blob: 9eb4571a92757000a8de8592a0c0f4b9b9978f77 [file] [log] [blame]
/*
* IOMMU driver for SMMU on Tegra 3 series SoCs and later.
*
* Copyright (c) 2011-2013, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
#define pr_fmt(fmt) "%s(): " fmt, __func__
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/device.h>
#include <linux/sched.h>
#include <linux/iommu.h>
#include <linux/io.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/tegra-ahb.h>
#include <linux/of.h>
#include <linux/of_iommu.h>
#include <linux/tegra-ahb.h>
#include <linux/dma-mapping.h>
#include <linux/bitops.h>
#include <linux/tegra-soc.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/dma-iommu.h>
#include <mach/tegra_smmu.h>
#include <mach/tegra-swgid.h>
/* HACK! This needs to come from device tree */
#include "../../arch/arm/mach-tegra/iomap.h"
/* bitmap of the page sizes currently supported */
#define SMMU_IOMMU_PGSIZES (SZ_4K | SZ_4M)
#define SMMU_CONFIG 0x10
#define SMMU_CONFIG_DISABLE 0
#define SMMU_CONFIG_ENABLE 1
enum {
_TLB = 0,
_PTC,
};
#define SMMU_CACHE_CONFIG_BASE 0x14
#define __SMMU_CACHE_CONFIG(mc, cache) (SMMU_CACHE_CONFIG_BASE + 4 * cache)
#define SMMU_CACHE_CONFIG(cache) __SMMU_CACHE_CONFIG(_MC, cache)
#define SMMU_CACHE_CONFIG_STATS_SHIFT 31
#define SMMU_CACHE_CONFIG_STATS_ENABLE (1 << SMMU_CACHE_CONFIG_STATS_SHIFT)
#define SMMU_CACHE_CONFIG_STATS_TEST_SHIFT 30
#define SMMU_CACHE_CONFIG_STATS_TEST (1 << SMMU_CACHE_CONFIG_STATS_TEST_SHIFT)
#define SMMU_TLB_CONFIG_HIT_UNDER_MISS__ENABLE (1 << 29)
#define SMMU_TLB_CONFIG_ACTIVE_LINES__VALUE 0x10
#define SMMU_TLB_CONFIG_RESET_VAL 0x20000000
#define SMMU_TLB_RR_ARB (1 << 28)
#define SMMU_PTC_CONFIG_CACHE__ENABLE (1 << 29)
#define SMMU_PTC_CONFIG_INDEX_MAP__PATTERN 0x3f
#define SMMU_PTC_CONFIG_RESET_VAL 0x2000003f
#define SMMU_PTC_REQ_LIMIT (8 << 24)
#define SMMU_PTB_ASID 0x1c
#define SMMU_PTB_ASID_CURRENT_SHIFT 0
#define SMMU_PTB_DATA 0x20
#define SMMU_PTB_DATA_RESET_VAL 0
#define SMMU_PTB_DATA_ASID_NONSECURE_SHIFT 29
#define SMMU_PTB_DATA_ASID_WRITABLE_SHIFT 30
#define SMMU_PTB_DATA_ASID_READABLE_SHIFT 31
#define SMMU_TLB_FLUSH 0x30
#define SMMU_TLB_FLUSH_VA_MATCH_ALL 0
#define SMMU_TLB_FLUSH_VA_MATCH_SECTION 2
#define SMMU_TLB_FLUSH_VA_MATCH_GROUP 3
#define SMMU_TLB_FLUSH_ASID_SHIFT_BASE 31
#define SMMU_TLB_FLUSH_ASID_MATCH_DISABLE 0
#define SMMU_TLB_FLUSH_ASID_MATCH_ENABLE 1
#define SMMU_TLB_FLUSH_ASID_MATCH_SHIFT 31
#define SMMU_TLB_FLUSH_ASID_ENABLE \
(SMMU_TLB_FLUSH_ASID_MATCH_ENABLE << SMMU_TLB_FLUSH_ASID_MATCH_SHIFT)
#define SMMU_TLB_FLUSH_ASID_SHIFT(as) \
(SMMU_TLB_FLUSH_ASID_SHIFT_BASE - __ffs((as)->smmu->num_as))
#define SMMU_PTC_FLUSH 0x34
#define SMMU_PTC_FLUSH_TYPE_ALL 0
#define SMMU_PTC_FLUSH_TYPE_ADR 1
#define SMMU_PTC_FLUSH_ADR_SHIFT 4
#define SMMU_PTC_FLUSH_1 0x9b8
#define SMMU_ASID_SECURITY 0x38
#define SMMU_ASID_SECURITY_1 0x3c
#define SMMU_ASID_SECURITY_2 0x9e0
#define SMMU_ASID_SECURITY_3 0x9e4
#define SMMU_ASID_SECURITY_4 0x9e8
#define SMMU_ASID_SECURITY_5 0x9ec
#define SMMU_ASID_SECURITY_6 0x9f0
#define SMMU_ASID_SECURITY_7 0x9f4
#define SMMU_STATS_CACHE_COUNT_BASE 0x1f0
#define SMMU_STATS_CACHE_COUNT(mc, cache, hitmiss) \
(SMMU_STATS_CACHE_COUNT_BASE + 8 * cache + 4 * hitmiss)
#define SMMU_TRANSLATION_ENABLE_0 0x228
#define SMMU_AFI_ASID 0x238 /* PCIE */
#define SMMU_SWGRP_ASID_BASE SMMU_AFI_ASID
#define HWGRP_COUNT 64
#define SMMU_PDE_NEXT_SHIFT 28
/* AHB Arbiter Registers */
#define AHB_XBAR_CTRL 0xe0
#define AHB_XBAR_CTRL_SMMU_INIT_DONE_DONE 1
#define AHB_XBAR_CTRL_SMMU_INIT_DONE_SHIFT 17
#define SMMU_NUM_ASIDS 4
#define SMMU_NUM_ASIDS_TEGRA12 128
#define SMMU_TLB_FLUSH_VA_SECTION__MASK 0xffc00000
#define SMMU_TLB_FLUSH_VA_SECTION__SHIFT 12 /* right shift */
#define SMMU_TLB_FLUSH_VA_GROUP__MASK 0xffffc000
#define SMMU_TLB_FLUSH_VA_GROUP__SHIFT 12 /* right shift */
#define SMMU_TLB_FLUSH_VA(iova, which) \
((((iova) & SMMU_TLB_FLUSH_VA_##which##__MASK) >> \
SMMU_TLB_FLUSH_VA_##which##__SHIFT) | \
SMMU_TLB_FLUSH_VA_MATCH_##which)
#define SMMU_PTB_ASID_CUR(n) \
((n) << SMMU_PTB_ASID_CURRENT_SHIFT)
#define SMMU_TLB_FLUSH_ALL 0
#define SMMU_TLB_FLUSH_ASID_MATCH_disable \
(SMMU_TLB_FLUSH_ASID_MATCH_DISABLE << \
SMMU_TLB_FLUSH_ASID_MATCH_SHIFT)
#define SMMU_TLB_FLUSH_ASID_MATCH__ENABLE \
(SMMU_TLB_FLUSH_ASID_MATCH_ENABLE << \
SMMU_TLB_FLUSH_ASID_MATCH_SHIFT)
#define SMMU_PAGE_SHIFT 12
#define SMMU_PAGE_SIZE (1 << SMMU_PAGE_SHIFT)
#define SMMU_PDIR_COUNT 1024
#define SMMU_PDIR_SIZE (sizeof(u32) * SMMU_PDIR_COUNT)
#define SMMU_PTBL_COUNT 1024
#define SMMU_PTBL_SIZE (sizeof(u32) * SMMU_PTBL_COUNT)
#define SMMU_PDIR_SHIFT 12
#define SMMU_PDE_SHIFT 12
#define SMMU_PTE_SHIFT 12
#define SMMU_PFN_MASK 0x0fffffff
#define SMMU_ADDR_TO_PTN(addr) (((addr) >> 12) & (BIT(10) - 1))
#define SMMU_ADDR_TO_PDN(addr) ((addr) >> 22)
#define SMMU_PDN_TO_ADDR(pdn) ((pdn) << 22)
#define _READABLE (1 << SMMU_PTB_DATA_ASID_READABLE_SHIFT)
#define _WRITABLE (1 << SMMU_PTB_DATA_ASID_WRITABLE_SHIFT)
#define _NONSECURE (1 << SMMU_PTB_DATA_ASID_NONSECURE_SHIFT)
#define _PDE_NEXT (1 << SMMU_PDE_NEXT_SHIFT)
#define _MASK_ATTR (_READABLE | _WRITABLE | _NONSECURE)
#define _PDIR_ATTR (_READABLE | _WRITABLE | _NONSECURE)
#define _PDE_ATTR (_READABLE | _WRITABLE | _NONSECURE)
#define _PDE_ATTR_N (_PDE_ATTR | _PDE_NEXT)
#define _PDE_VACANT(pdn) (0)
#define _PTE_ATTR (_READABLE | _WRITABLE | _NONSECURE)
#define _PTE_VACANT(addr) (0)
#ifdef CONFIG_TEGRA_IOMMU_SMMU_LINEAR
#undef _PDE_VACANT
#undef _PTE_VACANT
#define _PDE_VACANT(pdn) (((pdn) << 10) | _PDE_ATTR)
#define _PTE_VACANT(addr) (((addr) >> SMMU_PAGE_SHIFT) | _PTE_ATTR)
#endif
#define SMMU_MK_PDIR(page, attr) \
((page_to_phys(page) >> SMMU_PDIR_SHIFT) | (attr))
#define SMMU_MK_PDE(page, attr) \
(u32)((page_to_phys(page) >> SMMU_PDE_SHIFT) | (attr))
#define SMMU_EX_PTBL_PAGE(pde) \
pfn_to_page((u32)(pde) & SMMU_PFN_MASK)
#define SMMU_PFN_TO_PTE(pfn, attr) (u32)((pfn) | (attr))
#define SMMU_ASID_ENABLE(asid) ((asid) | (1 << 31))
#define SMMU_ASID_DISABLE 0
#define SMMU_ASID_ASID(n) ((n) & ~SMMU_ASID_ENABLE(0))
/* FIXME: client ID, only valid for T124 */
#define CSR_PTCR 0
#define CSR_DISPLAY0A 1
#define CSR_DISPLAY0AB 2
#define CSR_DISPLAY0B 3
#define CSR_DISPLAY0BB 4
#define CSR_DISPLAY0C 5
#define CSR_DISPLAY0CB 6
#define CSR_AFIR 14
#define CSR_AVPCARM7R 15
#define CSR_DISPLAYHC 16
#define CSR_DISPLAYHCB 17
#define CSR_HDAR 21
#define CSR_HOST1XDMAR 22
#define CSR_HOST1XR 23
#define CSR_MSENCSRD 28
#define CSR_PPCSAHBDMAR 29
#define CSR_PPCSAHBSLVR 30
#define CSR_SATAR 31
#define CSR_VDEBSEVR 34
#define CSR_VDEMBER 35
#define CSR_VDEMCER 36
#define CSR_VDETPER 37
#define CSR_MPCORELPR 38
#define CSR_MPCORER 39
#define CSW_MSENCSWR 43
#define CSW_AFIW 49
#define CSW_AVPCARM7W 50
#define CSW_HDAW 53
#define CSW_HOST1XW 54
#define CSW_MPCORELPW 56
#define CSW_MPCOREW 57
#define CSW_PPCSAHBDMAW 59
#define CSW_PPCSAHBSLVW 60
#define CSW_SATAW 61
#define CSW_VDEBSEVW 62
#define CSW_VDEDBGW 63
#define CSW_VDEMBEW 64
#define CSW_VDETPMW 65
#define CSR_ISPRA 68
#define CSW_ISPWA 70
#define CSW_ISPWB 71
#define CSR_XUSB_HOSTR 74
#define CSW_XUSB_HOSTW 75
#define CSR_XUSB_DEVR 76
#define CSW_XUSB_DEVW 77
#define CSR_ISPRAB 78
#define CSW_ISPWAB 80
#define CSW_ISPWBB 81
#define CSR_TSECSRD 84
#define CSW_TSECSWR 85
#define CSR_A9AVPSCR 86
#define CSW_A9AVPSCW 87
#define CSR_GPUSRD 88
#define CSW_GPUSWR 89
#define CSR_DISPLAYT 90
#define CSR_SDMMCRA 96
#define CSR_SDMMCRAA 97
#define CSR_SDMMCR 98
#define CSR_SDMMCRAB 99
#define CSW_SDMMCWA 100
#define CSW_SDMMCWAA 101
#define CSW_SDMMCW 102
#define CSW_SDMMCWAB 103
#define CSR_VICSRD 108
#define CSW_VICSWR 109
#define CSW_VIW 114
#define CSR_DISPLAYD 115
#define SMMU_CLIENT_CONF0 0x40
#define smmu_client_enable_hwgrp(c, m) smmu_client_set_hwgrp(c, m, 1)
#define smmu_client_disable_hwgrp(c) smmu_client_set_hwgrp(c, 0, 0)
#define __smmu_client_enable_hwgrp(c, m) __smmu_client_set_hwgrp(c, m, 1)
#define __smmu_client_disable_hwgrp(c) __smmu_client_set_hwgrp(c, 0, 0)
static struct device *save_smmu_device;
static size_t smmu_flush_all_th_pages = SZ_512; /* number of threshold pages */
static const u32 smmu_asid_security_ofs[] = {
SMMU_ASID_SECURITY,
SMMU_ASID_SECURITY_1,
SMMU_ASID_SECURITY_2,
SMMU_ASID_SECURITY_3,
SMMU_ASID_SECURITY_4,
SMMU_ASID_SECURITY_5,
SMMU_ASID_SECURITY_6,
SMMU_ASID_SECURITY_7,
};
static size_t tegra_smmu_get_offset_base(int id)
{
if (!(id & BIT(5)))
return SMMU_SWGRP_ASID_BASE;
if (id & BIT(4))
return 0xa88 - SWGID_DC12 * sizeof(u32);
return 0x490 - SWGID_DC14 * sizeof(u32);
}
/*
* Per client for address space
*/
struct smmu_client {
struct device *dev;
struct list_head list;
struct smmu_as *as;
u64 swgids;
};
/*
* Per address space
*/
struct smmu_as {
struct smmu_device *smmu; /* back pointer to container */
unsigned int asid;
spinlock_t lock; /* for pagetable */
struct page *pdir_page;
u32 pdir_attr;
u32 pde_attr;
u32 pte_attr;
unsigned int *pte_count;
struct list_head client;
spinlock_t client_lock; /* for client list */
};
struct smmu_debugfs_info {
struct smmu_device *smmu;
int mc;
int cache;
};
/*
* Per SMMU device - IOMMU device
*/
struct smmu_device {
void __iomem *regs, *regs_ahbarb;
unsigned long iovmm_base; /* remappable base address */
unsigned long page_count; /* total remappable size */
spinlock_t lock;
char *name;
struct device *dev;
u64 swgids; /* memory client ID bitmap */
size_t ptc_cache_size;
struct page *avp_vector_page; /* dummy page shared by all AS's */
/*
* Register image savers for suspend/resume
*/
int num_translation_enable;
u32 translation_enable[4];
int num_asid_security;
u32 asid_security[8];
struct dentry *debugfs_root;
struct smmu_debugfs_info *debugfs_info;
int num_as;
struct smmu_as as[0]; /* Run-time allocated array */
};
static struct smmu_device *smmu_handle; /* unique for a system */
/*
* SMMU/AHB register accessors
*/
static inline u32 smmu_read(struct smmu_device *smmu, size_t offs)
{
return readl(smmu->regs + offs);
}
static inline void smmu_write(struct smmu_device *smmu, u32 val, size_t offs)
{
writel(val, smmu->regs + offs);
}
static inline u32 ahb_read(struct smmu_device *smmu, size_t offs)
{
return readl(smmu->regs_ahbarb + offs);
}
static inline void ahb_write(struct smmu_device *smmu, u32 val, size_t offs)
{
writel(val, smmu->regs_ahbarb + offs);
}
static void __smmu_client_ordered(struct smmu_device *smmu, int id)
{
size_t offs;
u32 val;
offs = SMMU_CLIENT_CONF0;
offs += (id / BITS_PER_LONG) * sizeof(u32);
val = smmu_read(smmu, offs);
val |= BIT(id % BITS_PER_LONG);
smmu_write(smmu, val, offs);
}
static void smmu_client_ordered(struct smmu_device *smmu)
{
int i, id[] = {
/* Add client ID here to be ordered */
};
for (i = 0; i < ARRAY_SIZE(id); i++)
__smmu_client_ordered(smmu, id[i]);
}
#define VA_PAGE_TO_PA(va, page) \
(page_to_phys(page) + ((unsigned long)(va) & ~PAGE_MASK))
#define VA_PAGE_TO_PA_HI(va, page) \
(u32)((u64)(page_to_phys(page)) >> 32)
#define FLUSH_CPU_DCACHE(va, page, size) \
do { \
unsigned long _pa_ = VA_PAGE_TO_PA(va, page); \
__cpuc_flush_dcache_area((void *)(va), (size_t)(size)); \
outer_flush_range(_pa_, _pa_+(size_t)(size)); \
} while (0)
/*
* Any interaction between any block on PPSB and a block on APB or AHB
* must have these read-back barriers to ensure the APB/AHB bus
* transaction is complete before initiating activity on the PPSB
* block.
*/
#define FLUSH_SMMU_REGS(smmu) smmu_read(smmu, SMMU_CONFIG)
static u64 tegra_smmu_of_get_swgids(struct device *dev)
{
size_t bytes;
const char *propname = "nvidia,memory-clients";
const __be32 *prop;
int i;
u64 swgids = 0;
prop = of_get_property(dev->of_node, propname, &bytes);
if (!prop || !bytes)
return 0;
for (i = 0; i < bytes / sizeof(u32); i++, prop++)
swgids |= 1ULL << be32_to_cpup(prop);
return swgids;
}
static int __smmu_client_set_hwgrp(struct smmu_client *c, u64 map, int on)
{
int i;
struct smmu_as *as = c->as;
u32 val, offs, mask = SMMU_ASID_ENABLE(as->asid);
struct smmu_device *smmu = as->smmu;
WARN_ON(!on && map);
if (on && !map)
return -EINVAL;
if (!on)
map = c->swgids;
for_each_set_bit(i, (unsigned long *)&map, HWGRP_COUNT) {
/* FIXME: PCIe client hasn't been registered as IOMMU */
if (i == SWGID_AFI)
continue;
offs = i * sizeof(u32) + tegra_smmu_get_offset_base(i);
val = smmu_read(smmu, offs);
val &= ~3; /* always overwrite ASID */
if (on)
val |= mask;
else if (list_empty(&c->list))
val = 0; /* turn off if this is the last */
else
return 0; /* leave if off but not the last */
smmu_write(smmu, val, offs);
dev_dbg(c->dev, "swgid:%d asid:%d %s @%s\n",
i, val & 3, (val & BIT(31)) ? "Enabled" : "Disabled",
__func__);
}
FLUSH_SMMU_REGS(smmu);
c->swgids = map;
return 0;
}
static int smmu_client_set_hwgrp(struct smmu_client *c, u64 map, int on)
{
u32 val;
unsigned long flags;
struct smmu_as *as = c->as;
struct smmu_device *smmu = as->smmu;
spin_lock_irqsave(&smmu->lock, flags);
val = __smmu_client_set_hwgrp(c, map, on);
spin_unlock_irqrestore(&smmu->lock, flags);
return val;
}
/*
* Flush all TLB entries and all PTC entries
* Caller must lock smmu
*/
static void smmu_flush_regs(struct smmu_device *smmu, int enable)
{
u32 val;
smmu_write(smmu, SMMU_PTC_FLUSH_TYPE_ALL, SMMU_PTC_FLUSH);
FLUSH_SMMU_REGS(smmu);
val = SMMU_TLB_FLUSH_VA_MATCH_ALL |
SMMU_TLB_FLUSH_ASID_MATCH_disable;
smmu_write(smmu, val, SMMU_TLB_FLUSH);
if (enable)
smmu_write(smmu, SMMU_CONFIG_ENABLE, SMMU_CONFIG);
FLUSH_SMMU_REGS(smmu);
}
static void smmu_setup_regs(struct smmu_device *smmu)
{
int i;
u32 val;
for (i = 0; i < smmu->num_as; i++) {
struct smmu_as *as = &smmu->as[i];
struct smmu_client *c;
smmu_write(smmu, SMMU_PTB_ASID_CUR(as->asid), SMMU_PTB_ASID);
val = as->pdir_page ?
SMMU_MK_PDIR(as->pdir_page, as->pdir_attr) :
SMMU_PTB_DATA_RESET_VAL;
smmu_write(smmu, val, SMMU_PTB_DATA);
list_for_each_entry(c, &as->client, list)
__smmu_client_set_hwgrp(c, c->swgids, 1);
}
for (i = 0; i < smmu->num_translation_enable; i++)
smmu_write(smmu, smmu->translation_enable[i],
SMMU_TRANSLATION_ENABLE_0 + i * sizeof(u32));
for (i = 0; i < smmu->num_asid_security; i++)
smmu_write(smmu,
smmu->asid_security[i], smmu_asid_security_ofs[i]);
val = SMMU_PTC_CONFIG_RESET_VAL;
if (IS_ENABLED(CONFIG_ARCH_TEGRA_12x_SOC) &&
(tegra_get_chipid() == TEGRA_CHIPID_TEGRA12))
val |= SMMU_PTC_REQ_LIMIT;
smmu_write(smmu, val, SMMU_CACHE_CONFIG(_PTC));
val = SMMU_TLB_CONFIG_RESET_VAL;
if (IS_ENABLED(CONFIG_ARCH_TEGRA_12x_SOC) &&
(tegra_get_chipid() == TEGRA_CHIPID_TEGRA12)) {
val |= SMMU_TLB_RR_ARB;
val |= SMMU_TLB_CONFIG_ACTIVE_LINES__VALUE << 1;
} else {
val |= SMMU_TLB_CONFIG_ACTIVE_LINES__VALUE;
}
smmu_write(smmu, val, SMMU_CACHE_CONFIG(_TLB));
if (IS_ENABLED(CONFIG_ARCH_TEGRA_12x_SOC) &&
(tegra_get_chipid() == TEGRA_CHIPID_TEGRA12))
smmu_client_ordered(smmu);
smmu_flush_regs(smmu, 1);
if (tegra_get_chipid() == TEGRA_CHIPID_TEGRA3
|| tegra_get_chipid() == TEGRA_CHIPID_TEGRA11
|| tegra_get_chipid() == TEGRA_CHIPID_TEGRA14) {
val = ahb_read(smmu, AHB_XBAR_CTRL);
val |= AHB_XBAR_CTRL_SMMU_INIT_DONE_DONE <<
AHB_XBAR_CTRL_SMMU_INIT_DONE_SHIFT;
ahb_write(smmu, val, AHB_XBAR_CTRL);
}
}
static void __smmu_flush_ptc(struct smmu_device *smmu, u32 *pte,
struct page *page)
{
u32 val;
if (!pte) {
smmu_write(smmu, SMMU_PTC_FLUSH_TYPE_ALL, SMMU_PTC_FLUSH);
return;
}
if (IS_ENABLED(CONFIG_ARCH_TEGRA_12x_SOC) &&
(tegra_get_chipid() == TEGRA_CHIPID_TEGRA12)) {
val = VA_PAGE_TO_PA_HI(pte, page);
smmu_write(smmu, val, SMMU_PTC_FLUSH_1);
}
val = SMMU_PTC_FLUSH_TYPE_ADR | VA_PAGE_TO_PA(pte, page);
smmu_write(smmu, val, SMMU_PTC_FLUSH);
}
static void smmu_flush_ptc(struct smmu_device *smmu, u32 *pte,
struct page *page)
{
__smmu_flush_ptc(smmu, pte, page);
FLUSH_SMMU_REGS(smmu);
}
static inline void __smmu_flush_ptc_all(struct smmu_device *smmu)
{
__smmu_flush_ptc(smmu, 0, NULL);
}
static void __smmu_flush_tlb(struct smmu_device *smmu, struct smmu_as *as,
dma_addr_t iova, int is_pde)
{
u32 val;
if (is_pde)
val = SMMU_TLB_FLUSH_VA(iova, SECTION);
else
val = SMMU_TLB_FLUSH_VA(iova, GROUP);
smmu_write(smmu, val, SMMU_TLB_FLUSH);
}
static inline void __smmu_flush_tlb_section(struct smmu_as *as, dma_addr_t iova)
{
__smmu_flush_tlb(as->smmu, as, iova, 1);
}
static void flush_ptc_and_tlb(struct smmu_device *smmu,
struct smmu_as *as, dma_addr_t iova,
u32 *pte, struct page *page, int is_pde)
{
__smmu_flush_ptc(smmu, pte, page);
__smmu_flush_tlb(smmu, as, iova, is_pde);
FLUSH_SMMU_REGS(smmu);
}
#ifdef CONFIG_TEGRA_ERRATA_1053704
/* Flush PTEs within the same L2 pagetable */
static void ____smmu_flush_tlb_range(struct smmu_device *smmu, dma_addr_t iova,
dma_addr_t end)
{
size_t unit = SZ_16K;
iova = round_down(iova, unit);
while (iova < end) {
u32 val;
val = SMMU_TLB_FLUSH_VA(iova, GROUP);
smmu_write(smmu, val, SMMU_TLB_FLUSH);
iova += unit;
}
}
#endif
static void flush_ptc_and_tlb_range(struct smmu_device *smmu,
struct smmu_as *as, dma_addr_t iova,
u32 *pte, struct page *page,
size_t count)
{
size_t unit = SZ_16K;
dma_addr_t end = iova + count * PAGE_SIZE;
iova = round_down(iova, unit);
while (iova < end) {
int i;
__smmu_flush_ptc(smmu, pte, page);
pte += smmu->ptc_cache_size / PAGE_SIZE;
for (i = 0; i < smmu->ptc_cache_size / unit; i++) {
u32 val;
val = SMMU_TLB_FLUSH_VA(iova, GROUP);
smmu_write(smmu, val, SMMU_TLB_FLUSH);
iova += unit;
}
}
FLUSH_SMMU_REGS(smmu);
}
static inline void flush_ptc_and_tlb_all(struct smmu_device *smmu,
struct smmu_as *as)
{
flush_ptc_and_tlb(smmu, as, 0, 0, NULL, 1);
}
static void free_ptbl(struct smmu_as *as, dma_addr_t iova, bool flush)
{
int pdn = SMMU_ADDR_TO_PDN(iova);
u32 *pdir = (u32 *)page_address(as->pdir_page);
if (pdir[pdn] != _PDE_VACANT(pdn)) {
dev_dbg(as->smmu->dev, "pdn: %x\n", pdn);
ClearPageReserved(SMMU_EX_PTBL_PAGE(pdir[pdn]));
__free_page(SMMU_EX_PTBL_PAGE(pdir[pdn]));
pdir[pdn] = _PDE_VACANT(pdn);
FLUSH_CPU_DCACHE(&pdir[pdn], as->pdir_page, sizeof pdir[pdn]);
if (!flush)
return;
flush_ptc_and_tlb(as->smmu, as, iova, &pdir[pdn],
as->pdir_page, 1);
}
}
#ifdef CONFIG_TEGRA_ERRATA_1053704
static void __smmu_flush_tlb_range(struct smmu_as *as, dma_addr_t iova,
dma_addr_t end)
{
u32 *pdir;
struct smmu_device *smmu = as->smmu;
if (!pfn_valid(page_to_pfn(as->pdir_page)))
return;
pdir = page_address(as->pdir_page);
while (iova < end) {
int pdn = SMMU_ADDR_TO_PDN(iova);
if (pdir[pdn] & _PDE_NEXT) {
struct page *page = SMMU_EX_PTBL_PAGE(pdir[pdn]);
dma_addr_t _end = min_t(dma_addr_t, end,
SMMU_PDN_TO_ADDR(pdn + 1));
if (pfn_valid(page_to_pfn(page)))
____smmu_flush_tlb_range(smmu, iova, _end);
iova = _end;
} else {
if (pdir[pdn])
__smmu_flush_tlb_section(as, iova);
iova = SMMU_PDN_TO_ADDR(pdn + 1);
}
if (pdn == SMMU_PTBL_COUNT - 1)
break;
}
}
static void __smmu_flush_tlb_as(struct smmu_as *as, dma_addr_t iova,
dma_addr_t end)
{
__smmu_flush_tlb_range(as, iova, end);
}
#else
static void __smmu_flush_tlb_as(struct smmu_as *as, dma_addr_t iova,
dma_addr_t end)
{
u32 val;
struct smmu_device *smmu = as->smmu;
val = SMMU_TLB_FLUSH_ASID_ENABLE |
(as->asid << SMMU_TLB_FLUSH_ASID_SHIFT(as));
smmu_write(smmu, val, SMMU_TLB_FLUSH);
}
#endif
static void flush_ptc_and_tlb_as(struct smmu_as *as, dma_addr_t start,
dma_addr_t end)
{
struct smmu_device *smmu = as->smmu;
__smmu_flush_ptc_all(smmu);
__smmu_flush_tlb_as(as, start, end);
FLUSH_SMMU_REGS(smmu);
}
static void free_pdir(struct smmu_as *as)
{
unsigned long addr;
int count;
struct device *dev = as->smmu->dev;
if (!as->pdir_page)
return;
addr = as->smmu->iovmm_base;
count = as->smmu->page_count;
while (count-- > 0) {
free_ptbl(as, addr, 1);
addr += SMMU_PAGE_SIZE * SMMU_PTBL_COUNT;
}
ClearPageReserved(as->pdir_page);
__free_page(as->pdir_page);
as->pdir_page = NULL;
devm_kfree(dev, as->pte_count);
as->pte_count = NULL;
}
static struct page *alloc_ptbl(struct smmu_as *as, dma_addr_t iova, bool flush)
{
int i;
u32 *pdir = page_address(as->pdir_page);
int pdn = SMMU_ADDR_TO_PDN(iova);
unsigned long addr = SMMU_PDN_TO_ADDR(pdn);
struct page *page;
u32 *ptbl;
gfp_t gfp = GFP_ATOMIC;
if (IS_ENABLED(CONFIG_PREEMPT) && !in_atomic())
gfp = GFP_KERNEL;
if (!IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU_LINEAR))
gfp |= __GFP_ZERO;
/* Vacant - allocate a new page table */
dev_dbg(as->smmu->dev, "New PTBL pdn: %x\n", pdn);
page = alloc_page(gfp);
if (!page)
return NULL;
SetPageReserved(page);
ptbl = (u32 *)page_address(page);
if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU_LINEAR)) {
for (i = 0; i < SMMU_PTBL_COUNT; i++) {
ptbl[i] = _PTE_VACANT(addr);
addr += SMMU_PAGE_SIZE;
}
}
FLUSH_CPU_DCACHE(ptbl, page, SMMU_PTBL_SIZE);
pdir[pdn] = SMMU_MK_PDE(page, as->pde_attr | _PDE_NEXT);
FLUSH_CPU_DCACHE(&pdir[pdn], as->pdir_page, sizeof pdir[pdn]);
if (flush)
flush_ptc_and_tlb(as->smmu, as, iova, &pdir[pdn],
as->pdir_page, 1);
return page;
}
/*
* Maps PTBL for given iova and returns the PTE address
* Caller must unmap the mapped PTBL returned in *ptbl_page_p
*/
static u32 *locate_pte(struct smmu_as *as,
dma_addr_t iova, bool allocate,
struct page **ptbl_page_p,
unsigned int **count)
{
int ptn = SMMU_ADDR_TO_PTN(iova);
int pdn = SMMU_ADDR_TO_PDN(iova);
u32 *pdir = page_address(as->pdir_page);
u32 *ptbl;
if (pdir[pdn] != _PDE_VACANT(pdn)) {
/* Mapped entry table already exists */
*ptbl_page_p = SMMU_EX_PTBL_PAGE(pdir[pdn]);
} else if (!allocate) {
return NULL;
} else {
*ptbl_page_p = alloc_ptbl(as, iova, 1);
if (!*ptbl_page_p)
return NULL;
}
ptbl = page_address(*ptbl_page_p);
*count = &as->pte_count[pdn];
return &ptbl[ptn];
}
#ifdef CONFIG_SMMU_SIG_DEBUG
static void put_signature(struct smmu_as *as,
dma_addr_t iova, unsigned long pfn)
{
struct page *page;
u32 *vaddr;
page = pfn_to_page(pfn);
vaddr = page_address(page);
if (!vaddr)
return;
vaddr[0] = iova;
vaddr[1] = pfn << PAGE_SHIFT;
FLUSH_CPU_DCACHE(vaddr, page, sizeof(vaddr[0]) * 2);
}
#else
static inline void put_signature(struct smmu_as *as,
unsigned long addr, unsigned long pfn)
{
}
#endif
/*
* Caller must not hold as->lock
*/
static int alloc_pdir(struct smmu_as *as)
{
u32 *pdir;
unsigned long flags;
int pdn, err = 0;
u32 val;
struct smmu_device *smmu = as->smmu;
struct page *page;
unsigned int *cnt;
/*
* do the allocation, then grab as->lock
*/
cnt = devm_kzalloc(smmu->dev,
sizeof(cnt[0]) * SMMU_PDIR_COUNT,
GFP_KERNEL);
page = alloc_page(GFP_KERNEL | __GFP_DMA);
spin_lock_irqsave(&as->lock, flags);
if (as->pdir_page) {
/* We raced, free the redundant */
err = -EAGAIN;
goto err_out;
}
if (!page || !cnt) {
dev_err(smmu->dev, "failed to allocate at %s\n", __func__);
err = -ENOMEM;
goto err_out;
}
as->pdir_page = page;
as->pte_count = cnt;
SetPageReserved(as->pdir_page);
pdir = page_address(as->pdir_page);
for (pdn = 0; pdn < SMMU_PDIR_COUNT; pdn++)
pdir[pdn] = _PDE_VACANT(pdn);
FLUSH_CPU_DCACHE(pdir, as->pdir_page, SMMU_PDIR_SIZE);
smmu_flush_ptc(smmu, pdir, as->pdir_page);
val = SMMU_TLB_FLUSH_VA_MATCH_ALL |
SMMU_TLB_FLUSH_ASID_MATCH__ENABLE |
(as->asid << SMMU_TLB_FLUSH_ASID_SHIFT(as));
smmu_write(smmu, val, SMMU_TLB_FLUSH);
FLUSH_SMMU_REGS(as->smmu);
spin_unlock_irqrestore(&as->lock, flags);
return 0;
err_out:
spin_unlock_irqrestore(&as->lock, flags);
if (page)
__free_page(page);
if (cnt)
devm_kfree(smmu->dev, cnt);
return err;
}
static size_t __smmu_iommu_unmap_pages(struct smmu_as *as, dma_addr_t iova,
size_t bytes)
{
int total = bytes >> PAGE_SHIFT;
u32 *pdir = page_address(as->pdir_page);
struct smmu_device *smmu = as->smmu;
unsigned long iova_base = iova;
bool flush_all = (total > smmu_flush_all_th_pages) ? true : false;
while (total > 0) {
int ptn = SMMU_ADDR_TO_PTN(iova);
int pdn = SMMU_ADDR_TO_PDN(iova);
struct page *page = SMMU_EX_PTBL_PAGE(pdir[pdn]);
u32 *ptbl;
u32 *pte;
int count;
if (!pfn_valid(page_to_pfn(page))) {
total -= SMMU_PDN_TO_ADDR(pdn + 1) - iova;
iova = SMMU_PDN_TO_ADDR(pdn + 1);
continue;
}
ptbl = page_address(page);
pte = &ptbl[ptn];
count = min_t(int, SMMU_PTBL_COUNT - ptn, total);
dev_dbg(as->smmu->dev, "unmapping %d pages at once\n", count);
if (pte) {
unsigned int *rest = &as->pte_count[pdn];
size_t bytes = sizeof(*pte) * count;
memset(pte, 0, bytes);
FLUSH_CPU_DCACHE(pte, page, bytes);
*rest -= count;
if (!*rest)
free_ptbl(as, iova, !flush_all);
if (!flush_all)
flush_ptc_and_tlb_range(smmu, as, iova, pte,
page, count);
}
iova += PAGE_SIZE * count;
total -= count;
}
if (flush_all)
flush_ptc_and_tlb_as(as, iova_base,
iova_base + bytes);
return bytes;
}
static size_t __smmu_iommu_unmap_largepage(struct smmu_as *as, dma_addr_t iova)
{
int pdn = SMMU_ADDR_TO_PDN(iova);
u32 *pdir = (u32 *)page_address(as->pdir_page);
pdir[pdn] = _PDE_VACANT(pdn);
FLUSH_CPU_DCACHE(&pdir[pdn], as->pdir_page, sizeof pdir[pdn]);
flush_ptc_and_tlb(as->smmu, as, iova, &pdir[pdn], as->pdir_page, 1);
return SZ_4M;
}
static int __smmu_iommu_map_pfn(struct smmu_as *as, dma_addr_t iova,
unsigned long pfn, int prot)
{
struct smmu_device *smmu = as->smmu;
u32 *pte;
unsigned int *count;
struct page *page;
int attrs = as->pte_attr;
pte = locate_pte(as, iova, true, &page, &count);
if (WARN_ON(!pte))
return -ENOMEM;
if (*pte == _PTE_VACANT(iova))
(*count)++;
if (dma_get_attr(DMA_ATTR_READ_ONLY, (struct dma_attrs *)prot))
attrs &= ~_WRITABLE;
else if (dma_get_attr(DMA_ATTR_WRITE_ONLY, (struct dma_attrs *)prot))
attrs &= ~_READABLE;
*pte = SMMU_PFN_TO_PTE(pfn, attrs);
FLUSH_CPU_DCACHE(pte, page, sizeof(*pte));
flush_ptc_and_tlb(smmu, as, iova, pte, page, 0);
put_signature(as, iova, pfn);
return 0;
}
static int __smmu_iommu_map_page(struct smmu_as *as, dma_addr_t iova,
phys_addr_t pa, int prot)
{
unsigned long pfn = __phys_to_pfn(pa);
return __smmu_iommu_map_pfn(as, iova, pfn, prot);
}
static int __smmu_iommu_map_largepage(struct smmu_as *as, dma_addr_t iova,
phys_addr_t pa, int prot)
{
int pdn = SMMU_ADDR_TO_PDN(iova);
u32 *pdir = (u32 *)page_address(as->pdir_page);
int attrs = _PDE_ATTR;
if (pdir[pdn] != _PDE_VACANT(pdn))
return -EINVAL;
if (dma_get_attr(DMA_ATTR_READ_ONLY, (struct dma_attrs *)prot))
attrs &= ~_WRITABLE;
else if (dma_get_attr(DMA_ATTR_WRITE_ONLY, (struct dma_attrs *)prot))
attrs &= ~_READABLE;
pdir[pdn] = SMMU_ADDR_TO_PDN(pa) << 10 | attrs;
FLUSH_CPU_DCACHE(&pdir[pdn], as->pdir_page, sizeof pdir[pdn]);
flush_ptc_and_tlb(as->smmu, as, iova, &pdir[pdn], as->pdir_page, 1);
return 0;
}
static int smmu_iommu_map(struct iommu_domain *domain, unsigned long iova,
phys_addr_t pa, size_t bytes, int prot)
{
struct smmu_as *as = domain->priv;
unsigned long flags;
int err;
int (*fn)(struct smmu_as *as, dma_addr_t iova, phys_addr_t pa,
int prot);
dev_dbg(as->smmu->dev, "[%d] %08lx:%llx\n", as->asid, iova, (u64)pa);
switch (bytes) {
case SZ_4K:
fn = __smmu_iommu_map_page;
break;
case SZ_4M:
fn = __smmu_iommu_map_largepage;
break;
default:
WARN(1, "%d not supported\n", bytes);
return -EINVAL;
}
spin_lock_irqsave(&as->lock, flags);
err = fn(as, iova, pa, prot);
spin_unlock_irqrestore(&as->lock, flags);
return err;
}
static int smmu_iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
struct page **pages, size_t total, int prot)
{
struct smmu_as *as = domain->priv;
struct smmu_device *smmu = as->smmu;
u32 *pdir = page_address(as->pdir_page);
int err = 0;
unsigned long iova_base = iova;
bool flush_all = (total > smmu_flush_all_th_pages) ? true : false;
int attrs = as->pte_attr;
if (dma_get_attr(DMA_ATTR_READ_ONLY, (struct dma_attrs *)prot))
attrs &= ~_WRITABLE;
else if (dma_get_attr(DMA_ATTR_WRITE_ONLY, (struct dma_attrs *)prot))
attrs &= ~_READABLE;
while (total > 0) {
int pdn = SMMU_ADDR_TO_PDN(iova);
int ptn = SMMU_ADDR_TO_PTN(iova);
unsigned int *rest = &as->pte_count[pdn];
int count = min_t(size_t, SMMU_PTBL_COUNT - ptn, total);
struct page *tbl_page;
u32 *ptbl;
u32 *pte;
int i;
unsigned long flags;
spin_lock_irqsave(&as->lock, flags);
if (pdir[pdn] == _PDE_VACANT(pdn)) {
tbl_page = alloc_ptbl(as, iova, !flush_all);
if (!tbl_page) {
err = -ENOMEM;
spin_unlock_irqrestore(&as->lock, flags);
goto out;
}
} else {
tbl_page = SMMU_EX_PTBL_PAGE(pdir[pdn]);
}
ptbl = page_address(tbl_page);
for (i = 0; i < count; i++) {
pte = &ptbl[ptn + i];
if (*pte == _PTE_VACANT(iova + i * PAGE_SIZE))
(*rest)++;
*pte = SMMU_PFN_TO_PTE(page_to_pfn(pages[i]), attrs);
}
pte = &ptbl[ptn];
FLUSH_CPU_DCACHE(pte, tbl_page, count * sizeof(u32 *));
if (!flush_all)
flush_ptc_and_tlb_range(smmu, as, iova, pte, tbl_page,
count);
iova += PAGE_SIZE * count;
total -= count;
pages += count;
spin_unlock_irqrestore(&as->lock, flags);
}
out:
if (flush_all)
flush_ptc_and_tlb_as(as, iova_base,
iova_base + total * PAGE_SIZE);
return err;
}
static int smmu_iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
struct scatterlist *sgl, int npages, int prot)
{
int err = 0;
unsigned long iova_base = iova;
bool flush_all = (npages > smmu_flush_all_th_pages) ? true : false;
struct smmu_as *as = domain->priv;
u32 *pdir = page_address(as->pdir_page);
struct smmu_device *smmu = as->smmu;
int attrs = as->pte_attr;
size_t total = npages;
size_t sg_remaining = sgl->length >> PAGE_SHIFT;
unsigned long sg_pfn = page_to_pfn(sg_page(sgl));
if (dma_get_attr(DMA_ATTR_READ_ONLY, (struct dma_attrs *)prot))
attrs &= ~_WRITABLE;
else if (dma_get_attr(DMA_ATTR_WRITE_ONLY, (struct dma_attrs *)prot))
attrs &= ~_READABLE;
while (total > 0) {
int pdn = SMMU_ADDR_TO_PDN(iova);
int ptn = SMMU_ADDR_TO_PTN(iova);
unsigned int *rest = &as->pte_count[pdn];
int count = min_t(size_t, SMMU_PTBL_COUNT - ptn, total);
struct page *tbl_page;
u32 *ptbl;
u32 *pte;
int i;
unsigned long flags;
spin_lock_irqsave(&as->lock, flags);
if (pdir[pdn] == _PDE_VACANT(pdn)) {
tbl_page = alloc_ptbl(as, iova, !flush_all);
if (!tbl_page) {
err = -ENOMEM;
spin_unlock_irqrestore(&as->lock, flags);
break;
}
} else {
tbl_page = SMMU_EX_PTBL_PAGE(pdir[pdn]);
}
ptbl = page_address(tbl_page);
for (i = 0; i < count; i++) {
pte = &ptbl[ptn + i];
if (*pte == _PTE_VACANT(iova + i * PAGE_SIZE))
(*rest)++;
*pte = SMMU_PFN_TO_PTE(sg_pfn++, attrs);
if (--sg_remaining)
continue;
sgl = sg_next(sgl);
if (sgl) {
sg_pfn = page_to_pfn(sg_page(sgl));
sg_remaining = sgl->length >> PAGE_SHIFT;
}
}
pte = &ptbl[ptn];
FLUSH_CPU_DCACHE(pte, tbl_page, count * sizeof(u32 *));
if (!flush_all)
flush_ptc_and_tlb_range(smmu, as, iova, pte, tbl_page,
count);
iova += PAGE_SIZE * count;
total -= count;
spin_unlock_irqrestore(&as->lock, flags);
}
if (flush_all)
flush_ptc_and_tlb_as(as, iova_base,
iova_base + npages * PAGE_SIZE);
return err;
}
static int __smmu_iommu_unmap(struct smmu_as *as, dma_addr_t iova,
size_t bytes)
{
int pdn = SMMU_ADDR_TO_PDN(iova);
u32 *pdir = page_address(as->pdir_page);
if (!(pdir[pdn] & _PDE_NEXT))
return __smmu_iommu_unmap_largepage(as, iova);
return __smmu_iommu_unmap_pages(as, iova, bytes);
}
static size_t smmu_iommu_unmap(struct iommu_domain *domain, unsigned long iova,
size_t bytes)
{
struct smmu_as *as = domain->priv;
unsigned long flags;
size_t unmapped;
dev_dbg(as->smmu->dev, "[%d] %08lx\n", as->asid, iova);
spin_lock_irqsave(&as->lock, flags);
unmapped = __smmu_iommu_unmap(as, iova, bytes);
spin_unlock_irqrestore(&as->lock, flags);
return unmapped;
}
static phys_addr_t smmu_iommu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova)
{
struct smmu_as *as = domain->priv;
unsigned long flags;
int pdn = SMMU_ADDR_TO_PDN(iova);
u32 *pdir = page_address(as->pdir_page);
phys_addr_t pa = 0;
spin_lock_irqsave(&as->lock, flags);
if (pdir[pdn] & _PDE_NEXT) {
u32 *pte;
unsigned int *count;
struct page *page;
pte = locate_pte(as, iova, false, &page, &count);
if (pte) {
unsigned long pfn = *pte & SMMU_PFN_MASK;
pa = PFN_PHYS(pfn);
}
} else {
pa = pdir[pdn] << SMMU_PDE_SHIFT;
}
dev_dbg(as->smmu->dev,
"iova:%08llx pfn:%08llx asid:%d\n", (unsigned long long)iova,
(u64)pa, as->asid);
spin_unlock_irqrestore(&as->lock, flags);
return pa;
}
static int smmu_iommu_domain_has_cap(struct iommu_domain *domain,
unsigned long cap)
{
return 0;
}
static int smmu_iommu_attach_dev(struct iommu_domain *domain,
struct device *dev)
{
struct smmu_as *as = domain->priv;
struct smmu_device *smmu = as->smmu;
struct smmu_client *client, *c;
struct iommu_linear_map *area = NULL;
u64 map, temp;
int err;
map = tegra_smmu_of_get_swgids(dev);
temp = tegra_smmu_fixup_swgids(dev, &area);
if (!map && !temp)
return -ENODEV;
if (map && temp && map != temp)
dev_err(dev, "%llx %llx\n", map, temp);
if (!map)
map = temp;
while (area && area->size) {
DEFINE_DMA_ATTRS(attrs);
size_t size = PAGE_ALIGN(area->size);
dma_set_attr(DMA_ATTR_SKIP_IOVA_GAP, &attrs);
dma_set_attr(DMA_ATTR_SKIP_CPU_SYNC, &attrs);
err = dma_map_linear_attrs(dev, area->start, size, 0, &attrs);
if (err == DMA_ERROR_CODE)
dev_err(dev, "Failed IOVA linear map %016llx(%x)\n",
(u64)area->start, size);
else
dev_info(dev, "IOVA linear map %016llx(%x)\n",
(u64)area->start, size);
area++;
}
map &= smmu->swgids;
client = devm_kzalloc(smmu->dev, sizeof(*c), GFP_KERNEL);
if (!client)
return -ENOMEM;
client->dev = dev;
client->as = as;
err = smmu_client_enable_hwgrp(client, map);
if (err)
goto err_hwgrp;
spin_lock(&as->client_lock);
list_for_each_entry(c, &as->client, list) {
if (c->dev == dev) {
dev_err(smmu->dev,
"%s is already attached\n", dev_name(c->dev));
err = -EINVAL;
goto err_client;
}
}
list_add(&client->list, &as->client);
spin_unlock(&as->client_lock);
/*
* Reserve "page zero" for AVP vectors using a common dummy
* page.
*/
if (map & SWGID(AVPC)) {
struct page *page;
page = as->smmu->avp_vector_page;
__smmu_iommu_map_pfn(as, 0, page_to_pfn(page), 0);
pr_debug("Reserve \"page zero\" \
for AVP vectors using a common dummy\n");
}
dev_dbg(smmu->dev, "%s is attached\n", dev_name(dev));
return 0;
err_client:
smmu_client_disable_hwgrp(client);
spin_unlock(&as->client_lock);
err_hwgrp:
devm_kfree(smmu->dev, client);
return err;
}
static void smmu_iommu_detach_dev(struct iommu_domain *domain,
struct device *dev)
{
struct smmu_as *as = domain->priv;
struct smmu_device *smmu = as->smmu;
struct smmu_client *c;
spin_lock(&as->client_lock);
list_for_each_entry(c, &as->client, list) {
if (c->dev == dev) {
list_del(&c->list);
smmu_client_disable_hwgrp(c);
devm_kfree(smmu->dev, c);
dev_dbg(smmu->dev,
"%s is detached\n", dev_name(c->dev));
goto out;
}
}
dev_err(smmu->dev, "Couldn't find %s\n", dev_name(dev));
out:
spin_unlock(&as->client_lock);
}
static int smmu_iommu_domain_init(struct iommu_domain *domain)
{
int i, err = -EAGAIN;
unsigned long flags;
struct smmu_as *as;
struct smmu_device *smmu = smmu_handle;
/* Look for a free AS with lock held */
for (i = 0; i < smmu->num_as; i++) {
as = &smmu->as[i];
if (as->pdir_page)
continue;
err = alloc_pdir(as);
if (!err)
goto found;
if (err != -EAGAIN)
break;
}
if (i == smmu->num_as)
dev_err(smmu->dev, "no free AS\n");
return err;
found:
spin_lock_irqsave(&smmu->lock, flags);
/* Update PDIR register */
smmu_write(smmu, SMMU_PTB_ASID_CUR(as->asid), SMMU_PTB_ASID);
smmu_write(smmu,
SMMU_MK_PDIR(as->pdir_page, as->pdir_attr), SMMU_PTB_DATA);
FLUSH_SMMU_REGS(smmu);
spin_unlock_irqrestore(&smmu->lock, flags);
domain->priv = as;
domain->geometry.aperture_start = smmu->iovmm_base;
domain->geometry.aperture_end = smmu->iovmm_base +
smmu->page_count * SMMU_PAGE_SIZE - 1;
domain->geometry.force_aperture = true;
dev_dbg(smmu->dev, "smmu_as@%p\n", as);
return 0;
}
static void smmu_iommu_domain_destroy(struct iommu_domain *domain)
{
struct smmu_as *as = domain->priv;
struct smmu_device *smmu = as->smmu;
unsigned long flags;
spin_lock_irqsave(&as->lock, flags);
if (as->pdir_page) {
spin_lock(&smmu->lock);
smmu_write(smmu, SMMU_PTB_ASID_CUR(as->asid), SMMU_PTB_ASID);
smmu_write(smmu, SMMU_PTB_DATA_RESET_VAL, SMMU_PTB_DATA);
FLUSH_SMMU_REGS(smmu);
spin_unlock(&smmu->lock);
free_pdir(as);
}
if (!list_empty(&as->client)) {
struct smmu_client *c;
list_for_each_entry(c, &as->client, list)
smmu_iommu_detach_dev(domain, c->dev);
}
spin_unlock_irqrestore(&as->lock, flags);
domain->priv = NULL;
dev_dbg(smmu->dev, "smmu_as@%p\n", as);
}
static struct iommu_ops smmu_iommu_ops = {
.domain_init = smmu_iommu_domain_init,
.domain_destroy = smmu_iommu_domain_destroy,
.attach_dev = smmu_iommu_attach_dev,
.detach_dev = smmu_iommu_detach_dev,
.map = smmu_iommu_map,
.map_pages = smmu_iommu_map_pages,
.map_sg = smmu_iommu_map_sg,
.unmap = smmu_iommu_unmap,
.iova_to_phys = smmu_iommu_iova_to_phys,
.domain_has_cap = smmu_iommu_domain_has_cap,
.pgsize_bitmap = SMMU_IOMMU_PGSIZES,
};
/* Should be in the order of enum */
static const char * const smmu_debugfs_mc[] = { "mc", };
static const char * const smmu_debugfs_cache[] = { "tlb", "ptc", };
static ssize_t smmu_debugfs_stats_write(struct file *file,
const char __user *buffer,
size_t count, loff_t *pos)
{
struct smmu_debugfs_info *info;
struct smmu_device *smmu;
int i;
enum {
_OFF = 0,
_ON,
_RESET,
};
const char * const command[] = {
[_OFF] = "off",
[_ON] = "on",
[_RESET] = "reset",
};
char str[] = "reset";
u32 val;
size_t offs;
count = min_t(size_t, count, sizeof(str));
if (copy_from_user(str, buffer, count))
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(command); i++)
if (strncmp(str, command[i],
strlen(command[i])) == 0)
break;
if (i == ARRAY_SIZE(command))
return -EINVAL;
info = file_inode(file)->i_private;
smmu = info->smmu;
offs = SMMU_CACHE_CONFIG(info->cache);
val = smmu_read(smmu, offs);
switch (i) {
case _OFF:
val &= ~SMMU_CACHE_CONFIG_STATS_ENABLE;
val &= ~SMMU_CACHE_CONFIG_STATS_TEST;
smmu_write(smmu, val, offs);
break;
case _ON:
val |= SMMU_CACHE_CONFIG_STATS_ENABLE;
val &= ~SMMU_CACHE_CONFIG_STATS_TEST;
smmu_write(smmu, val, offs);
break;
case _RESET:
val |= SMMU_CACHE_CONFIG_STATS_TEST;
smmu_write(smmu, val, offs);
val &= ~SMMU_CACHE_CONFIG_STATS_TEST;
smmu_write(smmu, val, offs);
break;
default:
BUG();
break;
}
dev_dbg(smmu->dev, "%s() %08x, %08x @%08x\n", __func__,
val, smmu_read(smmu, offs), offs);
return count;
}
static int smmu_debugfs_stats_show(struct seq_file *s, void *v)
{
struct smmu_debugfs_info *info = s->private;
struct smmu_device *smmu = info->smmu;
int i;
const char * const stats[] = { "hit", "miss", };
for (i = 0; i < ARRAY_SIZE(stats); i++) {
u32 val;
size_t offs;
offs = SMMU_STATS_CACHE_COUNT(info->mc, info->cache, i);
val = smmu_read(smmu, offs);
seq_printf(s, "%s:%08x ", stats[i], val);
dev_dbg(smmu->dev, "%s() %s %08x @%08x\n", __func__,
stats[i], val, offs);
}
seq_printf(s, "\n");
return 0;
}
static int smmu_debugfs_stats_open(struct inode *inode, struct file *file)
{
return single_open(file, smmu_debugfs_stats_show, inode->i_private);
}
static const struct file_operations smmu_debugfs_stats_fops = {
.open = smmu_debugfs_stats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = smmu_debugfs_stats_write,
};
static void smmu_debugfs_delete(struct smmu_device *smmu)
{
debugfs_remove_recursive(smmu->debugfs_root);
kfree(smmu->debugfs_info);
}
static void smmu_debugfs_create(struct smmu_device *smmu)
{
int i;
size_t bytes;
struct dentry *root;
bytes = ARRAY_SIZE(smmu_debugfs_mc) * ARRAY_SIZE(smmu_debugfs_cache) *
sizeof(*smmu->debugfs_info);
smmu->debugfs_info = kmalloc(bytes, GFP_KERNEL);
if (!smmu->debugfs_info)
return;
root = debugfs_create_dir(dev_name(smmu->dev), NULL);
if (!root)
goto err_out;
smmu->debugfs_root = root;
for (i = 0; i < ARRAY_SIZE(smmu_debugfs_mc); i++) {
int j;
struct dentry *mc;
mc = debugfs_create_dir(smmu_debugfs_mc[i], root);
if (!mc)
goto err_out;
for (j = 0; j < ARRAY_SIZE(smmu_debugfs_cache); j++) {
struct dentry *cache;
struct smmu_debugfs_info *info;
info = smmu->debugfs_info;
info += i * ARRAY_SIZE(smmu_debugfs_mc) + j;
info->smmu = smmu;
info->mc = i;
info->cache = j;
cache = debugfs_create_file(smmu_debugfs_cache[j],
S_IWUSR | S_IRUSR, mc,
(void *)info,
&smmu_debugfs_stats_fops);
if (!cache)
goto err_out;
}
}
debugfs_create_size_t("flush_all_threshold_pages", S_IWUSR | S_IRUSR,
root, &smmu_flush_all_th_pages);
return;
err_out:
smmu_debugfs_delete(smmu);
}
int tegra_smmu_suspend(struct device *dev)
{
int i;
struct smmu_device *smmu = dev_get_drvdata(dev);
for (i = 0; i < smmu->num_translation_enable; i++)
smmu->translation_enable[i] = smmu_read(smmu,
SMMU_TRANSLATION_ENABLE_0 + i * sizeof(u32));
for (i = 0; i < smmu->num_asid_security; i++)
smmu->asid_security[i] =
smmu_read(smmu, smmu_asid_security_ofs[i]);
return 0;
}
EXPORT_SYMBOL(tegra_smmu_suspend);
struct device *get_smmu_device(void)
{
return save_smmu_device;
}
EXPORT_SYMBOL(get_smmu_device);
int tegra_smmu_resume(struct device *dev)
{
struct smmu_device *smmu = dev_get_drvdata(dev);
unsigned long flags;
spin_lock_irqsave(&smmu->lock, flags);
smmu_setup_regs(smmu);
spin_unlock_irqrestore(&smmu->lock, flags);
return 0;
}
EXPORT_SYMBOL(tegra_smmu_resume);
static int tegra_smmu_probe(struct platform_device *pdev)
{
struct smmu_device *smmu;
struct resource *regs, *regs2, *window;
struct device *dev = &pdev->dev;
int i, num_as;
size_t bytes;
if (smmu_handle)
return -EIO;
BUILD_BUG_ON(PAGE_SHIFT != SMMU_PAGE_SHIFT);
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
window = tegra_smmu_window(0);
if (!regs || !regs2 || !window) {
dev_err(dev, "No SMMU resources\n");
return -ENODEV;
}
num_as = SMMU_NUM_ASIDS;
if (tegra_get_chipid() == TEGRA_CHIPID_TEGRA12)
num_as = SMMU_NUM_ASIDS_TEGRA12;
bytes = sizeof(*smmu) + num_as * sizeof(*smmu->as);
smmu = devm_kzalloc(dev, bytes, GFP_KERNEL);
if (!smmu) {
dev_err(dev, "failed to allocate smmu_device\n");
return -ENOMEM;
}
smmu->dev = dev;
smmu->num_as = num_as;
smmu->iovmm_base = (unsigned long)window->start;
smmu->page_count = resource_size(window) >> SMMU_PAGE_SHIFT;
smmu->regs = devm_ioremap(dev, regs->start, resource_size(regs));
smmu->regs_ahbarb = devm_ioremap(dev, regs2->start,
resource_size(regs2));
if (!smmu->regs || !smmu->regs_ahbarb) {
dev_err(dev, "failed to remap SMMU registers\n");
return -ENXIO;
}
if (IS_ENABLED(CONFIG_ARCH_TEGRA_3x_SOC) &&
(tegra_get_chipid() == TEGRA_CHIPID_TEGRA3))
smmu->swgids = 0x00000000000779ff;
if (IS_ENABLED(CONFIG_ARCH_TEGRA_11x_SOC) &&
(tegra_get_chipid() == TEGRA_CHIPID_TEGRA11))
smmu->swgids = 0x0000000001b659fe;
if (IS_ENABLED(CONFIG_ARCH_TEGRA_14x_SOC) &&
(tegra_get_chipid() == TEGRA_CHIPID_TEGRA14))
smmu->swgids = 0x00000020018659fe;
if (IS_ENABLED(CONFIG_ARCH_TEGRA_12x_SOC) &&
(tegra_get_chipid() == TEGRA_CHIPID_TEGRA12)) {
smmu->swgids = 0x06f9000001ffc9cf;
smmu->num_translation_enable = 4;
smmu->num_asid_security = 8;
smmu->ptc_cache_size = SZ_32K;
} else {
smmu->num_translation_enable = 3;
smmu->num_asid_security = 1;
smmu->ptc_cache_size = SZ_16K;
}
for (i = 0; i < smmu->num_translation_enable; i++)
smmu->translation_enable[i] = ~0;
for (i = 0; i < smmu->num_as; i++) {
struct smmu_as *as = &smmu->as[i];
as->smmu = smmu;
as->asid = i;
as->pdir_attr = _PDIR_ATTR;
as->pde_attr = _PDE_ATTR;
as->pte_attr = _PTE_ATTR;
spin_lock_init(&as->lock);
spin_lock_init(&as->client_lock);
INIT_LIST_HEAD(&as->client);
}
spin_lock_init(&smmu->lock);
smmu_setup_regs(smmu);
platform_set_drvdata(pdev, smmu);
smmu->avp_vector_page = alloc_page(GFP_KERNEL);
if (!smmu->avp_vector_page)
return -ENOMEM;
smmu_debugfs_create(smmu);
smmu_handle = smmu;
bus_set_iommu(&platform_bus_type, &smmu_iommu_ops);
dev_info(dev, "Loaded Tegra IOMMU driver\n");
return 0;
}
static int tegra_smmu_remove(struct platform_device *pdev)
{
struct smmu_device *smmu = platform_get_drvdata(pdev);
int i;
smmu_debugfs_delete(smmu);
smmu_write(smmu, SMMU_CONFIG_DISABLE, SMMU_CONFIG);
for (i = 0; i < smmu->num_as; i++)
free_pdir(&smmu->as[i]);
__free_page(smmu->avp_vector_page);
smmu_handle = NULL;
return 0;
}
const struct dev_pm_ops tegra_smmu_pm_ops = {
.suspend = tegra_smmu_suspend,
.resume = tegra_smmu_resume,
};
static struct platform_driver tegra_smmu_driver = {
.probe = tegra_smmu_probe,
.remove = tegra_smmu_remove,
.driver = {
.owner = THIS_MODULE,
.name = "tegra_smmu",
.pm = &tegra_smmu_pm_ops,
},
};
static int tegra_smmu_device_notifier(struct notifier_block *nb,
unsigned long event, void *_dev)
{
struct dma_iommu_mapping *map;
struct device *dev = _dev;
switch (event) {
case BUS_NOTIFY_BIND_DRIVER:
if (get_dma_ops(dev) != &arm_dma_ops)
break;
/* FALLTHROUGH */
case BUS_NOTIFY_ADD_DEVICE:
if (strncmp(dev_name(dev), "tegra_smmu", 10) == 0)
break;
if (!smmu_handle) {
dev_warn(dev, "No map yet available\n");
break;
}
map = tegra_smmu_get_map(dev, tegra_smmu_of_get_swgids(dev));
if (!map)
break;
if (arm_iommu_attach_device(dev, map)) {
arm_iommu_release_mapping(map);
dev_err(dev, "Failed to attach %s\n", dev_name(dev));
break;
}
dev_dbg(dev, "Attached %s to map %p\n", dev_name(dev), map);
break;
case BUS_NOTIFY_DEL_DEVICE:
if (dev->driver)
break;
/* FALLTHROUGH */
case BUS_NOTIFY_UNBOUND_DRIVER:
dev_dbg(dev, "Detaching %s from map %p\n", dev_name(dev),
to_dma_iommu_mapping(dev));
arm_iommu_detach_device(dev);
break;
default:
break;
}
return NOTIFY_DONE;
}
static struct notifier_block tegra_smmu_device_nb = {
.notifier_call = tegra_smmu_device_notifier,
};
static int tegra_smmu_init(void)
{
int err;
err = platform_driver_register(&tegra_smmu_driver);
if (err)
return err;
if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU))
bus_register_notifier(&platform_bus_type,
&tegra_smmu_device_nb);
return 0;
}
static int tegra_smmu_remove_map(struct device *dev, void *data)
{
struct dma_iommu_mapping *map = to_dma_iommu_mapping(dev);
if (map)
arm_iommu_release_mapping(map);
return 0;
}
static void __exit tegra_smmu_exit(void)
{
if (IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) {
bus_for_each_dev(&platform_bus_type, NULL, NULL,
tegra_smmu_remove_map);
bus_unregister_notifier(&platform_bus_type,
&tegra_smmu_device_nb);
}
platform_driver_unregister(&tegra_smmu_driver);
}
core_initcall(tegra_smmu_init);
module_exit(tegra_smmu_exit);
MODULE_DESCRIPTION("IOMMU API for SMMU in Tegra SoC");
MODULE_AUTHOR("Hiroshi DOYU <hdoyu@nvidia.com>");
MODULE_LICENSE("GPL v2");