl_bulk_allocated) REQUIRES(!region_lock_);
template<bool kForEvac>
void FreeLarge(mirror::Object* large_obj, size_t bytes_allocated) REQUIRES(!region_lock_);
// Return the storage space required by obj.
size_t AllocationSize(mirror::Object* obj, size_t* usable_size) override
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!region_lock_) {
return AllocationSizeNonvirtual(obj, usable_size);
}
size_t AllocationSizeNonvirtual(mirror::Object* obj, size_t* usable_size)
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!region_lock_);
size_t Free(Thread*, mirror::Object*) override {
UNIMPLEMENTED(FATAL);
return 0;
}
size_t FreeList(Thread*, size_t, mirror::Object**) override {
UNIMPLEMENTED(FATAL);
return 0;
}
accounting::ContinuousSpaceBitmap* GetLiveBitmap() const override {
return mark_bitmap_.get();
}
accounting::ContinuousSpaceBitmap* GetMarkBitmap() const override {
return mark_bitmap_.get();
}
void Clear() override REQUIRES(!region_lock_);
// Remove read and write memory protection from the whole region space,
// i.e. make memory pages backing the region area not readable and not
// writable.
void Protect();
// Remove memory protection from the whole region space, i.e. make memory
// pages backing the region area readable and writable. This method is useful
// to avoid page protection faults when dumping information about an invalid
// reference.
void Unprotect();
// Change the non growth limit capacity to new capacity by shrinking or expanding the map.
// Currently, only shrinking is supported.
// Unlike implementations of this function in other spaces, we need to pass
// new capacity as argument here as region space doesn't have any notion of
// growth limit.
void ClampGrowthLimit(size_t new_capacity) REQUIRES(!region_lock_);
void Dump(std::ostream& os) const override;
void DumpRegions(std::ostream& os) REQUIRES(!region_lock_);
// Dump region containing object `obj`. Precondition: `obj` is in the region space.
void DumpRegionForObject(std::ostream& os, mirror::Object* obj) REQUIRES(!region_lock_);
void DumpNonFreeRegions(std::ostream& os) REQUIRES(!region_lock_);
size_t RevokeThreadLocalBuffers(Thread* thread) override REQUIRES(!region_lock_);
void RevokeThreadLocalBuffersLocked(Thread* thread) REQUIRES(region_lock_);
size_t RevokeAllThreadLocalBuffers() override
REQUIRES(!Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_, !region_lock_);
void AssertThreadLocalBuffersAreRevoked(Thread* thread) REQUIRES(!region_lock_);
void AssertAllThreadLocalBuffersAreRevoked()
REQUIRES(!Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_, !region_lock_);
enum class RegionType : uint8_t {
kRegionTypeAll, // All types.
kRegionTypeFromSpace, // From-space. To be evacuated.
kRegionTypeUnevacFromSpace, // Unevacuated from-space. Not to be evacuated.
kRegionTypeToSpace, // To-space.
kRegionTypeNone, // None.
};
enum class RegionState : uint8_t {
kRegionStateFree, // Free region.
kRegionStateAllocated, // Allocated region.
kRegionStateLarge, // Large allocated (allocation larger than the region size).
kRegionStateLargeTail, // Large tail (non-first regions of a large allocation).
};
template<RegionType kRegionType> uint64_t GetBytesAllocatedInternal() REQUIRES(!region_lock_);
template<RegionType kRegionType> uint64_t GetObjectsAllocatedInternal() REQUIRES(!region_lock_);
uint64_t GetBytesAllocated() override REQUIRES(!region_lock_) {
return GetBytesAllocatedInternal<RegionType::kRegionTypeAll>();
}
uint64_t GetObjectsAllocated() override REQUIRES(!region_lock_) {
return GetObjectsAllocatedInternal<RegionType::kRegionTypeAll>();
}
uint64_t GetBytesAllocatedInFromSpace() REQUIRES(!region_lock_) {
return GetBytesAllocatedInternal<RegionType::kRegionTypeFromSpace>();
}
uint64_t GetObjectsAllocatedInFromSpace() REQUIRES(!region_lock_) {
return GetObjectsAllocatedInternal<RegionType::kRegionTypeFromSpace>();
}
uint64_t GetBytesAllocatedInUnevacFromSpace() REQUIRES(!region_lock_) {
return GetBytesAllocatedInternal<RegionType::kRegionTypeUnevacFromSpace>();
}
uint64_t GetObjectsAllocatedInUnevacFromSpace() REQUIRES(!region_lock_) {
return GetObjectsAllocatedInternal<RegionType::kRegionTypeUnevacFromSpace>();
}
size_t GetMaxPeakNumNonFreeRegions() const {
return max_peak_num_non_free_regions_;
}
size_t GetNumRegions() const {
return num_regions_;
}
bool CanMoveObjects() const override {
return true;
}
bool Contains(const mirror::Object* obj) const override {
const uint8_t* byte_obj = reinterpret_cast<const uint8_t*>(obj);
return byte_obj >= Begin() && byte_obj < Limit();
}
RegionSpace* AsRegionSpace() override {
return this;
}
// Go through all of the blocks and visit the continuous objects.
template <typename Visitor>
ALWAYS_INLINE void Walk(Visitor&& visitor) REQUIRES(Locks::mutator_lock_);
template <typename Visitor>
ALWAYS_INLINE void WalkToSpace(Visitor&& visitor) REQUIRES(Locks::mutator_lock_);
// Scans regions and calls visitor for objects in unevac-space corresponding
// to the bits set in 'bitmap'.
// Cannot acquire region_lock_ as visitor may need to acquire it for allocation.
// Should not be called concurrently with functions (like SetFromSpace()) which
// change regions' type.
template <typename Visitor>
ALWAYS_INLINE void ScanUnevacFromSpace(accounting::ContinuousSpaceBitmap* bitmap,
Visitor&& visitor) NO_THREAD_SAFETY_ANALYSIS;
accounting::ContinuousSpaceBitmap::SweepCallback* GetSweepCallback() override {
return nullptr;
}
void LogFragmentationAllocFailure(std::ostream& os, size_t failed_alloc_bytes) override
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!region_lock_);
// Object alignment within the space.
static constexpr size_t kAlignment = kObjectAlignment;
// The region size.
static constexpr size_t kRegionSize = 256 * KB;
bool IsInFromSpace(mirror::Object* ref) {
if (HasAddress(ref)) {
Region* r = RefToRegionUnlocked(ref);
return r->IsInFromSpace();
}
return false;
}
bool IsRegionNewlyAllocated(size_t idx) const NO_THREAD_SAFETY_ANALYSIS {
DCHECK_LT(idx, num_regions_);
return regions_[idx].IsNewlyAllocated();
}
bool IsInNewlyAllocatedRegion(mirror::Object* ref) {
if (HasAddress(ref)) {
Region* r = RefToRegionUnlocked(ref);
return r->IsNewlyAllocated();
}
return false;
}
bool IsInUnevacFromSpace(mirror::Object* ref) {
if (HasAddress(ref)) {
Region* r = RefToRegionUnlocked(ref);
return r->IsInUnevacFromSpace();
}
return false;
}
bool IsLargeObject(mirror::Object* ref) {
if (HasAddress(ref)) {
Region* r = RefToRegionUnlocked(ref);
return r->IsLarge();
}
return false;
}
bool IsInToSpace(mirror::Object* ref) {
if (HasAddress(ref)) {
Region* r = RefToRegionUnlocked(ref);
return r->IsInToSpace();
}
return false;
}
// If `ref` is in the region space, return the type of its region;
// otherwise, return `RegionType::kRegionTypeNone`.
RegionType GetRegionType(mirror::Object* ref) {
if (HasAddress(ref)) {
return GetRegionTypeUnsafe(ref);
}
return RegionType::kRegionTypeNone;
}
// Unsafe version of RegionSpace::GetRegionType.
// Precondition: `ref` is in the region space.
RegionType GetRegionTypeUnsafe(mirror::Object* ref) {
DCHECK(HasAddress(ref)) << ref;
Region* r = RefToRegionUnlocked(ref);
return r->Type();
}
// Zero live bytes for a large object, used by young gen CC for marking newly allocated large
// objects.
void ZeroLiveBytesForLargeObject(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_);
// Determine which regions to evacuate and tag them as
// from-space. Tag the rest as unevacuated from-space.
void SetFromSpace(accounting::ReadBarrierTable* rb_table,
EvacMode evac_mode,
bool clear_live_bytes)
REQUIRES(!region_lock_);
size_t FromSpaceSize() REQUIRES(!region_lock_);
size_t UnevacFromSpaceSize() REQUIRES(!region_lock_);
size_t ToSpaceSize() REQUIRES(!region_lock_);
void ClearFromSpace(/* out */ uint64_t* cleared_bytes,
/* out */ uint64_t* cleared_objects,
const bool clear_bitmap)
REQUIRES(!region_lock_);
void AddLiveBytes(mirror::Object* ref, size_t alloc_size) {
Region* reg = RefToRegionUnlocked(ref);
reg->AddLiveBytes(alloc_size);
}
void AssertAllRegionLiveBytesZeroOrCleared() REQUIRES(!region_lock_) {
if (kIsDebugBuild) {
MutexLock mu(Thread::Current(), region_lock_);
for (size_t i = 0; i < num_regions_; ++i) {
Region* r = &regions_[i];
size_t live_bytes = r->LiveBytes();
CHECK(live_bytes == 0U || live_bytes == static_cast<size_t>(-1)) << live_bytes;
}
}
}
void SetAllRegionLiveBytesZero() REQUIRES(!region_lock_) {
MutexLock mu(Thread::Current(), region_lock_);
const size_t iter_limit = kUseTableLookupReadBarrier
? num_regions_
: std::min(num_regions_, non_free_region_index_limit_);
for (size_t i = 0; i < iter_limit; ++i) {
Region* r = &regions_[i];
// Newly allocated regions don't need up-to-date live_bytes_ for deciding
// whether to be evacuated or not. See Region::ShouldBeEvacuated().
if (!r->IsFree() && !r->IsNewlyAllocated()) {
r->ZeroLiveBytes();
}
}
}
size_t RegionIdxForRefUnchecked(mirror::Object* ref) const NO_THREAD_SAFETY_ANALYSIS {
DCHECK(HasAddress(ref));
uintptr_t offset = reinterpret_cast<uintptr_t>(ref) - reinterpret_cast<uintptr_t>(Begin());
size_t reg_idx = offset / kRegionSize;
DCHECK_LT(reg_idx, num_regions_);
Region* reg = &regions_[reg_idx];
DCHECK_EQ(reg->Idx(), reg_idx);
DCHECK(reg->Contains(ref));
return reg_idx;
}
// Return -1 as region index for references outside this region space.
size_t RegionIdxForRef(mirror::Object* ref) const NO_THREAD_SAFETY_ANALYSIS {
if (HasAddress(ref)) {
return RegionIdxForRefUnchecked(ref);
} else {
return static_cast<size_t>(-1);
}
}
void RecordAlloc(mirror::Object* ref) REQUIRES(!region_lock_);
bool AllocNewTlab(Thread* self, size_t min_bytes) REQUIRES(!region_lock_);
uint32_t Time() {
return time_;
}
private:
RegionSpace(const std::string& name, MemMap&& mem_map, bool use_generational_cc);
class Region {
public:
Region()
: idx_(static_cast<size_t>(-1)),
live_bytes_(static_cast<size_t>(-1)),
begin_(nullptr),
thread_(nullptr),
top_(nullptr),
end_(nullptr),
objects_allocated_(0),
alloc_time_(0),
is_newly_allocated_(false),
is_a_tlab_(false),
state_(RegionState::kRegionStateAllocated),
type_(RegionType::kRegionTypeToSpace) {}
void Init(size_t idx, uint8_t* begin, uint8_t* end) {
idx_ = idx;
begin_ = begin;
top_.store(begin, std::memory_order_relaxed);
end_ = end;
state_ = RegionState::kRegionStateFree;
type_ = RegionType::kRegionTypeNone;
objects_allocated_.store(0, std::memory_order_relaxed);
alloc_time_ = 0;
live_bytes_ = static_cast<size_t>(-1);
is_newly_allocated_ = false;
is_a_tlab_ = false;
thread_ = nullptr;
DCHECK_LT(begin, end);
DCHECK_EQ(static_cast<size_t>(end - begin), kRegionSize);
}
RegionState State() const {
return state_;
}
RegionType Type() const {
return type_;
}
void Clear(bool zero_and_release_pages);
ALWAYS_INLINE mirror::Object* Alloc(size_t num_bytes,
/* out */ size_t* bytes_allocated,
/* out */ size_t* usable_size,
/* out */ size_t* bytes_tl_bulk_allocated);
bool IsFree() const {
bool is_free = (state_ == RegionState::kRegionStateFree);
if (is_free) {
DCHECK(IsInNoSpace());
DCHECK_EQ(begin_, Top());
DCHECK_EQ(objects_allocated_.load(std::memory_order_relaxed), 0U);
}
return is_free;
}
// Given a free region, declare it non-free (allocated).
void Unfree(RegionSpace* region_space, uint32_t alloc_time)
REQUIRES(region_space->region_lock_);
// Given a free region, declare it non-free (allocated) and large.
void UnfreeLarge(RegionSpace* region_space, uint32_t alloc_time)
REQUIRES(region_space->region_lock_);
// Given a free region, declare it non-free (allocated) and large tail.
void UnfreeLargeTail(RegionSpace* region_space, uint32_t alloc_time)
REQUIRES(region_space->region_lock_);
void MarkAsAllocated(RegionSpace* region_space, uint32_t alloc_time)
REQUIRES(region_space->region_lock_);
void SetNewlyAllocated() {
is_newly_allocated_ = true;
}
// Non-large, non-large-tail allocated.
bool IsAllocated() const {
return state_ == RegionState::kRegionStateAllocated;
}
// Large allocated.
bool IsLarge() const {
bool is_large = (state_ == RegionState::kRegionStateLarge);
if (is_large) {
DCHECK_LT(begin_ + kRegionSize, Top());
}
return is_large;
}
void ZeroLiveBytes() {
live_bytes_ = 0;
}
// Large-tail allocated.
bool IsLargeTail() const {
bool is_large_tail = (state_ == RegionState::kRegionStateLargeTail);
if (is_large_tail) {
DCHECK_EQ(begin_, Top());
}
return is_large_tail;
}
size_t Idx() const {
return idx_;
}
bool IsNewlyAllocated() const {
return is_newly_allocated_;
}
bool IsInFromSpace() const {
return type_ == RegionType::kRegionTypeFromSpace;
}
bool IsInToSpace() const {
return type_ == RegionType::kRegionTypeToSpace;
}
bool IsInUnevacFromSpace() const {
return type_ == RegionType::kRegionTypeUnevacFromSpace;
}
bool IsInNoSpace() const {
return type_ == RegionType::kRegionTypeNone;
}
// Set this region as evacuated from-space. At the end of the
// collection, RegionSpace::ClearFromSpace will clear and reclaim
// the space used by this region, and tag it as unallocated/free.
void SetAsFromSpace() {
DCHECK(!IsFree() && IsInToSpace());
type_ = RegionType::kRegionTypeFromSpace;
if (IsNewlyAllocated()) {
// Clear the "newly allocated" status here, as we do not want the
// GC to see it when encountering references in the from-space.
//
// Invariant: There should be no newly-allocated region in the
// from-space (when the from-space exists, which is between the calls
// to RegionSpace::SetFromSpace and RegionSpace::ClearFromSpace).
is_newly_allocated_ = false;
}
// Set live bytes to an invalid value, as we have made an
// evacuation decision (possibly based on the percentage of live
// bytes).
live_bytes_ = static_cast<size_t>(-1);
}
// Set this region as unevacuated from-space. At the end of the
// collection, RegionSpace::ClearFromSpace will preserve the space
// used by this region, and tag it as to-space (see
// Region::SetUnevacFromSpaceAsToSpace below).
void SetAsUnevacFromSpace(bool clear_live_bytes);
// Set this region as to-space. Used by RegionSpace::ClearFromSpace.
// This is only valid if it is currently an unevac from-space region.
void SetUnevacFromSpaceAsToSpace() {
DCHECK(!IsFree() && IsInUnevacFromSpace());
type_ = RegionType::kRegionTypeToSpace;
}
// Return whether this region should be evacuated. Used by RegionSpace::SetFromSpace.
ALWAYS_INLINE bool ShouldBeEvacuated(EvacMode evac_mode);
void AddLiveBytes(size_t live_bytes) {
DCHECK(GetUseGenerationalCC() || IsInUnevacFromSpace());
DCHECK(!IsLargeTail());
DCHECK_NE(live_bytes_, static_cast<size_t>(-1));
// For large allocations, we always consider all bytes in the regions live.
live_bytes_ += IsLarge() ? Top() - begin_ : live_bytes;
DCHECK_LE(live_bytes_, BytesAllocated());
}
bool AllAllocatedBytesAreLive() const {
return LiveBytes() == static_cast<size_t>(Top() - Begin());
}
size_t LiveBytes() const {
return live_bytes_;
}
size_t BytesAllocated() const;
size_t ObjectsAllocated() const;
uint8_t* Begin() const {
return begin_;
}
ALWAYS_INLINE uint8_t* Top() const {
return top_.load(std::memory_order_relaxed);
}
void SetTop(uint8_t* new_top) {
top_.store(new_top, std::memory_order_relaxed);
}
uint8_t* End() const {
return end_;
}
bool Contains(mirror::Object* ref) const {
return begin_ <= reinterpret_cast<uint8_t*>(ref) && reinterpret_cast<uint8_t*>(ref) < end_;
}
void Dump(std::ostream& os) const;
void RecordThreadLocalAllocations(size_t num_objects, size_t num_bytes) {
DCHECK(IsAllocated());
DCHECK_EQ(objects_allocated_.load(std::memory_order_relaxed), 0U);
DCHECK_EQ(Top(), end_);
objects_allocated_.store(num_objects, std::memory_order_relaxed);
top_.store(begin_ + num_bytes, std::memory_order_relaxed);
DCHECK_LE(Top(), end_);
}
uint64_t GetLongestConsecutiveFreeBytes() const;
private:
static bool GetUseGenerationalCC();
size_t idx_; // The region's index in the region space.
size_t live_bytes_; // The live bytes. Used to compute the live percent.
uint8_t* begin_; // The begin address of the region.
Thread* thread_; // The owning thread if it's a tlab.
// Note that `top_` can be higher than `end_` in the case of a
// large region, where an allocated object spans multiple regions
// (large region + one or more large tail regions).
Atomic<uint8_t*> top_; // The current position of the allocation.
uint8_t* end_; // The end address of the region.
// objects_allocated_ is accessed using memory_order_relaxed. Treat as approximate when there
// are concurrent updates.
Atomic<size_t> objects_allocated_; // The number of objects allocated.
uint32_t alloc_time_; // The allocation time of the region.
// Note that newly allocated and evacuated regions use -1 as
// special value for `live_bytes_`.
bool is_newly_allocated_; // True if it's allocated after the last collection.
bool is_a_tlab_; // True if it's a tlab.
RegionState state_; // The region state (see RegionState).
RegionType type_; // The region type (see RegionType).
friend class RegionSpace;
};
template<bool kToSpaceOnly, typename Visitor>
ALWAYS_INLINE void WalkInternal(Visitor&& visitor) NO_THREAD_SAFETY_ANALYSIS;
// Visitor will be iterating on objects in increasing address order.
template<typename Visitor>
ALWAYS_INLINE void WalkNonLargeRegion(Visitor&& visitor, const Region* r)
NO_THREAD_SAFETY_ANALYSIS;
Region* RefToRegion(mirror::Object* ref) REQUIRES(!region_lock_) {
MutexLock mu(Thread::Current(), region_lock_);
return RefToRegionLocked(ref);
}
Region* RefToRegionUnlocked(mirror::Object* ref) NO_THREAD_SAFETY_ANALYSIS {
// For a performance reason (this is frequently called via
// RegionSpace::IsInFromSpace, etc.) we avoid taking a lock here.
// Note that since we only change a region from to-space to (evac)
// from-space during a pause (in RegionSpace::SetFromSpace) and
// from (evac) from-space to free (after GC is done), as long as
// `ref` is a valid reference into an allocated region, it's safe
// to access the region state without the lock.
return RefToRegionLocked(ref);
}
Region* RefToRegionLocked(mirror::Object* ref) REQUIRES(region_lock_) {
DCHECK(HasAddress(ref));
uintptr_t offset = reinterpret_cast<uintptr_t>(ref) - reinterpret_cast<uintptr_t>(Begin());
size_t reg_idx = offset / kRegionSize;
DCHECK_LT(reg_idx, num_regions_);
Region* reg = &regions_[reg_idx];
DCHECK_EQ(reg->Idx(), reg_idx);
DCHECK(reg->Contains(ref));
return reg;
}
// Return the object location following `obj` in the region space
// (i.e., the object location at `obj + obj->SizeOf()`).
//
// Note that unless
// - the region containing `obj` is fully used; and
// - `obj` is not the last object of that region;
// the returned location is not guaranteed to be a valid object.
static mirror::Object* GetNextObject(mirror::Object* obj)
REQUIRES_SHARED(Locks::mutator_lock_);
void AdjustNonFreeRegionLimit(size_t new_non_free_region_index) REQUIRES(region_lock_) {
DCHECK_LT(new_non_free_region_index, num_regions_);
non_free_region_index_limit_ = std::max(non_free_region_index_limit_,
new_non_free_region_index + 1);
VerifyNonFreeRegionLimit();
}
void SetNonFreeRegionLimit(size_t new_non_free_region_index_limit) REQUIRES(region_lock_) {
DCHECK_LE(new_non_free_region_index_limit, num_regions_);
non_free_region_index_limit_ = new_non_free_region_index_limit;
VerifyNonFreeRegionLimit();
}
// Implementation of this invariant:
// for all `i >= non_free_region_index_limit_`, `regions_[i].IsFree()` is true.
void VerifyNonFreeRegionLimit() REQUIRES(region_lock_) {
if (kIsDebugBuild && non_free_region_index_limit_ < num_regions_) {
for (size_t i = non_free_region_index_limit_; i < num_regions_; ++i) {
CHECK(regions_[i].IsFree());
}
}
}
Region* AllocateRegion(bool for_evac) REQUIRES(region_lock_);
// Scan region range [`begin`, `end`) in increasing order to try to
// allocate a large region having a size of `num_regs_in_large_region`
// regions. If there is no space in the region space to allocate this
// large region, return null.
//
// If argument `next_region` is not null, use `*next_region` to
// return the index to the region next to the allocated large region
// returned by this method.
template<bool kForEvac>
mirror::Object* AllocLargeInRange(size_t begin,
size_t end,
size_t num_regs_in_large_region,
/* out */ size_t* bytes_allocated,
/* out */ size_t* usable_size,
/* out */ size_t* bytes_tl_bulk_allocated,
/* out */ size_t* next_region = nullptr) REQUIRES(region_lock_);
// Check that the value of `r->LiveBytes()` matches the number of
// (allocated) bytes used by live objects according to the live bits
// in the region space bitmap range corresponding to region `r`.
void CheckLiveBytesAgainstRegionBitmap(Region* r);
// Poison memory areas used by dead objects within unevacuated
// region `r`. This is meant to detect dangling references to dead
// objects earlier in debug mode.
void PoisonDeadObjectsInUnevacuatedRegion(Region* r);
Mutex region_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
// Cached version of Heap::use_generational_cc_.
const bool use_generational_cc_;
uint32_t time_; // The time as the number of collections since the startup.
size_t num_regions_; // The number of regions in this space.
// The number of non-free regions in this space.
size_t num_non_free_regions_ GUARDED_BY(region_lock_);
// The number of evac regions allocated during collection. 0 when GC not running.
size_t num_evac_regions_ GUARDED_BY(region_lock_);
// Maintain the maximum of number of non-free regions collected just before
// reclaim in each GC cycle. At this moment in cycle, highest number of
// regions are in non-free.
size_t max_peak_num_non_free_regions_;
// The pointer to the region array.
std::unique_ptr<Region[]> regions_ GUARDED_BY(region_lock_);
// The upper-bound index of the non-free regions. Used to avoid scanning all regions in
// RegionSpace::SetFromSpace and RegionSpace::ClearFromSpace.
//
// Invariant (verified by RegionSpace::VerifyNonFreeRegionLimit):
// for all `i >= non_free_region_index_limit_`, `regions_[i].IsFree()` is true.
size_t non_free_region_index_limit_ GUARDED_BY(region_lock_);
Region* current_region_; // The region currently used for allocation.
Region* evac_region_; // The region currently used for evacuation.
Region full_region_; // The dummy/sentinel region that looks full.
// Index into the region array pointing to the starting region when
// trying to allocate a new region. Only used when
// `kCyclicRegionAllocation` is true.
size_t cyclic_alloc_region_index_ GUARDED_BY(region_lock_);
// Mark bitmap used by the GC.
std::unique_ptr<accounting::ContinuousSpaceBitmap> mark_bitmap_;
DISALLOW_COPY_AND_ASSIGN(RegionSpace);
};
std::ostream& operator<<(std::ostream& os, const RegionSpace::RegionState& value);
std::ostream& operator<<(std::ostream& os, const RegionSpace::RegionType& value);
} // namespace space
} // namespace gc
} // namespace art
#endif // ART_RUNTIME_GC_SPACE_REGION_SPACE_H_