blob: 85171aaef855e48df3faab3e85f6636339b5f5b7 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ssa_liveness_analysis.h"
#include "nodes.h"
namespace art {
void SsaLivenessAnalysis::Analyze() {
LinearizeGraph();
NumberInstructions();
ComputeSets();
}
static bool IsLoopExit(HLoopInformation* current, HLoopInformation* to) {
// `to` is either not part of a loop, or `current` is an inner loop of `to`.
return to == nullptr || (current != to && current->IsIn(*to));
}
static bool IsLoop(HLoopInformation* info) {
return info != nullptr;
}
static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
return first_loop == second_loop;
}
static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
return (inner != outer)
&& (inner != nullptr)
&& (outer != nullptr)
&& inner->IsIn(*outer);
}
static void VisitBlockForLinearization(HBasicBlock* block,
GrowableArray<HBasicBlock*>* order,
ArenaBitVector* visited) {
if (visited->IsBitSet(block->GetBlockId())) {
return;
}
visited->SetBit(block->GetBlockId());
size_t number_of_successors = block->GetSuccessors().Size();
if (number_of_successors == 0) {
// Nothing to do.
} else if (number_of_successors == 1) {
VisitBlockForLinearization(block->GetSuccessors().Get(0), order, visited);
} else {
DCHECK_EQ(number_of_successors, 2u);
HBasicBlock* first_successor = block->GetSuccessors().Get(0);
HBasicBlock* second_successor = block->GetSuccessors().Get(1);
HLoopInformation* my_loop = block->GetLoopInformation();
HLoopInformation* first_loop = first_successor->GetLoopInformation();
HLoopInformation* second_loop = second_successor->GetLoopInformation();
if (!IsLoop(my_loop)) {
// Nothing to do. Current order is fine.
} else if (IsLoopExit(my_loop, second_loop) && InSameLoop(my_loop, first_loop)) {
// Visit the loop exit first in post order.
std::swap(first_successor, second_successor);
} else if (IsInnerLoop(my_loop, first_loop) && !IsInnerLoop(my_loop, second_loop)) {
// Visit the inner loop last in post order.
std::swap(first_successor, second_successor);
}
VisitBlockForLinearization(first_successor, order, visited);
VisitBlockForLinearization(second_successor, order, visited);
}
order->Add(block);
}
class HLinearOrderIterator : public ValueObject {
public:
explicit HLinearOrderIterator(const GrowableArray<HBasicBlock*>& post_order)
: post_order_(post_order), index_(post_order.Size()) {}
bool Done() const { return index_ == 0; }
HBasicBlock* Current() const { return post_order_.Get(index_ -1); }
void Advance() { --index_; DCHECK_GE(index_, 0U); }
private:
const GrowableArray<HBasicBlock*>& post_order_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
};
void SsaLivenessAnalysis::LinearizeGraph() {
// For simplicity of the implementation, we create post linear order. The order for
// computing live ranges is the reverse of that order.
ArenaBitVector visited(graph_.GetArena(), graph_.GetBlocks().Size(), false);
VisitBlockForLinearization(graph_.GetEntryBlock(), &linear_post_order_, &visited);
}
void SsaLivenessAnalysis::NumberInstructions() {
int ssa_index = 0;
for (HLinearOrderIterator it(linear_post_order_); !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
if (current->HasUses()) {
current->SetSsaIndex(ssa_index++);
}
}
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
if (current->HasUses()) {
current->SetSsaIndex(ssa_index++);
}
}
}
number_of_ssa_values_ = ssa_index;
}
void SsaLivenessAnalysis::ComputeSets() {
for (HLinearOrderIterator it(linear_post_order_); !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
block_infos_.Put(
block->GetBlockId(),
new (graph_.GetArena()) BlockInfo(graph_.GetArena(), *block, number_of_ssa_values_));
}
// Compute the initial live_in, live_out, and kill sets. This method does not handle
// backward branches, therefore live_in and live_out sets are not yet correct.
ComputeInitialSets();
// Do a fixed point calculation to take into account backward branches,
// that will update live_in of loop headers, and therefore live_out and live_in
// of blocks in the loop.
ComputeLiveInAndLiveOutSets();
}
void SsaLivenessAnalysis::ComputeInitialSets() {
// Do a post orderr visit, adding inputs of instructions live in the block where
// that instruction is defined, and killing instructions that are being visited.
for (HPostOrderIterator it(graph_); !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
BitVector* kill = GetKillSet(*block);
BitVector* live_in = GetLiveInSet(*block);
for (HBackwardInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
if (current->HasSsaIndex()) {
kill->SetBit(current->GetSsaIndex());
live_in->ClearBit(current->GetSsaIndex());
}
// All inputs of an instruction must be live.
for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
DCHECK(current->InputAt(i)->HasSsaIndex());
live_in->SetBit(current->InputAt(i)->GetSsaIndex());
}
if (current->HasEnvironment()) {
// All instructions in the environment must be live.
GrowableArray<HInstruction*>* environment = current->GetEnvironment()->GetVRegs();
for (size_t i = 0, e = environment->Size(); i < e; ++i) {
HInstruction* instruction = environment->Get(i);
if (instruction != nullptr) {
DCHECK(instruction->HasSsaIndex());
live_in->SetBit(instruction->GetSsaIndex());
}
}
}
}
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
if (current->HasSsaIndex()) {
kill->SetBit(current->GetSsaIndex());
live_in->ClearBit(current->GetSsaIndex());
}
// Mark a phi input live_in for its corresponding predecessor.
for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
HInstruction* input = current->InputAt(i);
HBasicBlock* predecessor = block->GetPredecessors().Get(i);
size_t ssa_index = input->GetSsaIndex();
BitVector* predecessor_kill = GetKillSet(*predecessor);
BitVector* predecessor_live_in = GetLiveInSet(*predecessor);
// Phi inputs from a back edge have already been visited. If the back edge
// block defines that input, we should not add it to its live_in.
if (!predecessor_kill->IsBitSet(ssa_index)) {
predecessor_live_in->SetBit(ssa_index);
}
}
}
}
}
void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
bool changed;
do {
changed = false;
for (HPostOrderIterator it(graph_); !it.Done(); it.Advance()) {
const HBasicBlock& block = *it.Current();
// The live_in set depends on the kill set (which does not
// change in this loop), and the live_out set. If the live_out
// set does not change, there is no need to update the live_in set.
if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
changed = true;
}
}
} while (changed);
}
bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
BitVector* live_out = GetLiveOutSet(block);
bool changed = false;
// The live_out set of a block is the union of live_in sets of its successors.
for (size_t i = 0, e = block.GetSuccessors().Size(); i < e; ++i) {
HBasicBlock* successor = block.GetSuccessors().Get(i);
if (live_out->Union(GetLiveInSet(*successor))) {
changed = true;
}
}
return changed;
}
bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
BitVector* live_out = GetLiveOutSet(block);
BitVector* kill = GetKillSet(block);
BitVector* live_in = GetLiveInSet(block);
// If live_out is updated (because of backward branches), we need to make
// sure instructions in live_out are also in live_in, unless they are killed
// by this block.
return live_in->UnionIfNotIn(live_out, kill);
}
} // namespace art