blob: 80ec589e2764d042c955a8c0ff2085fd172b685d [file] [log] [blame]
/*
* Copyright (c) 2014-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/clk/msm-clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/usb/phy.h>
#include <linux/usb/msm_hsusb.h>
#include <linux/reset.h>
#define QUSB2PHY_PWR_CTRL1 0x210
#define PWR_CTRL1_POWR_DOWN BIT(0)
#define QUSB2PHY_PLL_COMMON_STATUS_ONE 0x1A0
#define CORE_READY_STATUS BIT(0)
/* Get TUNE value from efuse bit-mask */
#define TUNE_VAL_MASK(val, pos, mask) ((val >> pos) & mask)
#define QUSB2PHY_INTR_CTRL 0x22C
#define DMSE_INTR_HIGH_SEL BIT(4)
#define DPSE_INTR_HIGH_SEL BIT(3)
#define CHG_DET_INTR_EN BIT(2)
#define DMSE_INTR_EN BIT(1)
#define DPSE_INTR_EN BIT(0)
#define QUSB2PHY_INTR_STAT 0x230
#define DMSE_INTERRUPT BIT(1)
#define DPSE_INTERRUPT BIT(0)
#define QUSB2PHY_PORT_TUNE1 0x23c
#define QUSB2PHY_TEST1 0x24C
#define QUSB2PHY_1P2_VOL_MIN 1200000 /* uV */
#define QUSB2PHY_1P2_VOL_MAX 1200000 /* uV */
#define QUSB2PHY_1P2_HPM_LOAD 23000
#define QUSB2PHY_1P8_VOL_MIN 1800000 /* uV */
#define QUSB2PHY_1P8_VOL_MAX 1800000 /* uV */
#define QUSB2PHY_1P8_HPM_LOAD 30000 /* uA */
#define QUSB2PHY_3P3_VOL_MIN 3075000 /* uV */
#define QUSB2PHY_3P3_VOL_MAX 3200000 /* uV */
#define QUSB2PHY_3P3_HPM_LOAD 30000 /* uA */
#define LINESTATE_DP BIT(0)
#define LINESTATE_DM BIT(1)
#define QUSB2PHY_PLL_ANALOG_CONTROLS_ONE 0x0
#define QUSB2PHY_PLL_ANALOG_CONTROLS_TWO 0x4
unsigned int phy_tune1;
module_param(phy_tune1, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(phy_tune1, "QUSB PHY v2 TUNE1");
struct qusb_phy {
struct usb_phy phy;
void __iomem *base;
void __iomem *efuse_reg;
void __iomem *tcsr_clamp_dig_n;
struct clk *ref_clk_src;
struct clk *ref_clk;
struct clk *cfg_ahb_clk;
struct reset_control *phy_reset;
struct regulator *vdd;
struct regulator *vdda33;
struct regulator *vdda18;
struct regulator *vdda12;
int vdd_levels[3]; /* none, low, high */
int init_seq_len;
int *qusb_phy_init_seq;
int host_init_seq_len;
int *qusb_phy_host_init_seq;
u32 tune_val;
int efuse_bit_pos;
int efuse_num_of_bits;
bool power_enabled;
bool clocks_enabled;
bool cable_connected;
bool suspended;
bool rm_pulldown;
struct regulator_desc dpdm_rdesc;
struct regulator_dev *dpdm_rdev;
/* emulation targets specific */
void __iomem *emu_phy_base;
bool emulation;
int *emu_init_seq;
int emu_init_seq_len;
int *phy_pll_reset_seq;
int phy_pll_reset_seq_len;
int *emu_dcm_reset_seq;
int emu_dcm_reset_seq_len;
bool skip_efuse_reg;
};
static void qusb_phy_enable_clocks(struct qusb_phy *qphy, bool on)
{
dev_dbg(qphy->phy.dev, "%s(): clocks_enabled:%d on:%d\n",
__func__, qphy->clocks_enabled, on);
if (!qphy->clocks_enabled && on) {
clk_prepare_enable(qphy->ref_clk_src);
clk_prepare_enable(qphy->ref_clk);
clk_prepare_enable(qphy->cfg_ahb_clk);
qphy->clocks_enabled = true;
}
if (qphy->clocks_enabled && !on) {
clk_disable_unprepare(qphy->ref_clk);
clk_disable_unprepare(qphy->ref_clk_src);
clk_disable_unprepare(qphy->cfg_ahb_clk);
qphy->clocks_enabled = false;
}
dev_dbg(qphy->phy.dev, "%s(): clocks_enabled:%d\n", __func__,
qphy->clocks_enabled);
}
static int qusb_phy_config_vdd(struct qusb_phy *qphy, int high)
{
int min, ret;
min = high ? 1 : 0; /* low or none? */
ret = regulator_set_voltage(qphy->vdd, qphy->vdd_levels[min],
qphy->vdd_levels[2]);
if (ret) {
dev_err(qphy->phy.dev, "unable to set voltage for qusb vdd\n");
return ret;
}
dev_dbg(qphy->phy.dev, "min_vol:%d max_vol:%d\n",
qphy->vdd_levels[min], qphy->vdd_levels[2]);
return ret;
}
static int qusb_phy_enable_power(struct qusb_phy *qphy, bool on,
bool toggle_vdd)
{
int ret = 0;
dev_dbg(qphy->phy.dev, "%s turn %s regulators. power_enabled:%d\n",
__func__, on ? "on" : "off", qphy->power_enabled);
if (toggle_vdd && qphy->power_enabled == on) {
dev_dbg(qphy->phy.dev, "PHYs' regulators are already ON.\n");
return 0;
}
if (!on)
goto disable_vdda33;
if (toggle_vdd) {
ret = qusb_phy_config_vdd(qphy, true);
if (ret) {
dev_err(qphy->phy.dev, "Unable to config VDD:%d\n",
ret);
goto err_vdd;
}
ret = regulator_enable(qphy->vdd);
if (ret) {
dev_err(qphy->phy.dev, "Unable to enable VDD\n");
goto unconfig_vdd;
}
}
ret = regulator_set_load(qphy->vdda12, QUSB2PHY_1P2_HPM_LOAD);
if (ret < 0) {
dev_err(qphy->phy.dev, "Unable to set HPM of vdda12:%d\n", ret);
goto disable_vdd;
}
ret = regulator_set_voltage(qphy->vdda12, QUSB2PHY_1P2_VOL_MIN,
QUSB2PHY_1P2_VOL_MAX);
if (ret) {
dev_err(qphy->phy.dev,
"Unable to set voltage for vdda12:%d\n", ret);
goto put_vdda12_lpm;
}
ret = regulator_enable(qphy->vdda12);
if (ret) {
dev_err(qphy->phy.dev, "Unable to enable vdda12:%d\n", ret);
goto unset_vdda12;
}
ret = regulator_set_load(qphy->vdda18, QUSB2PHY_1P8_HPM_LOAD);
if (ret < 0) {
dev_err(qphy->phy.dev, "Unable to set HPM of vdda18:%d\n", ret);
goto disable_vdda12;
}
ret = regulator_set_voltage(qphy->vdda18, QUSB2PHY_1P8_VOL_MIN,
QUSB2PHY_1P8_VOL_MAX);
if (ret) {
dev_err(qphy->phy.dev,
"Unable to set voltage for vdda18:%d\n", ret);
goto put_vdda18_lpm;
}
ret = regulator_enable(qphy->vdda18);
if (ret) {
dev_err(qphy->phy.dev, "Unable to enable vdda18:%d\n", ret);
goto unset_vdda18;
}
ret = regulator_set_load(qphy->vdda33, QUSB2PHY_3P3_HPM_LOAD);
if (ret < 0) {
dev_err(qphy->phy.dev, "Unable to set HPM of vdda33:%d\n", ret);
goto disable_vdda18;
}
ret = regulator_set_voltage(qphy->vdda33, QUSB2PHY_3P3_VOL_MIN,
QUSB2PHY_3P3_VOL_MAX);
if (ret) {
dev_err(qphy->phy.dev,
"Unable to set voltage for vdda33:%d\n", ret);
goto put_vdda33_lpm;
}
ret = regulator_enable(qphy->vdda33);
if (ret) {
dev_err(qphy->phy.dev, "Unable to enable vdda33:%d\n", ret);
goto unset_vdd33;
}
if (toggle_vdd)
qphy->power_enabled = true;
pr_debug("%s(): QUSB PHY's regulators are turned ON.\n", __func__);
return ret;
disable_vdda33:
ret = regulator_disable(qphy->vdda33);
if (ret)
dev_err(qphy->phy.dev, "Unable to disable vdda33:%d\n", ret);
unset_vdd33:
ret = regulator_set_voltage(qphy->vdda33, 0, QUSB2PHY_3P3_VOL_MAX);
if (ret)
dev_err(qphy->phy.dev,
"Unable to set (0) voltage for vdda33:%d\n", ret);
put_vdda33_lpm:
ret = regulator_set_load(qphy->vdda33, 0);
if (ret < 0)
dev_err(qphy->phy.dev, "Unable to set (0) HPM of vdda33\n");
disable_vdda18:
ret = regulator_disable(qphy->vdda18);
if (ret)
dev_err(qphy->phy.dev, "Unable to disable vdda18:%d\n", ret);
unset_vdda18:
ret = regulator_set_voltage(qphy->vdda18, 0, QUSB2PHY_1P8_VOL_MAX);
if (ret)
dev_err(qphy->phy.dev,
"Unable to set (0) voltage for vdda18:%d\n", ret);
put_vdda18_lpm:
ret = regulator_set_load(qphy->vdda18, 0);
if (ret < 0)
dev_err(qphy->phy.dev, "Unable to set LPM of vdda18\n");
disable_vdda12:
ret = regulator_disable(qphy->vdda12);
if (ret)
dev_err(qphy->phy.dev, "Unable to disable vdda12:%d\n", ret);
unset_vdda12:
ret = regulator_set_voltage(qphy->vdda12, 0, QUSB2PHY_1P2_VOL_MAX);
if (ret)
dev_err(qphy->phy.dev,
"Unable to set (0) voltage for vdda12:%d\n", ret);
put_vdda12_lpm:
ret = regulator_set_load(qphy->vdda12, 0);
if (ret < 0)
dev_err(qphy->phy.dev, "Unable to set LPM of vdda12\n");
disable_vdd:
if (toggle_vdd) {
ret = regulator_disable(qphy->vdd);
if (ret)
dev_err(qphy->phy.dev, "Unable to disable vdd:%d\n",
ret);
unconfig_vdd:
ret = qusb_phy_config_vdd(qphy, false);
if (ret)
dev_err(qphy->phy.dev, "Unable unconfig VDD:%d\n",
ret);
}
err_vdd:
if (toggle_vdd)
qphy->power_enabled = false;
dev_dbg(qphy->phy.dev, "QUSB PHY's regulators are turned OFF.\n");
return ret;
}
static int qusb_phy_update_dpdm(struct usb_phy *phy, int value)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
int ret = 0;
dev_dbg(phy->dev, "%s value:%d rm_pulldown:%d\n",
__func__, value, qphy->rm_pulldown);
switch (value) {
case POWER_SUPPLY_DP_DM_DPF_DMF:
dev_dbg(phy->dev, "POWER_SUPPLY_DP_DM_DPF_DMF\n");
if (!qphy->rm_pulldown) {
ret = qusb_phy_enable_power(qphy, true, false);
if (ret >= 0) {
qphy->rm_pulldown = true;
dev_dbg(phy->dev, "DP_DM_F: rm_pulldown:%d\n",
qphy->rm_pulldown);
}
}
break;
case POWER_SUPPLY_DP_DM_DPR_DMR:
dev_dbg(phy->dev, "POWER_SUPPLY_DP_DM_DPR_DMR\n");
if (qphy->rm_pulldown) {
ret = qusb_phy_enable_power(qphy, false, false);
if (ret >= 0) {
qphy->rm_pulldown = false;
dev_dbg(phy->dev, "DP_DM_R: rm_pulldown:%d\n",
qphy->rm_pulldown);
}
}
break;
default:
ret = -EINVAL;
dev_err(phy->dev, "Invalid power supply property(%d)\n", value);
break;
}
return ret;
}
static void qusb_phy_get_tune1_param(struct qusb_phy *qphy)
{
u8 reg;
u32 bit_mask = 1;
pr_debug("%s(): num_of_bits:%d bit_pos:%d\n", __func__,
qphy->efuse_num_of_bits,
qphy->efuse_bit_pos);
/* get bit mask based on number of bits to use with efuse reg */
bit_mask = (bit_mask << qphy->efuse_num_of_bits) - 1;
/*
* if efuse reg is updated (i.e non-zero) then use it to program
* tune parameters
*/
qphy->tune_val = readl_relaxed(qphy->efuse_reg);
pr_debug("%s(): bit_mask:%d efuse based tune1 value:%d\n",
__func__, bit_mask, qphy->tune_val);
qphy->tune_val = TUNE_VAL_MASK(qphy->tune_val,
qphy->efuse_bit_pos, bit_mask);
reg = readb_relaxed(qphy->base + QUSB2PHY_PORT_TUNE1);
if (qphy->tune_val) {
reg = reg & 0x0f;
reg |= (qphy->tune_val << 4);
}
qphy->tune_val = reg;
}
static void qusb_phy_write_seq(void __iomem *base, u32 *seq, int cnt,
unsigned long delay)
{
int i;
pr_debug("Seq count:%d\n", cnt);
for (i = 0; i < cnt; i = i+2) {
pr_debug("write 0x%02x to 0x%02x\n", seq[i], seq[i+1]);
writel_relaxed(seq[i], base + seq[i+1]);
if (delay)
usleep_range(delay, (delay + 2000));
}
}
static void qusb_phy_host_init(struct usb_phy *phy)
{
u8 reg;
int ret;
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
dev_dbg(phy->dev, "%s\n", __func__);
/* Perform phy reset */
ret = reset_control_assert(qphy->phy_reset);
if (ret)
dev_err(phy->dev, "%s: phy_reset assert failed\n", __func__);
usleep_range(100, 150);
ret = reset_control_deassert(qphy->phy_reset);
if (ret)
dev_err(phy->dev, "%s: phy_reset deassert failed\n", __func__);
/* Disable the PHY */
writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) |
PWR_CTRL1_POWR_DOWN,
qphy->base + QUSB2PHY_PWR_CTRL1);
qusb_phy_write_seq(qphy->base, qphy->qusb_phy_host_init_seq,
qphy->host_init_seq_len, 0);
/* ensure above writes are completed before re-enabling PHY */
wmb();
/* Enable the PHY */
writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) &
~PWR_CTRL1_POWR_DOWN,
qphy->base + QUSB2PHY_PWR_CTRL1);
/* Ensure above write is completed before turning ON ref clk */
wmb();
/* Require to get phy pll lock successfully */
usleep_range(150, 160);
reg = readb_relaxed(qphy->base + QUSB2PHY_PLL_COMMON_STATUS_ONE);
dev_dbg(phy->dev, "QUSB2PHY_PLL_COMMON_STATUS_ONE:%x\n", reg);
if (!(reg & CORE_READY_STATUS)) {
dev_err(phy->dev, "QUSB PHY PLL LOCK fails:%x\n", reg);
WARN_ON(1);
}
}
static int qusb_phy_init(struct usb_phy *phy)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
int ret;
u8 reg;
dev_dbg(phy->dev, "%s\n", __func__);
ret = qusb_phy_enable_power(qphy, true, true);
if (ret)
return ret;
qusb_phy_enable_clocks(qphy, true);
/* Perform phy reset */
ret = reset_control_assert(qphy->phy_reset);
if (ret)
dev_err(phy->dev, "%s: phy_reset assert failed\n", __func__);
usleep_range(100, 150);
ret = reset_control_deassert(qphy->phy_reset);
if (ret)
dev_err(phy->dev, "%s: phy_reset deassert failed\n", __func__);
if (qphy->emulation) {
if (qphy->emu_init_seq)
qusb_phy_write_seq(qphy->emu_phy_base,
qphy->emu_init_seq, qphy->emu_init_seq_len, 0);
if (qphy->qusb_phy_init_seq)
qusb_phy_write_seq(qphy->base, qphy->qusb_phy_init_seq,
qphy->init_seq_len, 0);
/* Wait for 5ms as per QUSB2 RUMI sequence */
usleep_range(5000, 7000);
if (qphy->phy_pll_reset_seq)
qusb_phy_write_seq(qphy->base, qphy->phy_pll_reset_seq,
qphy->phy_pll_reset_seq_len, 10000);
if (qphy->emu_dcm_reset_seq)
qusb_phy_write_seq(qphy->emu_phy_base,
qphy->emu_dcm_reset_seq,
qphy->emu_dcm_reset_seq_len, 10000);
return 0;
}
/* Disable the PHY */
writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) |
PWR_CTRL1_POWR_DOWN,
qphy->base + QUSB2PHY_PWR_CTRL1);
if (qphy->qusb_phy_init_seq)
qusb_phy_write_seq(qphy->base, qphy->qusb_phy_init_seq,
qphy->init_seq_len, 0);
if (!qphy->skip_efuse_reg && qphy->efuse_reg) {
if (!qphy->tune_val)
qusb_phy_get_tune1_param(qphy);
pr_debug("%s(): Programming TUNE1 parameter as:%x\n", __func__,
qphy->tune_val);
writel_relaxed(qphy->tune_val,
qphy->base + QUSB2PHY_PORT_TUNE1);
}
/* If phy_tune1 modparam set, override tune1 value */
if (phy_tune1) {
pr_debug("%s(): (modparam) TUNE1 val:0x%02x\n",
__func__, phy_tune1);
writel_relaxed(phy_tune1,
qphy->base + QUSB2PHY_PORT_TUNE1);
}
/* ensure above writes are completed before re-enabling PHY */
wmb();
/* Enable the PHY */
writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) &
~PWR_CTRL1_POWR_DOWN,
qphy->base + QUSB2PHY_PWR_CTRL1);
/* Ensure above write is completed before turning ON ref clk */
wmb();
/* Require to get phy pll lock successfully */
usleep_range(150, 160);
reg = readb_relaxed(qphy->base + QUSB2PHY_PLL_COMMON_STATUS_ONE);
dev_dbg(phy->dev, "QUSB2PHY_PLL_COMMON_STATUS_ONE:%x\n", reg);
if (!(reg & CORE_READY_STATUS)) {
dev_err(phy->dev, "QUSB PHY PLL LOCK fails:%x\n", reg);
WARN_ON(1);
}
return 0;
}
static void qusb_phy_shutdown(struct usb_phy *phy)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
dev_dbg(phy->dev, "%s\n", __func__);
qusb_phy_enable_clocks(qphy, true);
/* Disable the PHY */
writel_relaxed(readl_relaxed(qphy->base + QUSB2PHY_PWR_CTRL1) |
PWR_CTRL1_POWR_DOWN,
qphy->base + QUSB2PHY_PWR_CTRL1);
/* Makes sure that above write goes through */
wmb();
qusb_phy_enable_clocks(qphy, false);
}
static u32 qusb_phy_get_linestate(struct qusb_phy *qphy)
{
u32 linestate = 0;
if (qphy->cable_connected) {
if (qphy->phy.flags & PHY_HSFS_MODE)
linestate |= LINESTATE_DP;
else if (qphy->phy.flags & PHY_LS_MODE)
linestate |= LINESTATE_DM;
}
return linestate;
}
/**
* Performs QUSB2 PHY suspend/resume functionality.
*
* @uphy - usb phy pointer.
* @suspend - to enable suspend or not. 1 - suspend, 0 - resume
*
*/
static int qusb_phy_set_suspend(struct usb_phy *phy, int suspend)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
u32 linestate = 0, intr_mask = 0;
static u8 analog_ctrl_two;
int ret;
if (qphy->suspended && suspend) {
dev_dbg(phy->dev, "%s: USB PHY is already suspended\n",
__func__);
return 0;
}
if (suspend) {
/* Bus suspend case */
if (qphy->cable_connected ||
(qphy->phy.flags & PHY_HOST_MODE)) {
/* store clock settings like cmos/cml */
analog_ctrl_two =
readl_relaxed(qphy->base +
QUSB2PHY_PLL_ANALOG_CONTROLS_TWO);
/* use CSR & switch to SE clk */
writel_relaxed(0xb,
qphy->base + QUSB2PHY_PLL_ANALOG_CONTROLS_TWO);
/* enable clock bypass */
writel_relaxed(0x90,
qphy->base + QUSB2PHY_PLL_ANALOG_CONTROLS_ONE);
/* Disable all interrupts */
writel_relaxed(0x00,
qphy->base + QUSB2PHY_INTR_CTRL);
linestate = qusb_phy_get_linestate(qphy);
/*
* D+/D- interrupts are level-triggered, but we are
* only interested if the line state changes, so enable
* the high/low trigger based on current state. In
* other words, enable the triggers _opposite_ of what
* the current D+/D- levels are.
* e.g. if currently D+ high, D- low (HS 'J'/Suspend),
* configure the mask to trigger on D+ low OR D- high
*/
intr_mask = DMSE_INTERRUPT | DPSE_INTERRUPT;
if (!(linestate & LINESTATE_DP)) /* D+ low */
intr_mask |= DPSE_INTR_HIGH_SEL;
if (!(linestate & LINESTATE_DM)) /* D- low */
intr_mask |= DMSE_INTR_HIGH_SEL;
writel_relaxed(intr_mask,
qphy->base + QUSB2PHY_INTR_CTRL);
if (linestate & (LINESTATE_DP | LINESTATE_DM)) {
/* enable phy auto-resume */
writel_relaxed(0x91,
qphy->base + QUSB2PHY_TEST1);
/* flush the previous write before next write */
wmb();
writel_relaxed(0x90,
qphy->base + QUSB2PHY_TEST1);
}
dev_dbg(phy->dev, "%s: intr_mask = %x\n",
__func__, intr_mask);
/* Makes sure that above write goes through */
wmb();
qusb_phy_enable_clocks(qphy, false);
} else { /* Cable disconnect case */
ret = reset_control_assert(qphy->phy_reset);
if (ret)
dev_err(phy->dev, "%s: phy_reset assert failed\n",
__func__);
usleep_range(100, 150);
ret = reset_control_deassert(qphy->phy_reset);
if (ret)
dev_err(phy->dev, "%s: phy_reset deassert failed\n",
__func__);
writel_relaxed(0x1b,
qphy->base + QUSB2PHY_PLL_ANALOG_CONTROLS_TWO);
/* enable clock bypass */
writel_relaxed(0x90,
qphy->base + QUSB2PHY_PLL_ANALOG_CONTROLS_ONE);
writel_relaxed(0x0, qphy->tcsr_clamp_dig_n);
/*
* clamp needs asserted before
* power/clocks can be turned off
*/
wmb();
qusb_phy_enable_clocks(qphy, false);
qusb_phy_enable_power(qphy, false, true);
}
qphy->suspended = true;
} else {
/* Bus resume case */
if (qphy->cable_connected ||
(qphy->phy.flags & PHY_HOST_MODE)) {
qusb_phy_enable_clocks(qphy, true);
/* restore the default clock settings */
writel_relaxed(analog_ctrl_two,
qphy->base + QUSB2PHY_PLL_ANALOG_CONTROLS_TWO);
/* disable clock bypass */
writel_relaxed(0x80,
qphy->base + QUSB2PHY_PLL_ANALOG_CONTROLS_ONE);
/* Clear all interrupts on resume */
writel_relaxed(0x00,
qphy->base + QUSB2PHY_INTR_CTRL);
/* Makes sure that above write goes through */
wmb();
} else { /* Cable connect case */
writel_relaxed(0x1, qphy->tcsr_clamp_dig_n);
/*
* clamp needs de-asserted before
* power/clocks can be turned on
*/
wmb();
qusb_phy_enable_power(qphy, true, true);
ret = reset_control_assert(qphy->phy_reset);
if (ret)
dev_err(phy->dev, "%s: phy_reset assert failed\n",
__func__);
usleep_range(100, 150);
ret = reset_control_deassert(qphy->phy_reset);
if (ret)
dev_err(phy->dev, "%s: phy_reset deassert failed\n",
__func__);
qusb_phy_enable_clocks(qphy, true);
}
qphy->suspended = false;
}
return 0;
}
static int qusb_phy_notify_connect(struct usb_phy *phy,
enum usb_device_speed speed)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
qphy->cable_connected = true;
if (qphy->qusb_phy_host_init_seq && qphy->phy.flags & PHY_HOST_MODE)
qusb_phy_host_init(phy);
dev_dbg(phy->dev, "QUSB PHY: connect notification cable_connected=%d\n",
qphy->cable_connected);
return 0;
}
static int qusb_phy_notify_disconnect(struct usb_phy *phy,
enum usb_device_speed speed)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
qphy->cable_connected = false;
dev_dbg(phy->dev, "QUSB PHY: connect notification cable_connected=%d\n",
qphy->cable_connected);
return 0;
}
static int qusb_phy_dpdm_regulator_enable(struct regulator_dev *rdev)
{
struct qusb_phy *qphy = rdev_get_drvdata(rdev);
dev_dbg(qphy->phy.dev, "%s\n", __func__);
return qusb_phy_update_dpdm(&qphy->phy, POWER_SUPPLY_DP_DM_DPF_DMF);
}
static int qusb_phy_dpdm_regulator_disable(struct regulator_dev *rdev)
{
struct qusb_phy *qphy = rdev_get_drvdata(rdev);
dev_dbg(qphy->phy.dev, "%s\n", __func__);
return qusb_phy_update_dpdm(&qphy->phy, POWER_SUPPLY_DP_DM_DPR_DMR);
}
static int qusb_phy_dpdm_regulator_is_enabled(struct regulator_dev *rdev)
{
struct qusb_phy *qphy = rdev_get_drvdata(rdev);
dev_dbg(qphy->phy.dev, "%s qphy->rm_pulldown = %d\n", __func__,
qphy->rm_pulldown);
return qphy->rm_pulldown;
}
static struct regulator_ops qusb_phy_dpdm_regulator_ops = {
.enable = qusb_phy_dpdm_regulator_enable,
.disable = qusb_phy_dpdm_regulator_disable,
.is_enabled = qusb_phy_dpdm_regulator_is_enabled,
};
static int qusb_phy_regulator_init(struct qusb_phy *qphy)
{
struct device *dev = qphy->phy.dev;
struct regulator_config cfg = {};
struct regulator_init_data *init_data;
init_data = devm_kzalloc(dev, sizeof(*init_data), GFP_KERNEL);
if (!init_data)
return -ENOMEM;
init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_STATUS;
qphy->dpdm_rdesc.owner = THIS_MODULE;
qphy->dpdm_rdesc.type = REGULATOR_VOLTAGE;
qphy->dpdm_rdesc.ops = &qusb_phy_dpdm_regulator_ops;
qphy->dpdm_rdesc.name = kbasename(dev->of_node->full_name);
cfg.dev = dev;
cfg.init_data = init_data;
cfg.driver_data = qphy;
cfg.of_node = dev->of_node;
qphy->dpdm_rdev = devm_regulator_register(dev, &qphy->dpdm_rdesc, &cfg);
if (IS_ERR(qphy->dpdm_rdev))
return PTR_ERR(qphy->dpdm_rdev);
return 0;
}
static int qusb_phy_probe(struct platform_device *pdev)
{
struct qusb_phy *qphy;
struct device *dev = &pdev->dev;
struct resource *res;
int ret = 0, size = 0;
qphy = devm_kzalloc(dev, sizeof(*qphy), GFP_KERNEL);
if (!qphy)
return -ENOMEM;
qphy->phy.dev = dev;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"qusb_phy_base");
qphy->base = devm_ioremap_resource(dev, res);
if (IS_ERR(qphy->base))
return PTR_ERR(qphy->base);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"emu_phy_base");
if (res) {
qphy->emu_phy_base = devm_ioremap_resource(dev, res);
if (IS_ERR(qphy->emu_phy_base)) {
dev_dbg(dev, "couldn't ioremap emu_phy_base\n");
qphy->emu_phy_base = NULL;
}
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"tcsr_clamp_dig_n_1p8");
if (res) {
qphy->tcsr_clamp_dig_n = devm_ioremap_resource(dev, res);
if (IS_ERR(qphy->tcsr_clamp_dig_n)) {
dev_dbg(dev, "couldn't ioremap tcsr_clamp_dig_n\n");
return PTR_ERR(qphy->tcsr_clamp_dig_n);
}
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"efuse_addr");
if (res) {
qphy->efuse_reg = devm_ioremap_nocache(dev, res->start,
resource_size(res));
if (!IS_ERR_OR_NULL(qphy->efuse_reg)) {
ret = of_property_read_u32(dev->of_node,
"qcom,efuse-bit-pos",
&qphy->efuse_bit_pos);
if (!ret) {
ret = of_property_read_u32(dev->of_node,
"qcom,efuse-num-bits",
&qphy->efuse_num_of_bits);
}
if (ret) {
dev_err(dev,
"DT Value for efuse is invalid.\n");
return -EINVAL;
}
}
}
qphy->skip_efuse_reg = of_property_read_bool(dev->of_node,
"skip_efuse_reg");
qphy->ref_clk_src = devm_clk_get(dev, "ref_clk_src");
if (IS_ERR(qphy->ref_clk_src))
dev_dbg(dev, "clk get failed for ref_clk_src\n");
qphy->ref_clk = devm_clk_get(dev, "ref_clk");
if (IS_ERR(qphy->ref_clk))
dev_dbg(dev, "clk get failed for ref_clk\n");
else
clk_set_rate(qphy->ref_clk, 19200000);
if (of_property_match_string(pdev->dev.of_node,
"clock-names", "cfg_ahb_clk") >= 0) {
qphy->cfg_ahb_clk = devm_clk_get(dev, "cfg_ahb_clk");
if (IS_ERR(qphy->cfg_ahb_clk)) {
ret = PTR_ERR(qphy->cfg_ahb_clk);
if (ret != -EPROBE_DEFER)
dev_err(dev,
"clk get failed for cfg_ahb_clk ret %d\n", ret);
return ret;
}
}
qphy->phy_reset = devm_reset_control_get(dev, "phy_reset");
if (IS_ERR(qphy->phy_reset))
return PTR_ERR(qphy->phy_reset);
qphy->emulation = of_property_read_bool(dev->of_node,
"qcom,emulation");
of_get_property(dev->of_node, "qcom,emu-init-seq", &size);
if (size) {
qphy->emu_init_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (qphy->emu_init_seq) {
qphy->emu_init_seq_len =
(size / sizeof(*qphy->emu_init_seq));
if (qphy->emu_init_seq_len % 2) {
dev_err(dev, "invalid emu_init_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,emu-init-seq",
qphy->emu_init_seq,
qphy->emu_init_seq_len);
} else {
dev_dbg(dev,
"error allocating memory for emu_init_seq\n");
}
}
size = 0;
of_get_property(dev->of_node, "qcom,phy-pll-reset-seq", &size);
if (size) {
qphy->phy_pll_reset_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (qphy->phy_pll_reset_seq) {
qphy->phy_pll_reset_seq_len =
(size / sizeof(*qphy->phy_pll_reset_seq));
if (qphy->phy_pll_reset_seq_len % 2) {
dev_err(dev, "invalid phy_pll_reset_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,phy-pll-reset-seq",
qphy->phy_pll_reset_seq,
qphy->phy_pll_reset_seq_len);
} else {
dev_dbg(dev,
"error allocating memory for phy_pll_reset_seq\n");
}
}
size = 0;
of_get_property(dev->of_node, "qcom,emu-dcm-reset-seq", &size);
if (size) {
qphy->emu_dcm_reset_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (qphy->emu_dcm_reset_seq) {
qphy->emu_dcm_reset_seq_len =
(size / sizeof(*qphy->emu_dcm_reset_seq));
if (qphy->emu_dcm_reset_seq_len % 2) {
dev_err(dev, "invalid emu_dcm_reset_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,emu-dcm-reset-seq",
qphy->emu_dcm_reset_seq,
qphy->emu_dcm_reset_seq_len);
} else {
dev_dbg(dev,
"error allocating memory for emu_dcm_reset_seq\n");
}
}
size = 0;
of_get_property(dev->of_node, "qcom,qusb-phy-init-seq", &size);
if (size) {
qphy->qusb_phy_init_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (qphy->qusb_phy_init_seq) {
qphy->init_seq_len =
(size / sizeof(*qphy->qusb_phy_init_seq));
if (qphy->init_seq_len % 2) {
dev_err(dev, "invalid init_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,qusb-phy-init-seq",
qphy->qusb_phy_init_seq,
qphy->init_seq_len);
} else {
dev_err(dev,
"error allocating memory for phy_init_seq\n");
}
}
qphy->host_init_seq_len = of_property_count_elems_of_size(dev->of_node,
"qcom,qusb-phy-host-init-seq",
sizeof(*qphy->qusb_phy_host_init_seq));
if (qphy->host_init_seq_len > 0) {
qphy->qusb_phy_host_init_seq = devm_kcalloc(dev,
qphy->host_init_seq_len,
sizeof(*qphy->qusb_phy_host_init_seq),
GFP_KERNEL);
if (qphy->qusb_phy_host_init_seq)
of_property_read_u32_array(dev->of_node,
"qcom,qusb-phy-host-init-seq",
qphy->qusb_phy_host_init_seq,
qphy->host_init_seq_len);
else
return -ENOMEM;
}
ret = of_property_read_u32_array(dev->of_node, "qcom,vdd-voltage-level",
(u32 *) qphy->vdd_levels,
ARRAY_SIZE(qphy->vdd_levels));
if (ret) {
dev_err(dev, "error reading qcom,vdd-voltage-level property\n");
return ret;
}
qphy->vdd = devm_regulator_get(dev, "vdd");
if (IS_ERR(qphy->vdd)) {
dev_err(dev, "unable to get vdd supply\n");
return PTR_ERR(qphy->vdd);
}
qphy->vdda33 = devm_regulator_get(dev, "vdda33");
if (IS_ERR(qphy->vdda33)) {
dev_err(dev, "unable to get vdda33 supply\n");
return PTR_ERR(qphy->vdda33);
}
qphy->vdda18 = devm_regulator_get(dev, "vdda18");
if (IS_ERR(qphy->vdda18)) {
dev_err(dev, "unable to get vdda18 supply\n");
return PTR_ERR(qphy->vdda18);
}
qphy->vdda12 = devm_regulator_get(dev, "vdda12");
if (IS_ERR(qphy->vdda12)) {
dev_err(dev, "unable to get vdda12 supply\n");
return PTR_ERR(qphy->vdda12);
}
platform_set_drvdata(pdev, qphy);
qphy->phy.label = "msm-qusb-phy-v2";
qphy->phy.init = qusb_phy_init;
qphy->phy.set_suspend = qusb_phy_set_suspend;
qphy->phy.shutdown = qusb_phy_shutdown;
qphy->phy.type = USB_PHY_TYPE_USB2;
qphy->phy.notify_connect = qusb_phy_notify_connect;
qphy->phy.notify_disconnect = qusb_phy_notify_disconnect;
ret = usb_add_phy_dev(&qphy->phy);
if (ret)
return ret;
ret = qusb_phy_regulator_init(qphy);
if (ret)
usb_remove_phy(&qphy->phy);
/* de-asseert clamp dig n to reduce leakage on 1p8 upon boot up */
writel_relaxed(0x0, qphy->tcsr_clamp_dig_n);
return ret;
}
static int qusb_phy_remove(struct platform_device *pdev)
{
struct qusb_phy *qphy = platform_get_drvdata(pdev);
usb_remove_phy(&qphy->phy);
if (qphy->clocks_enabled) {
clk_disable_unprepare(qphy->cfg_ahb_clk);
clk_disable_unprepare(qphy->ref_clk);
clk_disable_unprepare(qphy->ref_clk_src);
qphy->clocks_enabled = false;
}
qusb_phy_enable_power(qphy, false, true);
return 0;
}
static const struct of_device_id qusb_phy_id_table[] = {
{ .compatible = "qcom,qusb2phy-v2", },
{ },
};
MODULE_DEVICE_TABLE(of, qusb_phy_id_table);
static struct platform_driver qusb_phy_driver = {
.probe = qusb_phy_probe,
.remove = qusb_phy_remove,
.driver = {
.name = "msm-qusb-phy-v2",
.of_match_table = of_match_ptr(qusb_phy_id_table),
},
};
module_platform_driver(qusb_phy_driver);
MODULE_DESCRIPTION("MSM QUSB2 PHY v2 driver");
MODULE_LICENSE("GPL v2");