blob: 4a1479d2ac440d59a39a2bc9004228a4c132bf66 [file] [log] [blame]
/*
* CPUFreq hotplug governor
*
* Copyright (C) 2010 Texas Instruments, Inc.
* Mike Turquette <mturquette@ti.com>
* Santosh Shilimkar <santosh.shilimkar@ti.com>
*
* Based on ondemand governor
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>,
* Jun Nakajima <jun.nakajima@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/cpu.h>
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
#include <linux/mutex.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/ktime.h>
#include <linux/sched.h>
#include <linux/err.h>
#include <linux/slab.h>
/* greater than 80% avg load across online CPUs increases frequency */
#define DEFAULT_UP_FREQ_MIN_LOAD (80)
/* Keep 10% of idle under the up threshold when decreasing the frequency */
#define DEFAULT_FREQ_DOWN_DIFFERENTIAL (10)
/* less than 35% avg load across online CPUs decreases frequency */
#define DEFAULT_DOWN_FREQ_MAX_LOAD (35)
/* default sampling period (uSec) is bogus; 10x ondemand's default for x86 */
#define DEFAULT_SAMPLING_PERIOD (100000)
/* default number of sampling periods to average before hotplug-in decision */
#define DEFAULT_HOTPLUG_IN_SAMPLING_PERIODS (5)
/* default number of sampling periods to average before hotplug-out decision */
#define DEFAULT_HOTPLUG_OUT_SAMPLING_PERIODS (20)
static void do_dbs_timer(struct work_struct *work);
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event);
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_HOTPLUG
static
#endif
struct cpufreq_governor cpufreq_gov_hotplug = {
.name = "hotplug",
.governor = cpufreq_governor_dbs,
.owner = THIS_MODULE,
};
struct cpu_dbs_info_s {
cputime64_t prev_cpu_idle;
cputime64_t prev_cpu_wall;
cputime64_t prev_cpu_nice;
struct cpufreq_policy *cur_policy;
struct delayed_work work;
struct cpufreq_frequency_table *freq_table;
int cpu;
/*
* percpu mutex that serializes governor limit change with
* do_dbs_timer invocation. We do not want do_dbs_timer to run
* when user is changing the governor or limits.
*/
struct mutex timer_mutex;
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, hp_cpu_dbs_info);
static unsigned int dbs_enable; /* number of CPUs using this policy */
/*
* dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
* different CPUs. It protects dbs_enable in governor start/stop.
*/
static DEFINE_MUTEX(dbs_mutex);
static struct workqueue_struct *khotplug_wq;
static struct dbs_tuners {
unsigned int sampling_rate;
unsigned int up_threshold;
unsigned int down_differential;
unsigned int down_threshold;
unsigned int hotplug_in_sampling_periods;
unsigned int hotplug_out_sampling_periods;
unsigned int hotplug_load_index;
unsigned int *hotplug_load_history;
unsigned int ignore_nice;
unsigned int io_is_busy;
} dbs_tuners_ins = {
.sampling_rate = DEFAULT_SAMPLING_PERIOD,
.up_threshold = DEFAULT_UP_FREQ_MIN_LOAD,
.down_differential = DEFAULT_FREQ_DOWN_DIFFERENTIAL,
.down_threshold = DEFAULT_DOWN_FREQ_MAX_LOAD,
.hotplug_in_sampling_periods = DEFAULT_HOTPLUG_IN_SAMPLING_PERIODS,
.hotplug_out_sampling_periods = DEFAULT_HOTPLUG_OUT_SAMPLING_PERIODS,
.hotplug_load_index = 0,
.ignore_nice = 0,
.io_is_busy = 0,
};
/*
* A corner case exists when switching io_is_busy at run-time: comparing idle
* times from a non-io_is_busy period to an io_is_busy period (or vice-versa)
* will misrepresent the actual change in system idleness. We ignore this
* corner case: enabling io_is_busy might cause freq increase and disabling
* might cause freq decrease, which probably matches the original intent.
*/
static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
{
u64 idle_time;
u64 iowait_time;
/* cpufreq-hotplug always assumes CONFIG_NO_HZ */
idle_time = get_cpu_idle_time_us(cpu, wall);
/* add time spent doing I/O to idle time */
if (dbs_tuners_ins.io_is_busy) {
iowait_time = get_cpu_iowait_time_us(cpu, wall);
/* cpufreq-hotplug always assumes CONFIG_NO_HZ */
if (iowait_time != -1ULL && idle_time >= iowait_time)
idle_time -= iowait_time;
}
return idle_time;
}
/************************** sysfs interface ************************/
/* XXX look at global sysfs macros in cpufreq.h, can those be used here? */
/* cpufreq_hotplug Governor Tunables */
#define show_one(file_name, object) \
static ssize_t show_##file_name \
(struct kobject *kobj, struct attribute *attr, char *buf) \
{ \
return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
}
show_one(sampling_rate, sampling_rate);
show_one(up_threshold, up_threshold);
show_one(down_differential, down_differential);
show_one(down_threshold, down_threshold);
show_one(hotplug_in_sampling_periods, hotplug_in_sampling_periods);
show_one(hotplug_out_sampling_periods, hotplug_out_sampling_periods);
show_one(ignore_nice_load, ignore_nice);
show_one(io_is_busy, io_is_busy);
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
mutex_lock(&dbs_mutex);
dbs_tuners_ins.sampling_rate = input;
mutex_unlock(&dbs_mutex);
return count;
}
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input <= dbs_tuners_ins.down_threshold) {
return -EINVAL;
}
mutex_lock(&dbs_mutex);
dbs_tuners_ins.up_threshold = input;
mutex_unlock(&dbs_mutex);
return count;
}
static ssize_t store_down_differential(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input >= dbs_tuners_ins.up_threshold)
return -EINVAL;
mutex_lock(&dbs_mutex);
dbs_tuners_ins.down_differential = input;
mutex_unlock(&dbs_mutex);
return count;
}
static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input >= dbs_tuners_ins.up_threshold) {
return -EINVAL;
}
mutex_lock(&dbs_mutex);
dbs_tuners_ins.down_threshold = input;
mutex_unlock(&dbs_mutex);
return count;
}
static ssize_t store_hotplug_in_sampling_periods(struct kobject *a,
struct attribute *b, const char *buf, size_t count)
{
unsigned int input;
unsigned int *temp;
unsigned int max_windows;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
/* already using this value, bail out */
if (input == dbs_tuners_ins.hotplug_in_sampling_periods)
return count;
mutex_lock(&dbs_mutex);
ret = count;
max_windows = max(dbs_tuners_ins.hotplug_in_sampling_periods,
dbs_tuners_ins.hotplug_out_sampling_periods);
/* no need to resize array */
if (input <= max_windows) {
dbs_tuners_ins.hotplug_in_sampling_periods = input;
goto out;
}
/* resize array */
temp = kmalloc((sizeof(unsigned int) * input), GFP_KERNEL);
if (!temp || IS_ERR(temp)) {
ret = -ENOMEM;
goto out;
}
memcpy(temp, dbs_tuners_ins.hotplug_load_history,
(max_windows * sizeof(unsigned int)));
kfree(dbs_tuners_ins.hotplug_load_history);
/* replace old buffer, old number of sampling periods & old index */
dbs_tuners_ins.hotplug_load_history = temp;
dbs_tuners_ins.hotplug_in_sampling_periods = input;
dbs_tuners_ins.hotplug_load_index = max_windows;
out:
mutex_unlock(&dbs_mutex);
return ret;
}
static ssize_t store_hotplug_out_sampling_periods(struct kobject *a,
struct attribute *b, const char *buf, size_t count)
{
unsigned int input;
unsigned int *temp;
unsigned int max_windows;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
/* already using this value, bail out */
if (input == dbs_tuners_ins.hotplug_out_sampling_periods)
return count;
mutex_lock(&dbs_mutex);
ret = count;
max_windows = max(dbs_tuners_ins.hotplug_in_sampling_periods,
dbs_tuners_ins.hotplug_out_sampling_periods);
/* no need to resize array */
if (input <= max_windows) {
dbs_tuners_ins.hotplug_out_sampling_periods = input;
goto out;
}
/* resize array */
temp = kmalloc((sizeof(unsigned int) * input), GFP_KERNEL);
if (!temp || IS_ERR(temp)) {
ret = -ENOMEM;
goto out;
}
memcpy(temp, dbs_tuners_ins.hotplug_load_history,
(max_windows * sizeof(unsigned int)));
kfree(dbs_tuners_ins.hotplug_load_history);
/* replace old buffer, old number of sampling periods & old index */
dbs_tuners_ins.hotplug_load_history = temp;
dbs_tuners_ins.hotplug_out_sampling_periods = input;
dbs_tuners_ins.hotplug_load_index = max_windows;
out:
mutex_unlock(&dbs_mutex);
return ret;
}
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
unsigned int j;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1)
input = 1;
mutex_lock(&dbs_mutex);
if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
mutex_unlock(&dbs_mutex);
return count;
}
dbs_tuners_ins.ignore_nice = input;
/* we need to re-evaluate prev_cpu_idle */
for_each_online_cpu(j) {
struct cpu_dbs_info_s *dbs_info;
dbs_info = &per_cpu(hp_cpu_dbs_info, j);
dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
&dbs_info->prev_cpu_wall);
if (dbs_tuners_ins.ignore_nice)
dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
}
mutex_unlock(&dbs_mutex);
return count;
}
static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
mutex_lock(&dbs_mutex);
dbs_tuners_ins.io_is_busy = !!input;
mutex_unlock(&dbs_mutex);
return count;
}
define_one_global_rw(sampling_rate);
define_one_global_rw(up_threshold);
define_one_global_rw(down_differential);
define_one_global_rw(down_threshold);
define_one_global_rw(hotplug_in_sampling_periods);
define_one_global_rw(hotplug_out_sampling_periods);
define_one_global_rw(ignore_nice_load);
define_one_global_rw(io_is_busy);
static struct attribute *dbs_attributes[] = {
&sampling_rate.attr,
&up_threshold.attr,
&down_differential.attr,
&down_threshold.attr,
&hotplug_in_sampling_periods.attr,
&hotplug_out_sampling_periods.attr,
&ignore_nice_load.attr,
&io_is_busy.attr,
NULL
};
static struct attribute_group dbs_attr_group = {
.attrs = dbs_attributes,
.name = "hotplug",
};
/************************** sysfs end ************************/
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
{
/* combined load of all enabled CPUs */
unsigned int total_load = 0;
/* single largest CPU load percentage*/
unsigned int max_load = 0;
/* largest CPU load in terms of frequency */
unsigned int max_load_freq = 0;
/* average load across all enabled CPUs */
unsigned int avg_load = 0;
/* average load across multiple sampling periods for hotplug events */
unsigned int hotplug_in_avg_load = 0;
unsigned int hotplug_out_avg_load = 0;
/* number of sampling periods averaged for hotplug decisions */
unsigned int periods;
struct cpufreq_policy *policy;
unsigned int i, j;
policy = this_dbs_info->cur_policy;
/*
* cpu load accounting
* get highest load, total load and average load across all CPUs
*/
for_each_cpu(j, policy->cpus) {
unsigned int load;
unsigned int idle_time, wall_time;
cputime64_t cur_wall_time, cur_idle_time;
struct cpu_dbs_info_s *j_dbs_info;
j_dbs_info = &per_cpu(hp_cpu_dbs_info, j);
/* update both cur_idle_time and cur_wall_time */
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
/* how much wall time has passed since last iteration? */
wall_time = (unsigned int) cputime64_sub(cur_wall_time,
j_dbs_info->prev_cpu_wall);
j_dbs_info->prev_cpu_wall = cur_wall_time;
/* how much idle time has passed since last iteration? */
idle_time = (unsigned int) cputime64_sub(cur_idle_time,
j_dbs_info->prev_cpu_idle);
j_dbs_info->prev_cpu_idle = cur_idle_time;
if (unlikely(!wall_time || wall_time < idle_time))
continue;
/* load is the percentage of time not spent in idle */
load = 100 * (wall_time - idle_time) / wall_time;
/* keep track of combined load across all CPUs */
total_load += load;
/* keep track of highest single load across all CPUs */
if (load > max_load)
max_load = load;
}
/* use the max load in the OPP freq change policy */
max_load_freq = max_load * policy->cur;
/* calculate the average load across all related CPUs */
avg_load = total_load / num_online_cpus();
/*
* hotplug load accounting
* average load over multiple sampling periods
*/
/* how many sampling periods do we use for hotplug decisions? */
periods = max(dbs_tuners_ins.hotplug_in_sampling_periods,
dbs_tuners_ins.hotplug_out_sampling_periods);
/* store avg_load in the circular buffer */
dbs_tuners_ins.hotplug_load_history[dbs_tuners_ins.hotplug_load_index]
= avg_load;
/* compute average load across in & out sampling periods */
for (i = 0, j = dbs_tuners_ins.hotplug_load_index;
i < periods; i++, j--) {
if (i < dbs_tuners_ins.hotplug_in_sampling_periods)
hotplug_in_avg_load +=
dbs_tuners_ins.hotplug_load_history[j];
if (i < dbs_tuners_ins.hotplug_out_sampling_periods)
hotplug_out_avg_load +=
dbs_tuners_ins.hotplug_load_history[j];
if (j == 0)
j = periods;
}
hotplug_in_avg_load = hotplug_in_avg_load /
dbs_tuners_ins.hotplug_in_sampling_periods;
hotplug_out_avg_load = hotplug_out_avg_load /
dbs_tuners_ins.hotplug_out_sampling_periods;
/* return to first element if we're at the circular buffer's end */
if (++dbs_tuners_ins.hotplug_load_index == periods)
dbs_tuners_ins.hotplug_load_index = 0;
/* check if auxiliary CPU is needed based on avg_load */
if (avg_load > dbs_tuners_ins.up_threshold) {
/* should we enable auxillary CPUs? */
if (num_online_cpus() < 2 && hotplug_in_avg_load >
dbs_tuners_ins.up_threshold) {
/* hotplug with cpufreq is nasty
* a call to cpufreq_governor_dbs may cause a lockup.
* wq is not running here so its safe.
*/
mutex_unlock(&this_dbs_info->timer_mutex);
cpu_up(1);
mutex_lock(&this_dbs_info->timer_mutex);
goto out;
}
}
/* check for frequency increase based on max_load */
if (max_load > dbs_tuners_ins.up_threshold) {
/* increase to highest frequency supported */
if (policy->cur < policy->max)
__cpufreq_driver_target(policy, policy->max,
CPUFREQ_RELATION_H);
goto out;
}
/* check for frequency decrease */
if (avg_load < dbs_tuners_ins.down_threshold) {
/* are we at the minimum frequency already? */
if (policy->cur == policy->min) {
/* should we disable auxillary CPUs? */
if (num_online_cpus() > 1 && hotplug_out_avg_load <
dbs_tuners_ins.down_threshold) {
mutex_unlock(&this_dbs_info->timer_mutex);
cpu_down(1);
mutex_lock(&this_dbs_info->timer_mutex);
}
goto out;
}
}
/*
* go down to the lowest frequency which can sustain the load by
* keeping 30% of idle in order to not cross the up_threshold
*/
if ((max_load_freq <
(dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
policy->cur) && (policy->cur > policy->min)) {
unsigned int freq_next;
freq_next = max_load_freq /
(dbs_tuners_ins.up_threshold -
dbs_tuners_ins.down_differential);
if (freq_next < policy->min)
freq_next = policy->min;
__cpufreq_driver_target(policy, freq_next,
CPUFREQ_RELATION_L);
}
out:
return;
}
static void do_dbs_timer(struct work_struct *work)
{
struct cpu_dbs_info_s *dbs_info =
container_of(work, struct cpu_dbs_info_s, work.work);
unsigned int cpu = dbs_info->cpu;
/* We want all related CPUs to do sampling nearly on same jiffy */
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
mutex_lock(&dbs_info->timer_mutex);
dbs_check_cpu(dbs_info);
queue_delayed_work_on(cpu, khotplug_wq, &dbs_info->work, delay);
mutex_unlock(&dbs_info->timer_mutex);
}
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
{
/* We want all related CPUs to do sampling nearly on same jiffy */
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
delay -= jiffies % delay;
INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
queue_delayed_work_on(dbs_info->cpu, khotplug_wq, &dbs_info->work,
delay);
}
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
{
cancel_delayed_work_sync(&dbs_info->work);
}
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event)
{
unsigned int cpu = policy->cpu;
struct cpu_dbs_info_s *this_dbs_info;
unsigned int i, j, max_periods;
int rc;
this_dbs_info = &per_cpu(hp_cpu_dbs_info, cpu);
switch (event) {
case CPUFREQ_GOV_START:
if ((!cpu_online(cpu)) || (!policy->cur))
return -EINVAL;
mutex_lock(&dbs_mutex);
dbs_enable++;
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info_s *j_dbs_info;
j_dbs_info = &per_cpu(hp_cpu_dbs_info, j);
j_dbs_info->cur_policy = policy;
j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
&j_dbs_info->prev_cpu_wall);
if (dbs_tuners_ins.ignore_nice) {
j_dbs_info->prev_cpu_nice =
kstat_cpu(j).cpustat.nice;
}
max_periods = max(DEFAULT_HOTPLUG_IN_SAMPLING_PERIODS,
DEFAULT_HOTPLUG_OUT_SAMPLING_PERIODS);
dbs_tuners_ins.hotplug_load_history = kmalloc(
(sizeof(unsigned int) * max_periods),
GFP_KERNEL);
if (!dbs_tuners_ins.hotplug_load_history) {
WARN_ON(1);
return -ENOMEM;
}
for (i = 0; i < max_periods; i++)
dbs_tuners_ins.hotplug_load_history[i] = 50;
}
this_dbs_info->cpu = cpu;
this_dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
/*
* Start the timerschedule work, when this governor
* is used for first time
*/
if (dbs_enable == 1) {
rc = sysfs_create_group(cpufreq_global_kobject,
&dbs_attr_group);
if (rc) {
mutex_unlock(&dbs_mutex);
return rc;
}
}
mutex_unlock(&dbs_mutex);
mutex_init(&this_dbs_info->timer_mutex);
dbs_timer_init(this_dbs_info);
break;
case CPUFREQ_GOV_STOP:
dbs_timer_exit(this_dbs_info);
mutex_lock(&dbs_mutex);
mutex_destroy(&this_dbs_info->timer_mutex);
dbs_enable--;
mutex_unlock(&dbs_mutex);
if (!dbs_enable)
sysfs_remove_group(cpufreq_global_kobject,
&dbs_attr_group);
kfree(dbs_tuners_ins.hotplug_load_history);
/*
* XXX BIG CAVEAT: Stopping the governor with CPU1 offline
* will result in it remaining offline until the user onlines
* it again. It is up to the user to do this (for now).
*/
break;
case CPUFREQ_GOV_LIMITS:
mutex_lock(&this_dbs_info->timer_mutex);
if (policy->max < this_dbs_info->cur_policy->cur)
__cpufreq_driver_target(this_dbs_info->cur_policy,
policy->max, CPUFREQ_RELATION_H);
else if (policy->min > this_dbs_info->cur_policy->cur)
__cpufreq_driver_target(this_dbs_info->cur_policy,
policy->min, CPUFREQ_RELATION_L);
mutex_unlock(&this_dbs_info->timer_mutex);
break;
}
return 0;
}
static int __init cpufreq_gov_dbs_init(void)
{
int err;
cputime64_t wall;
u64 idle_time;
int cpu = get_cpu();
idle_time = get_cpu_idle_time_us(cpu, &wall);
put_cpu();
if (idle_time != -1ULL) {
dbs_tuners_ins.up_threshold = DEFAULT_UP_FREQ_MIN_LOAD;
} else {
pr_err("cpufreq-hotplug: %s: assumes CONFIG_NO_HZ\n",
__func__);
return -EINVAL;
}
khotplug_wq = create_workqueue("khotplug");
if (!khotplug_wq) {
pr_err("Creation of khotplug failed\n");
return -EFAULT;
}
err = cpufreq_register_governor(&cpufreq_gov_hotplug);
if (err)
destroy_workqueue(khotplug_wq);
return err;
}
static void __exit cpufreq_gov_dbs_exit(void)
{
cpufreq_unregister_governor(&cpufreq_gov_hotplug);
destroy_workqueue(khotplug_wq);
}
MODULE_AUTHOR("Mike Turquette <mturquette@ti.com>");
MODULE_DESCRIPTION("'cpufreq_hotplug' - cpufreq governor for dynamic frequency scaling and CPU hotplugging");
MODULE_LICENSE("GPL");
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_HOTPLUG
fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);