blob: 7100a285a604cc9ff7980df6f3d9509293877086 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "codegen_arm.h"
#include <inttypes.h>
#include <string>
#include "backend_arm.h"
#include "dex/compiler_internals.h"
#include "dex/quick/mir_to_lir-inl.h"
namespace art {
#ifdef ARM_R4_SUSPEND_FLAG
static constexpr RegStorage core_regs_arr[] =
{rs_r0, rs_r1, rs_r2, rs_r3, rs_rARM_SUSPEND, rs_r5, rs_r6, rs_r7, rs_r8, rs_rARM_SELF,
rs_r10, rs_r11, rs_r12, rs_rARM_SP, rs_rARM_LR, rs_rARM_PC};
#else
static constexpr RegStorage core_regs_arr[] =
{rs_r0, rs_r1, rs_r2, rs_r3, rs_r4, rs_r5, rs_r6, rs_r7, rs_r8, rs_rARM_SELF,
rs_r10, rs_r11, rs_r12, rs_rARM_SP, rs_rARM_LR, rs_rARM_PC};
#endif
static constexpr RegStorage sp_regs_arr[] =
{rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, rs_fr8, rs_fr9, rs_fr10,
rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15, rs_fr16, rs_fr17, rs_fr18, rs_fr19, rs_fr20,
rs_fr21, rs_fr22, rs_fr23, rs_fr24, rs_fr25, rs_fr26, rs_fr27, rs_fr28, rs_fr29, rs_fr30,
rs_fr31};
static constexpr RegStorage dp_regs_arr[] =
{rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, rs_dr8, rs_dr9, rs_dr10,
rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15};
#ifdef ARM_R4_SUSPEND_FLAG
static constexpr RegStorage reserved_regs_arr[] =
{rs_rARM_SUSPEND, rs_rARM_SELF, rs_rARM_SP, rs_rARM_LR, rs_rARM_PC};
static constexpr RegStorage core_temps_arr[] = {rs_r0, rs_r1, rs_r2, rs_r3, rs_r12};
#else
static constexpr RegStorage reserved_regs_arr[] =
{rs_rARM_SELF, rs_rARM_SP, rs_rARM_LR, rs_rARM_PC};
static constexpr RegStorage core_temps_arr[] = {rs_r0, rs_r1, rs_r2, rs_r3, rs_r4, rs_r12};
#endif
static constexpr RegStorage sp_temps_arr[] =
{rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, rs_fr8, rs_fr9, rs_fr10,
rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15};
static constexpr RegStorage dp_temps_arr[] =
{rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7};
static constexpr ArrayRef<const RegStorage> empty_pool;
static constexpr ArrayRef<const RegStorage> core_regs(core_regs_arr);
static constexpr ArrayRef<const RegStorage> sp_regs(sp_regs_arr);
static constexpr ArrayRef<const RegStorage> dp_regs(dp_regs_arr);
static constexpr ArrayRef<const RegStorage> reserved_regs(reserved_regs_arr);
static constexpr ArrayRef<const RegStorage> core_temps(core_temps_arr);
static constexpr ArrayRef<const RegStorage> sp_temps(sp_temps_arr);
static constexpr ArrayRef<const RegStorage> dp_temps(dp_temps_arr);
RegLocation ArmMir2Lir::LocCReturn() {
return arm_loc_c_return;
}
RegLocation ArmMir2Lir::LocCReturnRef() {
return arm_loc_c_return;
}
RegLocation ArmMir2Lir::LocCReturnWide() {
return arm_loc_c_return_wide;
}
RegLocation ArmMir2Lir::LocCReturnFloat() {
return arm_loc_c_return_float;
}
RegLocation ArmMir2Lir::LocCReturnDouble() {
return arm_loc_c_return_double;
}
// Return a target-dependent special register.
RegStorage ArmMir2Lir::TargetReg(SpecialTargetRegister reg) {
RegStorage res_reg;
switch (reg) {
case kSelf: res_reg = rs_rARM_SELF; break;
#ifdef ARM_R4_SUSPEND_FLAG
case kSuspend: res_reg = rs_rARM_SUSPEND; break;
#else
case kSuspend: res_reg = RegStorage::InvalidReg(); break;
#endif
case kLr: res_reg = rs_rARM_LR; break;
case kPc: res_reg = rs_rARM_PC; break;
case kSp: res_reg = rs_rARM_SP; break;
case kArg0: res_reg = rs_r0; break;
case kArg1: res_reg = rs_r1; break;
case kArg2: res_reg = rs_r2; break;
case kArg3: res_reg = rs_r3; break;
case kFArg0: res_reg = kArm32QuickCodeUseSoftFloat ? rs_r0 : rs_fr0; break;
case kFArg1: res_reg = kArm32QuickCodeUseSoftFloat ? rs_r1 : rs_fr1; break;
case kFArg2: res_reg = kArm32QuickCodeUseSoftFloat ? rs_r2 : rs_fr2; break;
case kFArg3: res_reg = kArm32QuickCodeUseSoftFloat ? rs_r3 : rs_fr3; break;
case kFArg4: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr4; break;
case kFArg5: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr5; break;
case kFArg6: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr6; break;
case kFArg7: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr7; break;
case kFArg8: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr8; break;
case kFArg9: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr9; break;
case kFArg10: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr10; break;
case kFArg11: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr11; break;
case kFArg12: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr12; break;
case kFArg13: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr13; break;
case kFArg14: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr14; break;
case kFArg15: res_reg = kArm32QuickCodeUseSoftFloat ? RegStorage::InvalidReg() : rs_fr15; break;
case kRet0: res_reg = rs_r0; break;
case kRet1: res_reg = rs_r1; break;
case kInvokeTgt: res_reg = rs_rARM_LR; break;
case kHiddenArg: res_reg = rs_r12; break;
case kHiddenFpArg: res_reg = RegStorage::InvalidReg(); break;
case kCount: res_reg = RegStorage::InvalidReg(); break;
default: res_reg = RegStorage::InvalidReg();
}
return res_reg;
}
/*
* Decode the register id.
*/
ResourceMask ArmMir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
return GetRegMaskArm(reg);
}
constexpr ResourceMask ArmMir2Lir::GetRegMaskArm(RegStorage reg) {
return reg.IsDouble()
/* Each double register is equal to a pair of single-precision FP registers */
? ResourceMask::TwoBits(reg.GetRegNum() * 2 + kArmFPReg0)
: ResourceMask::Bit(reg.IsSingle() ? reg.GetRegNum() + kArmFPReg0 : reg.GetRegNum());
}
constexpr ResourceMask ArmMir2Lir::EncodeArmRegList(int reg_list) {
return ResourceMask::RawMask(static_cast<uint64_t >(reg_list), 0u);
}
constexpr ResourceMask ArmMir2Lir::EncodeArmRegFpcsList(int reg_list) {
return ResourceMask::RawMask(static_cast<uint64_t >(reg_list) << kArmFPReg16, 0u);
}
ResourceMask ArmMir2Lir::GetPCUseDefEncoding() const {
return ResourceMask::Bit(kArmRegPC);
}
// Thumb2 specific setup. TODO: inline?:
void ArmMir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
ResourceMask* use_mask, ResourceMask* def_mask) {
DCHECK_EQ(cu_->instruction_set, kThumb2);
DCHECK(!lir->flags.use_def_invalid);
int opcode = lir->opcode;
// These flags are somewhat uncommon - bypass if we can.
if ((flags & (REG_DEF_SP | REG_USE_SP | REG_DEF_LIST0 | REG_DEF_LIST1 |
REG_DEF_FPCS_LIST0 | REG_DEF_FPCS_LIST2 | REG_USE_PC | IS_IT | REG_USE_LIST0 |
REG_USE_LIST1 | REG_USE_FPCS_LIST0 | REG_USE_FPCS_LIST2 | REG_DEF_LR)) != 0) {
if (flags & REG_DEF_SP) {
def_mask->SetBit(kArmRegSP);
}
if (flags & REG_USE_SP) {
use_mask->SetBit(kArmRegSP);
}
if (flags & REG_DEF_LIST0) {
def_mask->SetBits(EncodeArmRegList(lir->operands[0]));
}
if (flags & REG_DEF_LIST1) {
def_mask->SetBits(EncodeArmRegList(lir->operands[1]));
}
if (flags & REG_DEF_FPCS_LIST0) {
def_mask->SetBits(EncodeArmRegList(lir->operands[0]));
}
if (flags & REG_DEF_FPCS_LIST2) {
for (int i = 0; i < lir->operands[2]; i++) {
SetupRegMask(def_mask, lir->operands[1] + i);
}
}
if (flags & REG_USE_PC) {
use_mask->SetBit(kArmRegPC);
}
/* Conservatively treat the IT block */
if (flags & IS_IT) {
*def_mask = kEncodeAll;
}
if (flags & REG_USE_LIST0) {
use_mask->SetBits(EncodeArmRegList(lir->operands[0]));
}
if (flags & REG_USE_LIST1) {
use_mask->SetBits(EncodeArmRegList(lir->operands[1]));
}
if (flags & REG_USE_FPCS_LIST0) {
use_mask->SetBits(EncodeArmRegList(lir->operands[0]));
}
if (flags & REG_USE_FPCS_LIST2) {
for (int i = 0; i < lir->operands[2]; i++) {
SetupRegMask(use_mask, lir->operands[1] + i);
}
}
/* Fixup for kThumbPush/lr and kThumbPop/pc */
if (opcode == kThumbPush || opcode == kThumbPop) {
constexpr ResourceMask r8Mask = GetRegMaskArm(rs_r8);
if ((opcode == kThumbPush) && (use_mask->Intersects(r8Mask))) {
use_mask->ClearBits(r8Mask);
use_mask->SetBit(kArmRegLR);
} else if ((opcode == kThumbPop) && (def_mask->Intersects(r8Mask))) {
def_mask->ClearBits(r8Mask);
def_mask->SetBit(kArmRegPC);;
}
}
if (flags & REG_DEF_LR) {
def_mask->SetBit(kArmRegLR);
}
}
}
ArmConditionCode ArmMir2Lir::ArmConditionEncoding(ConditionCode ccode) {
ArmConditionCode res;
switch (ccode) {
case kCondEq: res = kArmCondEq; break;
case kCondNe: res = kArmCondNe; break;
case kCondCs: res = kArmCondCs; break;
case kCondCc: res = kArmCondCc; break;
case kCondUlt: res = kArmCondCc; break;
case kCondUge: res = kArmCondCs; break;
case kCondMi: res = kArmCondMi; break;
case kCondPl: res = kArmCondPl; break;
case kCondVs: res = kArmCondVs; break;
case kCondVc: res = kArmCondVc; break;
case kCondHi: res = kArmCondHi; break;
case kCondLs: res = kArmCondLs; break;
case kCondGe: res = kArmCondGe; break;
case kCondLt: res = kArmCondLt; break;
case kCondGt: res = kArmCondGt; break;
case kCondLe: res = kArmCondLe; break;
case kCondAl: res = kArmCondAl; break;
case kCondNv: res = kArmCondNv; break;
default:
LOG(FATAL) << "Bad condition code " << ccode;
res = static_cast<ArmConditionCode>(0); // Quiet gcc
}
return res;
}
static const char* core_reg_names[16] = {
"r0",
"r1",
"r2",
"r3",
"r4",
"r5",
"r6",
"r7",
"r8",
"rSELF",
"r10",
"r11",
"r12",
"sp",
"lr",
"pc",
};
static const char* shift_names[4] = {
"lsl",
"lsr",
"asr",
"ror"};
/* Decode and print a ARM register name */
static char* DecodeRegList(int opcode, int vector, char* buf, size_t buf_size) {
int i;
bool printed = false;
buf[0] = 0;
for (i = 0; i < 16; i++, vector >>= 1) {
if (vector & 0x1) {
int reg_id = i;
if (opcode == kThumbPush && i == 8) {
reg_id = rs_rARM_LR.GetRegNum();
} else if (opcode == kThumbPop && i == 8) {
reg_id = rs_rARM_PC.GetRegNum();
}
if (printed) {
snprintf(buf + strlen(buf), buf_size - strlen(buf), ", r%d", reg_id);
} else {
printed = true;
snprintf(buf, buf_size, "r%d", reg_id);
}
}
}
return buf;
}
static char* DecodeFPCSRegList(int count, int base, char* buf, size_t buf_size) {
snprintf(buf, buf_size, "s%d", base);
for (int i = 1; i < count; i++) {
snprintf(buf + strlen(buf), buf_size - strlen(buf), ", s%d", base + i);
}
return buf;
}
static int32_t ExpandImmediate(int value) {
int32_t mode = (value & 0xf00) >> 8;
uint32_t bits = value & 0xff;
switch (mode) {
case 0:
return bits;
case 1:
return (bits << 16) | bits;
case 2:
return (bits << 24) | (bits << 8);
case 3:
return (bits << 24) | (bits << 16) | (bits << 8) | bits;
default:
break;
}
bits = (bits | 0x80) << 24;
return bits >> (((value & 0xf80) >> 7) - 8);
}
const char* cc_names[] = {"eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
"hi", "ls", "ge", "lt", "gt", "le", "al", "nv"};
/*
* Interpret a format string and build a string no longer than size
* See format key in Assemble.c.
*/
std::string ArmMir2Lir::BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) {
std::string buf;
int i;
const char* fmt_end = &fmt[strlen(fmt)];
char tbuf[256];
const char* name;
char nc;
while (fmt < fmt_end) {
int operand;
if (*fmt == '!') {
fmt++;
DCHECK_LT(fmt, fmt_end);
nc = *fmt++;
if (nc == '!') {
strcpy(tbuf, "!");
} else {
DCHECK_LT(fmt, fmt_end);
DCHECK_LT(static_cast<unsigned>(nc-'0'), 4U);
operand = lir->operands[nc-'0'];
switch (*fmt++) {
case 'H':
if (operand != 0) {
snprintf(tbuf, arraysize(tbuf), ", %s %d", shift_names[operand & 0x3], operand >> 2);
} else {
strcpy(tbuf, "");
}
break;
case 'B':
switch (operand) {
case kSY:
name = "sy";
break;
case kST:
name = "st";
break;
case kISH:
name = "ish";
break;
case kISHST:
name = "ishst";
break;
case kNSH:
name = "nsh";
break;
case kNSHST:
name = "shst";
break;
default:
name = "DecodeError2";
break;
}
strcpy(tbuf, name);
break;
case 'b':
strcpy(tbuf, "0000");
for (i = 3; i >= 0; i--) {
tbuf[i] += operand & 1;
operand >>= 1;
}
break;
case 'n':
operand = ~ExpandImmediate(operand);
snprintf(tbuf, arraysize(tbuf), "%d [%#x]", operand, operand);
break;
case 'm':
operand = ExpandImmediate(operand);
snprintf(tbuf, arraysize(tbuf), "%d [%#x]", operand, operand);
break;
case 's':
snprintf(tbuf, arraysize(tbuf), "s%d", RegStorage::RegNum(operand));
break;
case 'S':
snprintf(tbuf, arraysize(tbuf), "d%d", RegStorage::RegNum(operand));
break;
case 'h':
snprintf(tbuf, arraysize(tbuf), "%04x", operand);
break;
case 'M':
case 'd':
snprintf(tbuf, arraysize(tbuf), "%d", operand);
break;
case 'C':
operand = RegStorage::RegNum(operand);
DCHECK_LT(operand, static_cast<int>(
sizeof(core_reg_names)/sizeof(core_reg_names[0])));
snprintf(tbuf, arraysize(tbuf), "%s", core_reg_names[operand]);
break;
case 'E':
snprintf(tbuf, arraysize(tbuf), "%d", operand*4);
break;
case 'F':
snprintf(tbuf, arraysize(tbuf), "%d", operand*2);
break;
case 'c':
strcpy(tbuf, cc_names[operand]);
break;
case 't':
snprintf(tbuf, arraysize(tbuf), "0x%08" PRIxPTR " (L%p)",
reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4 + (operand << 1),
lir->target);
break;
case 'T':
snprintf(tbuf, arraysize(tbuf), "%s", PrettyMethod(
static_cast<uint32_t>(lir->operands[1]),
*reinterpret_cast<const DexFile*>(UnwrapPointer(lir->operands[2]))).c_str());
break;
case 'u': {
int offset_1 = lir->operands[0];
int offset_2 = NEXT_LIR(lir)->operands[0];
uintptr_t target =
(((reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4) &
~3) + (offset_1 << 21 >> 9) + (offset_2 << 1)) &
0xfffffffc;
snprintf(tbuf, arraysize(tbuf), "%p", reinterpret_cast<void *>(target));
break;
}
/* Nothing to print for BLX_2 */
case 'v':
strcpy(tbuf, "see above");
break;
case 'R':
DecodeRegList(lir->opcode, operand, tbuf, arraysize(tbuf));
break;
case 'P':
DecodeFPCSRegList(operand, 16, tbuf, arraysize(tbuf));
break;
case 'Q':
DecodeFPCSRegList(operand, 0, tbuf, arraysize(tbuf));
break;
default:
strcpy(tbuf, "DecodeError1");
break;
}
buf += tbuf;
}
} else {
buf += *fmt++;
}
}
return buf;
}
void ArmMir2Lir::DumpResourceMask(LIR* arm_lir, const ResourceMask& mask, const char* prefix) {
char buf[256];
buf[0] = 0;
if (mask.Equals(kEncodeAll)) {
strcpy(buf, "all");
} else {
char num[8];
int i;
for (i = 0; i < kArmRegEnd; i++) {
if (mask.HasBit(i)) {
snprintf(num, arraysize(num), "%d ", i);
strcat(buf, num);
}
}
if (mask.HasBit(ResourceMask::kCCode)) {
strcat(buf, "cc ");
}
if (mask.HasBit(ResourceMask::kFPStatus)) {
strcat(buf, "fpcc ");
}
/* Memory bits */
if (arm_lir && (mask.HasBit(ResourceMask::kDalvikReg))) {
snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
DECODE_ALIAS_INFO_REG(arm_lir->flags.alias_info),
DECODE_ALIAS_INFO_WIDE(arm_lir->flags.alias_info) ? "(+1)" : "");
}
if (mask.HasBit(ResourceMask::kLiteral)) {
strcat(buf, "lit ");
}
if (mask.HasBit(ResourceMask::kHeapRef)) {
strcat(buf, "heap ");
}
if (mask.HasBit(ResourceMask::kMustNotAlias)) {
strcat(buf, "noalias ");
}
}
if (buf[0]) {
LOG(INFO) << prefix << ": " << buf;
}
}
bool ArmMir2Lir::IsUnconditionalBranch(LIR* lir) {
return ((lir->opcode == kThumbBUncond) || (lir->opcode == kThumb2BUncond));
}
RegisterClass ArmMir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
if (UNLIKELY(is_volatile)) {
// On arm, atomic 64-bit load/store requires a core register pair.
// Smaller aligned load/store is atomic for both core and fp registers.
if (size == k64 || size == kDouble) {
return kCoreReg;
}
}
return RegClassBySize(size);
}
ArmMir2Lir::ArmMir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
: Mir2Lir(cu, mir_graph, arena),
call_method_insns_(arena->Adapter()) {
call_method_insns_.reserve(100);
// Sanity check - make sure encoding map lines up.
for (int i = 0; i < kArmLast; i++) {
if (ArmMir2Lir::EncodingMap[i].opcode != i) {
LOG(FATAL) << "Encoding order for " << ArmMir2Lir::EncodingMap[i].name
<< " is wrong: expecting " << i << ", seeing "
<< static_cast<int>(ArmMir2Lir::EncodingMap[i].opcode);
}
}
}
Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena) {
return new ArmMir2Lir(cu, mir_graph, arena);
}
void ArmMir2Lir::CompilerInitializeRegAlloc() {
reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs, empty_pool /* core64 */,
sp_regs, dp_regs,
reserved_regs, empty_pool /* reserved64 */,
core_temps, empty_pool /* core64_temps */,
sp_temps, dp_temps));
// Target-specific adjustments.
// Alias single precision floats to appropriate half of overlapping double.
for (RegisterInfo* info : reg_pool_->sp_regs_) {
int sp_reg_num = info->GetReg().GetRegNum();
int dp_reg_num = sp_reg_num >> 1;
RegStorage dp_reg = RegStorage::Solo64(RegStorage::kFloatingPoint | dp_reg_num);
RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
// Double precision register's master storage should refer to itself.
DCHECK_EQ(dp_reg_info, dp_reg_info->Master());
// Redirect single precision's master storage to master.
info->SetMaster(dp_reg_info);
// Singles should show a single 32-bit mask bit, at first referring to the low half.
DCHECK_EQ(info->StorageMask(), RegisterInfo::kLowSingleStorageMask);
if (sp_reg_num & 1) {
// For odd singles, change to use the high word of the backing double.
info->SetStorageMask(RegisterInfo::kHighSingleStorageMask);
}
}
#ifdef ARM_R4_SUSPEND_FLAG
// TODO: re-enable this when we can safely save r4 over the suspension code path.
bool no_suspend = NO_SUSPEND; // || !Runtime::Current()->ExplicitSuspendChecks();
if (no_suspend) {
GetRegInfo(rs_rARM_SUSPEND)->MarkFree();
}
#endif
// Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
// TODO: adjust when we roll to hard float calling convention.
reg_pool_->next_core_reg_ = 2;
reg_pool_->next_sp_reg_ = 0;
reg_pool_->next_dp_reg_ = 0;
}
/*
* TUNING: is true leaf? Can't just use METHOD_IS_LEAF to determine as some
* instructions might call out to C/assembly helper functions. Until
* machinery is in place, always spill lr.
*/
void ArmMir2Lir::AdjustSpillMask() {
core_spill_mask_ |= (1 << rs_rARM_LR.GetRegNum());
num_core_spills_++;
}
/*
* Mark a callee-save fp register as promoted. Note that
* vpush/vpop uses contiguous register lists so we must
* include any holes in the mask. Associate holes with
* Dalvik register INVALID_VREG (0xFFFFU).
*/
void ArmMir2Lir::MarkPreservedSingle(int v_reg, RegStorage reg) {
DCHECK_GE(reg.GetRegNum(), ARM_FP_CALLEE_SAVE_BASE);
int adjusted_reg_num = reg.GetRegNum() - ARM_FP_CALLEE_SAVE_BASE;
// Ensure fp_vmap_table is large enough
int table_size = fp_vmap_table_.size();
for (int i = table_size; i < (adjusted_reg_num + 1); i++) {
fp_vmap_table_.push_back(INVALID_VREG);
}
// Add the current mapping
fp_vmap_table_[adjusted_reg_num] = v_reg;
// Size of fp_vmap_table is high-water mark, use to set mask
num_fp_spills_ = fp_vmap_table_.size();
fp_spill_mask_ = ((1 << num_fp_spills_) - 1) << ARM_FP_CALLEE_SAVE_BASE;
}
void ArmMir2Lir::MarkPreservedDouble(int v_reg, RegStorage reg) {
// TEMP: perform as 2 singles.
int reg_num = reg.GetRegNum() << 1;
RegStorage lo = RegStorage::Solo32(RegStorage::kFloatingPoint | reg_num);
RegStorage hi = RegStorage::Solo32(RegStorage::kFloatingPoint | reg_num | 1);
MarkPreservedSingle(v_reg, lo);
MarkPreservedSingle(v_reg + 1, hi);
}
/* Clobber all regs that might be used by an external C call */
void ArmMir2Lir::ClobberCallerSave() {
// TODO: rework this - it's gotten even more ugly.
Clobber(rs_r0);
Clobber(rs_r1);
Clobber(rs_r2);
Clobber(rs_r3);
Clobber(rs_r12);
Clobber(rs_r14lr);
Clobber(rs_fr0);
Clobber(rs_fr1);
Clobber(rs_fr2);
Clobber(rs_fr3);
Clobber(rs_fr4);
Clobber(rs_fr5);
Clobber(rs_fr6);
Clobber(rs_fr7);
Clobber(rs_fr8);
Clobber(rs_fr9);
Clobber(rs_fr10);
Clobber(rs_fr11);
Clobber(rs_fr12);
Clobber(rs_fr13);
Clobber(rs_fr14);
Clobber(rs_fr15);
Clobber(rs_dr0);
Clobber(rs_dr1);
Clobber(rs_dr2);
Clobber(rs_dr3);
Clobber(rs_dr4);
Clobber(rs_dr5);
Clobber(rs_dr6);
Clobber(rs_dr7);
}
RegLocation ArmMir2Lir::GetReturnWideAlt() {
RegLocation res = LocCReturnWide();
res.reg.SetLowReg(rs_r2.GetReg());
res.reg.SetHighReg(rs_r3.GetReg());
Clobber(rs_r2);
Clobber(rs_r3);
MarkInUse(rs_r2);
MarkInUse(rs_r3);
MarkWide(res.reg);
return res;
}
RegLocation ArmMir2Lir::GetReturnAlt() {
RegLocation res = LocCReturn();
res.reg.SetReg(rs_r1.GetReg());
Clobber(rs_r1);
MarkInUse(rs_r1);
return res;
}
/* To be used when explicitly managing register use */
void ArmMir2Lir::LockCallTemps() {
LockTemp(rs_r0);
LockTemp(rs_r1);
LockTemp(rs_r2);
LockTemp(rs_r3);
if (!kArm32QuickCodeUseSoftFloat) {
LockTemp(rs_fr0);
LockTemp(rs_fr1);
LockTemp(rs_fr2);
LockTemp(rs_fr3);
LockTemp(rs_fr4);
LockTemp(rs_fr5);
LockTemp(rs_fr6);
LockTemp(rs_fr7);
LockTemp(rs_fr8);
LockTemp(rs_fr9);
LockTemp(rs_fr10);
LockTemp(rs_fr11);
LockTemp(rs_fr12);
LockTemp(rs_fr13);
LockTemp(rs_fr14);
LockTemp(rs_fr15);
LockTemp(rs_dr0);
LockTemp(rs_dr1);
LockTemp(rs_dr2);
LockTemp(rs_dr3);
LockTemp(rs_dr4);
LockTemp(rs_dr5);
LockTemp(rs_dr6);
LockTemp(rs_dr7);
}
}
/* To be used when explicitly managing register use */
void ArmMir2Lir::FreeCallTemps() {
FreeTemp(rs_r0);
FreeTemp(rs_r1);
FreeTemp(rs_r2);
FreeTemp(rs_r3);
if (!kArm32QuickCodeUseSoftFloat) {
FreeTemp(rs_fr0);
FreeTemp(rs_fr1);
FreeTemp(rs_fr2);
FreeTemp(rs_fr3);
FreeTemp(rs_fr4);
FreeTemp(rs_fr5);
FreeTemp(rs_fr6);
FreeTemp(rs_fr7);
FreeTemp(rs_fr8);
FreeTemp(rs_fr9);
FreeTemp(rs_fr10);
FreeTemp(rs_fr11);
FreeTemp(rs_fr12);
FreeTemp(rs_fr13);
FreeTemp(rs_fr14);
FreeTemp(rs_fr15);
FreeTemp(rs_dr0);
FreeTemp(rs_dr1);
FreeTemp(rs_dr2);
FreeTemp(rs_dr3);
FreeTemp(rs_dr4);
FreeTemp(rs_dr5);
FreeTemp(rs_dr6);
FreeTemp(rs_dr7);
}
}
RegStorage ArmMir2Lir::LoadHelper(QuickEntrypointEnum trampoline) {
LoadWordDisp(rs_rARM_SELF, GetThreadOffset<4>(trampoline).Int32Value(), rs_rARM_LR);
return rs_rARM_LR;
}
LIR* ArmMir2Lir::CheckSuspendUsingLoad() {
RegStorage tmp = rs_r0;
Load32Disp(rs_rARM_SELF, Thread::ThreadSuspendTriggerOffset<4>().Int32Value(), tmp);
LIR* load2 = Load32Disp(tmp, 0, tmp);
return load2;
}
uint64_t ArmMir2Lir::GetTargetInstFlags(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return ArmMir2Lir::EncodingMap[opcode].flags;
}
const char* ArmMir2Lir::GetTargetInstName(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return ArmMir2Lir::EncodingMap[opcode].name;
}
const char* ArmMir2Lir::GetTargetInstFmt(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return ArmMir2Lir::EncodingMap[opcode].fmt;
}
/*
* Somewhat messy code here. We want to allocate a pair of contiguous
* physical single-precision floating point registers starting with
* an even numbered reg. It is possible that the paired s_reg (s_reg+1)
* has already been allocated - try to fit if possible. Fail to
* allocate if we can't meet the requirements for the pair of
* s_reg<=sX[even] & (s_reg+1)<= sX+1.
*/
// TODO: needs rewrite to support non-backed 64-bit float regs.
RegStorage ArmMir2Lir::AllocPreservedDouble(int s_reg) {
RegStorage res;
int v_reg = mir_graph_->SRegToVReg(s_reg);
int p_map_idx = SRegToPMap(s_reg);
if (promotion_map_[p_map_idx+1].fp_location == kLocPhysReg) {
// Upper reg is already allocated. Can we fit?
int high_reg = promotion_map_[p_map_idx+1].fp_reg;
if ((high_reg & 1) == 0) {
// High reg is even - fail.
return res; // Invalid.
}
// Is the low reg of the pair free?
// FIXME: rework.
RegisterInfo* p = GetRegInfo(RegStorage::FloatSolo32(high_reg - 1));
if (p->InUse() || p->IsTemp()) {
// Already allocated or not preserved - fail.
return res; // Invalid.
}
// OK - good to go.
res = RegStorage::FloatSolo64(p->GetReg().GetRegNum() >> 1);
p->MarkInUse();
MarkPreservedSingle(v_reg, p->GetReg());
} else {
/*
* TODO: until runtime support is in, make sure we avoid promoting the same vreg to
* different underlying physical registers.
*/
for (RegisterInfo* info : reg_pool_->dp_regs_) {
if (!info->IsTemp() && !info->InUse()) {
res = info->GetReg();
info->MarkInUse();
MarkPreservedDouble(v_reg, info->GetReg());
break;
}
}
}
if (res.Valid()) {
RegisterInfo* info = GetRegInfo(res);
promotion_map_[p_map_idx].fp_location = kLocPhysReg;
promotion_map_[p_map_idx].fp_reg =
info->FindMatchingView(RegisterInfo::kLowSingleStorageMask)->GetReg().GetReg();
promotion_map_[p_map_idx+1].fp_location = kLocPhysReg;
promotion_map_[p_map_idx+1].fp_reg =
info->FindMatchingView(RegisterInfo::kHighSingleStorageMask)->GetReg().GetReg();
}
return res;
}
// Reserve a callee-save sp single register.
RegStorage ArmMir2Lir::AllocPreservedSingle(int s_reg) {
RegStorage res;
for (RegisterInfo* info : reg_pool_->sp_regs_) {
if (!info->IsTemp() && !info->InUse()) {
res = info->GetReg();
int p_map_idx = SRegToPMap(s_reg);
int v_reg = mir_graph_->SRegToVReg(s_reg);
GetRegInfo(res)->MarkInUse();
MarkPreservedSingle(v_reg, res);
promotion_map_[p_map_idx].fp_location = kLocPhysReg;
promotion_map_[p_map_idx].fp_reg = res.GetReg();
break;
}
}
return res;
}
void ArmMir2Lir::InstallLiteralPools() {
// PC-relative calls to methods.
patches_.reserve(call_method_insns_.size());
for (LIR* p : call_method_insns_) {
DCHECK_EQ(p->opcode, kThumb2Bl);
uint32_t target_method_idx = p->operands[1];
const DexFile* target_dex_file =
reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
patches_.push_back(LinkerPatch::RelativeCodePatch(p->offset,
target_dex_file, target_method_idx));
}
// And do the normal processing.
Mir2Lir::InstallLiteralPools();
}
RegStorage ArmMir2Lir::InToRegStorageArmMapper::GetNextReg(bool is_double_or_float, bool is_wide) {
const RegStorage coreArgMappingToPhysicalReg[] =
{rs_r1, rs_r2, rs_r3};
const int coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg);
const RegStorage fpArgMappingToPhysicalReg[] =
{rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15};
const uint32_t fpArgMappingToPhysicalRegSize = arraysize(fpArgMappingToPhysicalReg);
COMPILE_ASSERT(fpArgMappingToPhysicalRegSize % 2 == 0, knum_of_fp_arg_regs_not_even);
if (kArm32QuickCodeUseSoftFloat) {
is_double_or_float = false; // Regard double as long, float as int.
is_wide = false; // Map long separately.
}
RegStorage result = RegStorage::InvalidReg();
if (is_double_or_float) {
// TODO: Remove "cur_fp_double_reg_ % 2 != 0" when we return double as double.
if (is_wide || cur_fp_double_reg_ % 2 != 0) {
cur_fp_double_reg_ = std::max(cur_fp_double_reg_, RoundUp(cur_fp_reg_, 2));
if (cur_fp_double_reg_ < fpArgMappingToPhysicalRegSize) {
// TODO: Replace by following code in the branch when FlushIns() support 64-bit registers.
// result = RegStorage::MakeRegPair(fpArgMappingToPhysicalReg[cur_fp_double_reg_],
// fpArgMappingToPhysicalReg[cur_fp_double_reg_ + 1]);
// result = As64BitFloatReg(result);
// cur_fp_double_reg_ += 2;
result = fpArgMappingToPhysicalReg[cur_fp_double_reg_];
cur_fp_double_reg_++;
}
} else {
// TODO: Remove the check when we return double as double.
DCHECK_EQ(cur_fp_double_reg_ % 2, 0U);
if (cur_fp_reg_ % 2 == 0) {
cur_fp_reg_ = std::max(cur_fp_double_reg_, cur_fp_reg_);
}
if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
result = fpArgMappingToPhysicalReg[cur_fp_reg_];
cur_fp_reg_++;
}
}
} else {
if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
result = coreArgMappingToPhysicalReg[cur_core_reg_++];
// TODO: Enable following code when FlushIns() support 64-bit registers.
// if (is_wide && cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
// result = RegStorage::MakeRegPair(result, coreArgMappingToPhysicalReg[cur_core_reg_++]);
// }
}
}
return result;
}
RegStorage ArmMir2Lir::InToRegStorageMapping::Get(int in_position) const {
DCHECK(IsInitialized());
auto res = mapping_.find(in_position);
return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
}
void ArmMir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count,
InToRegStorageMapper* mapper) {
DCHECK(mapper != nullptr);
max_mapped_in_ = -1;
is_there_stack_mapped_ = false;
for (int in_position = 0; in_position < count; in_position++) {
RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp,
arg_locs[in_position].wide);
if (reg.Valid()) {
mapping_[in_position] = reg;
// TODO: Enable the following code when FlushIns() support 64-bit argument registers.
// if (arg_locs[in_position].wide) {
// if (reg.Is32Bit()) {
// // As it is a split long, the hi-part is on stack.
// is_there_stack_mapped_ = true;
// }
// // We covered 2 v-registers, so skip the next one
// in_position++;
// }
max_mapped_in_ = std::max(max_mapped_in_, in_position);
} else {
is_there_stack_mapped_ = true;
}
}
initialized_ = true;
}
// TODO: Should be able to return long, double registers.
// Need check some common code as it will break some assumption.
RegStorage ArmMir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
if (!in_to_reg_storage_mapping_.IsInitialized()) {
int start_vreg = mir_graph_->GetFirstInVR();
RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
InToRegStorageArmMapper mapper;
in_to_reg_storage_mapping_.Initialize(arg_locs, mir_graph_->GetNumOfInVRs(), &mapper);
}
return in_to_reg_storage_mapping_.Get(arg_num);
}
int ArmMir2Lir::GenDalvikArgsNoRange(CallInfo* info,
int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx, uintptr_t direct_code,
uintptr_t direct_method, InvokeType type, bool skip_this) {
if (kArm32QuickCodeUseSoftFloat) {
return Mir2Lir::GenDalvikArgsNoRange(info, call_state, pcrLabel, next_call_insn, target_method,
vtable_idx, direct_code, direct_method, type, skip_this);
} else {
return GenDalvikArgsRange(info, call_state, pcrLabel, next_call_insn, target_method, vtable_idx,
direct_code, direct_method, type, skip_this);
}
}
int ArmMir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
LIR** pcrLabel, NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx, uintptr_t direct_code,
uintptr_t direct_method, InvokeType type, bool skip_this) {
if (kArm32QuickCodeUseSoftFloat) {
return Mir2Lir::GenDalvikArgsRange(info, call_state, pcrLabel, next_call_insn, target_method,
vtable_idx, direct_code, direct_method, type, skip_this);
}
// TODO: Rework the implementation when argument register can be long or double.
/* If no arguments, just return */
if (info->num_arg_words == 0) {
return call_state;
}
const int start_index = skip_this ? 1 : 0;
InToRegStorageArmMapper mapper;
InToRegStorageMapping in_to_reg_storage_mapping;
in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + 1);
// First of all, check whether it makes sense to use bulk copying.
// Bulk copying is done only for the range case.
// TODO: make a constant instead of 2
if (info->is_range && regs_left_to_pass_via_stack >= 2) {
// Scan the rest of the args - if in phys_reg flush to memory
for (int next_arg = last_mapped_in + 1; next_arg < info->num_arg_words;) {
RegLocation loc = info->args[next_arg];
if (loc.wide) {
// TODO: Only flush hi-part.
if (loc.high_word) {
loc = info->args[--next_arg];
}
loc = UpdateLocWide(loc);
if (loc.location == kLocPhysReg) {
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
}
next_arg += 2;
} else {
loc = UpdateLoc(loc);
if (loc.location == kLocPhysReg) {
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
if (loc.ref) {
StoreRefDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, kNotVolatile);
} else {
StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32,
kNotVolatile);
}
}
next_arg++;
}
}
// The rest can be copied together
int start_offset = SRegOffset(info->args[last_mapped_in + 1].s_reg_low);
int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + 1,
cu_->instruction_set);
int current_src_offset = start_offset;
int current_dest_offset = outs_offset;
// Only davik regs are accessed in this loop; no next_call_insn() calls.
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
while (regs_left_to_pass_via_stack > 0) {
/*
* TODO: Improve by adding block copy for large number of arguments. This
* should be done, if possible, as a target-depending helper. For now, just
* copy a Dalvik vreg at a time.
*/
// Moving 32-bits via general purpose register.
size_t bytes_to_move = sizeof(uint32_t);
// Instead of allocating a new temp, simply reuse one of the registers being used
// for argument passing.
RegStorage temp = TargetReg(kArg3, kNotWide);
// Now load the argument VR and store to the outs.
Load32Disp(TargetPtrReg(kSp), current_src_offset, temp);
Store32Disp(TargetPtrReg(kSp), current_dest_offset, temp);
current_src_offset += bytes_to_move;
current_dest_offset += bytes_to_move;
regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
}
DCHECK_EQ(regs_left_to_pass_via_stack, 0);
}
// Now handle rest not registers if they are
if (in_to_reg_storage_mapping.IsThereStackMapped()) {
RegStorage regWide = TargetReg(kArg2, kWide);
for (int i = start_index; i <= last_mapped_in + regs_left_to_pass_via_stack; i++) {
RegLocation rl_arg = info->args[i];
rl_arg = UpdateRawLoc(rl_arg);
RegStorage reg = in_to_reg_storage_mapping.Get(i);
// TODO: Only pass split wide hi-part via stack.
if (!reg.Valid() || rl_arg.wide) {
int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
{
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
if (rl_arg.wide) {
if (rl_arg.location == kLocPhysReg) {
StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
} else {
LoadValueDirectWideFixed(rl_arg, regWide);
StoreBaseDisp(TargetPtrReg(kSp), out_offset, regWide, k64, kNotVolatile);
}
} else {
if (rl_arg.location == kLocPhysReg) {
if (rl_arg.ref) {
StoreRefDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, kNotVolatile);
} else {
StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k32, kNotVolatile);
}
} else {
if (rl_arg.ref) {
RegStorage regSingle = TargetReg(kArg2, kRef);
LoadValueDirectFixed(rl_arg, regSingle);
StoreRefDisp(TargetPtrReg(kSp), out_offset, regSingle, kNotVolatile);
} else {
RegStorage regSingle = TargetReg(kArg2, kNotWide);
LoadValueDirectFixed(rl_arg, regSingle);
StoreBaseDisp(TargetPtrReg(kSp), out_offset, regSingle, k32, kNotVolatile);
}
}
}
}
call_state = next_call_insn(cu_, info, call_state, target_method,
vtable_idx, direct_code, direct_method, type);
}
if (rl_arg.wide) {
i++;
}
}
}
// Finish with mapped registers
for (int i = start_index; i <= last_mapped_in; i++) {
RegLocation rl_arg = info->args[i];
rl_arg = UpdateRawLoc(rl_arg);
RegStorage reg = in_to_reg_storage_mapping.Get(i);
if (reg.Valid()) {
if (reg.Is64Bit()) {
LoadValueDirectWideFixed(rl_arg, reg);
} else {
// TODO: Only split long should be the case we need to care about.
if (rl_arg.wide) {
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
int high_word = rl_arg.high_word ? 1 : 0;
rl_arg = high_word ? info->args[i - 1] : rl_arg;
if (rl_arg.location == kLocPhysReg) {
RegStorage rs_arg = rl_arg.reg;
if (rs_arg.IsDouble() && rs_arg.Is64BitSolo()) {
rs_arg = As64BitFloatRegPair(rs_arg);
}
RegStorage rs_arg_low = rs_arg.GetLow();
RegStorage rs_arg_high = rs_arg.GetHigh();
OpRegCopy(reg, high_word ? rs_arg_high : rs_arg_low);
} else {
Load32Disp(TargetPtrReg(kSp), SRegOffset(rl_arg.s_reg_low + high_word), reg);
}
} else {
LoadValueDirectFixed(rl_arg, reg);
}
}
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
}
if (reg.Is64Bit()) {
i++;
}
}
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
if (pcrLabel) {
if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
*pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
} else {
*pcrLabel = nullptr;
// In lieu of generating a check for kArg1 being null, we need to
// perform a load when doing implicit checks.
RegStorage tmp = AllocTemp();
Load32Disp(TargetReg(kArg1, kRef), 0, tmp);
MarkPossibleNullPointerException(info->opt_flags);
FreeTemp(tmp);
}
}
return call_state;
}
} // namespace art