blob: 46bf60b7f305a92947757b6630a3109b60888856 [file] [log] [blame]
/* Copyright (c) 2016-2020, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s:%s " fmt, KBUILD_MODNAME, __func__
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/thermal.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/pm_opp.h>
#include <linux/cpufreq.h>
#include <linux/cpu_cooling.h>
#include <linux/atomic.h>
#include <linux/regulator/consumer.h>
#include <asm/smp_plat.h>
#include <asm/cacheflush.h>
#include <soc/qcom/scm.h>
#include "../thermal_core.h"
#include "lmh_dbg.h"
#define CREATE_TRACE_POINTS
#include <trace/events/lmh.h>
#undef CREATE_TRACE_POINTS
#include <trace/events/power.h>
#define LIMITS_DCVSH 0x10
#define LIMITS_PROFILE_CHANGE 0x01
#define LIMITS_NODE_DCVS 0x44435653
#define LIMITS_SUB_FN_THERMAL 0x54484D4C
#define LIMITS_SUB_FN_CRNT 0x43524E54
#define LIMITS_SUB_FN_REL 0x52454C00
#define LIMITS_SUB_FN_BCL 0x42434C00
#define LIMITS_ALGO_MODE_ENABLE 0x454E424C
#define LIMITS_HI_THRESHOLD 0x48494748
#define LIMITS_LOW_THRESHOLD 0x4C4F5700
#define LIMITS_ARM_THRESHOLD 0x41524D00
#define LIMITS_CLUSTER_0 0x6370302D
#define LIMITS_CLUSTER_1 0x6370312D
#define LIMITS_FREQ_CAP 0x46434150
#define LIMITS_TEMP_DEFAULT 75000
#define LIMITS_TEMP_HIGH_THRESH_MAX 120000
#define LIMITS_LOW_THRESHOLD_OFFSET 500
#define LIMITS_POLLING_DELAY_MS 10
#define LIMITS_CLUSTER_REQ_OFFSET 0x704
#define LIMITS_CLUSTER_INT_CLR_OFFSET 0x8
#define LIMITS_CLUSTER_MIN_FREQ_OFFSET 0x3C0
#define dcvsh_get_frequency(_val, _max) do { \
_max = (_val) & 0x3FF; \
_max *= 19200; \
} while (0)
#define FREQ_KHZ_TO_HZ(_val) ((_val) * 1000)
#define FREQ_HZ_TO_KHZ(_val) ((_val) / 1000)
enum lmh_hw_trips {
LIMITS_TRIP_ARM,
LIMITS_TRIP_HI,
LIMITS_TRIP_MAX,
};
struct __limits_cdev_data {
struct thermal_cooling_device *cdev;
u32 max_freq;
u32 min_freq;
};
struct limits_dcvs_hw {
char sensor_name[THERMAL_NAME_LENGTH];
uint32_t affinity;
uint32_t temp_limits[LIMITS_TRIP_MAX];
int irq_num;
void *osm_hw_reg;
void *int_clr_reg;
void __iomem *min_freq_reg;
cpumask_t core_map;
cpumask_t online_mask;
struct delayed_work freq_poll_work;
unsigned long max_freq[NR_CPUS];
unsigned long min_freq[NR_CPUS];
unsigned long hw_freq_limit;
struct device_attribute lmh_freq_attr;
struct list_head list;
bool is_irq_enabled;
bool is_plat_mit_disabled;
struct mutex access_lock;
struct __limits_cdev_data *cdev_data;
uint32_t cdev_registered;
struct regulator *isens_reg[2];
struct work_struct cdev_register_work;
};
LIST_HEAD(lmh_dcvs_hw_list);
DEFINE_MUTEX(lmh_dcvs_list_access);
static void limits_dcvs_get_freq_limits(struct limits_dcvs_hw *hw)
{
unsigned long freq_ceil = UINT_MAX, freq_floor = 0;
struct device *cpu_dev = NULL;
uint32_t cpu, idx = 0;
for_each_cpu(cpu, &hw->core_map) {
freq_ceil = UINT_MAX;
freq_floor = 0;
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
pr_err("Error in get CPU%d device\n", cpu);
idx++;
continue;
}
dev_pm_opp_find_freq_floor(cpu_dev, &freq_ceil);
dev_pm_opp_find_freq_ceil(cpu_dev, &freq_floor);
hw->max_freq[idx] = freq_ceil / 1000;
hw->min_freq[idx] = freq_floor / 1000;
idx++;
}
}
static unsigned long limits_mitigation_notify(struct limits_dcvs_hw *hw)
{
uint32_t val = 0, max_cpu_ct = 0, max_cpu_limit = 0, idx = 0, cpu = 0;
struct device *cpu_dev = NULL;
unsigned long freq_val, max_limit = 0;
struct dev_pm_opp *opp_entry;
val = readl_relaxed(hw->osm_hw_reg);
dcvsh_get_frequency(val, max_limit);
for_each_cpu(cpu, &hw->core_map) {
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
pr_err("Error in get CPU%d device\n",
cpumask_first(&hw->core_map));
goto notify_exit;
}
pr_debug("CPU:%d max value read:%lu\n",
cpumask_first(&hw->core_map),
max_limit);
freq_val = FREQ_KHZ_TO_HZ(max_limit);
opp_entry = dev_pm_opp_find_freq_floor(cpu_dev, &freq_val);
/*
* Hardware mitigation frequency can be lower than the lowest
* possible CPU frequency. In that case freq floor call will
* fail with -ERANGE and we need to match to the lowest
* frequency using freq_ceil.
*/
if (IS_ERR(opp_entry) && PTR_ERR(opp_entry) == -ERANGE) {
opp_entry = dev_pm_opp_find_freq_ceil(cpu_dev,
&freq_val);
if (IS_ERR(opp_entry))
dev_err(cpu_dev,
"frequency:%lu. opp error:%ld\n",
freq_val, PTR_ERR(opp_entry));
}
if (FREQ_HZ_TO_KHZ(freq_val) == hw->max_freq[idx]) {
max_cpu_ct++;
if (max_cpu_limit < hw->max_freq[idx])
max_cpu_limit = hw->max_freq[idx];
idx++;
continue;
}
max_limit = FREQ_HZ_TO_KHZ(freq_val);
break;
}
if (max_cpu_ct == cpumask_weight(&hw->core_map))
max_limit = max_cpu_limit;
sched_update_cpu_freq_min_max(&hw->core_map, 0, max_limit);
arch_set_max_thermal_scale(&hw->core_map, max_limit);
pr_debug("CPU:%d max limit:%lu\n", cpumask_first(&hw->core_map),
max_limit);
trace_lmh_dcvs_freq(cpumask_first(&hw->core_map), max_limit);
trace_clock_set_rate(hw->sensor_name,
max_limit,
cpumask_first(&hw->core_map));
notify_exit:
hw->hw_freq_limit = max_limit;
return max_limit;
}
static void limits_dcvs_poll(struct work_struct *work)
{
unsigned long max_limit = 0;
struct limits_dcvs_hw *hw = container_of(work,
struct limits_dcvs_hw,
freq_poll_work.work);
int cpu_ct = 0, cpu = 0, idx = 0;
mutex_lock(&hw->access_lock);
if (hw->max_freq[0] == U32_MAX)
limits_dcvs_get_freq_limits(hw);
max_limit = limits_mitigation_notify(hw);
for_each_cpu(cpu, &hw->core_map) {
if (max_limit >= hw->max_freq[idx])
cpu_ct++;
idx++;
}
if (cpu_ct >= cpumask_weight(&hw->core_map)) {
writel_relaxed(0xFF, hw->int_clr_reg);
hw->is_irq_enabled = true;
enable_irq(hw->irq_num);
} else {
mod_delayed_work(system_highpri_wq, &hw->freq_poll_work,
msecs_to_jiffies(LIMITS_POLLING_DELAY_MS));
}
mutex_unlock(&hw->access_lock);
}
static void lmh_dcvs_notify(struct limits_dcvs_hw *hw)
{
if (hw->is_irq_enabled) {
hw->is_irq_enabled = false;
disable_irq_nosync(hw->irq_num);
limits_mitigation_notify(hw);
mod_delayed_work(system_highpri_wq, &hw->freq_poll_work,
msecs_to_jiffies(LIMITS_POLLING_DELAY_MS));
}
}
static irqreturn_t lmh_dcvs_handle_isr(int irq, void *data)
{
struct limits_dcvs_hw *hw = data;
mutex_lock(&hw->access_lock);
lmh_dcvs_notify(hw);
mutex_unlock(&hw->access_lock);
return IRQ_HANDLED;
}
static int limits_dcvs_write(uint32_t node_id, uint32_t fn,
uint32_t setting, uint32_t val, uint32_t val1,
bool enable_val1)
{
int ret;
struct scm_desc desc_arg;
uint32_t *payload = NULL;
uint32_t payload_len;
payload_len = ((enable_val1) ? 6 : 5) * sizeof(uint32_t);
payload = kzalloc(payload_len, GFP_KERNEL);
if (!payload)
return -ENOMEM;
payload[0] = fn; /* algorithm */
payload[1] = 0; /* unused sub-algorithm */
payload[2] = setting;
payload[3] = enable_val1 ? 2 : 1; /* number of values */
payload[4] = val;
if (enable_val1)
payload[5] = val1;
desc_arg.args[0] = SCM_BUFFER_PHYS(payload);
desc_arg.args[1] = payload_len;
desc_arg.args[2] = LIMITS_NODE_DCVS;
desc_arg.args[3] = node_id;
desc_arg.args[4] = 0; /* version */
desc_arg.arginfo = SCM_ARGS(5, SCM_RO, SCM_VAL, SCM_VAL,
SCM_VAL, SCM_VAL);
dmac_flush_range(payload, (void *)payload + payload_len);
ret = scm_call2(SCM_SIP_FNID(SCM_SVC_LMH, LIMITS_DCVSH), &desc_arg);
kfree(payload);
return ret;
}
static int lmh_get_temp(void *data, int *val)
{
/*
* LMH DCVSh hardware doesn't support temperature read.
* return a default value for the thermal core to aggregate
* the thresholds
*/
*val = LIMITS_TEMP_DEFAULT;
return 0;
}
static int lmh_set_trips(void *data, int low, int high)
{
struct limits_dcvs_hw *hw = (struct limits_dcvs_hw *)data;
int ret = 0;
if (high >= LIMITS_TEMP_HIGH_THRESH_MAX || low < 0) {
pr_err("Value out of range low:%d high:%d\n",
low, high);
return -EINVAL;
}
/* Sanity check limits before writing to the hardware */
if (low >= high)
return -EINVAL;
hw->temp_limits[LIMITS_TRIP_HI] = (uint32_t)high;
hw->temp_limits[LIMITS_TRIP_ARM] = (uint32_t)low;
ret = limits_dcvs_write(hw->affinity, LIMITS_SUB_FN_THERMAL,
LIMITS_ARM_THRESHOLD, low, 0, 0);
if (ret)
return ret;
ret = limits_dcvs_write(hw->affinity, LIMITS_SUB_FN_THERMAL,
LIMITS_HI_THRESHOLD, high, 0, 0);
if (ret)
return ret;
ret = limits_dcvs_write(hw->affinity, LIMITS_SUB_FN_THERMAL,
LIMITS_LOW_THRESHOLD,
high - LIMITS_LOW_THRESHOLD_OFFSET,
0, 0);
if (ret)
return ret;
return ret;
}
static struct thermal_zone_of_device_ops limits_sensor_ops = {
.get_temp = lmh_get_temp,
.set_trips = lmh_set_trips,
};
static struct limits_dcvs_hw *get_dcvsh_hw_from_cpu(int cpu)
{
struct limits_dcvs_hw *hw;
list_for_each_entry(hw, &lmh_dcvs_hw_list, list) {
if (cpumask_test_cpu(cpu, &hw->core_map))
return hw;
}
return NULL;
}
static int enable_lmh(void)
{
int ret = 0;
struct scm_desc desc_arg;
desc_arg.args[0] = 1;
desc_arg.arginfo = SCM_ARGS(1, SCM_VAL);
ret = scm_call2(SCM_SIP_FNID(SCM_SVC_LMH, LIMITS_PROFILE_CHANGE),
&desc_arg);
if (ret) {
pr_err("Error switching profile:[1]. err:%d\n", ret);
return ret;
}
return ret;
}
static int lmh_set_max_limit(int cpu, u32 freq)
{
struct limits_dcvs_hw *hw = get_dcvsh_hw_from_cpu(cpu);
int ret = 0, cpu_idx, idx = 0;
u32 max_freq = U32_MAX;
if (!hw)
return -EINVAL;
mutex_lock(&hw->access_lock);
for_each_cpu(cpu_idx, &hw->core_map) {
if (cpu_idx == cpu)
/*
* If there is no limits restriction for CPU scaling max
* frequency, vote for a very high value. This will allow
* the CPU to use the boost frequencies.
*/
hw->cdev_data[idx].max_freq =
(freq == hw->max_freq[idx]) ? U32_MAX : freq;
if (max_freq > hw->cdev_data[idx].max_freq)
max_freq = hw->cdev_data[idx].max_freq;
idx++;
}
ret = limits_dcvs_write(hw->affinity, LIMITS_SUB_FN_THERMAL,
LIMITS_FREQ_CAP, max_freq,
(max_freq == U32_MAX) ? 0 : 1, 1);
lmh_dcvs_notify(hw);
mutex_unlock(&hw->access_lock);
return ret;
}
static int lmh_set_min_limit(int cpu, u32 freq)
{
struct limits_dcvs_hw *hw = get_dcvsh_hw_from_cpu(cpu);
int cpu_idx, idx = 0, cpu_ct = 0;
if (!hw)
return -EINVAL;
mutex_lock(&hw->access_lock);
for_each_cpu(cpu_idx, &hw->core_map) {
if (cpu_idx == cpu)
hw->cdev_data[idx].min_freq = freq;
if (hw->cdev_data[idx].min_freq <= hw->min_freq[idx])
cpu_ct++;
idx++;
}
if (cpu_ct < cpumask_weight(&hw->core_map))
writel_relaxed(0x01, hw->min_freq_reg);
else
writel_relaxed(0x00, hw->min_freq_reg);
mutex_unlock(&hw->access_lock);
return 0;
}
static struct cpu_cooling_ops cd_ops = {
.ceil_limit = lmh_set_max_limit,
.floor_limit = lmh_set_min_limit,
};
static void register_cooling_device(struct work_struct *work)
{
struct limits_dcvs_hw *hw;
unsigned int cpu = 0, idx = 0;
struct device_node *cpu_node;
struct cpufreq_policy *policy;
mutex_lock(&lmh_dcvs_list_access);
list_for_each_entry(hw, &lmh_dcvs_hw_list, list) {
if (hw->max_freq[0] == U32_MAX)
limits_dcvs_get_freq_limits(hw);
if (cpumask_weight(&hw->online_mask) == 0)
continue;
idx = 0;
for_each_cpu(cpu, &hw->core_map) {
cpumask_t cpu_mask = { CPU_BITS_NONE };
if (hw->cdev_data[idx].cdev) {
idx++;
continue;
}
hw->cdev_data[idx].max_freq = U32_MAX;
hw->cdev_data[idx].min_freq = 0;
if (!hw->is_plat_mit_disabled) {
cpumask_set_cpu(cpu, &cpu_mask);
hw->cdev_data[idx].cdev =
cpufreq_platform_cooling_register(
&cpu_mask, &cd_ops);
} else {
cpu_node = of_cpu_device_node_get(cpu);
if (WARN_ON(!cpu_node)) {
hw->cdev_data[idx].cdev = NULL;
continue;
}
policy = cpufreq_cpu_get(cpu);
if (!policy) {
pr_err("No policy for cpu%d\n", cpu);
hw->cdev_data[idx].cdev = NULL;
of_node_put(cpu_node);
continue;
}
hw->cdev_data[idx].cdev =
of_cpufreq_cooling_register(cpu_node,
policy);
of_node_put(cpu_node);
}
if (IS_ERR_OR_NULL(hw->cdev_data[idx].cdev)) {
pr_err("CPU:%u cdev register error:%ld\n",
cpu, PTR_ERR(hw->cdev_data[idx].cdev));
hw->cdev_data[idx].cdev = NULL;
} else {
pr_debug("CPU:%u cdev registered\n", cpu);
hw->cdev_registered++;
}
idx++;
}
}
mutex_unlock(&lmh_dcvs_list_access);
}
static int limits_cpu_online(unsigned int online_cpu)
{
struct limits_dcvs_hw *hw = get_dcvsh_hw_from_cpu(online_cpu);
if (!hw)
return 0;
cpumask_set_cpu(online_cpu, &hw->online_mask);
if (hw->cdev_registered != cpumask_weight(&hw->core_map))
queue_work(system_highpri_wq, &hw->cdev_register_work);
return 0;
}
static void limits_isens_qref_init(struct platform_device *pdev,
struct limits_dcvs_hw *hw,
int idx, char *reg_name,
char *reg_setting)
{
int ret = 0;
uint32_t settings[3];
ret = of_property_read_u32_array(pdev->dev.of_node,
reg_setting, settings, 3);
if (ret) {
if (ret == -EINVAL)
return;
pr_err("Regulator:isens_vref settings read error:%d\n",
ret);
return;
}
hw->isens_reg[idx] = devm_regulator_get(&pdev->dev, reg_name);
if (IS_ERR_OR_NULL(hw->isens_reg[idx])) {
pr_err("Regulator:isens_vref init error:%ld\n",
PTR_ERR(hw->isens_reg[idx]));
return;
}
ret = regulator_set_voltage(hw->isens_reg[idx], settings[0],
settings[1]);
if (ret) {
pr_err("Regulator:isens_vref set voltage error:%d\n", ret);
devm_regulator_put(hw->isens_reg[idx]);
return;
}
ret = regulator_set_load(hw->isens_reg[idx], settings[2]);
if (ret) {
pr_err("Regulator:isens_vref set load error:%d\n", ret);
devm_regulator_put(hw->isens_reg[idx]);
return;
}
if (regulator_enable(hw->isens_reg[idx])) {
pr_err("Failed to enable regulator:isens_vref\n");
devm_regulator_put(hw->isens_reg[idx]);
return;
}
}
static void limits_isens_vref_ldo_init(struct platform_device *pdev,
struct limits_dcvs_hw *hw)
{
limits_isens_qref_init(pdev, hw, 0, "isens_vref_1p8",
"isens-vref-1p8-settings");
limits_isens_qref_init(pdev, hw, 1, "isens_vref_0p8",
"isens-vref-0p8-settings");
}
static ssize_t
lmh_freq_limit_show(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct limits_dcvs_hw *hw = container_of(devattr,
struct limits_dcvs_hw,
lmh_freq_attr);
return snprintf(buf, PAGE_SIZE, "%lu\n", hw->hw_freq_limit);
}
static int limits_dcvs_probe(struct platform_device *pdev)
{
int ret;
int affinity = -1;
struct limits_dcvs_hw *hw;
struct thermal_zone_device *tzdev;
struct device_node *dn = pdev->dev.of_node;
struct device_node *cpu_node, *lmh_node;
uint32_t request_reg, clear_reg, min_reg;
int cpu, idx = 0;
cpumask_t mask = { CPU_BITS_NONE };
const __be32 *addr;
unsigned long max_limit = 0;
for_each_possible_cpu(cpu) {
cpu_node = of_cpu_device_node_get(cpu);
if (!cpu_node)
continue;
lmh_node = of_parse_phandle(cpu_node, "qcom,lmh-dcvs", 0);
if (lmh_node == dn) {
/*set the cpumask*/
cpumask_set_cpu(cpu, &(mask));
}
of_node_put(cpu_node);
of_node_put(lmh_node);
}
/*
* We return error if none of the CPUs have
* reference to our LMH node
*/
if (cpumask_empty(&mask))
return -EINVAL;
hw = devm_kzalloc(&pdev->dev, sizeof(*hw), GFP_KERNEL);
if (!hw)
return -ENOMEM;
hw->cdev_data = devm_kcalloc(&pdev->dev, cpumask_weight(&mask),
sizeof(*hw->cdev_data),
GFP_KERNEL);
if (!hw->cdev_data)
return -ENOMEM;
cpumask_copy(&hw->core_map, &mask);
cpumask_clear(&hw->online_mask);
hw->cdev_registered = 0;
limits_dcvs_get_freq_limits(hw);
for_each_cpu(cpu, &hw->core_map) {
hw->cdev_data[idx].cdev = NULL;
hw->cdev_data[idx].max_freq = U32_MAX;
hw->cdev_data[idx].min_freq = 0;
if (max_limit < hw->max_freq[idx])
max_limit = hw->max_freq[idx];
idx++;
}
ret = of_property_read_u32(dn, "qcom,affinity", &affinity);
if (ret)
return -ENODEV;
switch (affinity) {
case 0:
hw->affinity = LIMITS_CLUSTER_0;
break;
case 1:
hw->affinity = LIMITS_CLUSTER_1;
break;
default:
return -EINVAL;
};
/* Check whether platform mitigation needs to enable or not */
hw->is_plat_mit_disabled = of_property_read_bool(dn,
"qcom,plat-mitigation-disable");
/* Check legcay LMH HW enablement is needed or not */
if (of_property_read_bool(dn, "qcom,legacy-lmh-enable")) {
/* Enable the thermal algorithm early */
ret = limits_dcvs_write(hw->affinity, LIMITS_SUB_FN_THERMAL,
LIMITS_ALGO_MODE_ENABLE, 1, 0, 0);
if (ret) {
pr_err("Unable to enable THERM algo for cluster%d\n",
affinity);
return ret;
}
/* Enable the LMH outer loop algorithm */
ret = limits_dcvs_write(hw->affinity, LIMITS_SUB_FN_CRNT,
LIMITS_ALGO_MODE_ENABLE, 1, 0, 0);
if (ret) {
pr_err("Unable to enable CRNT algo for cluster%d\n",
affinity);
return ret;
}
/* Enable the Reliability algorithm */
ret = limits_dcvs_write(hw->affinity, LIMITS_SUB_FN_REL,
LIMITS_ALGO_MODE_ENABLE, 1, 0, 0);
if (ret) {
pr_err("Unable to enable REL algo for cluster%d\n",
affinity);
return ret;
}
/* Enable the BCL algorithm */
ret = limits_dcvs_write(hw->affinity, LIMITS_SUB_FN_BCL,
LIMITS_ALGO_MODE_ENABLE, 1, 0, 0);
if (ret) {
pr_err("Unable to enable BCL algo for cluster%d\n",
affinity);
return ret;
}
ret = enable_lmh();
if (ret)
return ret;
}
addr = of_get_address(dn, 0, NULL, NULL);
if (!addr) {
pr_err("Property llm-base-addr not found\n");
return -EINVAL;
}
clear_reg = be32_to_cpu(addr[0]) + LIMITS_CLUSTER_INT_CLR_OFFSET;
min_reg = be32_to_cpu(addr[0]) + LIMITS_CLUSTER_MIN_FREQ_OFFSET;
addr = of_get_address(dn, 1, NULL, NULL);
if (!addr) {
pr_err("Property osm-base-addr not found\n");
return -EINVAL;
}
request_reg = be32_to_cpu(addr[0]) + LIMITS_CLUSTER_REQ_OFFSET;
/*
* Setup virtual thermal zones for each LMH-DCVS hardware
* The sensor does not do actual thermal temperature readings
* but does support setting thresholds for trips.
* Let's register with thermal framework, so we have the ability
* to set low/high thresholds.
*/
hw->temp_limits[LIMITS_TRIP_HI] = INT_MAX;
hw->temp_limits[LIMITS_TRIP_ARM] = 0;
hw->hw_freq_limit = max_limit;
snprintf(hw->sensor_name, sizeof(hw->sensor_name), "limits_sensor-%02d",
affinity);
tzdev = thermal_zone_of_sensor_register(&pdev->dev, 0, hw,
&limits_sensor_ops);
if (IS_ERR_OR_NULL(tzdev)) {
/*
* Ignore error in case if thermal zone devicetree node is not
* defined for this lmh hardware.
*/
if (!tzdev || PTR_ERR(tzdev) != -ENODEV)
return PTR_ERR(tzdev);
}
if (!hw->is_plat_mit_disabled) {
hw->min_freq_reg = devm_ioremap(&pdev->dev, min_reg, 0x4);
if (!hw->min_freq_reg) {
pr_err("min frequency enable register remap failed\n");
ret = -ENOMEM;
goto unregister_sensor;
}
}
mutex_init(&hw->access_lock);
INIT_WORK(&hw->cdev_register_work, register_cooling_device);
INIT_DEFERRABLE_WORK(&hw->freq_poll_work, limits_dcvs_poll);
hw->osm_hw_reg = devm_ioremap(&pdev->dev, request_reg, 0x4);
if (!hw->osm_hw_reg) {
pr_err("register remap failed\n");
goto probe_exit;
}
hw->int_clr_reg = devm_ioremap(&pdev->dev, clear_reg, 0x4);
if (!hw->int_clr_reg) {
pr_err("interrupt clear reg remap failed\n");
goto probe_exit;
}
hw->irq_num = of_irq_get(pdev->dev.of_node, 0);
if (hw->irq_num < 0) {
pr_err("Error getting IRQ number. err:%d\n", hw->irq_num);
goto probe_exit;
}
hw->is_irq_enabled = true;
ret = devm_request_threaded_irq(&pdev->dev, hw->irq_num, NULL,
lmh_dcvs_handle_isr, IRQF_TRIGGER_HIGH | IRQF_ONESHOT
| IRQF_NO_SUSPEND | IRQF_SHARED, hw->sensor_name, hw);
if (ret) {
pr_err("Error registering for irq. err:%d\n", ret);
ret = 0;
goto probe_exit;
}
limits_isens_vref_ldo_init(pdev, hw);
hw->lmh_freq_attr.attr.name = "lmh_freq_limit";
hw->lmh_freq_attr.show = lmh_freq_limit_show;
hw->lmh_freq_attr.attr.mode = 0444;
sysfs_attr_init(&hw->lmh_freq_attr.attr);
device_create_file(&pdev->dev, &hw->lmh_freq_attr);
probe_exit:
mutex_lock(&lmh_dcvs_list_access);
INIT_LIST_HEAD(&hw->list);
list_add_tail(&hw->list, &lmh_dcvs_hw_list);
mutex_unlock(&lmh_dcvs_list_access);
lmh_debug_register(pdev);
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "lmh-dcvs/cdev:online",
limits_cpu_online, NULL);
if (ret < 0)
goto unregister_sensor;
ret = 0;
return ret;
unregister_sensor:
thermal_zone_of_sensor_unregister(&pdev->dev, tzdev);
return ret;
}
static const struct of_device_id limits_dcvs_match[] = {
{ .compatible = "qcom,msm-hw-limits", },
{},
};
static struct platform_driver limits_dcvs_driver = {
.probe = limits_dcvs_probe,
.driver = {
.name = KBUILD_MODNAME,
.of_match_table = limits_dcvs_match,
},
};
builtin_platform_driver(limits_dcvs_driver);