blob: b15d904bf1c175d19e72b94b29e362a46aeb3da1 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "calling_convention_x86_64.h"
#include <android-base/logging.h>
#include "arch/instruction_set.h"
#include "base/bit_utils.h"
#include "handle_scope-inl.h"
#include "utils/x86_64/managed_register_x86_64.h"
namespace art {
namespace x86_64 {
constexpr size_t kFramePointerSize = static_cast<size_t>(PointerSize::k64);
static_assert(kX86_64PointerSize == PointerSize::k64, "Unexpected x86_64 pointer size");
constexpr size_t kMmxSpillSize = 8u;
// XMM0..XMM7 can be used to pass the first 8 floating args. The rest must go on the stack.
// -- Managed and JNI calling conventions.
constexpr size_t kMaxFloatOrDoubleRegisterArguments = 8u;
// Up to how many integer-like (pointers, objects, longs, int, short, bool, etc) args can be
// enregistered. The rest of the args must go on the stack.
// -- JNI calling convention only (Managed excludes RDI, so it's actually 5).
constexpr size_t kMaxIntLikeRegisterArguments = 6u;
static constexpr ManagedRegister kCalleeSaveRegisters[] = {
// Core registers.
X86_64ManagedRegister::FromCpuRegister(RBX),
X86_64ManagedRegister::FromCpuRegister(RBP),
X86_64ManagedRegister::FromCpuRegister(R12),
X86_64ManagedRegister::FromCpuRegister(R13),
X86_64ManagedRegister::FromCpuRegister(R14),
X86_64ManagedRegister::FromCpuRegister(R15),
// Hard float registers.
X86_64ManagedRegister::FromXmmRegister(XMM12),
X86_64ManagedRegister::FromXmmRegister(XMM13),
X86_64ManagedRegister::FromXmmRegister(XMM14),
X86_64ManagedRegister::FromXmmRegister(XMM15),
};
template <size_t size>
static constexpr uint32_t CalculateCoreCalleeSpillMask(
const ManagedRegister (&callee_saves)[size]) {
// The spilled PC gets a special marker.
uint32_t result = 1u << kNumberOfCpuRegisters;
for (auto&& r : callee_saves) {
if (r.AsX86_64().IsCpuRegister()) {
result |= (1u << r.AsX86_64().AsCpuRegister().AsRegister());
}
}
return result;
}
template <size_t size>
static constexpr uint32_t CalculateFpCalleeSpillMask(const ManagedRegister (&callee_saves)[size]) {
uint32_t result = 0u;
for (auto&& r : callee_saves) {
if (r.AsX86_64().IsXmmRegister()) {
result |= (1u << r.AsX86_64().AsXmmRegister().AsFloatRegister());
}
}
return result;
}
static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask(kCalleeSaveRegisters);
static constexpr uint32_t kFpCalleeSpillMask = CalculateFpCalleeSpillMask(kCalleeSaveRegisters);
static constexpr size_t kNativeStackAlignment = 16;
static_assert(kNativeStackAlignment == kStackAlignment);
static constexpr ManagedRegister kNativeCalleeSaveRegisters[] = {
// Core registers.
X86_64ManagedRegister::FromCpuRegister(RBX),
X86_64ManagedRegister::FromCpuRegister(RBP),
X86_64ManagedRegister::FromCpuRegister(R12),
X86_64ManagedRegister::FromCpuRegister(R13),
X86_64ManagedRegister::FromCpuRegister(R14),
X86_64ManagedRegister::FromCpuRegister(R15),
// No callee-save float registers.
};
static constexpr uint32_t kNativeCoreCalleeSpillMask =
CalculateCoreCalleeSpillMask(kNativeCalleeSaveRegisters);
static constexpr uint32_t kNativeFpCalleeSpillMask =
CalculateFpCalleeSpillMask(kNativeCalleeSaveRegisters);
// Calling convention
ManagedRegister X86_64ManagedRuntimeCallingConvention::InterproceduralScratchRegister() const {
return X86_64ManagedRegister::FromCpuRegister(RAX);
}
ManagedRegister X86_64JniCallingConvention::InterproceduralScratchRegister() const {
return X86_64ManagedRegister::FromCpuRegister(RAX);
}
ManagedRegister X86_64JniCallingConvention::ReturnScratchRegister() const {
return ManagedRegister::NoRegister(); // No free regs, so assembler uses push/pop
}
static ManagedRegister ReturnRegisterForShorty(const char* shorty, bool jni ATTRIBUTE_UNUSED) {
if (shorty[0] == 'F' || shorty[0] == 'D') {
return X86_64ManagedRegister::FromXmmRegister(XMM0);
} else if (shorty[0] == 'J') {
return X86_64ManagedRegister::FromCpuRegister(RAX);
} else if (shorty[0] == 'V') {
return ManagedRegister::NoRegister();
} else {
return X86_64ManagedRegister::FromCpuRegister(RAX);
}
}
ManagedRegister X86_64ManagedRuntimeCallingConvention::ReturnRegister() {
return ReturnRegisterForShorty(GetShorty(), false);
}
ManagedRegister X86_64JniCallingConvention::ReturnRegister() {
return ReturnRegisterForShorty(GetShorty(), true);
}
ManagedRegister X86_64JniCallingConvention::IntReturnRegister() {
return X86_64ManagedRegister::FromCpuRegister(RAX);
}
// Managed runtime calling convention
ManagedRegister X86_64ManagedRuntimeCallingConvention::MethodRegister() {
return X86_64ManagedRegister::FromCpuRegister(RDI);
}
bool X86_64ManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
return !IsCurrentParamOnStack();
}
bool X86_64ManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
// We assume all parameters are on stack, args coming via registers are spilled as entry_spills
return true;
}
ManagedRegister X86_64ManagedRuntimeCallingConvention::CurrentParamRegister() {
ManagedRegister res = ManagedRegister::NoRegister();
if (!IsCurrentParamAFloatOrDouble()) {
switch (itr_args_ - itr_float_and_doubles_) {
case 0: res = X86_64ManagedRegister::FromCpuRegister(RSI); break;
case 1: res = X86_64ManagedRegister::FromCpuRegister(RDX); break;
case 2: res = X86_64ManagedRegister::FromCpuRegister(RCX); break;
case 3: res = X86_64ManagedRegister::FromCpuRegister(R8); break;
case 4: res = X86_64ManagedRegister::FromCpuRegister(R9); break;
}
} else if (itr_float_and_doubles_ < kMaxFloatOrDoubleRegisterArguments) {
// First eight float parameters are passed via XMM0..XMM7
res = X86_64ManagedRegister::FromXmmRegister(
static_cast<FloatRegister>(XMM0 + itr_float_and_doubles_));
}
return res;
}
FrameOffset X86_64ManagedRuntimeCallingConvention::CurrentParamStackOffset() {
CHECK(IsCurrentParamOnStack());
return FrameOffset(displacement_.Int32Value() + // displacement
static_cast<size_t>(kX86_64PointerSize) + // Method ref
itr_slots_ * sizeof(uint32_t)); // offset into in args
}
const ManagedRegisterEntrySpills& X86_64ManagedRuntimeCallingConvention::EntrySpills() {
// We spill the argument registers on X86 to free them up for scratch use, we then assume
// all arguments are on the stack.
if (entry_spills_.size() == 0) {
ResetIterator(FrameOffset(0));
while (HasNext()) {
ManagedRegister in_reg = CurrentParamRegister();
if (!in_reg.IsNoRegister()) {
int32_t size = IsParamALongOrDouble(itr_args_) ? 8 : 4;
int32_t spill_offset = CurrentParamStackOffset().Uint32Value();
ManagedRegisterSpill spill(in_reg, size, spill_offset);
entry_spills_.push_back(spill);
}
Next();
}
}
return entry_spills_;
}
// JNI calling convention
X86_64JniCallingConvention::X86_64JniCallingConvention(bool is_static,
bool is_synchronized,
bool is_critical_native,
const char* shorty)
: JniCallingConvention(is_static,
is_synchronized,
is_critical_native,
shorty,
kX86_64PointerSize) {
}
uint32_t X86_64JniCallingConvention::CoreSpillMask() const {
return is_critical_native_ ? 0u : kCoreCalleeSpillMask;
}
uint32_t X86_64JniCallingConvention::FpSpillMask() const {
return is_critical_native_ ? 0u : kFpCalleeSpillMask;
}
size_t X86_64JniCallingConvention::FrameSize() const {
if (is_critical_native_) {
CHECK(!SpillsMethod());
CHECK(!HasLocalReferenceSegmentState());
CHECK(!HasHandleScope());
CHECK(!SpillsReturnValue());
return 0u; // There is no managed frame for @CriticalNative.
}
// Method*, PC return address and callee save area size, local reference segment state
CHECK(SpillsMethod());
const size_t method_ptr_size = static_cast<size_t>(kX86_64PointerSize);
const size_t pc_return_addr_size = kFramePointerSize;
const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize;
size_t total_size = method_ptr_size + pc_return_addr_size + callee_save_area_size;
CHECK(HasLocalReferenceSegmentState());
total_size += kFramePointerSize;
CHECK(HasHandleScope());
total_size += HandleScope::SizeOf(kX86_64PointerSize, ReferenceCount());
// Plus return value spill area size
CHECK(SpillsReturnValue());
total_size += SizeOfReturnValue();
return RoundUp(total_size, kStackAlignment);
}
size_t X86_64JniCallingConvention::OutArgSize() const {
// Count param args, including JNIEnv* and jclass*.
size_t all_args = NumberOfExtraArgumentsForJni() + NumArgs();
size_t num_fp_args = NumFloatOrDoubleArgs();
DCHECK_GE(all_args, num_fp_args);
size_t num_non_fp_args = all_args - num_fp_args;
// Account for FP arguments passed through Xmm0..Xmm7.
size_t num_stack_fp_args =
num_fp_args - std::min(kMaxFloatOrDoubleRegisterArguments, num_fp_args);
// Account for other (integer) arguments passed through GPR (RDI, RSI, RDX, RCX, R8, R9).
size_t num_stack_non_fp_args =
num_non_fp_args - std::min(kMaxIntLikeRegisterArguments, num_non_fp_args);
// The size of outgoing arguments.
static_assert(kFramePointerSize == kMmxSpillSize);
size_t size = (num_stack_fp_args + num_stack_non_fp_args) * kFramePointerSize;
if (UNLIKELY(IsCriticalNative())) {
// We always need to spill xmm12-xmm15 as they are managed callee-saves
// but not native callee-saves.
static_assert((kCoreCalleeSpillMask & ~kNativeCoreCalleeSpillMask) == 0u);
static_assert((kFpCalleeSpillMask & ~kNativeFpCalleeSpillMask) != 0u);
size += POPCOUNT(kFpCalleeSpillMask & ~kNativeFpCalleeSpillMask) * kMmxSpillSize;
// Add return address size for @CriticalNative
// For normal native the return PC is part of the managed stack frame instead of out args.
size += kFramePointerSize;
}
return RoundUp(size, kNativeStackAlignment);
}
ArrayRef<const ManagedRegister> X86_64JniCallingConvention::CalleeSaveRegisters() const {
if (UNLIKELY(IsCriticalNative())) {
DCHECK(!UseTailCall());
static_assert(std::size(kCalleeSaveRegisters) > std::size(kNativeCalleeSaveRegisters));
// TODO: Change to static_assert; std::equal should be constexpr since C++20.
DCHECK(std::equal(kCalleeSaveRegisters,
kCalleeSaveRegisters + std::size(kNativeCalleeSaveRegisters),
kNativeCalleeSaveRegisters,
[](ManagedRegister lhs, ManagedRegister rhs) { return lhs.Equals(rhs); }));
return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters).SubArray(
/*pos=*/ std::size(kNativeCalleeSaveRegisters));
} else {
return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters);
}
}
bool X86_64JniCallingConvention::IsCurrentParamInRegister() {
return !IsCurrentParamOnStack();
}
bool X86_64JniCallingConvention::IsCurrentParamOnStack() {
return CurrentParamRegister().IsNoRegister();
}
ManagedRegister X86_64JniCallingConvention::CurrentParamRegister() {
ManagedRegister res = ManagedRegister::NoRegister();
if (!IsCurrentParamAFloatOrDouble()) {
switch (itr_args_ - itr_float_and_doubles_) {
case 0: res = X86_64ManagedRegister::FromCpuRegister(RDI); break;
case 1: res = X86_64ManagedRegister::FromCpuRegister(RSI); break;
case 2: res = X86_64ManagedRegister::FromCpuRegister(RDX); break;
case 3: res = X86_64ManagedRegister::FromCpuRegister(RCX); break;
case 4: res = X86_64ManagedRegister::FromCpuRegister(R8); break;
case 5: res = X86_64ManagedRegister::FromCpuRegister(R9); break;
static_assert(5u == kMaxIntLikeRegisterArguments - 1, "Missing case statement(s)");
}
} else if (itr_float_and_doubles_ < kMaxFloatOrDoubleRegisterArguments) {
// First eight float parameters are passed via XMM0..XMM7
res = X86_64ManagedRegister::FromXmmRegister(
static_cast<FloatRegister>(XMM0 + itr_float_and_doubles_));
}
return res;
}
FrameOffset X86_64JniCallingConvention::CurrentParamStackOffset() {
CHECK(IsCurrentParamOnStack());
size_t args_on_stack = itr_args_
- std::min(kMaxFloatOrDoubleRegisterArguments,
static_cast<size_t>(itr_float_and_doubles_))
// Float arguments passed through Xmm0..Xmm7
- std::min(kMaxIntLikeRegisterArguments,
static_cast<size_t>(itr_args_ - itr_float_and_doubles_));
// Integer arguments passed through GPR
size_t offset = displacement_.Int32Value() - OutArgSize() + (args_on_stack * kFramePointerSize);
CHECK_LT(offset, OutArgSize());
return FrameOffset(offset);
}
ManagedRegister X86_64JniCallingConvention::HiddenArgumentRegister() const {
CHECK(IsCriticalNative());
// R11 is neither managed callee-save, nor argument register, nor scratch register.
DCHECK(std::none_of(kCalleeSaveRegisters,
kCalleeSaveRegisters + std::size(kCalleeSaveRegisters),
[](ManagedRegister callee_save) constexpr {
return callee_save.Equals(X86_64ManagedRegister::FromCpuRegister(R11));
}));
DCHECK(!InterproceduralScratchRegister().Equals(X86_64ManagedRegister::FromCpuRegister(R11)));
return X86_64ManagedRegister::FromCpuRegister(R11);
}
// Whether to use tail call (used only for @CriticalNative).
bool X86_64JniCallingConvention::UseTailCall() const {
CHECK(IsCriticalNative());
// We always need to spill xmm12-xmm15 as they are managed callee-saves
// but not native callee-saves, so we can never use a tail call.
return false;
}
} // namespace x86_64
} // namespace art