blob: d12eb9be3259b9c1bdce0da9b4993c87e731ecf7 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "calling_convention_x86.h"
#include <android-base/logging.h>
#include "arch/instruction_set.h"
#include "handle_scope-inl.h"
#include "utils/x86/managed_register_x86.h"
namespace art {
namespace x86 {
static_assert(kX86PointerSize == PointerSize::k32, "Unexpected x86 pointer size");
static constexpr ManagedRegister kCalleeSaveRegisters[] = {
// Core registers.
X86ManagedRegister::FromCpuRegister(EBP),
X86ManagedRegister::FromCpuRegister(ESI),
X86ManagedRegister::FromCpuRegister(EDI),
// No hard float callee saves.
};
template <size_t size>
static constexpr uint32_t CalculateCoreCalleeSpillMask(
const ManagedRegister (&callee_saves)[size]) {
// The spilled PC gets a special marker.
uint32_t result = 1 << kNumberOfCpuRegisters;
for (auto&& r : callee_saves) {
if (r.AsX86().IsCpuRegister()) {
result |= (1 << r.AsX86().AsCpuRegister());
}
}
return result;
}
static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask(kCalleeSaveRegisters);
static constexpr uint32_t kFpCalleeSpillMask = 0u;
static constexpr size_t kNativeStackAlignment = 16; // IA-32 cdecl requires 16 byte alignment.
static_assert(kNativeStackAlignment == kStackAlignment);
static constexpr ManagedRegister kNativeCalleeSaveRegisters[] = {
// Core registers.
X86ManagedRegister::FromCpuRegister(EBX),
X86ManagedRegister::FromCpuRegister(EBP),
X86ManagedRegister::FromCpuRegister(ESI),
X86ManagedRegister::FromCpuRegister(EDI),
// No hard float callee saves.
};
static constexpr uint32_t kNativeCoreCalleeSpillMask =
CalculateCoreCalleeSpillMask(kNativeCalleeSaveRegisters);
static constexpr uint32_t kNativeFpCalleeSpillMask = 0u;
// Calling convention
ManagedRegister X86ManagedRuntimeCallingConvention::InterproceduralScratchRegister() const {
return X86ManagedRegister::FromCpuRegister(ECX);
}
ManagedRegister X86JniCallingConvention::InterproceduralScratchRegister() const {
return X86ManagedRegister::FromCpuRegister(ECX);
}
ManagedRegister X86JniCallingConvention::ReturnScratchRegister() const {
return ManagedRegister::NoRegister(); // No free regs, so assembler uses push/pop
}
static ManagedRegister ReturnRegisterForShorty(const char* shorty, bool jni) {
if (shorty[0] == 'F' || shorty[0] == 'D') {
if (jni) {
return X86ManagedRegister::FromX87Register(ST0);
} else {
return X86ManagedRegister::FromXmmRegister(XMM0);
}
} else if (shorty[0] == 'J') {
return X86ManagedRegister::FromRegisterPair(EAX_EDX);
} else if (shorty[0] == 'V') {
return ManagedRegister::NoRegister();
} else {
return X86ManagedRegister::FromCpuRegister(EAX);
}
}
ManagedRegister X86ManagedRuntimeCallingConvention::ReturnRegister() {
return ReturnRegisterForShorty(GetShorty(), false);
}
ManagedRegister X86JniCallingConvention::ReturnRegister() {
return ReturnRegisterForShorty(GetShorty(), true);
}
ManagedRegister X86JniCallingConvention::IntReturnRegister() {
return X86ManagedRegister::FromCpuRegister(EAX);
}
// Managed runtime calling convention
ManagedRegister X86ManagedRuntimeCallingConvention::MethodRegister() {
return X86ManagedRegister::FromCpuRegister(EAX);
}
bool X86ManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
return false; // Everything is passed by stack
}
bool X86ManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
// We assume all parameters are on stack, args coming via registers are spilled as entry_spills.
return true;
}
ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamRegister() {
ManagedRegister res = ManagedRegister::NoRegister();
if (!IsCurrentParamAFloatOrDouble()) {
switch (gpr_arg_count_) {
case 0:
res = X86ManagedRegister::FromCpuRegister(ECX);
break;
case 1:
res = X86ManagedRegister::FromCpuRegister(EDX);
break;
case 2:
// Don't split a long between the last register and the stack.
if (IsCurrentParamALong()) {
return ManagedRegister::NoRegister();
}
res = X86ManagedRegister::FromCpuRegister(EBX);
break;
}
} else if (itr_float_and_doubles_ < 4) {
// First four float parameters are passed via XMM0..XMM3
res = X86ManagedRegister::FromXmmRegister(
static_cast<XmmRegister>(XMM0 + itr_float_and_doubles_));
}
return res;
}
ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamHighLongRegister() {
ManagedRegister res = ManagedRegister::NoRegister();
DCHECK(IsCurrentParamALong());
switch (gpr_arg_count_) {
case 0: res = X86ManagedRegister::FromCpuRegister(EDX); break;
case 1: res = X86ManagedRegister::FromCpuRegister(EBX); break;
}
return res;
}
FrameOffset X86ManagedRuntimeCallingConvention::CurrentParamStackOffset() {
return FrameOffset(displacement_.Int32Value() + // displacement
kFramePointerSize + // Method*
(itr_slots_ * kFramePointerSize)); // offset into in args
}
const ManagedRegisterEntrySpills& X86ManagedRuntimeCallingConvention::EntrySpills() {
// We spill the argument registers on X86 to free them up for scratch use, we then assume
// all arguments are on the stack.
if (entry_spills_.size() == 0) {
ResetIterator(FrameOffset(0));
while (HasNext()) {
ManagedRegister in_reg = CurrentParamRegister();
bool is_long = IsCurrentParamALong();
if (!in_reg.IsNoRegister()) {
int32_t size = IsParamADouble(itr_args_) ? 8 : 4;
int32_t spill_offset = CurrentParamStackOffset().Uint32Value();
ManagedRegisterSpill spill(in_reg, size, spill_offset);
entry_spills_.push_back(spill);
if (is_long) {
// special case, as we need a second register here.
in_reg = CurrentParamHighLongRegister();
DCHECK(!in_reg.IsNoRegister());
// We have to spill the second half of the long.
ManagedRegisterSpill spill2(in_reg, size, spill_offset + 4);
entry_spills_.push_back(spill2);
}
// Keep track of the number of GPRs allocated.
if (!IsCurrentParamAFloatOrDouble()) {
if (is_long) {
// Long was allocated in 2 registers.
gpr_arg_count_ += 2;
} else {
gpr_arg_count_++;
}
}
} else if (is_long) {
// We need to skip the unused last register, which is empty.
// If we are already out of registers, this is harmless.
gpr_arg_count_ += 2;
}
Next();
}
}
return entry_spills_;
}
// JNI calling convention
X86JniCallingConvention::X86JniCallingConvention(bool is_static,
bool is_synchronized,
bool is_critical_native,
const char* shorty)
: JniCallingConvention(is_static,
is_synchronized,
is_critical_native,
shorty,
kX86PointerSize) {
}
uint32_t X86JniCallingConvention::CoreSpillMask() const {
return is_critical_native_ ? 0u : kCoreCalleeSpillMask;
}
uint32_t X86JniCallingConvention::FpSpillMask() const {
return is_critical_native_ ? 0u : kFpCalleeSpillMask;
}
size_t X86JniCallingConvention::FrameSize() const {
if (is_critical_native_) {
CHECK(!SpillsMethod());
CHECK(!HasLocalReferenceSegmentState());
CHECK(!HasHandleScope());
CHECK(!SpillsReturnValue());
return 0u; // There is no managed frame for @CriticalNative.
}
// Method*, PC return address and callee save area size, local reference segment state
CHECK(SpillsMethod());
const size_t method_ptr_size = static_cast<size_t>(kX86PointerSize);
const size_t pc_return_addr_size = kFramePointerSize;
const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize;
size_t total_size = method_ptr_size + pc_return_addr_size + callee_save_area_size;
CHECK(HasLocalReferenceSegmentState());
total_size += kFramePointerSize;
CHECK(HasHandleScope());
total_size += HandleScope::SizeOf(kX86_64PointerSize, ReferenceCount());
// Plus return value spill area size
CHECK(SpillsReturnValue());
total_size += SizeOfReturnValue();
return RoundUp(total_size, kStackAlignment);
}
size_t X86JniCallingConvention::OutArgSize() const {
// Count param args, including JNIEnv* and jclass*; count 8-byte args twice.
size_t all_args = NumberOfExtraArgumentsForJni() + NumArgs() + NumLongOrDoubleArgs();
// The size of outgoiong arguments.
size_t size = all_args * kFramePointerSize;
// @CriticalNative can use tail call as all managed callee saves are preserved by AAPCS.
static_assert((kCoreCalleeSpillMask & ~kNativeCoreCalleeSpillMask) == 0u);
static_assert((kFpCalleeSpillMask & ~kNativeFpCalleeSpillMask) == 0u);
if (is_critical_native_) {
// Add return address size for @CriticalNative
// For normal native the return PC is part of the managed stack frame instead of out args.
size += kFramePointerSize;
// For @CriticalNative, we can make a tail call if there are no stack args
// and the return type is not FP type (needs moving from ST0 to MMX0) and
// we do not need to extend the result.
bool return_type_ok = GetShorty()[0] == 'I' || GetShorty()[0] == 'J' || GetShorty()[0] == 'V';
DCHECK_EQ(
return_type_ok,
GetShorty()[0] != 'F' && GetShorty()[0] != 'D' && !RequiresSmallResultTypeExtension());
if (return_type_ok && size == kFramePointerSize) {
// Note: This is not aligned to kNativeStackAlignment but that's OK for tail call.
DCHECK_EQ(size, kFramePointerSize);
static_assert(kFramePointerSize < kNativeStackAlignment);
return kFramePointerSize;
}
}
return RoundUp(size, kNativeStackAlignment);
}
ArrayRef<const ManagedRegister> X86JniCallingConvention::CalleeSaveRegisters() const {
if (UNLIKELY(IsCriticalNative())) {
// Do not spill anything, whether tail call or not (return PC is already on the stack).
return ArrayRef<const ManagedRegister>();
} else {
return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters);
}
}
bool X86JniCallingConvention::IsCurrentParamInRegister() {
return false; // Everything is passed by stack.
}
bool X86JniCallingConvention::IsCurrentParamOnStack() {
return true; // Everything is passed by stack.
}
ManagedRegister X86JniCallingConvention::CurrentParamRegister() {
LOG(FATAL) << "Should not reach here";
UNREACHABLE();
}
FrameOffset X86JniCallingConvention::CurrentParamStackOffset() {
return FrameOffset(displacement_.Int32Value() - OutArgSize() + (itr_slots_ * kFramePointerSize));
}
ManagedRegister X86JniCallingConvention::HiddenArgumentRegister() const {
CHECK(IsCriticalNative());
// EAX is neither managed callee-save, nor argument register, nor scratch register.
DCHECK(std::none_of(kCalleeSaveRegisters,
kCalleeSaveRegisters + std::size(kCalleeSaveRegisters),
[](ManagedRegister callee_save) constexpr {
return callee_save.Equals(X86ManagedRegister::FromCpuRegister(EAX));
}));
DCHECK(!InterproceduralScratchRegister().Equals(X86ManagedRegister::FromCpuRegister(EAX)));
return X86ManagedRegister::FromCpuRegister(EAX);
}
bool X86JniCallingConvention::UseTailCall() const {
CHECK(IsCriticalNative());
return OutArgSize() == kFramePointerSize;
}
} // namespace x86
} // namespace art