blob: bf32ffc973f4bb8dea30d853cf5444ad366f9f58 [file] [log] [blame]
#!/usr/bin/python
#
# Copyright 2017 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=g-bad-todo,g-bad-file-header,wildcard-import
from errno import * # pylint: disable=wildcard-import
from socket import * # pylint: disable=wildcard-import
import random
import itertools
import struct
import unittest
from scapy import all as scapy
from tun_twister import TunTwister
import csocket
import iproute
import multinetwork_base
import net_test
import packets
import util
import xfrm
import xfrm_base
_LOOPBACK_IFINDEX = 1
_TEST_XFRM_IFNAME = "ipsec42"
_TEST_XFRM_IF_ID = 42
# Does the kernel support xfrmi interfaces?
def HaveXfrmInterfaces():
try:
i = iproute.IPRoute()
i.CreateXfrmInterface(_TEST_XFRM_IFNAME, _TEST_XFRM_IF_ID,
_LOOPBACK_IFINDEX)
i.DeleteLink(_TEST_XFRM_IFNAME)
try:
i.GetIfIndex(_TEST_XFRM_IFNAME)
assert "Deleted interface %s still exists!" % _TEST_XFRM_IFNAME
except IOError:
pass
return True
except IOError:
return False
HAVE_XFRM_INTERFACES = HaveXfrmInterfaces()
# Parameters to setup tunnels as special networks
_TUNNEL_NETID_OFFSET = 0xFC00 # Matches reserved netid range for IpSecService
_BASE_TUNNEL_NETID = {4: 40, 6: 60}
_BASE_VTI_OKEY = 2000000100
_BASE_VTI_IKEY = 2000000200
_TEST_OUT_SPI = 0x1234
_TEST_IN_SPI = _TEST_OUT_SPI
_TEST_OKEY = 2000000100
_TEST_IKEY = 2000000200
_TEST_REMOTE_PORT = 1234
_SCAPY_IP_TYPE = {4: scapy.IP, 6: scapy.IPv6}
def _GetLocalInnerAddress(version):
return {4: "10.16.5.15", 6: "2001:db8:1::1"}[version]
def _GetRemoteInnerAddress(version):
return {4: "10.16.5.20", 6: "2001:db8:2::1"}[version]
def _GetRemoteOuterAddress(version):
return {4: net_test.IPV4_ADDR, 6: net_test.IPV6_ADDR}[version]
def _GetNullAuthCryptTunnelModePkt(inner_version, src_inner, src_outer,
src_port, dst_inner, dst_outer,
dst_port, spi, seq_num, ip_hdr_options=None):
if ip_hdr_options is None:
ip_hdr_options = {}
ip_hdr_options.update({'src': src_inner, 'dst': dst_inner})
# Build and receive an ESP packet destined for the inner socket
IpType = {4: scapy.IP, 6: scapy.IPv6}[inner_version]
input_pkt = (
IpType(**ip_hdr_options) / scapy.UDP(sport=src_port, dport=dst_port) /
net_test.UDP_PAYLOAD)
input_pkt = IpType(str(input_pkt)) # Compute length, checksum.
input_pkt = xfrm_base.EncryptPacketWithNull(input_pkt, spi, seq_num,
(src_outer, dst_outer))
return input_pkt
def _CreateReceiveSock(version, port=0):
# Create a socket to receive packets.
read_sock = socket(net_test.GetAddressFamily(version), SOCK_DGRAM, 0)
read_sock.bind((net_test.GetWildcardAddress(version), port))
# The second parameter of the tuple is the port number regardless of AF.
local_port = read_sock.getsockname()[1]
# Guard against the eventuality of the receive failing.
csocket.SetSocketTimeout(read_sock, 500)
return read_sock, local_port
def _SendPacket(testInstance, netid, version, remote, remote_port):
# Send a packet out via the tunnel-backed network, bound for the port number
# of the input socket.
write_sock = socket(net_test.GetAddressFamily(version), SOCK_DGRAM, 0)
testInstance.SelectInterface(write_sock, netid, "mark")
write_sock.sendto(net_test.UDP_PAYLOAD, (remote, remote_port))
local_port = write_sock.getsockname()[1]
return local_port
def InjectTests():
InjectParameterizedTests(XfrmTunnelTest)
InjectParameterizedTests(XfrmInterfaceTest)
InjectParameterizedTests(XfrmVtiTest)
def InjectParameterizedTests(cls):
VERSIONS = (4, 6)
param_list = itertools.product(VERSIONS, VERSIONS)
def NameGenerator(*args):
return "IPv%d_in_IPv%d" % tuple(args)
util.InjectParameterizedTest(cls, param_list, NameGenerator)
class XfrmTunnelTest(xfrm_base.XfrmLazyTest):
def _CheckTunnelOutput(self, inner_version, outer_version, underlying_netid,
netid, local_inner, remote_inner, local_outer,
remote_outer, write_sock):
write_sock.sendto(net_test.UDP_PAYLOAD, (remote_inner, 53))
self._ExpectEspPacketOn(underlying_netid, _TEST_OUT_SPI, 1, None,
local_outer, remote_outer)
def _CheckTunnelInput(self, inner_version, outer_version, underlying_netid,
netid, local_inner, remote_inner, local_outer,
remote_outer, read_sock):
# The second parameter of the tuple is the port number regardless of AF.
local_port = read_sock.getsockname()[1]
# Build and receive an ESP packet destined for the inner socket
input_pkt = _GetNullAuthCryptTunnelModePkt(
inner_version, remote_inner, remote_outer, _TEST_REMOTE_PORT,
local_inner, local_outer, local_port, _TEST_IN_SPI, 1)
self.ReceivePacketOn(underlying_netid, input_pkt)
# Verify that the packet data and src are correct
data, src = read_sock.recvfrom(4096)
self.assertEquals(net_test.UDP_PAYLOAD, data)
self.assertEquals((remote_inner, _TEST_REMOTE_PORT), src[:2])
def _TestTunnel(self, inner_version, outer_version, func, direction):
"""Test a unidirectional XFRM Tunnel with explicit selectors"""
# Select the underlying netid, which represents the external
# interface from/to which to route ESP packets.
u_netid = self.RandomNetid()
# Select a random netid that will originate traffic locally and
# which represents the netid on which the plaintext is sent
netid = self.RandomNetid(exclude=u_netid)
local_inner = self.MyAddress(inner_version, netid)
remote_inner = _GetRemoteInnerAddress(inner_version)
local_outer = self.MyAddress(outer_version, u_netid)
remote_outer = _GetRemoteOuterAddress(outer_version)
# Create input/ouput SPs, SAs and sockets to simulate a more realistic
# environment.
self.xfrm.CreateTunnel(
xfrm.XFRM_POLICY_IN, xfrm.SrcDstSelector(remote_inner, local_inner),
remote_outer, local_outer, _TEST_IN_SPI, xfrm_base._ALGO_CRYPT_NULL,
xfrm_base._ALGO_AUTH_NULL, None, None, None, xfrm.MATCH_METHOD_ALL)
self.xfrm.CreateTunnel(
xfrm.XFRM_POLICY_OUT, xfrm.SrcDstSelector(local_inner, remote_inner),
local_outer, remote_outer, _TEST_OUT_SPI, xfrm_base._ALGO_CBC_AES_256,
xfrm_base._ALGO_HMAC_SHA1, None, u_netid, None, xfrm.MATCH_METHOD_ALL)
write_sock = socket(net_test.GetAddressFamily(inner_version), SOCK_DGRAM, 0)
self.SelectInterface(write_sock, netid, "mark")
read_sock, _ = _CreateReceiveSock(inner_version)
sock = write_sock if direction == xfrm.XFRM_POLICY_OUT else read_sock
func(inner_version, outer_version, u_netid, netid, local_inner,
remote_inner, local_outer, remote_outer, sock)
def ParamTestTunnelInput(self, inner_version, outer_version):
self._TestTunnel(inner_version, outer_version, self._CheckTunnelInput,
xfrm.XFRM_POLICY_IN)
def ParamTestTunnelOutput(self, inner_version, outer_version):
self._TestTunnel(inner_version, outer_version, self._CheckTunnelOutput,
xfrm.XFRM_POLICY_OUT)
@unittest.skipUnless(net_test.LINUX_VERSION >= (3, 18, 0), "VTI Unsupported")
class XfrmAddDeleteVtiTest(xfrm_base.XfrmBaseTest):
def _VerifyVtiInfoData(self, vti_info_data, version, local_addr, remote_addr,
ikey, okey):
self.assertEquals(vti_info_data["IFLA_VTI_IKEY"], ikey)
self.assertEquals(vti_info_data["IFLA_VTI_OKEY"], okey)
family = AF_INET if version == 4 else AF_INET6
self.assertEquals(inet_ntop(family, vti_info_data["IFLA_VTI_LOCAL"]),
local_addr)
self.assertEquals(inet_ntop(family, vti_info_data["IFLA_VTI_REMOTE"]),
remote_addr)
def testAddVti(self):
"""Test the creation of a Virtual Tunnel Interface."""
for version in [4, 6]:
netid = self.RandomNetid()
local_addr = self.MyAddress(version, netid)
self.iproute.CreateVirtualTunnelInterface(
dev_name=_TEST_XFRM_IFNAME,
local_addr=local_addr,
remote_addr=_GetRemoteOuterAddress(version),
o_key=_TEST_OKEY,
i_key=_TEST_IKEY)
self._VerifyVtiInfoData(
self.iproute.GetIfinfoData(_TEST_XFRM_IFNAME), version, local_addr,
_GetRemoteOuterAddress(version), _TEST_IKEY, _TEST_OKEY)
new_remote_addr = {4: net_test.IPV4_ADDR2, 6: net_test.IPV6_ADDR2}
new_okey = _TEST_OKEY + _TEST_XFRM_IF_ID
new_ikey = _TEST_IKEY + _TEST_XFRM_IF_ID
self.iproute.CreateVirtualTunnelInterface(
dev_name=_TEST_XFRM_IFNAME,
local_addr=local_addr,
remote_addr=new_remote_addr[version],
o_key=new_okey,
i_key=new_ikey,
is_update=True)
self._VerifyVtiInfoData(
self.iproute.GetIfinfoData(_TEST_XFRM_IFNAME), version, local_addr,
new_remote_addr[version], new_ikey, new_okey)
if_index = self.iproute.GetIfIndex(_TEST_XFRM_IFNAME)
# Validate that the netlink interface matches the ioctl interface.
self.assertEquals(net_test.GetInterfaceIndex(_TEST_XFRM_IFNAME), if_index)
self.iproute.DeleteLink(_TEST_XFRM_IFNAME)
with self.assertRaises(IOError):
self.iproute.GetIfIndex(_TEST_XFRM_IFNAME)
def _QuietDeleteLink(self, ifname):
try:
self.iproute.DeleteLink(ifname)
except IOError:
# The link was not present.
pass
def tearDown(self):
super(XfrmAddDeleteVtiTest, self).tearDown()
self._QuietDeleteLink(_TEST_XFRM_IFNAME)
class SaInfo(object):
def __init__(self, spi):
self.spi = spi
self.seq_num = 1
class IpSecBaseInterface(object):
def __init__(self, iface, netid, underlying_netid, local, remote, version):
self.iface = iface
self.netid = netid
self.underlying_netid = underlying_netid
self.local, self.remote = local, remote
# XFRM interfaces technically do not have a version. This keeps track of
# the IP version of the local and remote addresses.
self.version = version
self.rx = self.tx = 0
self.addrs = {}
self.iproute = iproute.IPRoute()
self.xfrm = xfrm.Xfrm()
def Teardown(self):
self.TeardownXfrm()
self.TeardownInterface()
def TeardownInterface(self):
self.iproute.DeleteLink(self.iface)
def SetupXfrm(self, use_null_crypt):
rand_spi = random.randint(0, 0x7fffffff)
self.in_sa = SaInfo(rand_spi)
self.out_sa = SaInfo(rand_spi)
# Select algorithms:
if use_null_crypt:
auth, crypt = xfrm_base._ALGO_AUTH_NULL, xfrm_base._ALGO_CRYPT_NULL
else:
auth, crypt = xfrm_base._ALGO_HMAC_SHA1, xfrm_base._ALGO_CBC_AES_256
self._SetupXfrmByType(auth, crypt)
def Rekey(self, outer_family, new_out_sa, new_in_sa):
"""Rekeys the Tunnel Interface
Creates new SAs and updates the outbound security policy to use new SAs.
Args:
outer_family: AF_INET or AF_INET6
new_out_sa: An SaInfo struct representing the new outbound SA's info
new_in_sa: An SaInfo struct representing the new inbound SA's info
"""
self._Rekey(outer_family, new_out_sa, new_in_sa)
# Update Interface object
self.out_sa = new_out_sa
self.in_sa = new_in_sa
def TeardownXfrm(self):
raise NotImplementedError("Subclasses should implement this")
def _SetupXfrmByType(self, auth_algo, crypt_algo):
raise NotImplementedError("Subclasses should implement this")
def _Rekey(self, outer_family, new_out_sa, new_in_sa):
raise NotImplementedError("Subclasses should implement this")
class VtiInterface(IpSecBaseInterface):
def __init__(self, iface, netid, underlying_netid, _, local, remote, version):
super(VtiInterface, self).__init__(iface, netid, underlying_netid, local,
remote, version)
self.ikey = _TEST_IKEY + netid
self.okey = _TEST_OKEY + netid
self.SetupInterface()
self.SetupXfrm(False)
def SetupInterface(self):
return self.iproute.CreateVirtualTunnelInterface(
self.iface, self.local, self.remote, self.ikey, self.okey)
def _SetupXfrmByType(self, auth_algo, crypt_algo):
# For the VTI, the selectors are wildcard since packets will only
# be selected if they have the appropriate mark, hence the inner
# addresses are wildcard.
self.xfrm.CreateTunnel(xfrm.XFRM_POLICY_OUT, None, self.local, self.remote,
self.out_sa.spi, crypt_algo, auth_algo,
xfrm.ExactMatchMark(self.okey),
self.underlying_netid, None, xfrm.MATCH_METHOD_ALL)
self.xfrm.CreateTunnel(xfrm.XFRM_POLICY_IN, None, self.remote, self.local,
self.in_sa.spi, crypt_algo, auth_algo,
xfrm.ExactMatchMark(self.ikey), None, None,
xfrm.MATCH_METHOD_MARK)
def TeardownXfrm(self):
self.xfrm.DeleteTunnel(xfrm.XFRM_POLICY_OUT, None, self.remote,
self.out_sa.spi, self.okey, None)
self.xfrm.DeleteTunnel(xfrm.XFRM_POLICY_IN, None, self.local,
self.in_sa.spi, self.ikey, None)
def _Rekey(self, outer_family, new_out_sa, new_in_sa):
# TODO: Consider ways to share code with xfrm.CreateTunnel(). It's mostly
# the same, but rekeys are asymmetric, and only update the outbound
# policy.
self.xfrm.AddSaInfo(self.local, self.remote, new_out_sa.spi,
xfrm.XFRM_MODE_TUNNEL, 0, xfrm_base._ALGO_CRYPT_NULL,
xfrm_base._ALGO_AUTH_NULL, None, None,
xfrm.ExactMatchMark(self.okey), self.underlying_netid)
self.xfrm.AddSaInfo(self.remote, self.local, new_in_sa.spi,
xfrm.XFRM_MODE_TUNNEL, 0, xfrm_base._ALGO_CRYPT_NULL,
xfrm_base._ALGO_AUTH_NULL, None, None,
xfrm.ExactMatchMark(self.ikey), None)
# Create new policies for IPv4 and IPv6.
for sel in [xfrm.EmptySelector(AF_INET), xfrm.EmptySelector(AF_INET6)]:
# Add SPI-specific output policy to enforce using new outbound SPI
policy = xfrm.UserPolicy(xfrm.XFRM_POLICY_OUT, sel)
tmpl = xfrm.UserTemplate(outer_family, new_out_sa.spi, 0,
(self.local, self.remote))
self.xfrm.UpdatePolicyInfo(policy, tmpl, xfrm.ExactMatchMark(self.okey),
0)
def DeleteOldSaInfo(self, outer_family, old_in_spi, old_out_spi):
self.xfrm.DeleteSaInfo(self.local, old_in_spi, IPPROTO_ESP,
xfrm.ExactMatchMark(self.ikey))
self.xfrm.DeleteSaInfo(self.remote, old_out_spi, IPPROTO_ESP,
xfrm.ExactMatchMark(self.okey))
@unittest.skipUnless(HAVE_XFRM_INTERFACES, "XFRM interfaces unsupported")
class XfrmAddDeleteXfrmInterfaceTest(xfrm_base.XfrmBaseTest):
"""Test the creation of an XFRM Interface."""
def testAddXfrmInterface(self):
self.iproute.CreateXfrmInterface(_TEST_XFRM_IFNAME, _TEST_XFRM_IF_ID,
_LOOPBACK_IFINDEX)
if_index = self.iproute.GetIfIndex(_TEST_XFRM_IFNAME)
net_test.SetInterfaceUp(_TEST_XFRM_IFNAME)
# Validate that the netlink interface matches the ioctl interface.
self.assertEquals(net_test.GetInterfaceIndex(_TEST_XFRM_IFNAME), if_index)
self.iproute.DeleteLink(_TEST_XFRM_IFNAME)
with self.assertRaises(IOError):
self.iproute.GetIfIndex(_TEST_XFRM_IFNAME)
class XfrmInterface(IpSecBaseInterface):
def __init__(self, iface, netid, underlying_netid, ifindex, local, remote,
version):
super(XfrmInterface, self).__init__(iface, netid, underlying_netid, local,
remote, version)
self.ifindex = ifindex
self.xfrm_if_id = netid
self.SetupInterface()
self.SetupXfrm(False)
def SetupInterface(self):
"""Create an XFRM interface."""
return self.iproute.CreateXfrmInterface(self.iface, self.netid, self.ifindex)
def _SetupXfrmByType(self, auth_algo, crypt_algo):
self.xfrm.CreateTunnel(xfrm.XFRM_POLICY_OUT, None, self.local, self.remote,
self.out_sa.spi, crypt_algo, auth_algo, None,
self.underlying_netid, self.xfrm_if_id,
xfrm.MATCH_METHOD_ALL)
self.xfrm.CreateTunnel(xfrm.XFRM_POLICY_IN, None, self.remote, self.local,
self.in_sa.spi, crypt_algo, auth_algo, None, None,
self.xfrm_if_id, xfrm.MATCH_METHOD_IFID)
def TeardownXfrm(self):
self.xfrm.DeleteTunnel(xfrm.XFRM_POLICY_OUT, None, self.remote,
self.out_sa.spi, None, self.xfrm_if_id)
self.xfrm.DeleteTunnel(xfrm.XFRM_POLICY_IN, None, self.local,
self.in_sa.spi, None, self.xfrm_if_id)
def _Rekey(self, outer_family, new_out_sa, new_in_sa):
# TODO: Consider ways to share code with xfrm.CreateTunnel(). It's mostly
# the same, but rekeys are asymmetric, and only update the outbound
# policy.
self.xfrm.AddSaInfo(
self.local, self.remote, new_out_sa.spi, xfrm.XFRM_MODE_TUNNEL, 0,
xfrm_base._ALGO_CRYPT_NULL, xfrm_base._ALGO_AUTH_NULL, None, None,
None, self.underlying_netid, xfrm_if_id=self.xfrm_if_id)
self.xfrm.AddSaInfo(
self.remote, self.local, new_in_sa.spi, xfrm.XFRM_MODE_TUNNEL, 0,
xfrm_base._ALGO_CRYPT_NULL, xfrm_base._ALGO_AUTH_NULL, None, None,
None, None, xfrm_if_id=self.xfrm_if_id)
# Create new policies for IPv4 and IPv6.
for sel in [xfrm.EmptySelector(AF_INET), xfrm.EmptySelector(AF_INET6)]:
# Add SPI-specific output policy to enforce using new outbound SPI
policy = xfrm.UserPolicy(xfrm.XFRM_POLICY_OUT, sel)
tmpl = xfrm.UserTemplate(outer_family, new_out_sa.spi, 0,
(self.local, self.remote))
self.xfrm.UpdatePolicyInfo(policy, tmpl, None, self.xfrm_if_id)
def DeleteOldSaInfo(self, outer_family, old_in_spi, old_out_spi):
self.xfrm.DeleteSaInfo(self.local, old_in_spi, IPPROTO_ESP, None,
self.xfrm_if_id)
self.xfrm.DeleteSaInfo(self.remote, old_out_spi, IPPROTO_ESP, None,
self.xfrm_if_id)
class XfrmTunnelBase(xfrm_base.XfrmBaseTest):
@classmethod
def setUpClass(cls):
xfrm_base.XfrmBaseTest.setUpClass()
# Tunnel interfaces use marks extensively, so configure realistic packet
# marking rules to make the test representative, make PMTUD work, etc.
cls.SetInboundMarks(True)
cls.SetMarkReflectSysctls(1)
# Group by tunnel version to ensure that we test at least one IPv4 and one
# IPv6 tunnel
cls.tunnelsV4 = {}
cls.tunnelsV6 = {}
for i, underlying_netid in enumerate(cls.tuns):
for version in 4, 6:
netid = _BASE_TUNNEL_NETID[version] + _TUNNEL_NETID_OFFSET + i
iface = "ipsec%s" % netid
local = cls.MyAddress(version, underlying_netid)
if version == 4:
remote = (net_test.IPV4_ADDR if (i % 2) else net_test.IPV4_ADDR2)
else:
remote = (net_test.IPV6_ADDR if (i % 2) else net_test.IPV6_ADDR2)
ifindex = cls.ifindices[underlying_netid]
tunnel = cls.INTERFACE_CLASS(iface, netid, underlying_netid, ifindex,
local, remote, version)
cls._SetInboundMarking(netid, iface, True)
cls._SetupTunnelNetwork(tunnel, True)
if version == 4:
cls.tunnelsV4[netid] = tunnel
else:
cls.tunnelsV6[netid] = tunnel
@classmethod
def tearDownClass(cls):
# The sysctls are restored by MultinetworkBaseTest.tearDownClass.
cls.SetInboundMarks(False)
for tunnel in cls.tunnelsV4.values() + cls.tunnelsV6.values():
cls._SetInboundMarking(tunnel.netid, tunnel.iface, False)
cls._SetupTunnelNetwork(tunnel, False)
tunnel.Teardown()
xfrm_base.XfrmBaseTest.tearDownClass()
def randomTunnel(self, outer_version):
version_dict = self.tunnelsV4 if outer_version == 4 else self.tunnelsV6
return random.choice(version_dict.values())
def setUp(self):
multinetwork_base.MultiNetworkBaseTest.setUp(self)
self.iproute = iproute.IPRoute()
self.xfrm = xfrm.Xfrm()
def tearDown(self):
multinetwork_base.MultiNetworkBaseTest.tearDown(self)
def _SwapInterfaceAddress(self, ifname, old_addr, new_addr):
"""Exchange two addresses on a given interface.
Args:
ifname: Name of the interface
old_addr: An address to be removed from the interface
new_addr: An address to be added to an interface
"""
version = 6 if ":" in new_addr else 4
ifindex = net_test.GetInterfaceIndex(ifname)
self.iproute.AddAddress(new_addr,
net_test.AddressLengthBits(version), ifindex)
self.iproute.DelAddress(old_addr,
net_test.AddressLengthBits(version), ifindex)
@classmethod
def _GetLocalAddress(cls, version, netid):
if version == 4:
return cls._MyIPv4Address(netid - _TUNNEL_NETID_OFFSET)
else:
return cls.OnlinkPrefix(6, netid - _TUNNEL_NETID_OFFSET) + "1"
@classmethod
def _SetupTunnelNetwork(cls, tunnel, is_add):
"""Setup rules and routes for a tunnel Network.
Takes an interface and depending on the boolean
value of is_add, either adds or removes the rules
and routes for a tunnel interface to behave like an
Android Network for purposes of testing.
Args:
tunnel: A VtiInterface or XfrmInterface, the tunnel to set up.
is_add: Boolean that causes this method to perform setup if True or
teardown if False
"""
if is_add:
# Disable router solicitations to avoid occasional spurious packets
# arriving on the underlying network; there are two possible behaviors
# when that occurred: either only the RA packet is read, and when it
# is echoed back to the tunnel, it causes the test to fail by not
# receiving # the UDP_PAYLOAD; or, two packets may arrive on the
# underlying # network which fails the assertion that only one ESP packet
# is received.
cls.SetSysctl(
"/proc/sys/net/ipv6/conf/%s/router_solicitations" % tunnel.iface, 0)
net_test.SetInterfaceUp(tunnel.iface)
for version in [4, 6]:
ifindex = net_test.GetInterfaceIndex(tunnel.iface)
table = tunnel.netid
# Set up routing rules.
start, end = cls.UidRangeForNetid(tunnel.netid)
cls.iproute.UidRangeRule(version, is_add, start, end, table,
cls.PRIORITY_UID)
cls.iproute.OifRule(version, is_add, tunnel.iface, table, cls.PRIORITY_OIF)
cls.iproute.FwmarkRule(version, is_add, tunnel.netid, cls.NETID_FWMASK,
table, cls.PRIORITY_FWMARK)
# Configure IP addresses.
addr = cls._GetLocalAddress(version, tunnel.netid)
prefixlen = net_test.AddressLengthBits(version)
tunnel.addrs[version] = addr
if is_add:
cls.iproute.AddAddress(addr, prefixlen, ifindex)
cls.iproute.AddRoute(version, table, "default", 0, None, ifindex)
else:
cls.iproute.DelRoute(version, table, "default", 0, None, ifindex)
cls.iproute.DelAddress(addr, prefixlen, ifindex)
def assertReceivedPacket(self, tunnel, sa_info):
tunnel.rx += 1
self.assertEquals((tunnel.rx, tunnel.tx),
self.iproute.GetRxTxPackets(tunnel.iface))
sa_info.seq_num += 1
def assertSentPacket(self, tunnel, sa_info):
tunnel.tx += 1
self.assertEquals((tunnel.rx, tunnel.tx),
self.iproute.GetRxTxPackets(tunnel.iface))
sa_info.seq_num += 1
def _CheckTunnelInput(self, tunnel, inner_version, local_inner, remote_inner,
sa_info=None, expect_fail=False):
"""Test null-crypt input path over an IPsec interface."""
if sa_info is None:
sa_info = tunnel.in_sa
read_sock, local_port = _CreateReceiveSock(inner_version)
input_pkt = _GetNullAuthCryptTunnelModePkt(
inner_version, remote_inner, tunnel.remote, _TEST_REMOTE_PORT,
local_inner, tunnel.local, local_port, sa_info.spi, sa_info.seq_num)
self.ReceivePacketOn(tunnel.underlying_netid, input_pkt)
if expect_fail:
self.assertRaisesErrno(EAGAIN, read_sock.recv, 4096)
else:
# Verify that the packet data and src are correct
data, src = read_sock.recvfrom(4096)
self.assertReceivedPacket(tunnel, sa_info)
self.assertEquals(net_test.UDP_PAYLOAD, data)
self.assertEquals((remote_inner, _TEST_REMOTE_PORT), src[:2])
def _CheckTunnelOutput(self, tunnel, inner_version, local_inner,
remote_inner, sa_info=None):
"""Test null-crypt output path over an IPsec interface."""
if sa_info is None:
sa_info = tunnel.out_sa
local_port = _SendPacket(self, tunnel.netid, inner_version, remote_inner,
_TEST_REMOTE_PORT)
# Read a tunneled IP packet on the underlying (outbound) network
# verifying that it is an ESP packet.
pkt = self._ExpectEspPacketOn(tunnel.underlying_netid, sa_info.spi,
sa_info.seq_num, None, tunnel.local,
tunnel.remote)
# Get and update the IP headers on the inner payload so that we can do a simple
# comparison of byte data. Unfortunately, due to the scapy version this runs on,
# we cannot parse past the ESP header to the inner IP header, and thus have to
# workaround in this manner
if inner_version == 4:
ip_hdr_options = {
'id': scapy.IP(str(pkt.payload)[8:]).id,
'flags': scapy.IP(str(pkt.payload)[8:]).flags
}
else:
ip_hdr_options = {'fl': scapy.IPv6(str(pkt.payload)[8:]).fl}
expected = _GetNullAuthCryptTunnelModePkt(
inner_version, local_inner, tunnel.local, local_port, remote_inner,
tunnel.remote, _TEST_REMOTE_PORT, sa_info.spi, sa_info.seq_num,
ip_hdr_options)
# Check outer header manually (Avoids having to overwrite outer header's
# id, flags or flow label)
self.assertSentPacket(tunnel, sa_info)
self.assertEquals(expected.src, pkt.src)
self.assertEquals(expected.dst, pkt.dst)
self.assertEquals(len(expected), len(pkt))
# Check everything else
self.assertEquals(str(expected.payload), str(pkt.payload))
def _CheckTunnelEncryption(self, tunnel, inner_version, local_inner,
remote_inner):
"""Test both input and output paths over an encrypted IPsec interface.
This tests specifically makes sure that the both encryption and decryption
work together, as opposed to the _CheckTunnel(Input|Output) where the
input and output paths are tested separately, and using null encryption.
"""
src_port = _SendPacket(self, tunnel.netid, inner_version, remote_inner,
_TEST_REMOTE_PORT)
# Make sure it appeared on the underlying interface
pkt = self._ExpectEspPacketOn(tunnel.underlying_netid, tunnel.out_sa.spi,
tunnel.out_sa.seq_num, None, tunnel.local,
tunnel.remote)
# Check that packet is not sent in plaintext
self.assertTrue(str(net_test.UDP_PAYLOAD) not in str(pkt))
# Check src/dst
self.assertEquals(tunnel.local, pkt.src)
self.assertEquals(tunnel.remote, pkt.dst)
# Check that the interface statistics recorded the outbound packet
self.assertSentPacket(tunnel, tunnel.out_sa)
try:
# Swap the interface addresses to pretend we are the remote
self._SwapInterfaceAddress(
tunnel.iface, new_addr=remote_inner, old_addr=local_inner)
# Swap the packet's IP headers and write it back to the underlying
# network.
pkt = TunTwister.TwistPacket(pkt)
read_sock, local_port = _CreateReceiveSock(inner_version,
_TEST_REMOTE_PORT)
self.ReceivePacketOn(tunnel.underlying_netid, pkt)
# Verify that the packet data and src are correct
data, src = read_sock.recvfrom(4096)
self.assertEquals(net_test.UDP_PAYLOAD, data)
self.assertEquals((local_inner, src_port), src[:2])
# Check that the interface statistics recorded the inbound packet
self.assertReceivedPacket(tunnel, tunnel.in_sa)
finally:
# Swap the interface addresses to pretend we are the remote
self._SwapInterfaceAddress(
tunnel.iface, new_addr=local_inner, old_addr=remote_inner)
def _CheckTunnelIcmp(self, tunnel, inner_version, local_inner, remote_inner,
sa_info=None):
"""Test ICMP error path over an IPsec interface."""
if sa_info is None:
sa_info = tunnel.out_sa
# Now attempt to provoke an ICMP error.
# TODO: deduplicate with multinetwork_test.py.
dst_prefix, intermediate = {
4: ("172.19.", "172.16.9.12"),
6: ("2001:db8::", "2001:db8::1")
}[tunnel.version]
local_port = _SendPacket(self, tunnel.netid, inner_version, remote_inner,
_TEST_REMOTE_PORT)
pkt = self._ExpectEspPacketOn(tunnel.underlying_netid, sa_info.spi,
sa_info.seq_num, None, tunnel.local,
tunnel.remote)
self.assertSentPacket(tunnel, sa_info)
myaddr = self.MyAddress(tunnel.version, tunnel.underlying_netid)
_, toobig = packets.ICMPPacketTooBig(tunnel.version, intermediate, myaddr,
pkt)
self.ReceivePacketOn(tunnel.underlying_netid, toobig)
# Check that the packet too big reduced the MTU.
routes = self.iproute.GetRoutes(tunnel.remote, 0, tunnel.underlying_netid, None)
self.assertEquals(1, len(routes))
rtmsg, attributes = routes[0]
self.assertEquals(iproute.RTN_UNICAST, rtmsg.type)
self.assertEquals(packets.PTB_MTU, attributes["RTA_METRICS"]["RTAX_MTU"])
# Clear PMTU information so that future tests don't have to worry about it.
self.InvalidateDstCache(tunnel.version, tunnel.underlying_netid)
def _CheckTunnelEncryptionWithIcmp(self, tunnel, inner_version, local_inner,
remote_inner):
"""Test combined encryption path with ICMP errors over an IPsec tunnel"""
self._CheckTunnelEncryption(tunnel, inner_version, local_inner,
remote_inner)
self._CheckTunnelIcmp(tunnel, inner_version, local_inner, remote_inner)
self._CheckTunnelEncryption(tunnel, inner_version, local_inner,
remote_inner)
def _TestTunnel(self, inner_version, outer_version, func, use_null_crypt):
"""Bootstrap method to setup and run tests for the given parameters."""
tunnel = self.randomTunnel(outer_version)
try:
# Some tests require that the out_seq_num and in_seq_num are the same
# (Specifically encrypted tests), rebuild SAs to ensure seq_num is 1
#
# Until we get better scapy support, the only way we can build an
# encrypted packet is to send it out, and read the packet from the wire.
# We then generally use this as the "inbound" encrypted packet, injecting
# it into the interface for which it is expected on.
#
# As such, this is required to ensure that encrypted packets (which we
# currently have no way to easily modify) are not considered replay
# attacks by the inbound SA. (eg: received 3 packets, seq_num_in = 3,
# sent only 1, # seq_num_out = 1, inbound SA would consider this a replay
# attack)
tunnel.TeardownXfrm()
tunnel.SetupXfrm(use_null_crypt)
local_inner = tunnel.addrs[inner_version]
remote_inner = _GetRemoteInnerAddress(inner_version)
for i in range(2):
func(tunnel, inner_version, local_inner, remote_inner)
finally:
if use_null_crypt:
tunnel.TeardownXfrm()
tunnel.SetupXfrm(False)
def _CheckTunnelRekey(self, tunnel, inner_version, local_inner, remote_inner):
old_out_sa = tunnel.out_sa
old_in_sa = tunnel.in_sa
# Check to make sure that both directions work before rekey
self._CheckTunnelInput(tunnel, inner_version, local_inner, remote_inner,
old_in_sa)
self._CheckTunnelOutput(tunnel, inner_version, local_inner, remote_inner,
old_out_sa)
# Rekey
outer_family = net_test.GetAddressFamily(tunnel.version)
# Create new SA
# Distinguish the new SAs with new SPIs.
new_out_sa = SaInfo(old_out_sa.spi + 1)
new_in_sa = SaInfo(old_in_sa.spi + 1)
# Perform Rekey
tunnel.Rekey(outer_family, new_out_sa, new_in_sa)
# Expect that the old SPI still works for inbound packets
self._CheckTunnelInput(tunnel, inner_version, local_inner, remote_inner,
old_in_sa)
# Test both paths with new SPIs, expect outbound to use new SPI
self._CheckTunnelInput(tunnel, inner_version, local_inner, remote_inner,
new_in_sa)
self._CheckTunnelOutput(tunnel, inner_version, local_inner, remote_inner,
new_out_sa)
# Delete old SAs
tunnel.DeleteOldSaInfo(outer_family, old_in_sa.spi, old_out_sa.spi)
# Test both paths with new SPIs; should still work
self._CheckTunnelInput(tunnel, inner_version, local_inner, remote_inner,
new_in_sa)
self._CheckTunnelOutput(tunnel, inner_version, local_inner, remote_inner,
new_out_sa)
# Expect failure upon trying to receive a packet with the deleted SPI
self._CheckTunnelInput(tunnel, inner_version, local_inner, remote_inner,
old_in_sa, True)
def _TestTunnelRekey(self, inner_version, outer_version):
"""Test packet input and output over a Virtual Tunnel Interface."""
tunnel = self.randomTunnel(outer_version)
try:
# Always use null_crypt, so we can check input and output separately
tunnel.TeardownXfrm()
tunnel.SetupXfrm(True)
local_inner = tunnel.addrs[inner_version]
remote_inner = _GetRemoteInnerAddress(inner_version)
self._CheckTunnelRekey(tunnel, inner_version, local_inner, remote_inner)
finally:
tunnel.TeardownXfrm()
tunnel.SetupXfrm(False)
@unittest.skipUnless(net_test.LINUX_VERSION >= (3, 18, 0), "VTI Unsupported")
class XfrmVtiTest(XfrmTunnelBase):
INTERFACE_CLASS = VtiInterface
def ParamTestVtiInput(self, inner_version, outer_version):
self._TestTunnel(inner_version, outer_version, self._CheckTunnelInput, True)
def ParamTestVtiOutput(self, inner_version, outer_version):
self._TestTunnel(inner_version, outer_version, self._CheckTunnelOutput,
True)
def ParamTestVtiInOutEncrypted(self, inner_version, outer_version):
self._TestTunnel(inner_version, outer_version, self._CheckTunnelEncryption,
False)
def ParamTestVtiIcmp(self, inner_version, outer_version):
self._TestTunnel(inner_version, outer_version, self._CheckTunnelIcmp, False)
def ParamTestVtiEncryptionWithIcmp(self, inner_version, outer_version):
self._TestTunnel(inner_version, outer_version,
self._CheckTunnelEncryptionWithIcmp, False)
def ParamTestVtiRekey(self, inner_version, outer_version):
self._TestTunnelRekey(inner_version, outer_version)
@unittest.skipUnless(HAVE_XFRM_INTERFACES, "XFRM interfaces unsupported")
class XfrmInterfaceTest(XfrmTunnelBase):
INTERFACE_CLASS = XfrmInterface
def ParamTestXfrmIntfInput(self, inner_version, outer_version):
self._TestTunnel(inner_version, outer_version, self._CheckTunnelInput, True)
def ParamTestXfrmIntfOutput(self, inner_version, outer_version):
self._TestTunnel(inner_version, outer_version, self._CheckTunnelOutput,
True)
def ParamTestXfrmIntfInOutEncrypted(self, inner_version, outer_version):
self._TestTunnel(inner_version, outer_version, self._CheckTunnelEncryption,
False)
def ParamTestXfrmIntfIcmp(self, inner_version, outer_version):
self._TestTunnel(inner_version, outer_version, self._CheckTunnelIcmp, False)
def ParamTestXfrmIntfEncryptionWithIcmp(self, inner_version, outer_version):
self._TestTunnel(inner_version, outer_version,
self._CheckTunnelEncryptionWithIcmp, False)
def ParamTestXfrmIntfRekey(self, inner_version, outer_version):
self._TestTunnelRekey(inner_version, outer_version)
if __name__ == "__main__":
InjectTests()
unittest.main()