blob: 09980c8d36a593cf90037038e309db463465f9e7 [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "jit_memory_region.h"
#include <fcntl.h>
#include <unistd.h>
#include <android-base/unique_fd.h>
#include "base/bit_utils.h" // For RoundDown, RoundUp
#include "base/globals.h"
#include "base/logging.h" // For VLOG.
#include "base/membarrier.h"
#include "base/memfd.h"
#include "base/systrace.h"
#include "gc/allocator/dlmalloc.h"
#include "jit/jit_scoped_code_cache_write.h"
#include "oat_quick_method_header.h"
#include "palette/palette.h"
using android::base::unique_fd;
namespace art {
namespace jit {
// Data cache will be half of the capacity
// Code cache will be the other half of the capacity.
// TODO: Make this variable?
static constexpr size_t kCodeAndDataCapacityDivider = 2;
bool JitMemoryRegion::Initialize(size_t initial_capacity,
size_t max_capacity,
bool rwx_memory_allowed,
bool is_zygote,
std::string* error_msg) {
ScopedTrace trace(__PRETTY_FUNCTION__);
CHECK_GE(max_capacity, initial_capacity);
CHECK(max_capacity <= 1 * GB) << "The max supported size for JIT code cache is 1GB";
// Align both capacities to page size, as that's the unit mspaces use.
initial_capacity_ = RoundDown(initial_capacity, 2 * kPageSize);
max_capacity_ = RoundDown(max_capacity, 2 * kPageSize);
current_capacity_ = initial_capacity,
data_end_ = initial_capacity / kCodeAndDataCapacityDivider;
exec_end_ = initial_capacity - data_end_;
const size_t capacity = max_capacity_;
const size_t data_capacity = capacity / kCodeAndDataCapacityDivider;
const size_t exec_capacity = capacity - data_capacity;
// File descriptor enabling dual-view mapping of code section.
unique_fd mem_fd;
if (is_zygote) {
// Because we are not going to GC code generated by the zygote, just use all available.
current_capacity_ = max_capacity;
mem_fd = unique_fd(CreateZygoteMemory(capacity, error_msg));
if (mem_fd.get() < 0) {
return false;
}
} else {
// Bionic supports memfd_create, but the call may fail on older kernels.
mem_fd = unique_fd(art::memfd_create("jit-cache", /* flags= */ 0));
if (mem_fd.get() < 0) {
std::ostringstream oss;
oss << "Failed to initialize dual view JIT. memfd_create() error: " << strerror(errno);
if (!rwx_memory_allowed) {
// Without using RWX page permissions, the JIT can not fallback to single mapping as it
// requires tranitioning the code pages to RWX for updates.
*error_msg = oss.str();
return false;
}
VLOG(jit) << oss.str();
} else if (ftruncate(mem_fd, capacity) != 0) {
std::ostringstream oss;
oss << "Failed to initialize memory file: " << strerror(errno);
*error_msg = oss.str();
return false;
}
}
std::string data_cache_name = is_zygote ? "zygote-data-code-cache" : "data-code-cache";
std::string exec_cache_name = is_zygote ? "zygote-jit-code-cache" : "jit-code-cache";
std::string error_str;
// Map name specific for android_os_Debug.cpp accounting.
// Map in low 4gb to simplify accessing root tables for x86_64.
// We could do PC-relative addressing to avoid this problem, but that
// would require reserving code and data area before submitting, which
// means more windows for the code memory to be RWX.
int base_flags;
MemMap data_pages;
if (mem_fd.get() >= 0) {
// Dual view of JIT code cache case. Create an initial mapping of data pages large enough
// for data and non-writable view of JIT code pages. We use the memory file descriptor to
// enable dual mapping - we'll create a second mapping using the descriptor below. The
// mappings will look like:
//
// VA PA
//
// +---------------+
// | non exec code |\
// +---------------+ \
// | writable data |\ \
// +---------------+ \ \
// : :\ \ \
// +---------------+.\.\.+---------------+
// | exec code | \ \| code |
// +---------------+...\.+---------------+
// | readonly data | \| data |
// +---------------+.....+---------------+
//
// In this configuration code updates are written to the non-executable view of the code
// cache, and the executable view of the code cache has fixed RX memory protections.
//
// This memory needs to be mapped shared as the code portions will have two mappings.
//
// Additionally, the zyzote will create a dual view of the data portion of
// the cache. This mapping will be read-only, whereas the second mapping
// will be writable.
base_flags = MAP_SHARED;
data_pages = MemMap::MapFile(
data_capacity + exec_capacity,
kProtR,
base_flags,
mem_fd,
/* start= */ 0,
/* low_4gb= */ true,
data_cache_name.c_str(),
&error_str);
} else {
// Single view of JIT code cache case. Create an initial mapping of data pages large enough
// for data and JIT code pages. The mappings will look like:
//
// VA PA
//
// +---------------+...+---------------+
// | exec code | | code |
// +---------------+...+---------------+
// | data | | data |
// +---------------+...+---------------+
//
// In this configuration code updates are written to the executable view of the code cache,
// and the executable view of the code cache transitions RX to RWX for the update and then
// back to RX after the update.
base_flags = MAP_PRIVATE | MAP_ANON;
data_pages = MemMap::MapAnonymous(
data_cache_name.c_str(),
data_capacity + exec_capacity,
kProtRW,
/* low_4gb= */ true,
&error_str);
}
if (!data_pages.IsValid()) {
std::ostringstream oss;
oss << "Failed to create read write cache: " << error_str << " size=" << capacity;
*error_msg = oss.str();
return false;
}
MemMap exec_pages;
MemMap non_exec_pages;
MemMap writable_data_pages;
if (exec_capacity > 0) {
uint8_t* const divider = data_pages.Begin() + data_capacity;
// Set initial permission for executable view to catch any SELinux permission problems early
// (for processes that cannot map WX pages). Otherwise, this region does not need to be
// executable as there is no code in the cache yet.
exec_pages = data_pages.RemapAtEnd(divider,
exec_cache_name.c_str(),
kProtRX,
base_flags | MAP_FIXED,
mem_fd.get(),
(mem_fd.get() >= 0) ? data_capacity : 0,
&error_str);
if (!exec_pages.IsValid()) {
std::ostringstream oss;
oss << "Failed to create read execute code cache: " << error_str << " size=" << capacity;
*error_msg = oss.str();
return false;
}
if (mem_fd.get() >= 0) {
// For dual view, create the secondary view of code memory used for updating code. This view
// is never executable.
std::string name = exec_cache_name + "-rw";
non_exec_pages = MemMap::MapFile(exec_capacity,
kProtR,
base_flags,
mem_fd,
/* start= */ data_capacity,
/* low_4GB= */ false,
name.c_str(),
&error_str);
if (!non_exec_pages.IsValid()) {
static const char* kFailedNxView = "Failed to map non-executable view of JIT code cache";
if (rwx_memory_allowed) {
// Log and continue as single view JIT (requires RWX memory).
VLOG(jit) << kFailedNxView;
} else {
*error_msg = kFailedNxView;
return false;
}
}
// Create a dual view of the data cache.
name = data_cache_name + "-rw";
writable_data_pages = MemMap::MapFile(data_capacity,
kProtRW,
base_flags,
mem_fd,
/* start= */ 0,
/* low_4GB= */ false,
name.c_str(),
&error_str);
if (!writable_data_pages.IsValid()) {
std::ostringstream oss;
oss << "Failed to create dual data view: " << error_str;
*error_msg = oss.str();
return false;
}
if (writable_data_pages.MadviseDontFork() != 0) {
*error_msg = "Failed to madvise dont fork the writable data view";
return false;
}
if (non_exec_pages.MadviseDontFork() != 0) {
*error_msg = "Failed to madvise dont fork the writable code view";
return false;
}
// Now that we have created the writable and executable mappings, prevent creating any new
// ones.
if (is_zygote && !ProtectZygoteMemory(mem_fd.get(), error_msg)) {
return false;
}
}
} else {
// Profiling only. No memory for code required.
}
data_pages_ = std::move(data_pages);
exec_pages_ = std::move(exec_pages);
non_exec_pages_ = std::move(non_exec_pages);
writable_data_pages_ = std::move(writable_data_pages);
VLOG(jit) << "Created JitMemoryRegion"
<< ": data_pages=" << reinterpret_cast<void*>(data_pages_.Begin())
<< ", exec_pages=" << reinterpret_cast<void*>(exec_pages_.Begin())
<< ", non_exec_pages=" << reinterpret_cast<void*>(non_exec_pages_.Begin())
<< ", writable_data_pages=" << reinterpret_cast<void*>(writable_data_pages_.Begin());
// Now that the pages are initialized, initialize the spaces.
// Initialize the data heap.
data_mspace_ = create_mspace_with_base(
HasDualDataMapping() ? writable_data_pages_.Begin() : data_pages_.Begin(),
data_end_,
/* locked= */ false);
CHECK(data_mspace_ != nullptr) << "create_mspace_with_base (data) failed";
// Allow mspace to use the full data capacity.
// It will still only use as litle memory as possible and ask for MoreCore as needed.
CHECK(IsAlignedParam(data_capacity, kPageSize));
mspace_set_footprint_limit(data_mspace_, data_capacity);
// Initialize the code heap.
MemMap* code_heap = nullptr;
if (non_exec_pages_.IsValid()) {
code_heap = &non_exec_pages_;
} else if (exec_pages_.IsValid()) {
code_heap = &exec_pages_;
}
if (code_heap != nullptr) {
// Make all pages reserved for the code heap writable. The mspace allocator, that manages the
// heap, will take and initialize pages in create_mspace_with_base().
CheckedCall(mprotect, "create code heap", code_heap->Begin(), code_heap->Size(), kProtRW);
exec_mspace_ = create_mspace_with_base(code_heap->Begin(), exec_end_, false /*locked*/);
CHECK(exec_mspace_ != nullptr) << "create_mspace_with_base (exec) failed";
SetFootprintLimit(current_capacity_);
// Protect pages containing heap metadata. Updates to the code heap toggle write permission to
// perform the update and there are no other times write access is required.
CheckedCall(mprotect, "protect code heap", code_heap->Begin(), code_heap->Size(), kProtR);
} else {
exec_mspace_ = nullptr;
SetFootprintLimit(current_capacity_);
}
return true;
}
void JitMemoryRegion::SetFootprintLimit(size_t new_footprint) {
size_t data_space_footprint = new_footprint / kCodeAndDataCapacityDivider;
DCHECK(IsAlignedParam(data_space_footprint, kPageSize));
DCHECK_EQ(data_space_footprint * kCodeAndDataCapacityDivider, new_footprint);
if (HasCodeMapping()) {
ScopedCodeCacheWrite scc(*this);
mspace_set_footprint_limit(exec_mspace_, new_footprint - data_space_footprint);
}
}
bool JitMemoryRegion::IncreaseCodeCacheCapacity() {
if (current_capacity_ == max_capacity_) {
return false;
}
// Double the capacity if we're below 1MB, or increase it by 1MB if
// we're above.
if (current_capacity_ < 1 * MB) {
current_capacity_ *= 2;
} else {
current_capacity_ += 1 * MB;
}
if (current_capacity_ > max_capacity_) {
current_capacity_ = max_capacity_;
}
VLOG(jit) << "Increasing code cache capacity to " << PrettySize(current_capacity_);
SetFootprintLimit(current_capacity_);
return true;
}
// NO_THREAD_SAFETY_ANALYSIS as this is called from mspace code, at which point the lock
// is already held.
void* JitMemoryRegion::MoreCore(const void* mspace, intptr_t increment) NO_THREAD_SAFETY_ANALYSIS {
if (mspace == exec_mspace_) {
CHECK(exec_mspace_ != nullptr);
const MemMap* const code_pages = GetUpdatableCodeMapping();
void* result = code_pages->Begin() + exec_end_;
exec_end_ += increment;
return result;
} else {
CHECK_EQ(data_mspace_, mspace);
const MemMap* const writable_data_pages = GetWritableDataMapping();
void* result = writable_data_pages->Begin() + data_end_;
data_end_ += increment;
return result;
}
}
const uint8_t* JitMemoryRegion::CommitCode(ArrayRef<const uint8_t> reserved_code,
ArrayRef<const uint8_t> code,
const uint8_t* stack_map,
bool has_should_deoptimize_flag) {
DCHECK(IsInExecSpace(reserved_code.data()));
ScopedCodeCacheWrite scc(*this);
size_t alignment = GetInstructionSetAlignment(kRuntimeISA);
size_t header_size = OatQuickMethodHeader::InstructionAlignedSize();
size_t total_size = header_size + code.size();
// Each allocation should be on its own set of cache lines.
// `total_size` covers the OatQuickMethodHeader, the JIT generated machine code,
// and any alignment padding.
DCHECK_GT(total_size, header_size);
DCHECK_LE(total_size, reserved_code.size());
uint8_t* x_memory = const_cast<uint8_t*>(reserved_code.data());
uint8_t* w_memory = const_cast<uint8_t*>(GetNonExecutableAddress(x_memory));
// Ensure the header ends up at expected instruction alignment.
DCHECK_ALIGNED_PARAM(reinterpret_cast<uintptr_t>(w_memory + header_size), alignment);
const uint8_t* result = x_memory + header_size;
// Write the code.
std::copy(code.begin(), code.end(), w_memory + header_size);
// Write the header.
OatQuickMethodHeader* method_header =
OatQuickMethodHeader::FromCodePointer(w_memory + header_size);
new (method_header) OatQuickMethodHeader(
(stack_map != nullptr) ? result - stack_map : 0u,
code.size());
if (has_should_deoptimize_flag) {
method_header->SetHasShouldDeoptimizeFlag();
}
// Both instruction and data caches need flushing to the point of unification where both share
// a common view of memory. Flushing the data cache ensures the dirty cachelines from the
// newly added code are written out to the point of unification. Flushing the instruction
// cache ensures the newly written code will be fetched from the point of unification before
// use. Memory in the code cache is re-cycled as code is added and removed. The flushes
// prevent stale code from residing in the instruction cache.
//
// Caches are flushed before write permission is removed because some ARMv8 Qualcomm kernels
// may trigger a segfault if a page fault occurs when requesting a cache maintenance
// operation. This is a kernel bug that we need to work around until affected devices
// (e.g. Nexus 5X and 6P) stop being supported or their kernels are fixed.
//
// For reference, this behavior is caused by this commit:
// https://android.googlesource.com/kernel/msm/+/3fbe6bc28a6b9939d0650f2f17eb5216c719950c
//
bool cache_flush_success = true;
if (HasDualCodeMapping()) {
// Flush d-cache for the non-executable mapping.
cache_flush_success = FlushCpuCaches(w_memory, w_memory + total_size);
}
// Invalidate i-cache for the executable mapping.
if (cache_flush_success) {
cache_flush_success = FlushCpuCaches(x_memory, x_memory + total_size);
}
// If flushing the cache has failed, reject the allocation because we can't guarantee
// correctness of the instructions present in the processor caches.
if (!cache_flush_success) {
PLOG(ERROR) << "Cache flush failed triggering code allocation failure";
return nullptr;
}
// Ensure CPU instruction pipelines are flushed for all cores. This is necessary for
// correctness as code may still be in instruction pipelines despite the i-cache flush. It is
// not safe to assume that changing permissions with mprotect (RX->RWX->RX) will cause a TLB
// shootdown (incidentally invalidating the CPU pipelines by sending an IPI to all cores to
// notify them of the TLB invalidation). Some architectures, notably ARM and ARM64, have
// hardware support that broadcasts TLB invalidations and so their kernels have no software
// based TLB shootdown. The sync-core flavor of membarrier was introduced in Linux 4.16 to
// address this (see mbarrier(2)). The membarrier here will fail on prior kernels and on
// platforms lacking the appropriate support.
art::membarrier(art::MembarrierCommand::kPrivateExpeditedSyncCore);
return result;
}
static void FillRootTable(uint8_t* roots_data, const std::vector<Handle<mirror::Object>>& roots)
REQUIRES(Locks::jit_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
GcRoot<mirror::Object>* gc_roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data);
const uint32_t length = roots.size();
// Put all roots in `roots_data`.
for (uint32_t i = 0; i < length; ++i) {
ObjPtr<mirror::Object> object = roots[i].Get();
gc_roots[i] = GcRoot<mirror::Object>(object);
}
// Store the length of the table at the end. This will allow fetching it from a stack_map
// pointer.
reinterpret_cast<uint32_t*>(roots_data)[length] = length;
}
bool JitMemoryRegion::CommitData(ArrayRef<const uint8_t> reserved_data,
const std::vector<Handle<mirror::Object>>& roots,
ArrayRef<const uint8_t> stack_map) {
DCHECK(IsInDataSpace(reserved_data.data()));
uint8_t* roots_data = GetWritableDataAddress(reserved_data.data());
size_t root_table_size = ComputeRootTableSize(roots.size());
uint8_t* stack_map_data = roots_data + root_table_size;
DCHECK_LE(root_table_size + stack_map.size(), reserved_data.size());
FillRootTable(roots_data, roots);
memcpy(stack_map_data, stack_map.data(), stack_map.size());
// Flush data cache, as compiled code references literals in it.
// TODO(oth): establish whether this is necessary.
if (UNLIKELY(!FlushCpuCaches(roots_data, roots_data + root_table_size + stack_map.size()))) {
VLOG(jit) << "Failed to flush data in CommitData";
return false;
}
return true;
}
const uint8_t* JitMemoryRegion::AllocateCode(size_t size) {
size_t alignment = GetInstructionSetAlignment(kRuntimeISA);
void* result = mspace_memalign(exec_mspace_, alignment, size);
if (UNLIKELY(result == nullptr)) {
return nullptr;
}
used_memory_for_code_ += mspace_usable_size(result);
return reinterpret_cast<uint8_t*>(GetExecutableAddress(result));
}
void JitMemoryRegion::FreeCode(const uint8_t* code) {
code = GetNonExecutableAddress(code);
used_memory_for_code_ -= mspace_usable_size(code);
mspace_free(exec_mspace_, const_cast<uint8_t*>(code));
}
const uint8_t* JitMemoryRegion::AllocateData(size_t data_size) {
void* result = mspace_malloc(data_mspace_, data_size);
if (UNLIKELY(result == nullptr)) {
return nullptr;
}
used_memory_for_data_ += mspace_usable_size(result);
return reinterpret_cast<uint8_t*>(GetNonWritableDataAddress(result));
}
void JitMemoryRegion::FreeData(const uint8_t* data) {
FreeWritableData(GetWritableDataAddress(data));
}
void JitMemoryRegion::FreeWritableData(uint8_t* writable_data) REQUIRES(Locks::jit_lock_) {
used_memory_for_data_ -= mspace_usable_size(writable_data);
mspace_free(data_mspace_, writable_data);
}
#if defined(__BIONIC__) && defined(ART_TARGET)
// The code below only works on bionic on target.
int JitMemoryRegion::CreateZygoteMemory(size_t capacity, std::string* error_msg) {
if (CacheOperationsMaySegFault()) {
// Zygote JIT requires dual code mappings by design. We can only do this if the cache flush
// and invalidate instructions work without raising faults.
*error_msg = "Zygote memory only works with dual mappings";
return -1;
}
/* Check if kernel support exists, otherwise fall back to ashmem */
static const char* kRegionName = "jit-zygote-cache";
if (art::IsSealFutureWriteSupported()) {
int fd = art::memfd_create(kRegionName, MFD_ALLOW_SEALING);
if (fd == -1) {
std::ostringstream oss;
oss << "Failed to create zygote mapping: " << strerror(errno);
*error_msg = oss.str();
return -1;
}
if (ftruncate(fd, capacity) != 0) {
std::ostringstream oss;
oss << "Failed to create zygote mapping: " << strerror(errno);
*error_msg = oss.str();
return -1;
}
return fd;
}
LOG(INFO) << "Falling back to ashmem implementation for JIT zygote mapping";
int fd;
PaletteStatus status = PaletteAshmemCreateRegion(kRegionName, capacity, &fd);
if (status != PaletteStatus::kOkay) {
CHECK_EQ(status, PaletteStatus::kCheckErrno);
std::ostringstream oss;
oss << "Failed to create zygote mapping: " << strerror(errno);
*error_msg = oss.str();
return -1;
}
return fd;
}
bool JitMemoryRegion::ProtectZygoteMemory(int fd, std::string* error_msg) {
if (art::IsSealFutureWriteSupported()) {
if (fcntl(fd, F_ADD_SEALS, F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL | F_SEAL_FUTURE_WRITE)
== -1) {
std::ostringstream oss;
oss << "Failed to protect zygote mapping: " << strerror(errno);
*error_msg = oss.str();
return false;
}
} else {
PaletteStatus status = PaletteAshmemSetProtRegion(fd, PROT_READ);
if (status != PaletteStatus::kOkay) {
CHECK_EQ(status, PaletteStatus::kCheckErrno);
std::ostringstream oss;
oss << "Failed to protect zygote mapping: " << strerror(errno);
*error_msg = oss.str();
return false;
}
}
return true;
}
#else
int JitMemoryRegion::CreateZygoteMemory(size_t capacity, std::string* error_msg) {
// To simplify host building, we don't rely on the latest memfd features.
LOG(WARNING) << "Returning un-sealable region on non-bionic";
static const char* kRegionName = "/jit-zygote-cache";
int fd = art::memfd_create(kRegionName, 0);
if (fd == -1) {
std::ostringstream oss;
oss << "Failed to create zygote mapping: " << strerror(errno);
*error_msg = oss.str();
return -1;
}
if (ftruncate(fd, capacity) != 0) {
std::ostringstream oss;
oss << "Failed to create zygote mapping: " << strerror(errno);
*error_msg = oss.str();
return -1;
}
return fd;
}
bool JitMemoryRegion::ProtectZygoteMemory(int fd ATTRIBUTE_UNUSED,
std::string* error_msg ATTRIBUTE_UNUSED) {
return true;
}
#endif
} // namespace jit
} // namespace art