blob: 12dd4ddc4e009403fac9a71f75bd3841cce6e1d0 [file] [log] [blame]
/*
* Remote Processor Framework
*
* Copyright (C) 2011 Texas Instruments, Inc.
* Copyright (C) 2011 Google, Inc.
*
* Ohad Ben-Cohen <ohad@wizery.com>
* Mark Grosen <mgrosen@ti.com>
* Brian Swetland <swetland@google.com>
* Fernando Guzman Lugo <fernando.lugo@ti.com>
* Robert Tivy <rtivy@ti.com>
* Armando Uribe De Leon <x0095078@ti.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/firmware.h>
#include <linux/io.h>
#include <linux/list.h>
#include <linux/debugfs.h>
#include <linux/remoteproc.h>
#include <linux/pm_runtime.h>
#include <linux/uaccess.h>
#include <linux/elf.h>
#include <linux/elfcore.h>
#include <plat/remoteproc.h>
/* list of available remote processors on this board */
static LIST_HEAD(rprocs);
static DEFINE_SPINLOCK(rprocs_lock);
/* debugfs parent dir */
static struct dentry *rproc_dbg;
static ssize_t rproc_format_trace_buf(struct rproc *rproc, char __user *userbuf,
size_t count, loff_t *ppos,
const void *src, int size)
{
const char *buf = (const char *) src;
ssize_t num_copied = 0;
static int from_beg;
loff_t pos = *ppos;
int *w_idx;
int i, w_pos, ret = 0;
if (mutex_lock_interruptible(&rproc->tlock))
return -EINTR;
/* When src is NULL, the remoteproc is offline. */
if (!src) {
ret = -EIO;
goto unlock;
}
if (size < 2 * sizeof(u32)) {
ret = -EINVAL;
goto unlock;
}
/* Assume write_idx is the penultimate byte in the buffer trace*/
size = size - (sizeof(u32) * 2);
w_idx = (int *)(buf + size);
w_pos = *w_idx;
if (from_beg)
goto print_beg;
if (pos == 0)
*ppos = w_pos;
for (i = w_pos; i < size && buf[i]; i++)
;
if (i > w_pos)
num_copied =
simple_read_from_buffer(userbuf, count, ppos, src, i);
if (!num_copied) {
from_beg = 1;
*ppos = 0;
} else {
ret = num_copied;
goto unlock;
}
print_beg:
for (i = 0; i < w_pos && buf[i]; i++)
;
if (i) {
num_copied =
simple_read_from_buffer(userbuf, count, ppos, src, i);
if (!num_copied)
from_beg = 0;
ret = num_copied;
}
unlock:
mutex_unlock(&rproc->tlock);
return ret;
}
static ssize_t rproc_name_read(struct file *filp, char __user *userbuf,
size_t count, loff_t *ppos)
{
struct rproc *rproc = filp->private_data;
/* need room for the name, a newline and a terminating null */
char buf[RPROC_MAX_NAME + 2];
int i;
i = snprintf(buf, RPROC_MAX_NAME + 2, "%s\n", rproc->name);
return simple_read_from_buffer(userbuf, count, ppos, buf, i);
}
static ssize_t rproc_version_read(struct file *filp, char __user *userbuf,
size_t count, loff_t *ppos)
{
struct rproc *rproc = filp->private_data;
char *pch;
int len;
pch = strstr(rproc->header, "version:");
if (!pch)
return 0;
pch += strlen("version:") + 1;
len = rproc->header_len - (pch - rproc->header);
return simple_read_from_buffer(userbuf, count, ppos, pch, len);
}
static int rproc_open_generic(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
#define DEBUGFS_READONLY_FILE(name, v, l) \
static ssize_t name## _rproc_read(struct file *filp, \
char __user *ubuf, size_t count, loff_t *ppos) \
{ \
struct rproc *rproc = filp->private_data; \
return rproc_format_trace_buf(rproc, ubuf, count, ppos, v, l); \
} \
\
static const struct file_operations name ##_rproc_ops = { \
.read = name ##_rproc_read, \
.open = rproc_open_generic, \
.llseek = generic_file_llseek, \
};
#ifdef CONFIG_REMOTEPROC_CORE_DUMP
/* + 1 for the notes segment */
#define NUM_PHDR (RPROC_MAX_MEM_ENTRIES + 1)
#define CORE_STR "CORE"
/* Intermediate core-dump-file format */
struct core_rproc {
struct rproc *rproc;
/* ELF state */
Elf_Half e_phnum;
struct core {
struct elfhdr elf;
struct elf_phdr phdr[NUM_PHDR];
struct {
struct elf_note note_prstatus;
char name[sizeof(CORE_STR)];
struct elf_prstatus prstatus __aligned(4);
} core_note __packed __aligned(4);
} core __packed;
loff_t offset;
};
/* Return the number of segments to be written to the core file */
static int rproc_core_map_count(const struct rproc *rproc)
{
int i = 0;
int count = 0;
for (;; i++) {
if (!rproc->memory_maps[i].size)
break;
if (!rproc->memory_maps[i].core)
continue;
count++;
}
/* The Ducati has a low number of segments */
if (count > PN_XNUM)
return -1;
return count;
}
/* Copied from fs/binfmt_elf.c */
static void fill_elf_header(struct elfhdr *elf, int segs)
{
memset(elf, 0, sizeof(*elf));
memcpy(elf->e_ident, ELFMAG, SELFMAG);
elf->e_ident[EI_CLASS] = ELFCLASS32;
elf->e_ident[EI_DATA] = ELFDATA2LSB;
elf->e_ident[EI_VERSION] = EV_CURRENT;
elf->e_ident[EI_OSABI] = ELFOSABI_NONE;
elf->e_type = ET_CORE;
elf->e_machine = EM_ARM;
elf->e_version = EV_CURRENT;
elf->e_phoff = sizeof(struct elfhdr);
elf->e_flags = EF_ARM_EABI_VER5;
elf->e_ehsize = sizeof(struct elfhdr);
elf->e_phentsize = sizeof(struct elf_phdr);
elf->e_phnum = segs;
return;
}
static void fill_elf_segment_headers(struct core_rproc *d)
{
int i = 0;
int hi = 0;
loff_t offset = d->offset;
for (;; i++) {
u32 size;
size = d->rproc->memory_maps[i].size;
if (!size)
break;
if (!d->rproc->memory_maps[i].core)
continue;
BUG_ON(hi >= d->e_phnum - 1);
d->core.phdr[hi].p_type = PT_LOAD;
d->core.phdr[hi].p_offset = offset;
d->core.phdr[hi].p_vaddr = d->rproc->memory_maps[i].da;
d->core.phdr[hi].p_paddr = d->rproc->memory_maps[i].pa;
d->core.phdr[hi].p_filesz = size;
d->core.phdr[hi].p_memsz = size;
/* FIXME: get these from the Ducati */
d->core.phdr[hi].p_flags = PF_R | PF_W | PF_X;
pr_debug("%s: phdr type %d f_off %08x va %08x pa %08x fl %x\n",
__func__,
d->core.phdr[hi].p_type,
d->core.phdr[hi].p_offset,
d->core.phdr[hi].p_vaddr,
d->core.phdr[hi].p_paddr,
d->core.phdr[hi].p_flags);
offset += size;
hi++;
}
}
static int setup_rproc_elf_core_dump(struct core_rproc *d)
{
short __phnum;
struct elf_phdr *nphdr;
struct exc_regs *xregs = d->rproc->cdump_buf1;
struct pt_regs *regs =
(struct pt_regs *)&d->core.core_note.prstatus.pr_reg;
memset(&d->core.elf, 0, sizeof(d->core.elf));
__phnum = rproc_core_map_count(d->rproc);
if (__phnum < 0 || __phnum > ARRAY_SIZE(d->core.phdr))
return -EIO;
d->e_phnum = __phnum + 1; /* + 1 for notes */
pr_info("number of segments: %d\n", d->e_phnum);
fill_elf_header(&d->core.elf, d->e_phnum);
nphdr = d->core.phdr + __phnum;
nphdr->p_type = PT_NOTE;
nphdr->p_offset = 0;
nphdr->p_vaddr = 0;
nphdr->p_paddr = 0;
nphdr->p_filesz = 0;
nphdr->p_memsz = 0;
nphdr->p_flags = 0;
nphdr->p_align = 0;
/* The notes start right after the phdr array. Adjust p_filesz
* accordingly if you add more notes
*/
nphdr->p_filesz = sizeof(d->core.core_note);
nphdr->p_offset = offsetof(struct core, core_note);
d->core.core_note.note_prstatus.n_namesz = sizeof(CORE_STR);
d->core.core_note.note_prstatus.n_descsz =
sizeof(struct elf_prstatus);
d->core.core_note.note_prstatus.n_type = NT_PRSTATUS;
memcpy(d->core.core_note.name, CORE_STR, sizeof(CORE_STR));
remoteproc_fill_pt_regs(regs, xregs);
/* We ignore the NVIC registers for now */
d->offset = sizeof(struct core);
d->offset = roundup(d->offset, PAGE_SIZE);
fill_elf_segment_headers(d);
return 0;
}
static int core_rproc_open(struct inode *inode, struct file *filp)
{
int i;
struct core_rproc *d;
d = kzalloc(sizeof(*d), GFP_KERNEL);
if (!d)
return -ENOMEM;
d->rproc = inode->i_private;
filp->private_data = d;
setup_rproc_elf_core_dump(d);
if (0) {
const struct rproc *rproc;
rproc = d->rproc;
for (i = 0; rproc->memory_maps[i].size; i++) {
pr_info("%s: memory_map[%d] pa %08x sz %d core %d\n",
__func__,
i,
rproc->memory_maps[i].pa,
rproc->memory_maps[i].size,
rproc->memory_maps[i].core);
}
}
return 0;
}
static int core_rproc_release(struct inode *inode, struct file *filp)
{
pr_info("%s\n", __func__);
kfree(filp->private_data);
return 0;
}
/* Given an offset to read from, return the index of the memory-map region to
* read from.
*/
static int rproc_memory_map_index(const struct rproc *rproc, loff_t *off)
{
int i = 0;
for (;; i++) {
int size = rproc->memory_maps[i].size;
if (!size)
break;
if (!rproc->memory_maps[i].core)
continue;
if (*off < size)
return i;
*off -= size;
}
return -1;
}
ssize_t core_rproc_write(struct file *filp,
const char __user *buffer, size_t count, loff_t *off)
{
char cmd[100];
int cmdlen;
struct core_rproc *d = filp->private_data;
struct rproc *rproc = d->rproc;
cmdlen = min(sizeof(cmd) - 1, count);
if (copy_from_user(cmd, buffer, cmdlen))
return -EFAULT;
cmd[cmdlen] = 0;
if (!strncmp(cmd, "enable", 6)) {
pr_info("remoteproc %s halt on crash ENABLED\n", rproc->name);
rproc->halt_on_crash = true;
goto done;
} else if (!strncmp(cmd, "disable", 7)) {
pr_info("remoteproc %s halt on crash DISABLED\n", rproc->name);
rproc->halt_on_crash = false;
/* If you disable halt-on-crashed after the remote processor
* has already crashed, we will let it continue crashing (so it
* can get handled otherwise) as well.
*/
if (rproc->state != RPROC_CRASHED)
goto done;
} else if (strncmp(cmd, "continue", 8)) {
pr_err("%s: invalid command: expecting \"enable\"," \
"\"disable\", or \"continue\"\n", __func__);
return -EINVAL;
}
if (rproc->state == RPROC_CRASHED) {
pr_info("remoteproc %s: resuming crash recovery\n",
rproc->name);
blocking_notifier_call_chain(&rproc->nbh, RPROC_ERROR, NULL);
}
done:
*off += count;
return count;
}
static ssize_t core_rproc_read(struct file *filp,
char __user *userbuf, size_t count, loff_t *ppos)
{
const struct core_rproc *d = filp->private_data;
const struct rproc *rproc = d->rproc;
int index;
loff_t pos;
size_t remaining = count;
ssize_t copied = 0;
pr_debug("%s count %d off %lld\n", __func__, count, *ppos);
/* copy the ELF and segment header first */
if (*ppos < d->offset) {
copied = simple_read_from_buffer(userbuf, count,
ppos, &d->core, d->offset);
if (copied < 0) {
pr_err("%s: could not copy ELF header\n", __func__);
return -EIO;
}
pr_debug("%s: copied %d/%lld from ELF header\n", __func__,
copied, d->offset);
remaining -= copied;
}
/* copy the data */
while (remaining) {
size_t remaining_in_region;
const struct rproc_mem_entry *r;
void __iomem *kvaddr;
pos = *ppos - d->offset;
index = rproc_memory_map_index(rproc, &pos);
if (index < 0) {
pr_info("%s: EOF at off %lld\n", __func__, *ppos);
break;
}
r = &rproc->memory_maps[index];
remaining_in_region = r->size - pos;
if (remaining_in_region > remaining)
remaining_in_region = remaining;
pr_debug("%s: iomap 0x%x size %d\n", __func__, r->pa, r->size);
kvaddr = ioremap(r->pa, r->size);
if (!kvaddr) {
pr_err("%s: iomap error: region %d (phys 0x%08x size %d)\n",
__func__, index, r->pa, r->size);
return -EIO;
}
pr_debug("%s: off %lld -> [%d](pa 0x%08x off %lld sz %d)\n",
__func__,
*ppos, index, r->pa, pos, r->size);
if (copy_to_user(userbuf + copied, kvaddr + pos,
remaining_in_region)) {
pr_err("%s: copy_to_user error\n", __func__);
return -EFAULT;
}
iounmap(kvaddr);
copied += remaining_in_region;
*ppos += remaining_in_region;
BUG_ON(remaining < remaining_in_region);
remaining -= remaining_in_region;
}
return copied;
}
static const struct file_operations core_rproc_ops = {
.read = core_rproc_read,
.write = core_rproc_write,
.open = core_rproc_open,
.release = core_rproc_release,
.llseek = generic_file_llseek,
};
#endif /* CONFIG_REMOTEPROC_CORE_DUMP */
static const struct file_operations rproc_name_ops = {
.read = rproc_name_read,
.open = rproc_open_generic,
.llseek = generic_file_llseek,
};
static const struct file_operations rproc_version_ops = {
.read = rproc_version_read,
.open = rproc_open_generic,
.llseek = generic_file_llseek,
};
DEBUGFS_READONLY_FILE(trace0, rproc->trace_buf0, rproc->trace_len0);
DEBUGFS_READONLY_FILE(trace1, rproc->trace_buf1, rproc->trace_len1);
DEBUGFS_READONLY_FILE(trace0_last, rproc->last_trace_buf0,
rproc->last_trace_len0);
DEBUGFS_READONLY_FILE(trace1_last, rproc->last_trace_buf1,
rproc->last_trace_len1);
DEBUGFS_READONLY_FILE(cdump0, rproc->cdump_buf0, rproc->cdump_len0);
DEBUGFS_READONLY_FILE(cdump1, rproc->cdump_buf1, rproc->cdump_len1);
#define DEBUGFS_ADD(name) \
debugfs_create_file(#name, 0444, rproc->dbg_dir, \
rproc, &name## _rproc_ops)
/**
* __find_rproc_by_name - find a registered remote processor by name
* @name: name of the remote processor
*
* Internal function that returns the rproc @name, or NULL if @name does
* not exists.
*/
static struct rproc *__find_rproc_by_name(const char *name)
{
struct rproc *rproc;
struct list_head *tmp;
spin_lock(&rprocs_lock);
list_for_each(tmp, &rprocs) {
rproc = list_entry(tmp, struct rproc, next);
if (!strcmp(rproc->name, name))
break;
rproc = NULL;
}
spin_unlock(&rprocs_lock);
return rproc;
}
/**
* __rproc_da_to_pa - convert a device (virtual) address to its physical address
* @maps: the remote processor's memory mappings array
* @da: a device address (as seen by the remote processor)
* @pa: pointer to the physical address result
*
* This function converts @da to its physical address (pa) by going through
* @maps, looking for a mapping that contains @da, and then calculating the
* appropriate pa.
*
* On success 0 is returned, and the @pa is updated with the result.
* Otherwise, -EINVAL is returned.
*/
static int
rproc_da_to_pa(const struct rproc_mem_entry *maps, u64 da, phys_addr_t *pa)
{
int i;
u64 offset;
for (i = 0; maps[i].size; i++) {
const struct rproc_mem_entry *me = &maps[i];
if (da >= me->da && da < (me->da + me->size)) {
offset = da - me->da;
pr_debug("%s: matched mem entry no. %d\n",
__func__, i);
*pa = me->pa + offset;
return 0;
}
}
return -EINVAL;
}
static int rproc_mmu_fault_isr(struct rproc *rproc, u64 da, u32 flags)
{
dev_err(rproc->dev, "%s\n", __func__);
schedule_work(&rproc->error_work);
return -EIO;
}
static int rproc_watchdog_isr(struct rproc *rproc)
{
dev_err(rproc->dev, "%s\n", __func__);
schedule_work(&rproc->error_work);
return 0;
}
static int rproc_crash(struct rproc *rproc)
{
init_completion(&rproc->error_comp);
#ifdef CONFIG_REMOTE_PROC_AUTOSUSPEND
pm_runtime_dont_use_autosuspend(rproc->dev);
#endif
if (rproc->ops->dump_registers)
rproc->ops->dump_registers(rproc);
if (rproc->trace_buf0 && rproc->last_trace_buf0)
memcpy(rproc->last_trace_buf0, rproc->trace_buf0,
rproc->last_trace_len0);
if (rproc->trace_buf1 && rproc->last_trace_buf1)
memcpy(rproc->last_trace_buf1, rproc->trace_buf1,
rproc->last_trace_len1);
rproc->state = RPROC_CRASHED;
return 0;
}
static int _event_notify(struct rproc *rproc, int type, void *data)
{
if (type == RPROC_ERROR) {
mutex_lock(&rproc->lock);
/* only notify first crash */
if (rproc->state == RPROC_CRASHED) {
mutex_unlock(&rproc->lock);
return 0;
}
rproc_crash(rproc);
mutex_unlock(&rproc->lock);
/* If halt_on_crash do not notify the error */
pr_info("remoteproc: %s has crashed\n", rproc->name);
if (rproc->halt_on_crash) {
/* FIXME: send uevent here */
pr_info("remoteproc: %s: halt-on-crash enabled: "
"deferring crash recovery\n", rproc->name);
return 0;
}
}
return blocking_notifier_call_chain(&rproc->nbh, type, data);
}
/**
* rproc_start - power on the remote processor and let it start running
* @rproc: the remote processor
* @bootaddr: address of first instruction to execute (optional)
*
* Start a remote processor (i.e. power it on, take it out of reset, etc..)
*/
static void rproc_start(struct rproc *rproc, u64 bootaddr)
{
struct device *dev = rproc->dev;
int err;
err = mutex_lock_interruptible(&rproc->lock);
if (err) {
dev_err(dev, "can't lock remote processor %d\n", err);
return;
}
if (rproc->ops->iommu_init) {
err = rproc->ops->iommu_init(rproc, rproc_mmu_fault_isr);
if (err) {
dev_err(dev, "can't configure iommu %d\n", err);
goto unlock_mutex;
}
}
if (rproc->ops->watchdog_init) {
err = rproc->ops->watchdog_init(rproc, rproc_watchdog_isr);
if (err) {
dev_err(dev, "can't configure watchdog timer %d\n",
err);
goto wdt_error;
}
}
#ifdef CONFIG_REMOTEPROC_CORE_DUMP
debugfs_create_file("core", 0400, rproc->dbg_dir,
rproc, &core_rproc_ops);
#endif
err = rproc->ops->start(rproc, bootaddr);
if (err) {
dev_err(dev, "can't start rproc %s: %d\n", rproc->name, err);
goto start_error;
}
#ifdef CONFIG_REMOTE_PROC_AUTOSUSPEND
pm_runtime_use_autosuspend(dev);
pm_runtime_set_autosuspend_delay(dev, rproc->sus_timeout);
pm_runtime_get_noresume(rproc->dev);
pm_runtime_set_active(rproc->dev);
if (!rproc->secure_mode)
pm_runtime_enable(rproc->dev);
pm_runtime_mark_last_busy(rproc->dev);
pm_runtime_put_autosuspend(rproc->dev);
#endif
rproc->state = RPROC_RUNNING;
dev_info(dev, "remote processor %s is now up\n", rproc->name);
rproc->secure_ok = true;
complete_all(&rproc->secure_restart);
mutex_unlock(&rproc->lock);
return;
/*
* signal always, as we would need a notification in both the
* normal->secure & secure->normal mode transitions, otherwise
* we would have to introduce one more variable.
*/
start_error:
if (rproc->ops->watchdog_exit)
rproc->ops->watchdog_exit(rproc);
wdt_error:
if (rproc->ops->iommu_exit)
rproc->ops->iommu_exit(rproc);
unlock_mutex:
rproc->secure_ok = false;
complete_all(&rproc->secure_restart);
mutex_unlock(&rproc->lock);
}
static void rproc_reset_poolmem(struct rproc *rproc)
{
struct rproc_mem_pool *pool = rproc->memory_pool;
if (!pool || !pool->mem_base || !pool->mem_size) {
pr_warn("invalid pool\n");
return;
}
pool->cur_base = pool->mem_base;
pool->cur_size = pool->mem_size;
}
static int rproc_add_mem_entry(struct rproc *rproc, struct fw_resource *rsc)
{
struct rproc_mem_entry *me = rproc->memory_maps;
int i = 0;
int ret = 0;
while (me->da || me->pa || me->size) {
me += 1;
i++;
if (i == RPROC_MAX_MEM_ENTRIES) {
ret = -ENOSPC;
break;
}
}
if (!ret) {
me->da = rsc->da;
me->pa = (phys_addr_t)rsc->pa;
me->size = rsc->len;
#ifdef CONFIG_REMOTEPROC_CORE_DUMP
/* FIXME: ION heaps are reported as RSC_CARVEOUT. We need a
* better way to understand which sections are for
* code/stack/heap/static data, and which belong to the
* carveouts we don't care about in a core dump.
* Perhaps the ION carveout should be reported as RSC_DEVMEM.
*/
me->core = (rsc->type == RSC_CARVEOUT && rsc->pa != 0xba300000);
#endif
}
return ret;
}
static int rproc_alloc_poolmem(struct rproc *rproc, u32 size, phys_addr_t *pa)
{
struct rproc_mem_pool *pool = rproc->memory_pool;
*pa = 0;
if (!pool || !pool->mem_base || !pool->mem_size) {
pr_warn("invalid pool\n");
return -EINVAL;
}
if (pool->cur_size < size) {
pr_warn("out of carveout memory\n");
return -ENOMEM;
}
*pa = pool->cur_base;
pool->cur_base += size;
pool->cur_size -= size;
return 0;
}
static int rproc_check_poolmem(struct rproc *rproc, u32 size, phys_addr_t pa)
{
struct rproc_mem_pool *pool = rproc->memory_pool;
if (!pool || !pool->st_base || !pool->st_size) {
pr_warn("invalid pool\n");
return -EINVAL;
}
if (pa < pool->st_base || pa + size > pool->st_base + pool->st_size) {
pr_warn("section size does not fit within carveout memory\n");
return -ENOSPC;
}
return 0;
}
static int rproc_handle_resources(struct rproc *rproc, struct fw_resource *rsc,
int len, u64 *bootaddr)
{
struct device *dev = rproc->dev;
phys_addr_t pa;
u64 da;
u64 trace_da0 = 0;
u64 trace_da1 = 0;
u64 cdump_da0 = 0;
u64 cdump_da1 = 0;
int ret = 0;
while (len >= sizeof(*rsc) && !ret) {
da = rsc->da;
pa = rsc->pa;
dev_dbg(dev, "resource: type %d, da 0x%llx, pa 0x%llx, "
"mapped pa: 0x%x, len 0x%x, reserved 0x%x, "
"name %s\n", rsc->type, rsc->da, rsc->pa, pa,
rsc->len, rsc->reserved, rsc->name);
if (rsc->reserved)
dev_warn(dev, "nonzero reserved\n");
switch (rsc->type) {
case RSC_TRACE:
if (trace_da0 && trace_da1) {
dev_warn(dev, "skipping extra trace rsc %s\n",
rsc->name);
break;
}
/* store the da for processing at the end */
if (!trace_da0) {
rproc->trace_len0 = rsc->len;
rproc->last_trace_len0 = rsc->len;
trace_da0 = da;
} else {
rproc->trace_len1 = rsc->len;
rproc->last_trace_len1 = rsc->len;
trace_da1 = da;
}
break;
case RSC_CRASHDUMP:
if (rproc->cdump_buf0 && rproc->cdump_buf1) {
dev_warn(dev, "skipping extra trace rsc %s\n",
rsc->name);
break;
}
/* store the da for processing at the end */
if (!cdump_da0) {
rproc->cdump_len0 = rsc->len;
cdump_da0 = da;
} else {
rproc->cdump_len1 = rsc->len;
cdump_da1 = da;
}
break;
case RSC_BOOTADDR:
*bootaddr = da;
break;
case RSC_DEVMEM:
ret = rproc_add_mem_entry(rproc, rsc);
if (ret) {
dev_err(dev, "can't add mem_entry %s\n",
rsc->name);
break;
}
break;
case RSC_CARVEOUT:
if (!pa) {
ret = rproc_alloc_poolmem(rproc, rsc->len, &pa);
if (ret) {
dev_err(dev, "can't alloc poolmem %s\n",
rsc->name);
break;
}
rsc->pa = pa;
} else {
ret = rproc_check_poolmem(rproc, rsc->len, pa);
if (ret) {
dev_err(dev, "static memory for %s "
"doesn't belong to poolmem\n",
rsc->name);
break;
}
}
ret = rproc_add_mem_entry(rproc, rsc);
if (ret) {
dev_err(dev, "can't add mem_entry %s\n",
rsc->name);
break;
}
break;
default:
/* we don't support much right now. so use dbg lvl */
dev_dbg(dev, "unsupported resource type %d\n",
rsc->type);
break;
}
rsc++;
len -= sizeof(*rsc);
}
if (ret)
goto error;
/*
* post-process trace buffers, as we cannot rely on the order of the
* trace section and the carveout sections.
*
* trace buffer memory _is_ normal memory, so we cast away the
* __iomem to make sparse happy
*/
if (mutex_lock_interruptible(&rproc->tlock))
goto error;
if (trace_da0) {
ret = rproc_da_to_pa(rproc->memory_maps, trace_da0, &pa);
if (ret)
goto unlock;
rproc->trace_buf0 = (__force void *)
ioremap_nocache(pa, rproc->trace_len0);
if (rproc->trace_buf0) {
DEBUGFS_ADD(trace0);
if (!rproc->last_trace_buf0) {
rproc->last_trace_buf0 = kzalloc(sizeof(u32) *
rproc->last_trace_len0,
GFP_KERNEL);
if (!rproc->last_trace_buf0) {
ret = -ENOMEM;
goto unlock;
}
DEBUGFS_ADD(trace0_last);
}
} else {
dev_err(dev, "can't ioremap trace buffer0\n");
ret = -EIO;
goto unlock;
}
}
if (trace_da1) {
ret = rproc_da_to_pa(rproc->memory_maps, trace_da1, &pa);
if (ret)
goto unlock;
rproc->trace_buf1 = (__force void *)
ioremap_nocache(pa, rproc->trace_len1);
if (rproc->trace_buf1) {
DEBUGFS_ADD(trace1);
if (!rproc->last_trace_buf1) {
rproc->last_trace_buf1 = kzalloc(sizeof(u32) *
rproc->last_trace_len1,
GFP_KERNEL);
if (!rproc->last_trace_buf1) {
ret = -ENOMEM;
goto unlock;
}
DEBUGFS_ADD(trace1_last);
}
} else {
dev_err(dev, "can't ioremap trace buffer1\n");
ret = -EIO;
goto unlock;
}
}
/*
* post-process crash-dump buffers, as we cannot rely on the order of
* the crash-dump section and the carveout sections.
*
* crash-dump memory _is_ normal memory, so we cast away the __iomem to
* make sparse happy
*/
if (cdump_da0) {
ret = rproc_da_to_pa(rproc->memory_maps, cdump_da0, &pa);
if (ret)
goto unlock;
rproc->cdump_buf0 = (__force void *)
ioremap_nocache(pa, rproc->cdump_len0);
if (rproc->cdump_buf0)
DEBUGFS_ADD(cdump0);
else {
dev_err(dev, "can't ioremap cdump buffer0\n");
ret = -EIO;
goto unlock;
}
}
if (cdump_da1) {
ret = rproc_da_to_pa(rproc->memory_maps, cdump_da1, &pa);
if (ret)
goto unlock;
rproc->cdump_buf1 = (__force void *)
ioremap_nocache(pa, rproc->cdump_len1);
if (rproc->cdump_buf1)
DEBUGFS_ADD(cdump1);
else {
dev_err(dev, "can't ioremap cdump buffer1\n");
ret = -EIO;
}
}
unlock:
mutex_unlock(&rproc->tlock);
error:
if (ret && rproc->dbg_dir) {
debugfs_remove_recursive(rproc->dbg_dir);
rproc->dbg_dir = NULL;
}
return ret;
}
static int rproc_process_fw(struct rproc *rproc, struct fw_section *section,
int left, u64 *bootaddr)
{
struct device *dev = rproc->dev;
phys_addr_t pa;
u32 len, type;
u64 da;
int ret = 0;
void *ptr;
bool copy;
/* first section should be FW_RESOURCE section */
if (section->type != FW_RESOURCE) {
dev_err(dev, "first section is not FW_RESOURCE: type %u found",
section->type);
ret = -EINVAL;
goto exit;
}
while (left > sizeof(struct fw_section)) {
da = section->da;
len = section->len;
type = section->type;
copy = true;
dev_dbg(dev, "section: type %d da 0x%llx len 0x%x\n",
type, da, len);
left -= sizeof(struct fw_section);
if (left < section->len) {
dev_err(dev, "BIOS image is truncated\n");
ret = -EINVAL;
break;
}
/* a resource table needs special handling */
if (section->type == FW_RESOURCE) {
ret = rproc_handle_resources(rproc,
(struct fw_resource *) section->content,
len, bootaddr);
if (ret) {
break;
}
}
if (section->type <= FW_DATA) {
ret = rproc_da_to_pa(rproc->memory_maps, da, &pa);
if (ret) {
dev_err(dev, "rproc_da_to_pa failed:%d\n", ret);
break;
}
} else if (rproc->secure_mode) {
pa = da;
if (section->type == FW_MMU)
rproc->secure_ttb = (void *)pa;
} else
copy = false;
dev_dbg(dev, "da 0x%llx pa 0x%x len 0x%x\n", da, pa, len);
if (copy) {
/* ioremaping normal memory, so make sparse happy */
ptr = (__force void *) ioremap_nocache(pa, len);
if (!ptr) {
dev_err(dev, "can't ioremap 0x%x\n", pa);
ret = -ENOMEM;
break;
}
memcpy(ptr, section->content, len);
/* iounmap normal memory, so make sparse happy */
iounmap((__force void __iomem *) ptr);
}
section = (struct fw_section *)(section->content + len);
left -= len;
}
exit:
return ret;
}
static void rproc_loader_cont(const struct firmware *fw, void *context)
{
struct rproc *rproc = context;
struct device *dev = rproc->dev;
const char *fwfile = rproc->firmware;
u64 bootaddr = 0;
struct fw_header *image;
struct fw_section *section;
int left, ret;
if (!fw) {
dev_err(dev, "%s: failed to load %s\n", __func__, fwfile);
goto complete_fw;
}
dev_info(dev, "Loaded BIOS image %s, size %d\n", fwfile, fw->size);
/* make sure this image is sane */
if (fw->size < sizeof(struct fw_header)) {
dev_err(dev, "Image is too small\n");
goto out;
}
image = (struct fw_header *) fw->data;
if (memcmp(image->magic, "RPRC", 4)) {
dev_err(dev, "Image is corrupted (bad magic)\n");
goto out;
}
dev_info(dev, "BIOS image version is %d\n", image->version);
rproc->header = kzalloc(image->header_len, GFP_KERNEL);
if (!rproc->header) {
dev_err(dev, "%s: kzalloc failed\n", __func__);
goto out;
}
memcpy(rproc->header, image->header, image->header_len);
rproc->header_len = image->header_len;
/* Ensure we recognize this BIOS version: */
if (image->version != RPROC_BIOS_VERSION) {
dev_err(dev, "Expected BIOS version: %d!\n",
RPROC_BIOS_VERSION);
goto out;
}
/* now process the image, section by section */
section = (struct fw_section *)(image->header + image->header_len);
left = fw->size - sizeof(struct fw_header) - image->header_len;
ret = rproc_process_fw(rproc, section, left, &bootaddr);
if (ret) {
dev_err(dev, "Failed to process the image: %d\n", ret);
goto out;
}
rproc_start(rproc, bootaddr);
out:
release_firmware(fw);
complete_fw:
/* allow all contexts calling rproc_put() to proceed */
complete_all(&rproc->firmware_loading_complete);
}
static int rproc_loader(struct rproc *rproc)
{
const char *fwfile = rproc->firmware;
struct device *dev = rproc->dev;
int ret;
if (!fwfile) {
dev_err(dev, "%s: no firmware to load\n", __func__);
return -EINVAL;
}
/*
* allow building remoteproc as built-in kernel code, without
* hanging the boot process
*/
ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, fwfile,
dev, GFP_KERNEL, rproc, rproc_loader_cont);
if (ret < 0) {
dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
return ret;
}
return 0;
}
int rproc_set_secure(const char *name, bool enable)
{
struct rproc *rproc;
int ret;
rproc = __find_rproc_by_name(name);
if (!rproc) {
pr_err("can't find remote processor %s\n", name);
return -ENODEV;
}
/*
* set the secure_mode here, the secure_ttb will be filled up during
* the reload process.
*/
if (mutex_lock_interruptible(&rproc->secure_lock))
return -EINTR;
rproc->secure_mode = enable;
rproc->secure_ttb = NULL;
rproc->secure_ok = false;
init_completion(&rproc->secure_restart);
/*
* restart the processor, the mode will dictate regular load or
* secure load
*/
_event_notify(rproc, RPROC_SECURE, (void *)enable);
/* block until the restart is complete */
if (wait_for_completion_interruptible(&rproc->secure_restart)) {
pr_err("error waiting restart completion\n");
ret = -EINTR;
goto out;
}
ret = rproc->secure_ok ? 0 : -EACCES;
out:
mutex_unlock(&rproc->secure_lock);
return ret;
}
EXPORT_SYMBOL(rproc_set_secure);
int rproc_error_notify(struct rproc *rproc)
{
return _event_notify(rproc, RPROC_ERROR, NULL);
}
EXPORT_SYMBOL_GPL(rproc_error_notify);
struct rproc *rproc_get(const char *name)
{
struct rproc *rproc, *ret = NULL;
struct device *dev;
int err;
rproc = __find_rproc_by_name(name);
if (!rproc) {
pr_err("can't find remote processor %s\n", name);
return NULL;
}
dev = rproc->dev;
err = mutex_lock_interruptible(&rproc->lock);
if (err) {
dev_err(dev, "can't lock remote processor %s\n", name);
return NULL;
}
if (rproc->state == RPROC_CRASHED) {
mutex_unlock(&rproc->lock);
if (wait_for_completion_interruptible(&rproc->error_comp)) {
dev_err(dev, "error waiting error completion\n");
return NULL;
}
mutex_lock(&rproc->lock);
}
/* prevent underlying implementation from being removed */
if (!try_module_get(rproc->owner)) {
dev_err(dev, "%s: can't get owner\n", __func__);
goto unlock_mutex;
}
/* bail if rproc is already powered up */
if (rproc->count++) {
ret = rproc;
goto unlock_mutex;
}
/* rproc_put() calls should wait until async loader completes */
init_completion(&rproc->firmware_loading_complete);
dev_info(dev, "powering up %s\n", name);
err = rproc_loader(rproc);
if (err) {
dev_err(dev, "failed to load rproc %s\n", rproc->name);
complete_all(&rproc->firmware_loading_complete);
module_put(rproc->owner);
--rproc->count;
goto unlock_mutex;
}
rproc->state = RPROC_LOADING;
ret = rproc;
unlock_mutex:
mutex_unlock(&rproc->lock);
return ret;
}
EXPORT_SYMBOL_GPL(rproc_get);
void rproc_put(struct rproc *rproc)
{
struct device *dev = rproc->dev;
int ret;
/* make sure rproc is not loading now */
wait_for_completion(&rproc->firmware_loading_complete);
ret = mutex_lock_interruptible(&rproc->lock);
if (ret) {
dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
return;
}
if (!rproc->count) {
dev_warn(dev, "asymmetric rproc_put\n");
ret = -EINVAL;
goto out;
}
/* if the remote proc is still needed, bail out */
if (--rproc->count)
goto out;
if (mutex_lock_interruptible(&rproc->tlock))
goto out;
if (rproc->trace_buf0)
/* iounmap normal memory, so make sparse happy */
iounmap((__force void __iomem *) rproc->trace_buf0);
if (rproc->trace_buf1)
/* iounmap normal memory, so make sparse happy */
iounmap((__force void __iomem *) rproc->trace_buf1);
rproc->trace_buf0 = rproc->trace_buf1 = NULL;
if (rproc->cdump_buf0)
/* iounmap normal memory, so make sparse happy */
iounmap((__force void __iomem *) rproc->cdump_buf0);
if (rproc->cdump_buf1)
/* iounmap normal memory, so make sparse happy */
iounmap((__force void __iomem *) rproc->cdump_buf1);
rproc->cdump_buf0 = rproc->cdump_buf1 = NULL;
mutex_unlock(&rproc->tlock);
rproc_reset_poolmem(rproc);
memset(rproc->memory_maps, 0, sizeof(rproc->memory_maps));
kfree(rproc->header);
/*
* make sure rproc is really running before powering it off.
* this is important, because the fw loading might have failed.
*/
if (rproc->state == RPROC_RUNNING || rproc->state == RPROC_CRASHED) {
#ifdef CONFIG_REMOTE_PROC_AUTOSUSPEND
/*
* Call resume, it will cancel any pending autosuspend,
* so that no callback is executed after the device is stopped.
* Device stop function takes care of shutting down the device.
*/
pm_runtime_get_sync(rproc->dev);
pm_runtime_put_noidle(rproc->dev);
if (!rproc->secure_reset)
pm_runtime_disable(rproc->dev);
pm_runtime_set_suspended(rproc->dev);
#endif
ret = rproc->ops->stop(rproc);
if (ret) {
dev_err(dev, "can't stop rproc %s: %d\n", rproc->name,
ret);
goto out;
}
if (rproc->ops->watchdog_exit) {
ret = rproc->ops->watchdog_exit(rproc);
if (ret) {
dev_err(rproc->dev, "error watchdog_exit %d\n",
ret);
goto out;
}
}
if (rproc->ops->iommu_exit) {
ret = rproc->ops->iommu_exit(rproc);
if (ret) {
dev_err(rproc->dev, "error iommu_exit %d\n",
ret);
goto out;
}
}
}
if (rproc->state == RPROC_CRASHED)
complete_all(&rproc->error_comp);
rproc->state = RPROC_OFFLINE;
dev_info(dev, "stopped remote processor %s\n", rproc->name);
out:
mutex_unlock(&rproc->lock);
if (!ret)
module_put(rproc->owner);
}
EXPORT_SYMBOL_GPL(rproc_put);
static void rproc_error_work(struct work_struct *work)
{
struct rproc *rproc = container_of(work, struct rproc, error_work);
dev_dbg(rproc->dev, "%s\n", __func__);
_event_notify(rproc, RPROC_ERROR, NULL);
}
int rproc_event_register(struct rproc *rproc, struct notifier_block *nb)
{
return blocking_notifier_chain_register(&rproc->nbh, nb);
}
EXPORT_SYMBOL_GPL(rproc_event_register);
int rproc_event_unregister(struct rproc *rproc, struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&rproc->nbh, nb);
}
EXPORT_SYMBOL_GPL(rproc_event_unregister);
void rproc_last_busy(struct rproc *rproc)
{
#ifdef CONFIG_REMOTE_PROC_AUTOSUSPEND
struct device *dev = rproc->dev;
mutex_lock(&rproc->pm_lock);
if (pm_runtime_suspended(dev) ||
!pm_runtime_autosuspend_expiration(dev)) {
pm_runtime_mark_last_busy(dev);
mutex_unlock(&rproc->pm_lock);
/*
* if the remote processor is suspended, we can not wake it
* up (that would abort system suspend), instead state that
* the remote processor needs to be waken up on system resume.
*/
mutex_lock(&rproc->lock);
if (rproc->state == RPROC_SUSPENDED) {
rproc->need_resume = true;
mutex_unlock(&rproc->lock);
return;
}
mutex_unlock(&rproc->lock);
pm_runtime_get_sync(dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return;
}
pm_runtime_mark_last_busy(dev);
mutex_unlock(&rproc->pm_lock);
#endif
}
EXPORT_SYMBOL(rproc_last_busy);
#ifdef CONFIG_REMOTE_PROC_AUTOSUSPEND
static int rproc_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rproc *rproc = platform_get_drvdata(pdev);
int ret = 0;
dev_dbg(dev, "Enter %s\n", __func__);
mutex_lock(&rproc->lock);
if (rproc->state != RPROC_SUSPENDED) {
mutex_unlock(&rproc->lock);
return 0;
}
if (!rproc->need_resume)
goto unlock;
rproc->need_resume = false;
pm_runtime_get_sync(dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
unlock:
rproc->state = (ret) ? RPROC_CRASHED : RPROC_RUNNING;
mutex_unlock(&rproc->lock);
if (ret) {
_event_notify(rproc, RPROC_ERROR, NULL);
dev_err(dev, "Error resuming %d\n", ret);
}
return ret;
}
static int rproc_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rproc *rproc = platform_get_drvdata(pdev);
int ret = 0;
dev_dbg(dev, "Enter %s\n", __func__);
mutex_lock(&rproc->lock);
if (rproc->state != RPROC_RUNNING) {
mutex_unlock(&rproc->lock);
return 0;
}
if (pm_runtime_suspended(dev))
goto out;
/*
* If it is not runtime suspended, it means remote processor is still
* doing something. However we need to stop it.
*/
dev_dbg(dev, "%s: will be forced to suspend\n", rproc->name);
rproc->force_suspend = true;
ret = pm_runtime_suspend(dev);
rproc->force_suspend = false;
if (ret)
goto out;
/*
* As the remote processor had to be forced to suspend, it was
* executing some task, so it needs to be waken up on system resume
*/
rproc->need_resume = true;
out:
if (!ret)
rproc->state = RPROC_SUSPENDED;
mutex_unlock(&rproc->lock);
return ret;
}
static int rproc_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rproc *rproc = platform_get_drvdata(pdev);
int ret = 0;
dev_dbg(dev, "Enter %s\n", __func__);
if (rproc->ops->resume)
ret = rproc->ops->resume(rproc);
if (!ret)
_event_notify(rproc, RPROC_RESUME, NULL);
return 0;
}
static int rproc_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rproc *rproc = platform_get_drvdata(pdev);
int ret = 0;
unsigned to;
dev_dbg(dev, "Enter %s\n", __func__);
if (rproc->state == RPROC_SUSPENDED)
return 0;
mutex_lock(&rproc->pm_lock);
if (pm_runtime_autosuspend_expiration(dev) && !rproc->force_suspend) {
ret = -EBUSY;
goto abort;
}
/*
* Notify PROC_PRE_SUSPEND only when the suspend is not forced.
* Users can use pre suspend call back to cancel autosuspend, but
* when the suspend is forced, there is no need to notify them
*/
if (!rproc->force_suspend)
ret = _event_notify(rproc, RPROC_PRE_SUSPEND, NULL);
/*
* If rproc user avoids suspend, that means it is still using rproc.
* Lets go to abort suspend.
*/
if (ret) {
dev_dbg(dev, "suspend aborted by user %d\n", ret);
ret = -EBUSY;
goto abort;
}
/* Now call machine-specific suspend function (if exist) */
if (rproc->ops->suspend)
ret = rproc->ops->suspend(rproc, rproc->force_suspend);
/*
* If it fails with -EBUSY/EAGAIN, remote processor is still running,
* but rproc users were not aware of that, so lets abort suspend.
* If it is a different error, there is something wrong with the
* remote processor. Return that error to pm runtime framework,
* which will disable autosuspend.
*/
if (ret) {
dev_dbg(dev, "suspend aborted by remote processor %d\n", ret);
if (ret != -EBUSY && ret != -EAGAIN)
dev_err(dev, "suspend error %d", ret);
goto abort;
}
/* we are not interested in the returned value */
_event_notify(rproc, RPROC_POS_SUSPEND, NULL);
mutex_unlock(&rproc->pm_lock);
return 0;
abort:
pm_runtime_mark_last_busy(dev);
to = jiffies_to_msecs(pm_runtime_autosuspend_expiration(dev) - jiffies);
pm_schedule_suspend(dev, to);
dev->power.timer_autosuspends = 1;
mutex_unlock(&rproc->pm_lock);
return ret;
}
const struct dev_pm_ops rproc_gen_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(rproc_suspend, rproc_resume)
SET_RUNTIME_PM_OPS(rproc_runtime_suspend, rproc_runtime_resume, NULL)
};
#endif
int
rproc_set_constraints(struct rproc *rproc, enum rproc_constraint type, long v)
{
int ret;
char *cname[] = {"scale", "latency", "bandwidth"};
int (*func)(struct rproc *, long);
switch (type) {
case RPROC_CONSTRAINT_SCALE:
func = rproc->ops->scale;
break;
case RPROC_CONSTRAINT_LATENCY:
func = rproc->ops->set_lat;
break;
case RPROC_CONSTRAINT_BANDWIDTH:
func = rproc->ops->set_bw;
break;
default:
dev_err(rproc->dev, "invalid constraint\n");
return -EINVAL;
}
if (!func) {
dev_err(rproc->dev, "%s: no %s constraint\n",
__func__, cname[type]);
return -EINVAL;
}
mutex_lock(&rproc->lock);
if (rproc->state == RPROC_OFFLINE) {
pr_err("%s: rproc inactive\n", __func__);
mutex_unlock(&rproc->lock);
return -EPERM;
}
dev_dbg(rproc->dev, "set %s constraint %ld\n", cname[type], v);
ret = func(rproc, v);
if (ret)
dev_err(rproc->dev, "error %s constraint\n", cname[type]);
mutex_unlock(&rproc->lock);
return ret;
}
EXPORT_SYMBOL(rproc_set_constraints);
int rproc_register(struct device *dev, const char *name,
const struct rproc_ops *ops,
const char *firmware,
struct rproc_mem_pool *memory_pool,
struct module *owner,
unsigned sus_timeout)
{
struct platform_device *pdev = to_platform_device(dev);
struct rproc *rproc;
if (!dev || !name || !ops)
return -EINVAL;
rproc = kzalloc(sizeof(struct rproc), GFP_KERNEL);
if (!rproc) {
dev_err(dev, "%s: kzalloc failed\n", __func__);
return -ENOMEM;
}
rproc->dev = dev;
rproc->name = name;
rproc->ops = ops;
rproc->firmware = firmware;
rproc->owner = owner;
rproc->memory_pool = memory_pool;
#ifdef CONFIG_REMOTE_PROC_AUTOSUSPEND
rproc->sus_timeout = sus_timeout;
mutex_init(&rproc->pm_lock);
#endif
mutex_init(&rproc->lock);
mutex_init(&rproc->secure_lock);
mutex_init(&rproc->tlock);
INIT_WORK(&rproc->error_work, rproc_error_work);
BLOCKING_INIT_NOTIFIER_HEAD(&rproc->nbh);
rproc->state = RPROC_OFFLINE;
rproc->qos_request = kzalloc(sizeof(*rproc->qos_request),
GFP_KERNEL);
if (!rproc->qos_request) {
kfree(rproc);
return -ENOMEM;
}
pm_qos_add_request(rproc->qos_request, PM_QOS_CPU_DMA_LATENCY,
PM_QOS_DEFAULT_VALUE);
rproc->secure_mode = false;
rproc->secure_ttb = NULL;
init_completion(&rproc->secure_restart);
spin_lock(&rprocs_lock);
list_add_tail(&rproc->next, &rprocs);
spin_unlock(&rprocs_lock);
platform_set_drvdata(pdev, rproc);
dev_info(dev, "%s is available\n", name);
if (!rproc_dbg)
goto out;
rproc->dbg_dir = debugfs_create_dir(dev_name(dev), rproc_dbg);
if (!rproc->dbg_dir) {
dev_err(dev, "can't create debugfs dir\n");
goto out;
}
debugfs_create_file("name", 0444, rproc->dbg_dir, rproc,
&rproc_name_ops);
debugfs_create_file("version", 0444, rproc->dbg_dir, rproc,
&rproc_version_ops);
out:
return 0;
}
EXPORT_SYMBOL_GPL(rproc_register);
int rproc_unregister(const char *name)
{
struct rproc *rproc;
rproc = __find_rproc_by_name(name);
if (!rproc) {
pr_err("can't find remote processor %s\n", name);
return -EINVAL;
}
dev_info(rproc->dev, "removing %s\n", name);
if (rproc->dbg_dir)
debugfs_remove_recursive(rproc->dbg_dir);
spin_lock(&rprocs_lock);
list_del(&rproc->next);
spin_unlock(&rprocs_lock);
rproc->secure_mode = false;
rproc->secure_ttb = NULL;
pm_qos_remove_request(rproc->qos_request);
kfree(rproc->qos_request);
kfree(rproc->last_trace_buf0);
kfree(rproc->last_trace_buf1);
kfree(rproc);
return 0;
}
EXPORT_SYMBOL_GPL(rproc_unregister);
static int __init remoteproc_init(void)
{
if (debugfs_initialized()) {
rproc_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL);
if (!rproc_dbg)
pr_err("can't create debugfs dir\n");
}
return 0;
}
/* must be ready in time for device_initcall users */
subsys_initcall(remoteproc_init);
static void __exit remoteproc_exit(void)
{
if (rproc_dbg)
debugfs_remove(rproc_dbg);
}
module_exit(remoteproc_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Generic Remote Processor Framework");