blob: 74f83dacb9217e7c89830e735e754e74673fbb54 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "register_line.h"
#include "method_verifier.h"
namespace art {
namespace verifier {
bool RegisterLine::CheckConstructorReturn() const {
for (size_t i = 0; i < num_regs_; i++) {
if (GetRegisterType(i).IsUninitializedThisReference() ||
GetRegisterType(i).IsUnresolvedAndUninitializedThisReference()) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_SOFT)
<< "Constructor returning without calling superclass constructor";
return false;
}
}
return true;
}
bool RegisterLine::SetRegisterType(uint32_t vdst, const RegType& new_type) {
DCHECK_LT(vdst, num_regs_);
if (new_type.IsLowHalf() || new_type.IsHighHalf()) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Expected category1 register type not '"
<< new_type << "'";
return false;
} else if (new_type.IsConflict()) { // should only be set during a merge
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Set register to unknown type " << new_type;
return false;
} else if (verifier_->CanLoadClasses() && !Runtime::Current()->IsCompiler() &&
new_type.IsUnresolvedTypes()) {
// Unresolvable classes at runtime are bad and marked as a rewrite error.
verifier_->Fail(VERIFY_ERROR_NO_CLASS) << "Set register to unresolved class '"
<< new_type << "' at runtime";
return false;
} else {
line_[vdst] = new_type.GetId();
}
// Clear the monitor entry bits for this register.
ClearAllRegToLockDepths(vdst);
return true;
}
bool RegisterLine::SetRegisterTypeWide(uint32_t vdst, const RegType& new_type1,
const RegType& new_type2) {
DCHECK_LT(vdst, num_regs_);
if (!new_type1.CheckWidePair(new_type2)) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Invalid wide pair '"
<< new_type1 << "' '" << new_type2 << "'";
return false;
} else {
line_[vdst] = new_type1.GetId();
line_[vdst + 1] = new_type2.GetId();
}
// Clear the monitor entry bits for this register.
ClearAllRegToLockDepths(vdst);
ClearAllRegToLockDepths(vdst + 1);
return true;
}
void RegisterLine::SetResultTypeToUnknown() {
result_[0] = RegType::kRegTypeUndefined;
result_[1] = RegType::kRegTypeUndefined;
}
void RegisterLine::SetResultRegisterType(const RegType& new_type) {
DCHECK(!new_type.IsLowHalf());
DCHECK(!new_type.IsHighHalf());
result_[0] = new_type.GetId();
result_[1] = RegType::kRegTypeUndefined;
if (new_type.IsLowHalf()) {
DCHECK_EQ(new_type.HighHalf(verifier_->GetRegTypeCache()).GetId(), new_type.GetId() + 1);
result_[1] = new_type.GetId() + 1;
} else {
result_[1] = RegType::kRegTypeUndefined;
}
}
void RegisterLine::SetResultRegisterTypeWide(const RegType& new_type1, const RegType& new_type2) {
DCHECK(new_type1.CheckWidePair(new_type2));
result_[0] = new_type1.GetId();
result_[1] = new_type2.GetId();
}
const RegType& RegisterLine::GetRegisterType(uint32_t vsrc) const {
// The register index was validated during the static pass, so we don't need to check it here.
DCHECK_LT(vsrc, num_regs_);
return verifier_->GetRegTypeCache()->GetFromId(line_[vsrc]);
}
const RegType& RegisterLine::GetInvocationThis(const DecodedInstruction& dec_insn) {
if (dec_insn.vA < 1) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke lacks 'this'";
return verifier_->GetRegTypeCache()->Conflict();
}
/* get the element type of the array held in vsrc */
const RegType& this_type = GetRegisterType(dec_insn.vC);
if (!this_type.IsReferenceTypes()) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "tried to get class from non-reference register v"
<< dec_insn.vC << " (type=" << this_type << ")";
return verifier_->GetRegTypeCache()->Conflict();
}
return this_type;
}
bool RegisterLine::VerifyRegisterType(uint32_t vsrc, const RegType& check_type) {
// Verify the src register type against the check type refining the type of the register
const RegType& src_type = GetRegisterType(vsrc);
if (!check_type.IsAssignableFrom(src_type)) {
// Hard fail if one of the types is primitive, since they are concretely known.
enum VerifyError fail_type = (!check_type.IsNonZeroReferenceTypes() ||
!src_type.IsNonZeroReferenceTypes()) ?
VERIFY_ERROR_BAD_CLASS_HARD : VERIFY_ERROR_BAD_CLASS_SOFT;
verifier_->Fail(fail_type) << "register v" << vsrc << " has type " << src_type
<< " but expected " << check_type;
return false;
}
if (check_type.IsLowHalf()) {
const RegType& src_type_h = GetRegisterType(vsrc + 1);
if (!src_type.CheckWidePair(src_type_h)) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register v" << vsrc << " has type "
<< src_type << "/" << src_type_h;
return false;
}
}
// The register at vsrc has a defined type, we know the lower-upper-bound, but this is less
// precise than the subtype in vsrc so leave it for reference types. For primitive types
// if they are a defined type then they are as precise as we can get, however, for constant
// types we may wish to refine them. Unfortunately constant propagation has rendered this useless.
return true;
}
bool RegisterLine::VerifyRegisterTypeWide(uint32_t vsrc, const RegType& check_type1,
const RegType& check_type2) {
DCHECK(check_type1.CheckWidePair(check_type2));
// Verify the src register type against the check type refining the type of the register
const RegType& src_type = GetRegisterType(vsrc);
if (!check_type1.IsAssignableFrom(src_type)) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << vsrc << " has type " << src_type
<< " but expected " << check_type1;
return false;
}
const RegType& src_type_h = GetRegisterType(vsrc + 1);
if (!src_type.CheckWidePair(src_type_h)) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register v" << vsrc << " has type "
<< src_type << "/" << src_type_h;
return false;
}
// The register at vsrc has a defined type, we know the lower-upper-bound, but this is less
// precise than the subtype in vsrc so leave it for reference types. For primitive types
// if they are a defined type then they are as precise as we can get, however, for constant
// types we may wish to refine them. Unfortunately constant propagation has rendered this useless.
return true;
}
void RegisterLine::MarkRefsAsInitialized(const RegType& uninit_type) {
DCHECK(uninit_type.IsUninitializedTypes());
const RegType& init_type = verifier_->GetRegTypeCache()->FromUninitialized(uninit_type);
size_t changed = 0;
for (size_t i = 0; i < num_regs_; i++) {
if (GetRegisterType(i).Equals(uninit_type)) {
line_[i] = init_type.GetId();
changed++;
}
}
DCHECK_GT(changed, 0u);
}
std::string RegisterLine::Dump() const {
std::string result;
for (size_t i = 0; i < num_regs_; i++) {
result += StringPrintf("%zd:[", i);
result += GetRegisterType(i).Dump(verifier_->GetRegTypeCache());
result += "],";
}
typedef std::deque<uint32_t>::const_iterator It; // TODO: C++0x auto
for (It it = monitors_.begin(), end = monitors_.end(); it != end ; ++it) {
result += StringPrintf("{%d},", *it);
}
return result;
}
void RegisterLine::MarkUninitRefsAsInvalid(const RegType& uninit_type) {
for (size_t i = 0; i < num_regs_; i++) {
if (GetRegisterType(i).Equals(uninit_type)) {
line_[i] = verifier_->GetRegTypeCache()->Conflict().GetId();
ClearAllRegToLockDepths(i);
}
}
}
void RegisterLine::CopyRegister1(uint32_t vdst, uint32_t vsrc, TypeCategory cat) {
DCHECK(cat == kTypeCategory1nr || cat == kTypeCategoryRef);
const RegType& type = GetRegisterType(vsrc);
if (!SetRegisterType(vdst, type)) {
return;
}
if ((cat == kTypeCategory1nr && !type.IsCategory1Types()) ||
(cat == kTypeCategoryRef && !type.IsReferenceTypes())) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "copy1 v" << vdst << "<-v" << vsrc << " type=" << type
<< " cat=" << static_cast<int>(cat);
} else if (cat == kTypeCategoryRef) {
CopyRegToLockDepth(vdst, vsrc);
}
}
void RegisterLine::CopyRegister2(uint32_t vdst, uint32_t vsrc) {
const RegType& type_l = GetRegisterType(vsrc);
const RegType& type_h = GetRegisterType(vsrc + 1);
if (!type_l.CheckWidePair(type_h)) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "copy2 v" << vdst << "<-v" << vsrc
<< " type=" << type_l << "/" << type_h;
} else {
SetRegisterTypeWide(vdst, type_l, type_h);
}
}
void RegisterLine::CopyResultRegister1(uint32_t vdst, bool is_reference) {
const RegType& type = verifier_->GetRegTypeCache()->GetFromId(result_[0]);
if ((!is_reference && !type.IsCategory1Types()) ||
(is_reference && !type.IsReferenceTypes())) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "copyRes1 v" << vdst << "<- result0" << " type=" << type;
} else {
DCHECK(verifier_->GetRegTypeCache()->GetFromId(result_[1]).IsUndefined());
SetRegisterType(vdst, type);
result_[0] = RegType::kRegTypeUndefined;
}
}
/*
* Implement "move-result-wide". Copy the category-2 value from the result
* register to another register, and reset the result register.
*/
void RegisterLine::CopyResultRegister2(uint32_t vdst) {
const RegType& type_l = verifier_->GetRegTypeCache()->GetFromId(result_[0]);
const RegType& type_h = verifier_->GetRegTypeCache()->GetFromId(result_[1]);
if (!type_l.IsCategory2Types()) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "copyRes2 v" << vdst << "<- result0" << " type=" << type_l;
} else {
DCHECK(type_l.CheckWidePair(type_h)); // Set should never allow this case
SetRegisterTypeWide(vdst, type_l, type_h); // also sets the high
result_[0] = RegType::kRegTypeUndefined;
result_[1] = RegType::kRegTypeUndefined;
}
}
void RegisterLine::CheckUnaryOp(const DecodedInstruction& dec_insn,
const RegType& dst_type, const RegType& src_type) {
if (VerifyRegisterType(dec_insn.vB, src_type)) {
SetRegisterType(dec_insn.vA, dst_type);
}
}
void RegisterLine::CheckUnaryOpWide(const DecodedInstruction& dec_insn,
const RegType& dst_type1, const RegType& dst_type2,
const RegType& src_type1, const RegType& src_type2) {
if (VerifyRegisterTypeWide(dec_insn.vB, src_type1, src_type2)) {
SetRegisterTypeWide(dec_insn.vA, dst_type1, dst_type2);
}
}
void RegisterLine::CheckUnaryOpToWide(const DecodedInstruction& dec_insn,
const RegType& dst_type1, const RegType& dst_type2,
const RegType& src_type) {
if (VerifyRegisterType(dec_insn.vB, src_type)) {
SetRegisterTypeWide(dec_insn.vA, dst_type1, dst_type2);
}
}
void RegisterLine::CheckUnaryOpFromWide(const DecodedInstruction& dec_insn,
const RegType& dst_type,
const RegType& src_type1, const RegType& src_type2) {
if (VerifyRegisterTypeWide(dec_insn.vB, src_type1, src_type2)) {
SetRegisterType(dec_insn.vA, dst_type);
}
}
void RegisterLine::CheckBinaryOp(const DecodedInstruction& dec_insn,
const RegType& dst_type,
const RegType& src_type1, const RegType& src_type2,
bool check_boolean_op) {
if (VerifyRegisterType(dec_insn.vB, src_type1) &&
VerifyRegisterType(dec_insn.vC, src_type2)) {
if (check_boolean_op) {
DCHECK(dst_type.IsInteger());
if (GetRegisterType(dec_insn.vB).IsBooleanTypes() &&
GetRegisterType(dec_insn.vC).IsBooleanTypes()) {
SetRegisterType(dec_insn.vA, verifier_->GetRegTypeCache()->Boolean());
return;
}
}
SetRegisterType(dec_insn.vA, dst_type);
}
}
void RegisterLine::CheckBinaryOpWide(const DecodedInstruction& dec_insn,
const RegType& dst_type1, const RegType& dst_type2,
const RegType& src_type1_1, const RegType& src_type1_2,
const RegType& src_type2_1, const RegType& src_type2_2) {
if (VerifyRegisterTypeWide(dec_insn.vB, src_type1_1, src_type1_2) &&
VerifyRegisterTypeWide(dec_insn.vC, src_type2_1, src_type2_2)) {
SetRegisterTypeWide(dec_insn.vA, dst_type1, dst_type2);
}
}
void RegisterLine::CheckBinaryOpWideShift(const DecodedInstruction& dec_insn,
const RegType& long_lo_type, const RegType& long_hi_type,
const RegType& int_type) {
if (VerifyRegisterTypeWide(dec_insn.vB, long_lo_type, long_hi_type) &&
VerifyRegisterType(dec_insn.vC, int_type)) {
SetRegisterTypeWide(dec_insn.vA, long_lo_type, long_hi_type);
}
}
void RegisterLine::CheckBinaryOp2addr(const DecodedInstruction& dec_insn,
const RegType& dst_type, const RegType& src_type1,
const RegType& src_type2, bool check_boolean_op) {
if (VerifyRegisterType(dec_insn.vA, src_type1) &&
VerifyRegisterType(dec_insn.vB, src_type2)) {
if (check_boolean_op) {
DCHECK(dst_type.IsInteger());
if (GetRegisterType(dec_insn.vA).IsBooleanTypes() &&
GetRegisterType(dec_insn.vB).IsBooleanTypes()) {
SetRegisterType(dec_insn.vA, verifier_->GetRegTypeCache()->Boolean());
return;
}
}
SetRegisterType(dec_insn.vA, dst_type);
}
}
void RegisterLine::CheckBinaryOp2addrWide(const DecodedInstruction& dec_insn,
const RegType& dst_type1, const RegType& dst_type2,
const RegType& src_type1_1, const RegType& src_type1_2,
const RegType& src_type2_1, const RegType& src_type2_2) {
if (VerifyRegisterTypeWide(dec_insn.vA, src_type1_1, src_type1_2) &&
VerifyRegisterTypeWide(dec_insn.vB, src_type2_1, src_type2_2)) {
SetRegisterTypeWide(dec_insn.vA, dst_type1, dst_type2);
}
}
void RegisterLine::CheckBinaryOp2addrWideShift(const DecodedInstruction& dec_insn,
const RegType& long_lo_type, const RegType& long_hi_type,
const RegType& int_type) {
if (VerifyRegisterTypeWide(dec_insn.vA, long_lo_type, long_hi_type) &&
VerifyRegisterType(dec_insn.vB, int_type)) {
SetRegisterTypeWide(dec_insn.vA, long_lo_type, long_hi_type);
}
}
void RegisterLine::CheckLiteralOp(const DecodedInstruction& dec_insn,
const RegType& dst_type, const RegType& src_type,
bool check_boolean_op) {
if (VerifyRegisterType(dec_insn.vB, src_type)) {
if (check_boolean_op) {
DCHECK(dst_type.IsInteger());
/* check vB with the call, then check the constant manually */
if (GetRegisterType(dec_insn.vB).IsBooleanTypes() &&
(dec_insn.vC == 0 || dec_insn.vC == 1)) {
SetRegisterType(dec_insn.vA, verifier_->GetRegTypeCache()->Boolean());
return;
}
}
SetRegisterType(dec_insn.vA, dst_type);
}
}
void RegisterLine::PushMonitor(uint32_t reg_idx, int32_t insn_idx) {
const RegType& reg_type = GetRegisterType(reg_idx);
if (!reg_type.IsReferenceTypes()) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-enter on non-object (" << reg_type << ")";
} else if (monitors_.size() >= 32) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-enter stack overflow: " << monitors_.size();
} else {
SetRegToLockDepth(reg_idx, monitors_.size());
monitors_.push_back(insn_idx);
}
}
void RegisterLine::PopMonitor(uint32_t reg_idx) {
const RegType& reg_type = GetRegisterType(reg_idx);
if (!reg_type.IsReferenceTypes()) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-exit on non-object (" << reg_type << ")";
} else if (monitors_.empty()) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-exit stack underflow";
} else {
monitors_.pop_back();
if (!IsSetLockDepth(reg_idx, monitors_.size())) {
// Bug 3215458: Locks and unlocks are on objects, if that object is a literal then before
// format "036" the constant collector may create unlocks on the same object but referenced
// via different registers.
((verifier_->DexFileVersion() >= 36) ? verifier_->Fail(VERIFY_ERROR_BAD_CLASS_SOFT)
: verifier_->LogVerifyInfo())
<< "monitor-exit not unlocking the top of the monitor stack";
} else {
// Record the register was unlocked
ClearRegToLockDepth(reg_idx, monitors_.size());
}
}
}
bool RegisterLine::VerifyMonitorStackEmpty() {
if (MonitorStackDepth() != 0) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected empty monitor stack";
return false;
} else {
return true;
}
}
bool RegisterLine::MergeRegisters(const RegisterLine* incoming_line) {
bool changed = false;
for (size_t idx = 0; idx < num_regs_; idx++) {
if (line_[idx] != incoming_line->line_[idx]) {
const RegType& incoming_reg_type = incoming_line->GetRegisterType(idx);
const RegType& cur_type = GetRegisterType(idx);
const RegType& new_type = cur_type.Merge(incoming_reg_type, verifier_->GetRegTypeCache());
changed = changed || !cur_type.Equals(new_type);
line_[idx] = new_type.GetId();
}
}
if (monitors_.size() != incoming_line->monitors_.size()) {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "mismatched stack depths (depth="
<< MonitorStackDepth() << ", incoming depth=" << incoming_line->MonitorStackDepth() << ")";
} else if (reg_to_lock_depths_ != incoming_line->reg_to_lock_depths_) {
for (uint32_t idx = 0; idx < num_regs_; idx++) {
size_t depths = reg_to_lock_depths_.count(idx);
size_t incoming_depths = incoming_line->reg_to_lock_depths_.count(idx);
if (depths != incoming_depths) {
if (depths == 0 || incoming_depths == 0) {
reg_to_lock_depths_.erase(idx);
} else {
verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "mismatched stack depths for register v" << idx
<< ": " << depths << " != " << incoming_depths;
break;
}
}
}
}
return changed;
}
void RegisterLine::WriteReferenceBitMap(std::vector<uint8_t>& data, size_t max_bytes) {
for (size_t i = 0; i < num_regs_; i += 8) {
uint8_t val = 0;
for (size_t j = 0; j < 8 && (i + j) < num_regs_; j++) {
// Note: we write 1 for a Reference but not for Null
if (GetRegisterType(i + j).IsNonZeroReferenceTypes()) {
val |= 1 << j;
}
}
if ((i / 8) >= max_bytes) {
DCHECK_EQ(0, val);
continue;
}
DCHECK_LT(i / 8, max_bytes) << "val=" << static_cast<uint32_t>(val);
data.push_back(val);
}
}
std::ostream& operator<<(std::ostream& os, const RegisterLine& rhs)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
os << rhs.Dump();
return os;
}
} // namespace verifier
} // namespace art