blob: 5b359741d9483b58d12f7283977f158676fb1f38 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "intrinsics_mips.h"
#include "arch/mips/instruction_set_features_mips.h"
#include "art_method.h"
#include "code_generator_mips.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "heap_poisoning.h"
#include "intrinsics.h"
#include "mirror/array-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/string.h"
#include "scoped_thread_state_change-inl.h"
#include "thread.h"
#include "utils/mips/assembler_mips.h"
#include "utils/mips/constants_mips.h"
namespace art {
namespace mips {
IntrinsicLocationsBuilderMIPS::IntrinsicLocationsBuilderMIPS(CodeGeneratorMIPS* codegen)
: codegen_(codegen), allocator_(codegen->GetGraph()->GetAllocator()) {
}
MipsAssembler* IntrinsicCodeGeneratorMIPS::GetAssembler() {
return reinterpret_cast<MipsAssembler*>(codegen_->GetAssembler());
}
ArenaAllocator* IntrinsicCodeGeneratorMIPS::GetAllocator() {
return codegen_->GetGraph()->GetAllocator();
}
inline bool IntrinsicCodeGeneratorMIPS::IsR2OrNewer() const {
return codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
}
inline bool IntrinsicCodeGeneratorMIPS::IsR6() const {
return codegen_->GetInstructionSetFeatures().IsR6();
}
inline bool IntrinsicCodeGeneratorMIPS::Is32BitFPU() const {
return codegen_->GetInstructionSetFeatures().Is32BitFloatingPoint();
}
inline bool IntrinsicCodeGeneratorMIPS::HasMsa() const {
return codegen_->GetInstructionSetFeatures().HasMsa();
}
#define __ codegen->GetAssembler()->
static void MoveFromReturnRegister(Location trg,
DataType::Type type,
CodeGeneratorMIPS* codegen) {
if (!trg.IsValid()) {
DCHECK_EQ(type, DataType::Type::kVoid);
return;
}
DCHECK_NE(type, DataType::Type::kVoid);
if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) {
Register trg_reg = trg.AsRegister<Register>();
if (trg_reg != V0) {
__ Move(V0, trg_reg);
}
} else {
FRegister trg_reg = trg.AsFpuRegister<FRegister>();
if (trg_reg != F0) {
if (type == DataType::Type::kFloat32) {
__ MovS(F0, trg_reg);
} else {
__ MovD(F0, trg_reg);
}
}
}
}
static void MoveArguments(HInvoke* invoke, CodeGeneratorMIPS* codegen) {
InvokeDexCallingConventionVisitorMIPS calling_convention_visitor;
IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor);
}
// Slow-path for fallback (calling the managed code to handle the
// intrinsic) in an intrinsified call. This will copy the arguments
// into the positions for a regular call.
//
// Note: The actual parameters are required to be in the locations
// given by the invoke's location summary. If an intrinsic
// modifies those locations before a slowpath call, they must be
// restored!
class IntrinsicSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit IntrinsicSlowPathMIPS(HInvoke* invoke) : SlowPathCodeMIPS(invoke), invoke_(invoke) { }
void EmitNativeCode(CodeGenerator* codegen_in) override {
CodeGeneratorMIPS* codegen = down_cast<CodeGeneratorMIPS*>(codegen_in);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, invoke_->GetLocations());
MoveArguments(invoke_, codegen);
if (invoke_->IsInvokeStaticOrDirect()) {
codegen->GenerateStaticOrDirectCall(
invoke_->AsInvokeStaticOrDirect(), Location::RegisterLocation(A0), this);
} else {
codegen->GenerateVirtualCall(
invoke_->AsInvokeVirtual(), Location::RegisterLocation(A0), this);
}
// Copy the result back to the expected output.
Location out = invoke_->GetLocations()->Out();
if (out.IsValid()) {
DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory.
DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
MoveFromReturnRegister(out, invoke_->GetType(), codegen);
}
RestoreLiveRegisters(codegen, invoke_->GetLocations());
__ B(GetExitLabel());
}
const char* GetDescription() const override { return "IntrinsicSlowPathMIPS"; }
private:
// The instruction where this slow path is happening.
HInvoke* const invoke_;
DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathMIPS);
};
#undef __
bool IntrinsicLocationsBuilderMIPS::TryDispatch(HInvoke* invoke) {
Dispatch(invoke);
LocationSummary* res = invoke->GetLocations();
return res != nullptr && res->Intrinsified();
}
#define __ assembler->
static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
}
static void MoveFPToInt(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) {
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
if (is64bit) {
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
__ Mfc1(out_lo, in);
__ MoveFromFpuHigh(out_hi, in);
} else {
Register out = locations->Out().AsRegister<Register>();
__ Mfc1(out, in);
}
}
// long java.lang.Double.doubleToRawLongBits(double)
void IntrinsicLocationsBuilderMIPS::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
}
// int java.lang.Float.floatToRawIntBits(float)
void IntrinsicLocationsBuilderMIPS::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
}
static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
static void MoveIntToFP(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) {
FRegister out = locations->Out().AsFpuRegister<FRegister>();
if (is64bit) {
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
__ Mtc1(in_lo, out);
__ MoveToFpuHigh(in_hi, out);
} else {
Register in = locations->InAt(0).AsRegister<Register>();
__ Mtc1(in, out);
}
}
// double java.lang.Double.longBitsToDouble(long)
void IntrinsicLocationsBuilderMIPS::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
CreateIntToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
}
// float java.lang.Float.intBitsToFloat(int)
void IntrinsicLocationsBuilderMIPS::VisitFloatIntBitsToFloat(HInvoke* invoke) {
CreateIntToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitFloatIntBitsToFloat(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
}
static void CreateIntToIntLocations(ArenaAllocator* allocator,
HInvoke* invoke,
Location::OutputOverlap overlaps = Location::kNoOutputOverlap) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), overlaps);
}
static void GenReverse(LocationSummary* locations,
DataType::Type type,
bool isR2OrNewer,
bool isR6,
bool reverseBits,
MipsAssembler* assembler) {
DCHECK(type == DataType::Type::kInt16 ||
type == DataType::Type::kInt32 ||
type == DataType::Type::kInt64);
DCHECK(type != DataType::Type::kInt16 || !reverseBits);
if (type == DataType::Type::kInt16) {
Register in = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
if (isR2OrNewer) {
__ Wsbh(out, in);
__ Seh(out, out);
} else {
__ Sll(TMP, in, 24);
__ Sra(TMP, TMP, 16);
__ Sll(out, in, 16);
__ Srl(out, out, 24);
__ Or(out, out, TMP);
}
} else if (type == DataType::Type::kInt32) {
Register in = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
if (isR2OrNewer) {
__ Rotr(out, in, 16);
__ Wsbh(out, out);
} else {
// MIPS32r1
// __ Rotr(out, in, 16);
__ Sll(TMP, in, 16);
__ Srl(out, in, 16);
__ Or(out, out, TMP);
// __ Wsbh(out, out);
__ LoadConst32(AT, 0x00FF00FF);
__ And(TMP, out, AT);
__ Sll(TMP, TMP, 8);
__ Srl(out, out, 8);
__ And(out, out, AT);
__ Or(out, out, TMP);
}
if (reverseBits) {
if (isR6) {
__ Bitswap(out, out);
} else {
__ LoadConst32(AT, 0x0F0F0F0F);
__ And(TMP, out, AT);
__ Sll(TMP, TMP, 4);
__ Srl(out, out, 4);
__ And(out, out, AT);
__ Or(out, TMP, out);
__ LoadConst32(AT, 0x33333333);
__ And(TMP, out, AT);
__ Sll(TMP, TMP, 2);
__ Srl(out, out, 2);
__ And(out, out, AT);
__ Or(out, TMP, out);
__ LoadConst32(AT, 0x55555555);
__ And(TMP, out, AT);
__ Sll(TMP, TMP, 1);
__ Srl(out, out, 1);
__ And(out, out, AT);
__ Or(out, TMP, out);
}
}
} else if (type == DataType::Type::kInt64) {
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
if (isR2OrNewer) {
__ Rotr(AT, in_hi, 16);
__ Rotr(TMP, in_lo, 16);
__ Wsbh(out_lo, AT);
__ Wsbh(out_hi, TMP);
} else {
// When calling CreateIntToIntLocations() we promised that the
// use of the out_lo/out_hi wouldn't overlap with the use of
// in_lo/in_hi. Be very careful not to write to out_lo/out_hi
// until we're completely done reading from in_lo/in_hi.
// __ Rotr(TMP, in_lo, 16);
__ Sll(TMP, in_lo, 16);
__ Srl(AT, in_lo, 16);
__ Or(TMP, TMP, AT); // Hold in TMP until it's safe
// to write to out_hi.
// __ Rotr(out_lo, in_hi, 16);
__ Sll(AT, in_hi, 16);
__ Srl(out_lo, in_hi, 16); // Here we are finally done reading
// from in_lo/in_hi so it's okay to
// write to out_lo/out_hi.
__ Or(out_lo, out_lo, AT);
// __ Wsbh(out_hi, out_hi);
__ LoadConst32(AT, 0x00FF00FF);
__ And(out_hi, TMP, AT);
__ Sll(out_hi, out_hi, 8);
__ Srl(TMP, TMP, 8);
__ And(TMP, TMP, AT);
__ Or(out_hi, out_hi, TMP);
// __ Wsbh(out_lo, out_lo);
__ And(TMP, out_lo, AT); // AT already holds the correct mask value
__ Sll(TMP, TMP, 8);
__ Srl(out_lo, out_lo, 8);
__ And(out_lo, out_lo, AT);
__ Or(out_lo, out_lo, TMP);
}
if (reverseBits) {
if (isR6) {
__ Bitswap(out_hi, out_hi);
__ Bitswap(out_lo, out_lo);
} else {
__ LoadConst32(AT, 0x0F0F0F0F);
__ And(TMP, out_hi, AT);
__ Sll(TMP, TMP, 4);
__ Srl(out_hi, out_hi, 4);
__ And(out_hi, out_hi, AT);
__ Or(out_hi, TMP, out_hi);
__ And(TMP, out_lo, AT);
__ Sll(TMP, TMP, 4);
__ Srl(out_lo, out_lo, 4);
__ And(out_lo, out_lo, AT);
__ Or(out_lo, TMP, out_lo);
__ LoadConst32(AT, 0x33333333);
__ And(TMP, out_hi, AT);
__ Sll(TMP, TMP, 2);
__ Srl(out_hi, out_hi, 2);
__ And(out_hi, out_hi, AT);
__ Or(out_hi, TMP, out_hi);
__ And(TMP, out_lo, AT);
__ Sll(TMP, TMP, 2);
__ Srl(out_lo, out_lo, 2);
__ And(out_lo, out_lo, AT);
__ Or(out_lo, TMP, out_lo);
__ LoadConst32(AT, 0x55555555);
__ And(TMP, out_hi, AT);
__ Sll(TMP, TMP, 1);
__ Srl(out_hi, out_hi, 1);
__ And(out_hi, out_hi, AT);
__ Or(out_hi, TMP, out_hi);
__ And(TMP, out_lo, AT);
__ Sll(TMP, TMP, 1);
__ Srl(out_lo, out_lo, 1);
__ And(out_lo, out_lo, AT);
__ Or(out_lo, TMP, out_lo);
}
}
}
}
// int java.lang.Integer.reverseBytes(int)
void IntrinsicLocationsBuilderMIPS::VisitIntegerReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitIntegerReverseBytes(HInvoke* invoke) {
GenReverse(invoke->GetLocations(),
DataType::Type::kInt32,
IsR2OrNewer(),
IsR6(),
/* reverseBits= */ false,
GetAssembler());
}
// long java.lang.Long.reverseBytes(long)
void IntrinsicLocationsBuilderMIPS::VisitLongReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitLongReverseBytes(HInvoke* invoke) {
GenReverse(invoke->GetLocations(),
DataType::Type::kInt64,
IsR2OrNewer(),
IsR6(),
/* reverseBits= */ false,
GetAssembler());
}
// short java.lang.Short.reverseBytes(short)
void IntrinsicLocationsBuilderMIPS::VisitShortReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitShortReverseBytes(HInvoke* invoke) {
GenReverse(invoke->GetLocations(),
DataType::Type::kInt16,
IsR2OrNewer(),
IsR6(),
/* reverseBits= */ false,
GetAssembler());
}
static void GenNumberOfLeadingZeroes(LocationSummary* locations,
bool is64bit,
bool isR6,
MipsAssembler* assembler) {
Register out = locations->Out().AsRegister<Register>();
if (is64bit) {
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
if (isR6) {
__ ClzR6(AT, in_hi);
__ ClzR6(TMP, in_lo);
__ Seleqz(TMP, TMP, in_hi);
} else {
__ ClzR2(AT, in_hi);
__ ClzR2(TMP, in_lo);
__ Movn(TMP, ZERO, in_hi);
}
__ Addu(out, AT, TMP);
} else {
Register in = locations->InAt(0).AsRegister<Register>();
if (isR6) {
__ ClzR6(out, in);
} else {
__ ClzR2(out, in);
}
}
}
// int java.lang.Integer.numberOfLeadingZeros(int i)
void IntrinsicLocationsBuilderMIPS::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit= */ false, IsR6(), GetAssembler());
}
// int java.lang.Long.numberOfLeadingZeros(long i)
void IntrinsicLocationsBuilderMIPS::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit= */ true, IsR6(), GetAssembler());
}
static void GenNumberOfTrailingZeroes(LocationSummary* locations,
bool is64bit,
bool isR6,
MipsAssembler* assembler) {
Register out = locations->Out().AsRegister<Register>();
Register in_lo;
Register in;
if (is64bit) {
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
// If in_lo is zero then count the number of trailing zeroes in in_hi;
// otherwise count the number of trailing zeroes in in_lo.
// out = in_lo ? in_lo : in_hi;
if (isR6) {
__ Seleqz(out, in_hi, in_lo);
__ Selnez(TMP, in_lo, in_lo);
__ Or(out, out, TMP);
} else {
__ Movz(out, in_hi, in_lo);
__ Movn(out, in_lo, in_lo);
}
in = out;
} else {
in = locations->InAt(0).AsRegister<Register>();
// Give in_lo a dummy value to keep the compiler from complaining.
// Since we only get here in the 32-bit case, this value will never
// be used.
in_lo = in;
}
if (isR6) {
// We don't have an instruction to count the number of trailing zeroes.
// Start by flipping the bits end-for-end so we can count the number of
// leading zeroes instead.
__ Rotr(out, in, 16);
__ Wsbh(out, out);
__ Bitswap(out, out);
__ ClzR6(out, out);
} else {
// Convert trailing zeroes to trailing ones, and bits to their left
// to zeroes.
__ Addiu(TMP, in, -1);
__ Xor(out, TMP, in);
__ And(out, out, TMP);
// Count number of leading zeroes.
__ ClzR2(out, out);
// Subtract number of leading zeroes from 32 to get number of trailing ones.
// Remember that the trailing ones were formerly trailing zeroes.
__ LoadConst32(TMP, 32);
__ Subu(out, TMP, out);
}
if (is64bit) {
// If in_lo is zero, then we counted the number of trailing zeroes in in_hi so we must add the
// number of trailing zeroes in in_lo (32) to get the correct final count
__ LoadConst32(TMP, 32);
if (isR6) {
__ Seleqz(TMP, TMP, in_lo);
} else {
__ Movn(TMP, ZERO, in_lo);
}
__ Addu(out, out, TMP);
}
}
// int java.lang.Integer.numberOfTrailingZeros(int i)
void IntrinsicLocationsBuilderMIPS::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke, Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorMIPS::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit= */ false, IsR6(), GetAssembler());
}
// int java.lang.Long.numberOfTrailingZeros(long i)
void IntrinsicLocationsBuilderMIPS::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke, Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorMIPS::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit= */ true, IsR6(), GetAssembler());
}
// int java.lang.Integer.reverse(int)
void IntrinsicLocationsBuilderMIPS::VisitIntegerReverse(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitIntegerReverse(HInvoke* invoke) {
GenReverse(invoke->GetLocations(),
DataType::Type::kInt32,
IsR2OrNewer(),
IsR6(),
/* reverseBits= */ true,
GetAssembler());
}
// long java.lang.Long.reverse(long)
void IntrinsicLocationsBuilderMIPS::VisitLongReverse(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitLongReverse(HInvoke* invoke) {
GenReverse(invoke->GetLocations(),
DataType::Type::kInt64,
IsR2OrNewer(),
IsR6(),
/* reverseBits= */ true,
GetAssembler());
}
static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
}
static void GenBitCount(LocationSummary* locations,
DataType::Type type,
bool isR6,
bool hasMsa,
MipsAssembler* assembler) {
Register out = locations->Out().AsRegister<Register>();
// https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
//
// A generalization of the best bit counting method to integers of
// bit-widths up to 128 (parameterized by type T) is this:
//
// v = v - ((v >> 1) & (T)~(T)0/3); // temp
// v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); // temp
// v = (v + (v >> 4)) & (T)~(T)0/255*15; // temp
// c = (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * BITS_PER_BYTE; // count
//
// For comparison, for 32-bit quantities, this algorithm can be executed
// using 20 MIPS instructions (the calls to LoadConst32() generate two
// machine instructions each for the values being used in this algorithm).
// A(n unrolled) loop-based algorithm required 25 instructions.
//
// For 64-bit quantities, this algorithm gets executed twice, (once
// for in_lo, and again for in_hi), but saves a few instructions
// because the mask values only have to be loaded once. Using this
// algorithm the count for a 64-bit operand can be performed in 29
// instructions compared to a loop-based algorithm which required 47
// instructions.
if (hasMsa) {
if (type == DataType::Type::kInt32) {
Register in = locations->InAt(0).AsRegister<Register>();
__ Mtc1(in, FTMP);
__ PcntW(static_cast<VectorRegister>(FTMP), static_cast<VectorRegister>(FTMP));
__ Mfc1(out, FTMP);
} else {
DCHECK_EQ(type, DataType::Type::kInt64);
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
__ Mtc1(in_lo, FTMP);
__ Mthc1(in_hi, FTMP);
__ PcntD(static_cast<VectorRegister>(FTMP), static_cast<VectorRegister>(FTMP));
__ Mfc1(out, FTMP);
}
} else {
if (type == DataType::Type::kInt32) {
Register in = locations->InAt(0).AsRegister<Register>();
__ Srl(TMP, in, 1);
__ LoadConst32(AT, 0x55555555);
__ And(TMP, TMP, AT);
__ Subu(TMP, in, TMP);
__ LoadConst32(AT, 0x33333333);
__ And(out, TMP, AT);
__ Srl(TMP, TMP, 2);
__ And(TMP, TMP, AT);
__ Addu(TMP, out, TMP);
__ Srl(out, TMP, 4);
__ Addu(out, out, TMP);
__ LoadConst32(AT, 0x0F0F0F0F);
__ And(out, out, AT);
__ LoadConst32(TMP, 0x01010101);
if (isR6) {
__ MulR6(out, out, TMP);
} else {
__ MulR2(out, out, TMP);
}
__ Srl(out, out, 24);
} else {
DCHECK_EQ(type, DataType::Type::kInt64);
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register tmp_hi = locations->GetTemp(0).AsRegister<Register>();
Register out_hi = locations->GetTemp(1).AsRegister<Register>();
Register tmp_lo = TMP;
Register out_lo = out;
__ Srl(tmp_lo, in_lo, 1);
__ Srl(tmp_hi, in_hi, 1);
__ LoadConst32(AT, 0x55555555);
__ And(tmp_lo, tmp_lo, AT);
__ Subu(tmp_lo, in_lo, tmp_lo);
__ And(tmp_hi, tmp_hi, AT);
__ Subu(tmp_hi, in_hi, tmp_hi);
__ LoadConst32(AT, 0x33333333);
__ And(out_lo, tmp_lo, AT);
__ Srl(tmp_lo, tmp_lo, 2);
__ And(tmp_lo, tmp_lo, AT);
__ Addu(tmp_lo, out_lo, tmp_lo);
__ And(out_hi, tmp_hi, AT);
__ Srl(tmp_hi, tmp_hi, 2);
__ And(tmp_hi, tmp_hi, AT);
__ Addu(tmp_hi, out_hi, tmp_hi);
// Here we deviate from the original algorithm a bit. We've reached
// the stage where the bitfields holding the subtotals are large
// enough to hold the combined subtotals for both the low word, and
// the high word. This means that we can add the subtotals for the
// the high, and low words into a single word, and compute the final
// result for both the high, and low words using fewer instructions.
__ LoadConst32(AT, 0x0F0F0F0F);
__ Addu(TMP, tmp_hi, tmp_lo);
__ Srl(out, TMP, 4);
__ And(out, out, AT);
__ And(TMP, TMP, AT);
__ Addu(out, out, TMP);
__ LoadConst32(AT, 0x01010101);
if (isR6) {
__ MulR6(out, out, AT);
} else {
__ MulR2(out, out, AT);
}
__ Srl(out, out, 24);
}
}
}
// int java.lang.Integer.bitCount(int)
void IntrinsicLocationsBuilderMIPS::VisitIntegerBitCount(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitIntegerBitCount(HInvoke* invoke) {
GenBitCount(invoke->GetLocations(), DataType::Type::kInt32, IsR6(), HasMsa(), GetAssembler());
}
// int java.lang.Long.bitCount(int)
void IntrinsicLocationsBuilderMIPS::VisitLongBitCount(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS::VisitLongBitCount(HInvoke* invoke) {
GenBitCount(invoke->GetLocations(), DataType::Type::kInt64, IsR6(), HasMsa(), GetAssembler());
}
// double java.lang.Math.sqrt(double)
void IntrinsicLocationsBuilderMIPS::VisitMathSqrt(HInvoke* invoke) {
CreateFPToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathSqrt(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
MipsAssembler* assembler = GetAssembler();
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister out = locations->Out().AsFpuRegister<FRegister>();
__ SqrtD(out, in);
}
// byte libcore.io.Memory.peekByte(long address)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekByte(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekByte(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register out = invoke->GetLocations()->Out().AsRegister<Register>();
__ Lb(out, adr, 0);
}
// short libcore.io.Memory.peekShort(long address)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekShortNative(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekShortNative(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register out = invoke->GetLocations()->Out().AsRegister<Register>();
if (IsR6()) {
__ Lh(out, adr, 0);
} else if (IsR2OrNewer()) {
// Unlike for words, there are no lhl/lhr instructions to load
// unaligned halfwords so the code loads individual bytes, in case
// the address isn't halfword-aligned, and assembles them into a
// signed halfword.
__ Lb(AT, adr, 1); // This byte must be sign-extended.
__ Lb(out, adr, 0); // This byte can be either sign-extended, or
// zero-extended because the following
// instruction overwrites the sign bits.
__ Ins(out, AT, 8, 24);
} else {
__ Lbu(AT, adr, 0); // This byte must be zero-extended. If it's not
// the "or" instruction below will destroy the upper
// 24 bits of the final result.
__ Lb(out, adr, 1); // This byte must be sign-extended.
__ Sll(out, out, 8);
__ Or(out, out, AT);
}
}
// int libcore.io.Memory.peekInt(long address)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekIntNative(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke, Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekIntNative(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register out = invoke->GetLocations()->Out().AsRegister<Register>();
if (IsR6()) {
__ Lw(out, adr, 0);
} else {
__ Lwr(out, adr, 0);
__ Lwl(out, adr, 3);
}
}
// long libcore.io.Memory.peekLong(long address)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekLongNative(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke, Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekLongNative(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register out_lo = invoke->GetLocations()->Out().AsRegisterPairLow<Register>();
Register out_hi = invoke->GetLocations()->Out().AsRegisterPairHigh<Register>();
if (IsR6()) {
__ Lw(out_lo, adr, 0);
__ Lw(out_hi, adr, 4);
} else {
__ Lwr(out_lo, adr, 0);
__ Lwl(out_lo, adr, 3);
__ Lwr(out_hi, adr, 4);
__ Lwl(out_hi, adr, 7);
}
}
static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
}
// void libcore.io.Memory.pokeByte(long address, byte value)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeByte(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeByte(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>();
__ Sb(val, adr, 0);
}
// void libcore.io.Memory.pokeShort(long address, short value)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeShortNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeShortNative(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>();
if (IsR6()) {
__ Sh(val, adr, 0);
} else {
// Unlike for words, there are no shl/shr instructions to store
// unaligned halfwords so the code stores individual bytes, in case
// the address isn't halfword-aligned.
__ Sb(val, adr, 0);
__ Srl(AT, val, 8);
__ Sb(AT, adr, 1);
}
}
// void libcore.io.Memory.pokeInt(long address, int value)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeIntNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeIntNative(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>();
if (IsR6()) {
__ Sw(val, adr, 0);
} else {
__ Swr(val, adr, 0);
__ Swl(val, adr, 3);
}
}
// void libcore.io.Memory.pokeLong(long address, long value)
void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeLongNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeLongNative(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
Register val_lo = invoke->GetLocations()->InAt(1).AsRegisterPairLow<Register>();
Register val_hi = invoke->GetLocations()->InAt(1).AsRegisterPairHigh<Register>();
if (IsR6()) {
__ Sw(val_lo, adr, 0);
__ Sw(val_hi, adr, 4);
} else {
__ Swr(val_lo, adr, 0);
__ Swl(val_lo, adr, 3);
__ Swr(val_hi, adr, 4);
__ Swl(val_hi, adr, 7);
}
}
// Thread java.lang.Thread.currentThread()
void IntrinsicLocationsBuilderMIPS::VisitThreadCurrentThread(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS::VisitThreadCurrentThread(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register out = invoke->GetLocations()->Out().AsRegister<Register>();
__ LoadFromOffset(kLoadWord,
out,
TR,
Thread::PeerOffset<kMipsPointerSize>().Int32Value());
}
static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator,
HInvoke* invoke,
DataType::Type type) {
bool can_call = kEmitCompilerReadBarrier &&
(invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
LocationSummary* locations =
new (allocator) LocationSummary(invoke,
can_call
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall,
kIntrinsified);
if (can_call && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(),
(can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// We need a temporary register for the read barrier marking slow
// path in InstructionCodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier.
locations->AddTemp(Location::RequiresRegister());
}
}
// Note that the caller must supply a properly aligned memory address.
// If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur).
static void GenUnsafeGet(HInvoke* invoke,
DataType::Type type,
bool is_volatile,
bool is_R6,
CodeGeneratorMIPS* codegen) {
LocationSummary* locations = invoke->GetLocations();
DCHECK((type == DataType::Type::kInt32) ||
(type == DataType::Type::kInt64) ||
(type == DataType::Type::kReference)) << type;
MipsAssembler* assembler = codegen->GetAssembler();
// Target register.
Location trg_loc = locations->Out();
// Object pointer.
Location base_loc = locations->InAt(1);
Register base = base_loc.AsRegister<Register>();
// The "offset" argument is passed as a "long". Since this code is for
// a 32-bit processor, we can only use 32-bit addresses, so we only
// need the low 32-bits of offset.
Location offset_loc = locations->InAt(2);
Register offset_lo = offset_loc.AsRegisterPairLow<Register>();
if (!(kEmitCompilerReadBarrier && kUseBakerReadBarrier && (type == DataType::Type::kReference))) {
__ Addu(TMP, base, offset_lo);
}
switch (type) {
case DataType::Type::kInt64: {
Register trg_lo = trg_loc.AsRegisterPairLow<Register>();
Register trg_hi = trg_loc.AsRegisterPairHigh<Register>();
CHECK(!is_volatile); // TODO: support atomic 8-byte volatile loads.
if (is_R6) {
__ Lw(trg_lo, TMP, 0);
__ Lw(trg_hi, TMP, 4);
} else {
__ Lwr(trg_lo, TMP, 0);
__ Lwl(trg_lo, TMP, 3);
__ Lwr(trg_hi, TMP, 4);
__ Lwl(trg_hi, TMP, 7);
}
break;
}
case DataType::Type::kInt32: {
Register trg = trg_loc.AsRegister<Register>();
if (is_R6) {
__ Lw(trg, TMP, 0);
} else {
__ Lwr(trg, TMP, 0);
__ Lwl(trg, TMP, 3);
}
if (is_volatile) {
__ Sync(0);
}
break;
}
case DataType::Type::kReference: {
Register trg = trg_loc.AsRegister<Register>();
if (kEmitCompilerReadBarrier) {
if (kUseBakerReadBarrier) {
Location temp = locations->GetTemp(0);
codegen->GenerateReferenceLoadWithBakerReadBarrier(invoke,
trg_loc,
base,
/* offset= */ 0U,
/* index= */ offset_loc,
TIMES_1,
temp,
/* needs_null_check= */ false);
if (is_volatile) {
__ Sync(0);
}
} else {
if (is_R6) {
__ Lw(trg, TMP, 0);
} else {
__ Lwr(trg, TMP, 0);
__ Lwl(trg, TMP, 3);
}
if (is_volatile) {
__ Sync(0);
}
codegen->GenerateReadBarrierSlow(invoke,
trg_loc,
trg_loc,
base_loc,
/* offset= */ 0U,
/* index= */ offset_loc);
}
} else {
if (is_R6) {
__ Lw(trg, TMP, 0);
} else {
__ Lwr(trg, TMP, 0);
__ Lwl(trg, TMP, 3);
}
if (is_volatile) {
__ Sync(0);
}
__ MaybeUnpoisonHeapReference(trg);
}
break;
}
default:
LOG(FATAL) << "Unexpected type " << type;
UNREACHABLE();
}
}
// int sun.misc.Unsafe.getInt(Object o, long offset)
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGet(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGet(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ false, IsR6(), codegen_);
}
// int sun.misc.Unsafe.getIntVolatile(Object o, long offset)
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ true, IsR6(), codegen_);
}
// long sun.misc.Unsafe.getLong(Object o, long offset)
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetLong(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetLong(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ false, IsR6(), codegen_);
}
// Object sun.misc.Unsafe.getObject(Object o, long offset)
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetObject(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetObject(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ false, IsR6(), codegen_);
}
// Object sun.misc.Unsafe.getObjectVolatile(Object o, long offset)
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ true, IsR6(), codegen_);
}
static void CreateIntIntIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
}
// Note that the caller must supply a properly aligned memory address.
// If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur).
static void GenUnsafePut(LocationSummary* locations,
DataType::Type type,
bool is_volatile,
bool is_ordered,
bool is_R6,
CodeGeneratorMIPS* codegen) {
DCHECK((type == DataType::Type::kInt32) ||
(type == DataType::Type::kInt64) ||
(type == DataType::Type::kReference)) << type;
MipsAssembler* assembler = codegen->GetAssembler();
// Object pointer.
Register base = locations->InAt(1).AsRegister<Register>();
// The "offset" argument is passed as a "long", i.e., it's 64-bits in
// size. Since this code is for a 32-bit processor, we can only use
// 32-bit addresses, so we only need the low 32-bits of offset.
Register offset_lo = locations->InAt(2).AsRegisterPairLow<Register>();
__ Addu(TMP, base, offset_lo);
if (is_volatile || is_ordered) {
__ Sync(0);
}
if ((type == DataType::Type::kInt32) || (type == DataType::Type::kReference)) {
Register value = locations->InAt(3).AsRegister<Register>();
if (kPoisonHeapReferences && type == DataType::Type::kReference) {
__ PoisonHeapReference(AT, value);
value = AT;
}
if (is_R6) {
__ Sw(value, TMP, 0);
} else {
__ Swr(value, TMP, 0);
__ Swl(value, TMP, 3);
}
} else {
Register value_lo = locations->InAt(3).AsRegisterPairLow<Register>();
Register value_hi = locations->InAt(3).AsRegisterPairHigh<Register>();
CHECK(!is_volatile); // TODO: support atomic 8-byte volatile stores.
if (is_R6) {
__ Sw(value_lo, TMP, 0);
__ Sw(value_hi, TMP, 4);
} else {
__ Swr(value_lo, TMP, 0);
__ Swl(value_lo, TMP, 3);
__ Swr(value_hi, TMP, 4);
__ Swl(value_hi, TMP, 7);
}
}
if (is_volatile) {
__ Sync(0);
}
if (type == DataType::Type::kReference) {
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(base, locations->InAt(3).AsRegister<Register>(), value_can_be_null);
}
}
// void sun.misc.Unsafe.putInt(Object o, long offset, int x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePut(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePut(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kInt32,
/* is_volatile= */ false,
/* is_ordered= */ false,
IsR6(),
codegen_);
}
// void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kInt32,
/* is_volatile= */ false,
/* is_ordered= */ true,
IsR6(),
codegen_);
}
// void sun.misc.Unsafe.putIntVolatile(Object o, long offset, int x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kInt32,
/* is_volatile= */ true,
/* is_ordered= */ false,
IsR6(),
codegen_);
}
// void sun.misc.Unsafe.putObject(Object o, long offset, Object x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObject(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObject(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kReference,
/* is_volatile= */ false,
/* is_ordered= */ false,
IsR6(),
codegen_);
}
// void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kReference,
/* is_volatile= */ false,
/* is_ordered= */ true,
IsR6(),
codegen_);
}
// void sun.misc.Unsafe.putObjectVolatile(Object o, long offset, Object x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kReference,
/* is_volatile= */ true,
/* is_ordered= */ false,
IsR6(),
codegen_);
}
// void sun.misc.Unsafe.putLong(Object o, long offset, long x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutLong(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutLong(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kInt64,
/* is_volatile= */ false,
/* is_ordered= */ false,
IsR6(),
codegen_);
}
// void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutLongOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutLongOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
DataType::Type::kInt64,
/* is_volatile= */ false,
/* is_ordered= */ true,
IsR6(),
codegen_);
}
static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* allocator, HInvoke* invoke) {
bool can_call = kEmitCompilerReadBarrier &&
kUseBakerReadBarrier &&
(invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
LocationSummary* locations =
new (allocator) LocationSummary(invoke,
can_call
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
locations->SetInAt(4, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
// Temporary register used in CAS by (Baker) read barrier.
if (can_call) {
locations->AddTemp(Location::RequiresRegister());
}
}
// Note that the caller must supply a properly aligned memory address.
// If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur).
static void GenCas(HInvoke* invoke, DataType::Type type, CodeGeneratorMIPS* codegen) {
MipsAssembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
bool isR6 = codegen->GetInstructionSetFeatures().IsR6();
Register base = locations->InAt(1).AsRegister<Register>();
Location offset_loc = locations->InAt(2);
Register offset_lo = offset_loc.AsRegisterPairLow<Register>();
Register expected = locations->InAt(3).AsRegister<Register>();
Register value = locations->InAt(4).AsRegister<Register>();
Location out_loc = locations->Out();
Register out = out_loc.AsRegister<Register>();
DCHECK_NE(base, out);
DCHECK_NE(offset_lo, out);
DCHECK_NE(expected, out);
if (type == DataType::Type::kReference) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
// Mark card for object assuming new value is stored. Worst case we will mark an unchanged
// object and scan the receiver at the next GC for nothing.
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(base, value, value_can_be_null);
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
Location temp = locations->GetTemp(0);
// Need to make sure the reference stored in the field is a to-space
// one before attempting the CAS or the CAS could fail incorrectly.
codegen->GenerateReferenceLoadWithBakerReadBarrier(
invoke,
out_loc, // Unused, used only as a "temporary" within the read barrier.
base,
/* offset= */ 0u,
/* index= */ offset_loc,
ScaleFactor::TIMES_1,
temp,
/* needs_null_check= */ false,
/* always_update_field= */ true);
}
}
MipsLabel loop_head, exit_loop;
__ Addu(TMP, base, offset_lo);
if (kPoisonHeapReferences && type == DataType::Type::kReference) {
__ PoisonHeapReference(expected);
// Do not poison `value`, if it is the same register as
// `expected`, which has just been poisoned.
if (value != expected) {
__ PoisonHeapReference(value);
}
}
// do {
// tmp_value = [tmp_ptr] - expected;
// } while (tmp_value == 0 && failure([tmp_ptr] <- r_new_value));
// result = tmp_value != 0;
__ Sync(0);
__ Bind(&loop_head);
if ((type == DataType::Type::kInt32) || (type == DataType::Type::kReference)) {
if (isR6) {
__ LlR6(out, TMP);
} else {
__ LlR2(out, TMP);
}
} else {
LOG(FATAL) << "Unsupported op size " << type;
UNREACHABLE();
}
__ Subu(out, out, expected); // If we didn't get the 'expected'
__ Sltiu(out, out, 1); // value, set 'out' to false, and
__ Beqz(out, &exit_loop); // return.
__ Move(out, value); // Use 'out' for the 'store conditional' instruction.
// If we use 'value' directly, we would lose 'value'
// in the case that the store fails. Whether the
// store succeeds, or fails, it will load the
// correct Boolean value into the 'out' register.
// This test isn't really necessary. We only support DataType::Type::kInt,
// DataType::Type::kReference, and we already verified that we're working on one
// of those two types. It's left here in case the code needs to support
// other types in the future.
if ((type == DataType::Type::kInt32) || (type == DataType::Type::kReference)) {
if (isR6) {
__ ScR6(out, TMP);
} else {
__ ScR2(out, TMP);
}
}
__ Beqz(out, &loop_head); // If we couldn't do the read-modify-write
// cycle atomically then retry.
__ Bind(&exit_loop);
__ Sync(0);
if (kPoisonHeapReferences && type == DataType::Type::kReference) {
__ UnpoisonHeapReference(expected);
// Do not unpoison `value`, if it is the same register as
// `expected`, which has just been unpoisoned.
if (value != expected) {
__ UnpoisonHeapReference(value);
}
}
}
// boolean sun.misc.Unsafe.compareAndSwapInt(Object o, long offset, int expected, int x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafeCASInt(HInvoke* invoke) {
CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafeCASInt(HInvoke* invoke) {
GenCas(invoke, DataType::Type::kInt32, codegen_);
}
// boolean sun.misc.Unsafe.compareAndSwapObject(Object o, long offset, Object expected, Object x)
void IntrinsicLocationsBuilderMIPS::VisitUnsafeCASObject(HInvoke* invoke) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
return;
}
CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitUnsafeCASObject(HInvoke* invoke) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
GenCas(invoke, DataType::Type::kReference, codegen_);
}
// int java.lang.String.compareTo(String anotherString)
void IntrinsicLocationsBuilderMIPS::VisitStringCompareTo(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
}
void IntrinsicCodeGeneratorMIPS::VisitStringCompareTo(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
Register argument = locations->InAt(1).AsRegister<Register>();
SlowPathCodeMIPS* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke);
codegen_->AddSlowPath(slow_path);
__ Beqz(argument, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path);
__ Bind(slow_path->GetExitLabel());
}
// boolean java.lang.String.equals(Object anObject)
void IntrinsicLocationsBuilderMIPS::VisitStringEquals(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
// Temporary registers to store lengths of strings and for calculations.
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS::VisitStringEquals(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register str = locations->InAt(0).AsRegister<Register>();
Register arg = locations->InAt(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
Register temp1 = locations->GetTemp(0).AsRegister<Register>();
Register temp2 = locations->GetTemp(1).AsRegister<Register>();
Register temp3 = locations->GetTemp(2).AsRegister<Register>();
MipsLabel loop;
MipsLabel end;
MipsLabel return_true;
MipsLabel return_false;
// Get offsets of count, value, and class fields within a string object.
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
// If the register containing the pointer to "this", and the register
// containing the pointer to "anObject" are the same register then
// "this", and "anObject" are the same object and we can
// short-circuit the logic to a true result.
if (str == arg) {
__ LoadConst32(out, 1);
return;
}
StringEqualsOptimizations optimizations(invoke);
if (!optimizations.GetArgumentNotNull()) {
// Check if input is null, return false if it is.
__ Beqz(arg, &return_false);
}
// Reference equality check, return true if same reference.
__ Beq(str, arg, &return_true);
if (!optimizations.GetArgumentIsString()) {
// Instanceof check for the argument by comparing class fields.
// All string objects must have the same type since String cannot be subclassed.
// Receiver must be a string object, so its class field is equal to all strings' class fields.
// If the argument is a string object, its class field must be equal to receiver's class field.
__ Lw(temp1, str, class_offset);
__ Lw(temp2, arg, class_offset);
__ Bne(temp1, temp2, &return_false);
}
// Load `count` fields of this and argument strings.
__ Lw(temp1, str, count_offset);
__ Lw(temp2, arg, count_offset);
// Check if `count` fields are equal, return false if they're not.
// Also compares the compression style, if differs return false.
__ Bne(temp1, temp2, &return_false);
// Return true if both strings are empty. Even with string compression `count == 0` means empty.
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ Beqz(temp1, &return_true);
// Don't overwrite input registers
__ Move(TMP, str);
__ Move(temp3, arg);
// Assertions that must hold in order to compare strings 4 bytes at a time.
DCHECK_ALIGNED(value_offset, 4);
static_assert(IsAligned<4>(kObjectAlignment), "String of odd length is not zero padded");
// For string compression, calculate the number of bytes to compare (not chars).
if (mirror::kUseStringCompression) {
// Extract compression flag.
if (IsR2OrNewer()) {
__ Ext(temp2, temp1, 0, 1);
} else {
__ Sll(temp2, temp1, 31);
__ Srl(temp2, temp2, 31);
}
__ Srl(temp1, temp1, 1); // Extract length.
__ Sllv(temp1, temp1, temp2); // Double the byte count if uncompressed.
}
// Loop to compare strings 4 bytes at a time starting at the beginning of the string.
// Ok to do this because strings are zero-padded to kObjectAlignment.
__ Bind(&loop);
__ Lw(out, TMP, value_offset);
__ Lw(temp2, temp3, value_offset);
__ Bne(out, temp2, &return_false);
__ Addiu(TMP, TMP, 4);
__ Addiu(temp3, temp3, 4);
// With string compression, we have compared 4 bytes, otherwise 2 chars.
__ Addiu(temp1, temp1, mirror::kUseStringCompression ? -4 : -2);
__ Bgtz(temp1, &loop);
// Return true and exit the function.
// If loop does not result in returning false, we return true.
__ Bind(&return_true);
__ LoadConst32(out, 1);
__ B(&end);
// Return false and exit the function.
__ Bind(&return_false);
__ LoadConst32(out, 0);
__ Bind(&end);
}
static void GenerateStringIndexOf(HInvoke* invoke,
bool start_at_zero,
MipsAssembler* assembler,
CodeGeneratorMIPS* codegen) {
LocationSummary* locations = invoke->GetLocations();
Register tmp_reg = start_at_zero ? locations->GetTemp(0).AsRegister<Register>() : TMP;
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
// Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
// or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
SlowPathCodeMIPS* slow_path = nullptr;
HInstruction* code_point = invoke->InputAt(1);
if (code_point->IsIntConstant()) {
if (!IsUint<16>(code_point->AsIntConstant()->GetValue())) {
// Always needs the slow-path. We could directly dispatch to it,
// but this case should be rare, so for simplicity just put the
// full slow-path down and branch unconditionally.
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke);
codegen->AddSlowPath(slow_path);
__ B(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
return;
}
} else if (code_point->GetType() != DataType::Type::kUint16) {
Register char_reg = locations->InAt(1).AsRegister<Register>();
// The "bltu" conditional branch tests to see if the character value
// fits in a valid 16-bit (MIPS halfword) value. If it doesn't then
// the character being searched for, if it exists in the string, is
// encoded using UTF-16 and stored in the string as two (16-bit)
// halfwords. Currently the assembly code used to implement this
// intrinsic doesn't support searching for a character stored as
// two halfwords so we fallback to using the generic implementation
// of indexOf().
__ LoadConst32(tmp_reg, std::numeric_limits<uint16_t>::max());
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke);
codegen->AddSlowPath(slow_path);
__ Bltu(tmp_reg, char_reg, slow_path->GetEntryLabel());
}
if (start_at_zero) {
DCHECK_EQ(tmp_reg, A2);
// Start-index = 0.
__ Clear(tmp_reg);
}
codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path);
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
// int java.lang.String.indexOf(int ch)
void IntrinsicLocationsBuilderMIPS::VisitStringIndexOf(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
// We have a hand-crafted assembly stub that follows the runtime
// calling convention. So it's best to align the inputs accordingly.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
// Need a temp for slow-path codepoint compare, and need to send start-index=0.
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
}
void IntrinsicCodeGeneratorMIPS::VisitStringIndexOf(HInvoke* invoke) {
GenerateStringIndexOf(invoke, /* start_at_zero= */ true, GetAssembler(), codegen_);
}
// int java.lang.String.indexOf(int ch, int fromIndex)
void IntrinsicLocationsBuilderMIPS::VisitStringIndexOfAfter(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
// We have a hand-crafted assembly stub that follows the runtime
// calling convention. So it's best to align the inputs accordingly.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
// Need a temp for slow-path codepoint compare.
locations->AddTemp(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS::VisitStringIndexOfAfter(HInvoke* invoke) {
GenerateStringIndexOf(invoke, /* start_at_zero= */ false, GetAssembler(), codegen_);
}
// java.lang.StringFactory.newStringFromBytes(byte[] data, int high, int offset, int byteCount)
void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromBytes(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
}
void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromBytes(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register byte_array = locations->InAt(0).AsRegister<Register>();
SlowPathCodeMIPS* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke);
codegen_->AddSlowPath(slow_path);
__ Beqz(byte_array, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path);
__ Bind(slow_path->GetExitLabel());
}
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromChars(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
}
void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromChars(HInvoke* invoke) {
// No need to emit code checking whether `locations->InAt(2)` is a null
// pointer, as callers of the native method
//
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
//
// all include a null check on `data` before calling that method.
codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
}
// java.lang.StringFactory.newStringFromString(String toCopy)
void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromString(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
}
void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromString(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register string_to_copy = locations->InAt(0).AsRegister<Register>();
SlowPathCodeMIPS* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke);
codegen_->AddSlowPath(slow_path);
__ Beqz(string_to_copy, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc());
__ Bind(slow_path->GetExitLabel());
}
static void GenIsInfinite(LocationSummary* locations,
const DataType::Type type,
const bool isR6,
MipsAssembler* assembler) {
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
Register out = locations->Out().AsRegister<Register>();
DCHECK(type == DataType::Type::kFloat32 || type == DataType::Type::kFloat64);
if (isR6) {
if (type == DataType::Type::kFloat64) {
__ ClassD(FTMP, in);
} else {
__ ClassS(FTMP, in);
}
__ Mfc1(out, FTMP);
__ Andi(out, out, kPositiveInfinity | kNegativeInfinity);
__ Sltu(out, ZERO, out);
} else {
// If one, or more, of the exponent bits is zero, then the number can't be infinite.
if (type == DataType::Type::kFloat64) {
__ MoveFromFpuHigh(TMP, in);
__ LoadConst32(AT, High32Bits(kPositiveInfinityDouble));
} else {
__ Mfc1(TMP, in);
__ LoadConst32(AT, kPositiveInfinityFloat);
}
__ Xor(TMP, TMP, AT);
__ Sll(TMP, TMP, 1);
if (type == DataType::Type::kFloat64) {
__ Mfc1(AT, in);
__ Or(TMP, TMP, AT);
}
// If any of the significand bits are one, then the number is not infinite.
__ Sltiu(out, TMP, 1);
}
}
// boolean java.lang.Float.isInfinite(float)
void IntrinsicLocationsBuilderMIPS::VisitFloatIsInfinite(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitFloatIsInfinite(HInvoke* invoke) {
GenIsInfinite(invoke->GetLocations(), DataType::Type::kFloat32, IsR6(), GetAssembler());
}
// boolean java.lang.Double.isInfinite(double)
void IntrinsicLocationsBuilderMIPS::VisitDoubleIsInfinite(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitDoubleIsInfinite(HInvoke* invoke) {
GenIsInfinite(invoke->GetLocations(), DataType::Type::kFloat64, IsR6(), GetAssembler());
}
static void GenHighestOneBit(LocationSummary* locations,
const DataType::Type type,
bool isR6,
MipsAssembler* assembler) {
DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
if (type == DataType::Type::kInt64) {
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
if (isR6) {
__ ClzR6(TMP, in_hi);
} else {
__ ClzR2(TMP, in_hi);
}
__ LoadConst32(AT, 0x80000000);
__ Srlv(out_hi, AT, TMP);
__ And(out_hi, out_hi, in_hi);
if (isR6) {
__ ClzR6(TMP, in_lo);
} else {
__ ClzR2(TMP, in_lo);
}
__ Srlv(out_lo, AT, TMP);
__ And(out_lo, out_lo, in_lo);
if (isR6) {
__ Seleqz(out_lo, out_lo, out_hi);
} else {
__ Movn(out_lo, ZERO, out_hi);
}
} else {
Register in = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
if (isR6) {
__ ClzR6(TMP, in);
} else {
__ ClzR2(TMP, in);
}
__ LoadConst32(AT, 0x80000000);
__ Srlv(AT, AT, TMP); // Srlv shifts in the range of [0;31] bits (lower 5 bits of arg).
__ And(out, AT, in); // So this is required for 0 (=shift by 32).
}
}
// int java.lang.Integer.highestOneBit(int)
void IntrinsicLocationsBuilderMIPS::VisitIntegerHighestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitIntegerHighestOneBit(HInvoke* invoke) {
GenHighestOneBit(invoke->GetLocations(), DataType::Type::kInt32, IsR6(), GetAssembler());
}
// long java.lang.Long.highestOneBit(long)
void IntrinsicLocationsBuilderMIPS::VisitLongHighestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke, Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorMIPS::VisitLongHighestOneBit(HInvoke* invoke) {
GenHighestOneBit(invoke->GetLocations(), DataType::Type::kInt64, IsR6(), GetAssembler());
}
static void GenLowestOneBit(LocationSummary* locations,
const DataType::Type type,
bool isR6,
MipsAssembler* assembler) {
DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
if (type == DataType::Type::kInt64) {
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
__ Subu(TMP, ZERO, in_lo);
__ And(out_lo, TMP, in_lo);
__ Subu(TMP, ZERO, in_hi);
__ And(out_hi, TMP, in_hi);
if (isR6) {
__ Seleqz(out_hi, out_hi, out_lo);
} else {
__ Movn(out_hi, ZERO, out_lo);
}
} else {
Register in = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
__ Subu(TMP, ZERO, in);
__ And(out, TMP, in);
}
}
// int java.lang.Integer.lowestOneBit(int)
void IntrinsicLocationsBuilderMIPS::VisitIntegerLowestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitIntegerLowestOneBit(HInvoke* invoke) {
GenLowestOneBit(invoke->GetLocations(), DataType::Type::kInt32, IsR6(), GetAssembler());
}
// long java.lang.Long.lowestOneBit(long)
void IntrinsicLocationsBuilderMIPS::VisitLongLowestOneBit(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitLongLowestOneBit(HInvoke* invoke) {
GenLowestOneBit(invoke->GetLocations(), DataType::Type::kInt64, IsR6(), GetAssembler());
}
// int java.lang.Math.round(float)
void IntrinsicLocationsBuilderMIPS::VisitMathRoundFloat(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS::VisitMathRoundFloat(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
MipsAssembler* assembler = GetAssembler();
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister half = locations->GetTemp(0).AsFpuRegister<FRegister>();
Register out = locations->Out().AsRegister<Register>();
MipsLabel done;
if (IsR6()) {
// out = floor(in);
//
// if (out != MAX_VALUE && out != MIN_VALUE) {
// TMP = ((in - out) >= 0.5) ? 1 : 0;
// return out += TMP;
// }
// return out;
// out = floor(in);
__ FloorWS(FTMP, in);
__ Mfc1(out, FTMP);
// if (out != MAX_VALUE && out != MIN_VALUE)
__ Addiu(TMP, out, 1);
__ Aui(TMP, TMP, 0x8000); // TMP = out + 0x8000 0001
// or out - 0x7FFF FFFF.
// IOW, TMP = 1 if out = Int.MIN_VALUE
// or TMP = 0 if out = Int.MAX_VALUE.
__ Srl(TMP, TMP, 1); // TMP = 0 if out = Int.MIN_VALUE
// or out = Int.MAX_VALUE.
__ Beqz(TMP, &done);
// TMP = (0.5f <= (in - out)) ? -1 : 0;
__ Cvtsw(FTMP, FTMP); // Convert output of floor.w.s back to "float".
__ LoadConst32(AT, bit_cast<int32_t, float>(0.5f));
__ SubS(FTMP, in, FTMP);
__ Mtc1(AT, half);
__ CmpLeS(FTMP, half, FTMP);
__ Mfc1(TMP, FTMP);
// Return out -= TMP.
__ Subu(out, out, TMP);
} else {
// if (in.isNaN) {
// return 0;
// }
//
// out = floor.w.s(in);
//
// /*
// * This "if" statement is only needed for the pre-R6 version of floor.w.s
// * which outputs Integer.MAX_VALUE for negative numbers with magnitudes
// * too large to fit in a 32-bit integer.
// */
// if (out == Integer.MAX_VALUE) {
// TMP = (in < 0.0f) ? 1 : 0;
// /*
// * If TMP is 1, then adding it to out will wrap its value from
// * Integer.MAX_VALUE to Integer.MIN_VALUE.
// */
// return out += TMP;
// }
//
// /*
// * For negative values not handled by the previous "if" statement the
// * test here will correctly set the value of TMP.
// */
// TMP = ((in - out) >= 0.5f) ? 1 : 0;
// return out += TMP;
MipsLabel finite;
MipsLabel add;
// Test for NaN.
__ CunS(in, in);
// Return zero for NaN.
__ Move(out, ZERO);
__ Bc1t(&done);
// out = floor(in);
__ FloorWS(FTMP, in);
__ Mfc1(out, FTMP);
__ LoadConst32(TMP, -1);
// TMP = (out = java.lang.Integer.MAX_VALUE) ? -1 : 0;
__ LoadConst32(AT, std::numeric_limits<int32_t>::max());
__ Bne(AT, out, &finite);
__ Mtc1(ZERO, FTMP);
__ ColtS(in, FTMP);
__ B(&add);
__ Bind(&finite);
// TMP = (0.5f <= (in - out)) ? -1 : 0;
__ Cvtsw(FTMP, FTMP); // Convert output of floor.w.s back to "float".
__ LoadConst32(AT, bit_cast<int32_t, float>(0.5f));
__ SubS(FTMP, in, FTMP);
__ Mtc1(AT, half);
__ ColeS(half, FTMP);
__ Bind(&add);
__ Movf(TMP, ZERO);
// Return out -= TMP.
__ Subu(out, out, TMP);
}
__ Bind(&done);
}
// void java.lang.String.getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
void IntrinsicLocationsBuilderMIPS::VisitStringGetCharsNoCheck(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
locations->SetInAt(4, Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS::VisitStringGetCharsNoCheck(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
// Check assumption that sizeof(Char) is 2 (used in scaling below).
const size_t char_size = DataType::Size(DataType::Type::kUint16);
DCHECK_EQ(char_size, 2u);
const size_t char_shift = DataType::SizeShift(DataType::Type::kUint16);
Register srcObj = locations->InAt(0).AsRegister<Register>();
Register srcBegin = locations->InAt(1).AsRegister<Register>();
Register srcEnd = locations->InAt(2).AsRegister<Register>();
Register dstObj = locations->InAt(3).AsRegister<Register>();
Register dstBegin = locations->InAt(4).AsRegister<Register>();
Register dstPtr = locations->GetTemp(0).AsRegister<Register>();
Register srcPtr = locations->GetTemp(1).AsRegister<Register>();
Register numChrs = locations->GetTemp(2).AsRegister<Register>();
MipsLabel done;
MipsLabel loop;
// Location of data in char array buffer.
const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
// Get offset of value field within a string object.
const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
__ Beq(srcEnd, srcBegin, &done); // No characters to move.
// Calculate number of characters to be copied.
__ Subu(numChrs, srcEnd, srcBegin);
// Calculate destination address.
__ Addiu(dstPtr, dstObj, data_offset);
__ ShiftAndAdd(dstPtr, dstBegin, dstPtr, char_shift);
if (mirror::kUseStringCompression) {
MipsLabel uncompressed_copy, compressed_loop;
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
// Load count field and extract compression flag.
__ LoadFromOffset(kLoadWord, TMP, srcObj, count_offset);
__ Sll(TMP, TMP, 31);
// If string is uncompressed, use uncompressed path.
__ Bnez(TMP, &uncompressed_copy);
// Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time.
__ Addu(srcPtr, srcObj, srcBegin);
__ Bind(&compressed_loop);
__ LoadFromOffset(kLoadUnsignedByte, TMP, srcPtr, value_offset);
__ StoreToOffset(kStoreHalfword, TMP, dstPtr, 0);
__ Addiu(numChrs, numChrs, -1);
__ Addiu(srcPtr, srcPtr, 1);
__ Addiu(dstPtr, dstPtr, 2);
__ Bnez(numChrs, &compressed_loop);
__ B(&done);
__ Bind(&uncompressed_copy);
}
// Calculate source address.
__ Addiu(srcPtr, srcObj, value_offset);
__ ShiftAndAdd(srcPtr, srcBegin, srcPtr, char_shift);
__ Bind(&loop);
__ Lh(AT, srcPtr, 0);
__ Addiu(numChrs, numChrs, -1);
__ Addiu(srcPtr, srcPtr, char_size);
__ Sh(AT, dstPtr, 0);
__ Addiu(dstPtr, dstPtr, char_size);
__ Bnez(numChrs, &loop);
__ Bind(&done);
}
static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kFloat64));
}
static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kFloat64));
}
static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorMIPS* codegen, QuickEntrypointEnum entry) {
LocationSummary* locations = invoke->GetLocations();
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
DCHECK_EQ(in, F12);
FRegister out = locations->Out().AsFpuRegister<FRegister>();
DCHECK_EQ(out, F0);
codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
}
static void GenFPFPToFPCall(HInvoke* invoke,
CodeGeneratorMIPS* codegen,
QuickEntrypointEnum entry) {
LocationSummary* locations = invoke->GetLocations();
FRegister in0 = locations->InAt(0).AsFpuRegister<FRegister>();
DCHECK_EQ(in0, F12);
FRegister in1 = locations->InAt(1).AsFpuRegister<FRegister>();
DCHECK_EQ(in1, F14);
FRegister out = locations->Out().AsFpuRegister<FRegister>();
DCHECK_EQ(out, F0);
codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
}
// static double java.lang.Math.cos(double a)
void IntrinsicLocationsBuilderMIPS::VisitMathCos(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathCos(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCos);
}
// static double java.lang.Math.sin(double a)
void IntrinsicLocationsBuilderMIPS::VisitMathSin(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathSin(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickSin);
}
// static double java.lang.Math.acos(double a)
void IntrinsicLocationsBuilderMIPS::VisitMathAcos(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathAcos(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAcos);
}
// static double java.lang.Math.asin(double a)
void IntrinsicLocationsBuilderMIPS::VisitMathAsin(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathAsin(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAsin);
}
// static double java.lang.Math.atan(double a)
void IntrinsicLocationsBuilderMIPS::VisitMathAtan(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathAtan(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAtan);
}
// static double java.lang.Math.atan2(double y, double x)
void IntrinsicLocationsBuilderMIPS::VisitMathAtan2(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathAtan2(HInvoke* invoke) {
GenFPFPToFPCall(invoke, codegen_, kQuickAtan2);
}
// static double java.lang.Math.pow(double y, double x)
void IntrinsicLocationsBuilderMIPS::VisitMathPow(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathPow(HInvoke* invoke) {
GenFPFPToFPCall(invoke, codegen_, kQuickPow);
}
// static double java.lang.Math.cbrt(double a)
void IntrinsicLocationsBuilderMIPS::VisitMathCbrt(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathCbrt(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCbrt);
}
// static double java.lang.Math.cosh(double x)
void IntrinsicLocationsBuilderMIPS::VisitMathCosh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathCosh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCosh);
}
// static double java.lang.Math.exp(double a)
void IntrinsicLocationsBuilderMIPS::VisitMathExp(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathExp(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickExp);
}
// static double java.lang.Math.expm1(double x)
void IntrinsicLocationsBuilderMIPS::VisitMathExpm1(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathExpm1(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickExpm1);
}
// static double java.lang.Math.hypot(double x, double y)
void IntrinsicLocationsBuilderMIPS::VisitMathHypot(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathHypot(HInvoke* invoke) {
GenFPFPToFPCall(invoke, codegen_, kQuickHypot);
}
// static double java.lang.Math.log(double a)
void IntrinsicLocationsBuilderMIPS::VisitMathLog(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathLog(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickLog);
}
// static double java.lang.Math.log10(double x)
void IntrinsicLocationsBuilderMIPS::VisitMathLog10(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathLog10(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickLog10);
}
// static double java.lang.Math.nextAfter(double start, double direction)
void IntrinsicLocationsBuilderMIPS::VisitMathNextAfter(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathNextAfter(HInvoke* invoke) {
GenFPFPToFPCall(invoke, codegen_, kQuickNextAfter);
}
// static double java.lang.Math.sinh(double x)
void IntrinsicLocationsBuilderMIPS::VisitMathSinh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathSinh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickSinh);
}
// static double java.lang.Math.tan(double a)
void IntrinsicLocationsBuilderMIPS::VisitMathTan(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathTan(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickTan);
}
// static double java.lang.Math.tanh(double x)
void IntrinsicLocationsBuilderMIPS::VisitMathTanh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorMIPS::VisitMathTanh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickTanh);
}
// static void java.lang.System.arraycopy(Object src, int srcPos,
// Object dest, int destPos,
// int length)
void IntrinsicLocationsBuilderMIPS::VisitSystemArrayCopyChar(HInvoke* invoke) {
HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
// As long as we are checking, we might as well check to see if the src and dest
// positions are >= 0.
if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
(dest_pos != nullptr && dest_pos->GetValue() < 0)) {
// We will have to fail anyways.
return;
}
// And since we are already checking, check the length too.
if (length != nullptr) {
int32_t len = length->GetValue();
if (len < 0) {
// Just call as normal.
return;
}
}
// Okay, it is safe to generate inline code.
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
// arraycopy(Object src, int srcPos, Object dest, int destPos, int length).
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
// Utility routine to verify that "length(input) - pos >= length"
static void EnoughItems(MipsAssembler* assembler,
Register length_input_minus_pos,
Location length,
SlowPathCodeMIPS* slow_path) {
if (length.IsConstant()) {
int32_t length_constant = length.GetConstant()->AsIntConstant()->GetValue();
if (IsInt<16>(length_constant)) {
__ Slti(TMP, length_input_minus_pos, length_constant);
__ Bnez(TMP, slow_path->GetEntryLabel());
} else {
__ LoadConst32(TMP, length_constant);
__ Blt(length_input_minus_pos, TMP, slow_path->GetEntryLabel());
}
} else {
__ Blt(length_input_minus_pos, length.AsRegister<Register>(), slow_path->GetEntryLabel());
}
}
static void CheckPosition(MipsAssembler* assembler,
Location pos,
Register input,
Location length,
SlowPathCodeMIPS* slow_path,
bool length_is_input_length = false) {
// Where is the length in the Array?
const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
// Calculate length(input) - pos.
if (pos.IsConstant()) {
int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
if (pos_const == 0) {
if (!length_is_input_length) {
// Check that length(input) >= length.
__ LoadFromOffset(kLoadWord, AT, input, length_offset);
EnoughItems(assembler, AT, length, slow_path);
}
} else {
// Check that (length(input) - pos) >= zero.
__ LoadFromOffset(kLoadWord, AT, input, length_offset);
DCHECK_GT(pos_const, 0);
__ Addiu32(AT, AT, -pos_const, TMP);
__ Bltz(AT, slow_path->GetEntryLabel());
// Verify that (length(input) - pos) >= length.
EnoughItems(assembler, AT, length, slow_path);
}
} else if (length_is_input_length) {
// The only way the copy can succeed is if pos is zero.
Register pos_reg = pos.AsRegister<Register>();
__ Bnez(pos_reg, slow_path->GetEntryLabel());
} else {
// Verify that pos >= 0.
Register pos_reg = pos.AsRegister<Register>();
__ Bltz(pos_reg, slow_path->GetEntryLabel());
// Check that (length(input) - pos) >= zero.
__ LoadFromOffset(kLoadWord, AT, input, length_offset);
__ Subu(AT, AT, pos_reg);
__ Bltz(AT, slow_path->GetEntryLabel());
// Verify that (length(input) - pos) >= length.
EnoughItems(assembler, AT, length, slow_path);
}
}
void IntrinsicCodeGeneratorMIPS::VisitSystemArrayCopyChar(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register src = locations->InAt(0).AsRegister<Register>();
Location src_pos = locations->InAt(1);
Register dest = locations->InAt(2).AsRegister<Register>();
Location dest_pos = locations->InAt(3);
Location length = locations->InAt(4);
MipsLabel loop;
Register dest_base = locations->GetTemp(0).AsRegister<Register>();
Register src_base = locations->GetTemp(1).AsRegister<Register>();
Register count = locations->GetTemp(2).AsRegister<Register>();
SlowPathCodeMIPS* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke);
codegen_->AddSlowPath(slow_path);
// Bail out if the source and destination are the same (to handle overlap).
__ Beq(src, dest, slow_path->GetEntryLabel());
// Bail out if the source is null.
__ Beqz(src, slow_path->GetEntryLabel());
// Bail out if the destination is null.
__ Beqz(dest, slow_path->GetEntryLabel());
// Load length into register for count.
if (length.IsConstant()) {
__ LoadConst32(count, length.GetConstant()->AsIntConstant()->GetValue());
} else {
// If the length is negative, bail out.
// We have already checked in the LocationsBuilder for the constant case.
__ Bltz(length.AsRegister<Register>(), slow_path->GetEntryLabel());
__ Move(count, length.AsRegister<Register>());
}
// Validity checks: source.
CheckPosition(assembler, src_pos, src, Location::RegisterLocation(count), slow_path);
// Validity checks: dest.
CheckPosition(assembler, dest_pos, dest, Location::RegisterLocation(count), slow_path);
// If count is zero, we're done.
__ Beqz(count, slow_path->GetExitLabel());
// Okay, everything checks out. Finally time to do the copy.
// Check assumption that sizeof(Char) is 2 (used in scaling below).
const size_t char_size = DataType::Size(DataType::Type::kUint16);
DCHECK_EQ(char_size, 2u);
const size_t char_shift = DataType::SizeShift(DataType::Type::kUint16);
const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
// Calculate source and destination addresses.
if (src_pos.IsConstant()) {
int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue();
__ Addiu32(src_base, src, data_offset + char_size * src_pos_const, TMP);
} else {
__ Addiu32(src_base, src, data_offset, TMP);
__ ShiftAndAdd(src_base, src_pos.AsRegister<Register>(), src_base, char_shift);
}
if (dest_pos.IsConstant()) {
int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue();
__ Addiu32(dest_base, dest, data_offset + char_size * dest_pos_const, TMP);
} else {
__ Addiu32(dest_base, dest, data_offset, TMP);
__ ShiftAndAdd(dest_base, dest_pos.AsRegister<Register>(), dest_base, char_shift);
}
__ Bind(&loop);
__ Lh(TMP, src_base, 0);
__ Addiu(src_base, src_base, char_size);
__ Addiu(count, count, -1);
__ Sh(TMP, dest_base, 0);
__ Addiu(dest_base, dest_base, char_size);
__ Bnez(count, &loop);
__ Bind(slow_path->GetExitLabel());
}
// long java.lang.Integer.valueOf(long)
void IntrinsicLocationsBuilderMIPS::VisitIntegerValueOf(HInvoke* invoke) {
InvokeRuntimeCallingConvention calling_convention;
IntrinsicVisitor::ComputeIntegerValueOfLocations(
invoke,
codegen_,
calling_convention.GetReturnLocation(DataType::Type::kReference),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void IntrinsicCodeGeneratorMIPS::VisitIntegerValueOf(HInvoke* invoke) {
IntrinsicVisitor::IntegerValueOfInfo info =
IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions());
LocationSummary* locations = invoke->GetLocations();
MipsAssembler* assembler = GetAssembler();
InstructionCodeGeneratorMIPS* icodegen =
down_cast<InstructionCodeGeneratorMIPS*>(codegen_->GetInstructionVisitor());
Register out = locations->Out().AsRegister<Register>();
if (invoke->InputAt(0)->IsConstant()) {
int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue();
if (static_cast<uint32_t>(value - info.low) < info.length) {
// Just embed the j.l.Integer in the code.
DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference);
codegen_->LoadBootImageAddress(out, info.value_boot_image_reference);
} else {
DCHECK(locations->CanCall());
// Allocate and initialize a new j.l.Integer.
// TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the
// JIT object table.
codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(),
info.integer_boot_image_offset);
__ StoreConstToOffset(kStoreWord, value, out, info.value_offset, TMP);
// `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
// one.
icodegen->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
}
} else {
DCHECK(locations->CanCall());
Register in = locations->InAt(0).AsRegister<Register>();
MipsLabel allocate, done;
__ Addiu32(out, in, -info.low);
// As unsigned quantities is out < info.length ?
if (IsUint<15>(info.length)) {
__ Sltiu(AT, out, info.length);
} else {
__ LoadConst32(AT, info.length);
__ Sltu(AT, out, AT);
}
// Branch if out >= info.length. This means that "in" is outside of the valid range.
__ Beqz(AT, &allocate);
// If the value is within the bounds, load the j.l.Integer directly from the array.
codegen_->LoadBootImageAddress(TMP, info.array_data_boot_image_reference);
__ ShiftAndAdd(out, out, TMP, TIMES_4);
__ Lw(out, out, 0);
__ MaybeUnpoisonHeapReference(out);
__ B(&done);
__ Bind(&allocate);
// Otherwise allocate and initialize a new j.l.Integer.
codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(),
info.integer_boot_image_offset);
__ StoreToOffset(kStoreWord, in, out, info.value_offset);
// `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
// one.
icodegen->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
__ Bind(&done);
}
}
// static boolean java.lang.Thread.interrupted()
void IntrinsicLocationsBuilderMIPS::VisitThreadInterrupted(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorMIPS::VisitThreadInterrupted(HInvoke* invoke) {
MipsAssembler* assembler = GetAssembler();
Register out = invoke->GetLocations()->Out().AsRegister<Register>();
int32_t offset = Thread::InterruptedOffset<kMipsPointerSize>().Int32Value();
__ LoadFromOffset(kLoadWord, out, TR, offset);
MipsLabel done;
__ Beqz(out, &done);
__ Sync(0);
__ StoreToOffset(kStoreWord, ZERO, TR, offset);
__ Sync(0);
__ Bind(&done);
}
void IntrinsicLocationsBuilderMIPS::VisitReachabilityFence(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::Any());
}
void IntrinsicCodeGeneratorMIPS::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { }
// Unimplemented intrinsics.
UNIMPLEMENTED_INTRINSIC(MIPS, MathCeil)
UNIMPLEMENTED_INTRINSIC(MIPS, MathFloor)
UNIMPLEMENTED_INTRINSIC(MIPS, MathRint)
UNIMPLEMENTED_INTRINSIC(MIPS, MathRoundDouble)
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetLongVolatile);
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafePutLongVolatile);
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeCASLong)
UNIMPLEMENTED_INTRINSIC(MIPS, ReferenceGetReferent)
UNIMPLEMENTED_INTRINSIC(MIPS, SystemArrayCopy)
UNIMPLEMENTED_INTRINSIC(MIPS, CRC32Update)
UNIMPLEMENTED_INTRINSIC(MIPS, CRC32UpdateBytes)
UNIMPLEMENTED_INTRINSIC(MIPS, CRC32UpdateByteBuffer)
UNIMPLEMENTED_INTRINSIC(MIPS, StringStringIndexOf);
UNIMPLEMENTED_INTRINSIC(MIPS, StringStringIndexOfAfter);
UNIMPLEMENTED_INTRINSIC(MIPS, StringBufferAppend);
UNIMPLEMENTED_INTRINSIC(MIPS, StringBufferLength);
UNIMPLEMENTED_INTRINSIC(MIPS, StringBufferToString);
UNIMPLEMENTED_INTRINSIC(MIPS, StringBuilderAppend);
UNIMPLEMENTED_INTRINSIC(MIPS, StringBuilderLength);
UNIMPLEMENTED_INTRINSIC(MIPS, StringBuilderToString);
// 1.8.
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndAddInt)
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndAddLong)
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetInt)
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetLong)
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetObject)
UNREACHABLE_INTRINSICS(MIPS)
#undef __
} // namespace mips
} // namespace art