blob: 774f1a044d03e497d07748d3d14256f9d7db679d [file] [log] [blame]
/* Copyright (c) 2012-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/thermal.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/msm_tsens.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/debugfs.h>
#include <linux/vmalloc.h>
#include <asm/arch_timer.h>
#define CREATE_TRACE_POINTS
#include <trace/trace_thermal.h>
#define TSENS_DRIVER_NAME "msm-tsens"
/* TSENS register info */
#define TSENS_UPPER_LOWER_INTERRUPT_CTRL(n) ((n) + 0x1000)
#define TSENS_INTERRUPT_EN BIT(0)
#define TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR(n) ((n) + 0x1004)
#define TSENS_UPPER_STATUS_CLR BIT(21)
#define TSENS_LOWER_STATUS_CLR BIT(20)
#define TSENS_UPPER_THRESHOLD_MASK 0xffc00
#define TSENS_LOWER_THRESHOLD_MASK 0x3ff
#define TSENS_UPPER_THRESHOLD_SHIFT 10
#define TSENS_S0_STATUS_ADDR(n) ((n) + 0x1030)
#define TSENS_SN_ADDR_OFFSET 0x4
#define TSENS_SN_STATUS_TEMP_MASK 0x3ff
#define TSENS_SN_STATUS_LOWER_STATUS BIT(11)
#define TSENS_SN_STATUS_UPPER_STATUS BIT(12)
#define TSENS_STATUS_ADDR_OFFSET 2
#define TSENS_TRDY_ADDR(n) ((n) + 0x105c)
#define TSENS_TRDY_MASK BIT(0)
#define TSENS2_SN_STATUS_ADDR(n) ((n) + 0x1044)
#define TSENS2_SN_STATUS_VALID BIT(14)
#define TSENS2_SN_STATUS_VALID_MASK 0x4000
#define TSENS2_TRDY_ADDR(n) ((n) + 0x84)
#define TSENS4_TRDY_ADDR(n) ((n) + 0x1084)
#define TSENS_MTC_ZONE0_SW_MASK_ADDR(n) ((n) + 0x10c0)
#define TSENS_TH1_MTC_IN_EFFECT BIT(0)
#define TSENS_TH2_MTC_IN_EFFECT BIT(1)
#define TSENS_MTC_IN_EFFECT 0x3
#define TSENS_MTC_DISABLE 0x0
#define TSENS_MTC_ZONE0_LOG(n) ((n) + 0x10d0)
#define TSENS_LOGS_VALID_MASK 0x40000000
#define TSENS_LOGS_VALID_SHIFT 30
#define TSENS_LOGS_LATEST_MASK 0x0000001f
#define TSENS_LOGS_LOG1_MASK 0x000003e0
#define TSENS_LOGS_LOG2_MASK 0x00007c00
#define TSENS_LOGS_LOG3_MASK 0x000f8000
#define TSENS_LOGS_LOG4_MASK 0x01f00000
#define TSENS_LOGS_LOG5_MASK 0x3e000000
#define TSENS_LOGS_LOG1_SHIFT 5
#define TSENS_LOGS_LOG2_SHIFT 10
#define TSENS_LOGS_LOG3_SHIFT 15
#define TSENS_LOGS_LOG4_SHIFT 20
#define TSENS_LOGS_LOG5_SHIFT 25
/* TSENS_TM registers for 8996 */
#define TSENS_TM_INT_EN(n) ((n) + 0x1004)
#define TSENS_TM_CRITICAL_WD_BARK BIT(31)
#define TSENS_TM_CRITICAL_CYCLE_MONITOR BIT(30)
#define TSENS_TM_CRITICAL_INT_EN BIT(2)
#define TSENS_TM_UPPER_INT_EN BIT(1)
#define TSENS_TM_LOWER_INT_EN BIT(0)
#define TSENS_TM_UPPER_INT_MASK(n) (((n) & 0xffff0000) >> 16)
#define TSENS_TM_LOWER_INT_MASK(n) ((n) & 0xffff)
#define TSENS_TM_UPPER_LOWER_INT_STATUS(n) ((n) + 0x1008)
#define TSENS_TM_UPPER_LOWER_INT_CLEAR(n) ((n) + 0x100c)
#define TSENS_TM_UPPER_LOWER_INT_MASK(n) ((n) + 0x1010)
#define TSENS_TM_UPPER_INT_SET(n) (1 << (n + 16))
#define TSENS_TM_CRITICAL_INT_STATUS(n) ((n) + 0x1014)
#define TSENS_TM_CRITICAL_INT_CLEAR(n) ((n) + 0x1018)
#define TSENS_TM_CRITICAL_INT_MASK(n) ((n) + 0x101c)
#define TSENS_TM_UPPER_LOWER_THRESHOLD(n) ((n) + 0x1020)
#define TSENS_TM_UPPER_THRESHOLD_SET(n) ((n) << 12)
#define TSENS_TM_UPPER_THRESHOLD_VALUE_SHIFT(n) ((n) >> 12)
#define TSENS_TM_LOWER_THRESHOLD_VALUE(n) ((n) & 0xfff)
#define TSENS_TM_UPPER_THRESHOLD_VALUE(n) (((n) & 0xfff000) >> 12)
#define TSENS_TM_UPPER_THRESHOLD_MASK 0xfff000
#define TSENS_TM_LOWER_THRESHOLD_MASK 0xfff
#define TSENS_TM_UPPER_THRESHOLD_SHIFT 12
#define TSENS_TM_SN_CRITICAL_THRESHOLD_MASK 0xfff
#define TSENS_TM_SN_CRITICAL_THRESHOLD(n) ((n) + 0x1060)
#define TSENS_TM_SN_STATUS(n) ((n) + 0x10a0)
#define TSENS_TM_SN_STATUS_VALID_BIT BIT(21)
#define TSENS_TM_SN_STATUS_CRITICAL_STATUS BIT(19)
#define TSENS_TM_SN_STATUS_UPPER_STATUS BIT(18)
#define TSENS_TM_SN_STATUS_LOWER_STATUS BIT(17)
#define TSENS_TM_SN_LAST_TEMP_MASK 0xfff
#define TSENS_TM_TRDY(n) ((n) + 0x10e4)
#define TSENS_TM_CODE_BIT_MASK 0xfff
#define TSENS_TM_CODE_SIGN_BIT 0x800
#define TSENS_CONTROLLER_ID(n) ((n) + 0x1000)
#define TSENS_DEBUG_CONTROL(n) ((n) + 0x1130)
#define TSENS_DEBUG_DATA(n) ((n) + 0x1134)
#define TSENS_TM_MTC_ZONE0_SW_MASK_ADDR(n) ((n) + 0x1140)
#define TSENS_TM_MTC_ZONE0_LOG(n) ((n) + 0x1150)
#define TSENS_TM_MTC_ZONE0_HISTORY(n) ((n) + 0x1160)
#define TSENS_RESET_HISTORY_MASK 0x4
#define TSENS_RESET_HISTORY_SHIFT 2
#define TSENS_PS_RED_CMD_MASK 0x3ff00000
#define TSENS_PS_YELLOW_CMD_MASK 0x000ffc00
#define TSENS_PS_COOL_CMD_MASK 0x000003ff
#define TSENS_PS_YELLOW_CMD_SHIFT 0xa
#define TSENS_PS_RED_CMD_SHIFT 0x14
/* End TSENS_TM registers for 8996 */
#define TSENS_CTRL_ADDR(n) (n)
#define TSENS_EN BIT(0)
#define TSENS_CAL_DEGC_POINT1 30
#define TSENS_CAL_DEGC_POINT2 120
#define TSENS_SLOPE_FACTOR 1000
/* TSENS register data */
#define TSENS_TRDY_RDY_MIN_TIME 2000
#define TSENS_TRDY_RDY_MAX_TIME 2100
#define TSENS_THRESHOLD_MAX_CODE 0x3ff
#define TSENS_THRESHOLD_MIN_CODE 0x0
#define TSENS_TYPE0 0
#define TSENS_TYPE2 2
#define TSENS_TYPE3 3
#define TSENS_TYPE4 4
/* debug defines */
#define TSENS_DBG_BUS_ID_0 0
#define TSENS_DBG_BUS_ID_1 1
#define TSENS_DBG_BUS_ID_2 2
#define TSENS_DBG_BUS_ID_15 15
#define TSENS_DEBUG_LOOP_COUNT_ID_0 2
#define TSENS_DEBUG_LOOP_COUNT 5
#define TSENS_DEBUG_STATUS_REG_START 10
#define TSENS_DEBUG_OFFSET_RANGE 16
#define TSENS_DEBUG_OFFSET_WORD1 0x4
#define TSENS_DEBUG_OFFSET_WORD2 0x8
#define TSENS_DEBUG_OFFSET_WORD3 0xc
#define TSENS_DEBUG_OFFSET_ROW 0x10
#define TSENS_DEBUG_DECIDEGC -950
#define TSENS_DEBUG_CYCLE_MS 64
#define TSENS_DEBUG_POLL_MS 200
#define TSENS_DEBUG_BUS_ID2_MIN_CYCLE 50
#define TSENS_DEBUG_BUS_ID2_MAX_CYCLE 51
#define TSENS_DEBUG_ID_MASK_1_4 0xffffffe1
static uint32_t tsens_sec_to_msec_value = 1000;
static uint32_t tsens_completion_timeout_hz = HZ/2;
static uint32_t tsens_poll_check = 1;
/* Trips: warm and cool */
enum tsens_trip_type {
TSENS_TRIP_WARM = 0,
TSENS_TRIP_COOL,
TSENS_TRIP_NUM,
};
enum tsens_tm_trip_type {
TSENS_TM_TRIP_WARM = 0,
TSENS_TM_TRIP_COOL,
TSENS_TM_TRIP_CRITICAL,
TSENS_TM_TRIP_NUM,
};
#define TSENS_WRITABLE_TRIPS_MASK ((1 << TSENS_TRIP_NUM) - 1)
#define TSENS_TM_WRITABLE_TRIPS_MASK ((1 << TSENS_TM_TRIP_NUM) - 1)
struct tsens_thrshld_state {
enum thermal_device_mode high_th_state;
enum thermal_device_mode low_th_state;
enum thermal_device_mode crit_th_state;
unsigned int high_adc_code;
unsigned int low_adc_code;
int high_temp;
int low_temp;
int crit_temp;
};
struct tsens_tm_device_sensor {
struct thermal_zone_device *tz_dev;
struct tsens_tm_device *tm;
enum thermal_device_mode mode;
/* Physical HW sensor number */
unsigned int sensor_hw_num;
/* Software index. This is keep track of the HW/SW
* sensor_ID mapping */
unsigned int sensor_sw_id;
unsigned int sensor_client_id;
int offset;
int calib_data_point1;
int calib_data_point2;
uint32_t slope_mul_tsens_factor;
struct tsens_thrshld_state debug_thr_state_copy;
/* dbg_adc_code logs either the raw ADC code or temperature values in
* decidegC based on the controller settings.
*/
int dbg_adc_code;
u32 wa_temp1_calib_offset_factor;
u32 wa_temp2_calib_offset_factor;
};
struct tsens_dbg_counter {
uint32_t dbg_count[10];
uint32_t idx;
unsigned long long time_stmp[10];
};
struct tsens_sensor_dbg_info {
unsigned long temp[10];
uint32_t idx;
unsigned long long time_stmp[10];
int adccode[10];
};
struct tsens_mtc_sysfs {
uint32_t zone_log;
int zone_mtc;
int th1;
int th2;
uint32_t zone_hist;
};
struct tsens_tm_device {
struct platform_device *pdev;
struct workqueue_struct *tsens_critical_wq;
struct list_head list;
bool is_ready;
bool prev_reading_avail;
bool calibration_less_mode;
bool tsens_local_init;
bool gain_offset_programmed;
bool cycle_compltn_monitor;
bool wd_bark;
int tsens_factor;
uint32_t tsens_num_sensor;
uint32_t cycle_compltn_monitor_val;
uint32_t wd_bark_val;
int tsens_irq;
int tsens_critical_irq;
void *tsens_addr;
void *tsens_calib_addr;
int tsens_len;
int calib_len;
struct resource *res_tsens_mem;
struct resource *res_calib_mem;
uint32_t tsens_type;
bool tsens_valid_status_check;
struct tsens_dbg_counter tsens_thread_iq_dbg;
struct tsens_sensor_dbg_info sensor_dbg_info[16];
int tsens_upper_irq_cnt;
int tsens_lower_irq_cnt;
int tsens_critical_irq_cnt;
int tsens_critical_wd_cnt;
struct delayed_work tsens_critical_poll_test;
struct completion tsens_rslt_completion;
struct tsens_mtc_sysfs mtcsys;
spinlock_t tsens_crit_lock;
spinlock_t tsens_upp_low_lock;
bool crit_set;
struct tsens_dbg_counter crit_timestamp_last_run;
struct tsens_dbg_counter crit_timestamp_last_interrupt_handled;
struct tsens_dbg_counter crit_timestamp_last_poll_request;
u64 qtimer_val_detection_start;
u64 qtimer_val_last_detection_interrupt;
u64 qtimer_val_last_polling_check;
bool tsens_critical_poll;
struct tsens_tm_device_sensor sensor[0];
};
LIST_HEAD(tsens_device_list);
static char dbg_buff[1024];
static struct dentry *dent;
static struct dentry *dfile_stats;
static struct of_device_id tsens_match[] = {
{ .compatible = "qcom,msm8996-tsens",
},
{ .compatible = "qcom,msmtitanium-tsens",
},
{ .compatible = "qcom,msm8998-tsens",
},
{ .compatible = "qcom,msmhamster-tsens",
},
{ .compatible = "qcom,sdm660-tsens",
},
{ .compatible = "qcom,sdm630-tsens",
},
{}
};
static struct tsens_tm_device *tsens_controller_is_present(void)
{
struct tsens_tm_device *tmdev_chip = NULL;
if (list_empty(&tsens_device_list)) {
pr_err("%s: TSENS controller not available\n", __func__);
return tmdev_chip;
}
list_for_each_entry(tmdev_chip, &tsens_device_list, list)
return tmdev_chip;
return tmdev_chip;
}
static int32_t get_tsens_sensor_for_client_id(struct tsens_tm_device *tmdev,
uint32_t sensor_client_id)
{
bool id_found = false;
uint32_t i = 0;
struct device_node *of_node = NULL;
const struct of_device_id *id;
of_node = tmdev->pdev->dev.of_node;
if (of_node == NULL) {
pr_err("Invalid of_node??\n");
return -EINVAL;
}
if (!of_match_node(tsens_match, of_node)) {
pr_err("Need to read SoC specific fuse map\n");
return -ENODEV;
}
id = of_match_node(tsens_match, of_node);
if (id == NULL) {
pr_err("can not find tsens_match of_node\n");
return -ENODEV;
}
if (!strcmp(id->compatible, "qcom,msm8996-tsens") ||
(!strcmp(id->compatible, "qcom,msm8998-tsens")) ||
(!strcmp(id->compatible, "qcom,sdm660-tsens")) ||
(!strcmp(id->compatible, "qcom,sdm630-tsens")) ||
(!strcmp(id->compatible, "qcom,msmhamster-tsens"))) {
while (i < tmdev->tsens_num_sensor && !id_found) {
if (tmdev->sensor[i].sensor_client_id ==
sensor_client_id) {
id_found = true;
return tmdev->sensor[i].sensor_hw_num;
}
i++;
}
} else
return sensor_client_id;
if (!id_found)
return -EINVAL;
return -EINVAL;
}
static struct tsens_tm_device *get_tsens_controller_for_client_id(
uint32_t sensor_client_id)
{
struct tsens_tm_device *tmdev_chip = NULL;
bool id_found = false;
uint32_t i = 0;
list_for_each_entry(tmdev_chip, &tsens_device_list, list) {
i = 0;
while (i < tmdev_chip->tsens_num_sensor && !id_found) {
if (tmdev_chip->sensor[i].sensor_client_id ==
sensor_client_id) {
id_found = true;
return tmdev_chip;
}
i++;
}
}
if (!id_found)
return NULL;
return tmdev_chip;
}
static struct tsens_tm_device *get_all_tsens_controller_sensor_count(
uint32_t *sensor_count)
{
struct tsens_tm_device *tmdev_chip = NULL;
list_for_each_entry(tmdev_chip, &tsens_device_list, list)
*sensor_count += tmdev_chip->tsens_num_sensor;
return tmdev_chip;
}
int tsens_is_ready(void)
{
struct tsens_tm_device *tmdev = NULL;
tmdev = tsens_controller_is_present();
if (!tmdev)
return -EPROBE_DEFER;
else
return tmdev->is_ready;
}
EXPORT_SYMBOL(tsens_is_ready);
static int tsens_get_sw_id_mapping_for_controller(
int sensor_hw_num,
int *sensor_sw_idx,
struct tsens_tm_device *tmdev)
{
int i = 0;
bool id_found = false;
while (i < tmdev->tsens_num_sensor && !id_found) {
if (sensor_hw_num == tmdev->sensor[i].sensor_hw_num) {
*sensor_sw_idx = tmdev->sensor[i].sensor_sw_id;
id_found = true;
}
i++;
}
if (!id_found)
return -EINVAL;
return 0;
}
int tsens_get_hw_id_mapping(int thermal_sensor_num, int *sensor_client_id)
{
struct tsens_tm_device *tmdev = NULL;
struct device_node *of_node = NULL;
const struct of_device_id *id;
uint32_t tsens_max_sensors = 0, idx = 0, i = 0;
if (list_empty(&tsens_device_list)) {
pr_err("%s: TSENS controller not available\n", __func__);
return -EPROBE_DEFER;
}
list_for_each_entry(tmdev, &tsens_device_list, list)
tsens_max_sensors += tmdev->tsens_num_sensor;
if (tsens_max_sensors != thermal_sensor_num) {
pr_err("TSENS total sensors is %d, thermal expects:%d\n",
tsens_max_sensors, thermal_sensor_num);
return -EINVAL;
}
list_for_each_entry(tmdev, &tsens_device_list, list) {
of_node = tmdev->pdev->dev.of_node;
if (of_node == NULL) {
pr_err("Invalid of_node??\n");
return -EINVAL;
}
if (!of_match_node(tsens_match, of_node)) {
pr_err("Need to read SoC specific fuse map\n");
return -ENODEV;
}
id = of_match_node(tsens_match, of_node);
if (id == NULL) {
pr_err("can not find tsens_match of_node\n");
return -ENODEV;
}
if (!strcmp(id->compatible, "qcom,msm8996-tsens") ||
(!strcmp(id->compatible, "qcom,msm8998-tsens")) ||
(!strcmp(id->compatible, "qcom,sdm660-tsens")) ||
(!strcmp(id->compatible, "qcom,sdm630-tsens")) ||
(!strcmp(id->compatible, "qcom,msmhamster-tsens"))) {
/* Assign client id's that is used to get the
* controller and hw_sensor details
*/
for (i = 0; i < tmdev->tsens_num_sensor; i++) {
sensor_client_id[idx] =
tmdev->sensor[i].sensor_client_id;
idx++;
}
} else {
/* Assign the corresponding hw sensor number
* prior to support for multiple controllres
*/
for (i = 0; i < tmdev->tsens_num_sensor; i++) {
sensor_client_id[idx] =
tmdev->sensor[i].sensor_hw_num;
idx++;
}
}
}
return 0;
}
EXPORT_SYMBOL(tsens_get_hw_id_mapping);
static ssize_t
zonemask_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct tsens_tm_device *tmdev = NULL;
tmdev = tsens_controller_is_present();
if (!tmdev) {
pr_err("No TSENS controller present\n");
return -EPROBE_DEFER;
}
return snprintf(buf, PAGE_SIZE,
"Zone =%d th1=%d th2=%d\n" , tmdev->mtcsys.zone_mtc,
tmdev->mtcsys.th1 , tmdev->mtcsys.th2);
}
static ssize_t
zonemask_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
struct tsens_tm_device *tmdev = NULL;
tmdev = tsens_controller_is_present();
if (!tmdev) {
pr_err("No TSENS controller present\n");
return -EPROBE_DEFER;
}
ret = sscanf(buf, "%d %d %d", &tmdev->mtcsys.zone_mtc ,
&tmdev->mtcsys.th1 , &tmdev->mtcsys.th2);
if (ret != TSENS_ZONEMASK_PARAMS) {
pr_err("Invalid command line arguments\n");
count = -EINVAL;
} else {
pr_debug("store zone_mtc=%d th1=%d th2=%d\n",
tmdev->mtcsys.zone_mtc,
tmdev->mtcsys.th1 , tmdev->mtcsys.th2);
ret = tsens_set_mtc_zone_sw_mask(tmdev->mtcsys.zone_mtc ,
tmdev->mtcsys.th1 , tmdev->mtcsys.th2);
if (ret < 0) {
pr_err("Invalid command line arguments\n");
count = -EINVAL;
}
}
return count;
}
static ssize_t
zonelog_show(struct device *dev, struct device_attribute *attr, char *buf)
{
int ret, zlog[TSENS_MTC_ZONE_LOG_SIZE];
struct tsens_tm_device *tmdev = NULL;
tmdev = tsens_controller_is_present();
if (!tmdev) {
pr_err("No TSENS controller present\n");
return -EPROBE_DEFER;
}
ret = tsens_get_mtc_zone_log(tmdev->mtcsys.zone_log , zlog);
if (ret < 0) {
pr_err("Invalid command line arguments\n");
return -EINVAL;
}
return snprintf(buf, PAGE_SIZE,
"Log[0]=%d\nLog[1]=%d\nLog[2]=%d\nLog[3]=%d\nLog[4]=%d\nLog[5]=%d\n",
zlog[0], zlog[1], zlog[2], zlog[3], zlog[4], zlog[5]);
}
static ssize_t
zonelog_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
struct tsens_tm_device *tmdev = NULL;
tmdev = tsens_controller_is_present();
if (!tmdev) {
pr_err("No TSENS controller present\n");
return -EPROBE_DEFER;
}
ret = kstrtou32(buf, 0, &tmdev->mtcsys.zone_log);
if (ret < 0) {
pr_err("Invalid command line arguments\n");
return -EINVAL;
}
return count;
}
static ssize_t
zonehist_show(struct device *dev, struct device_attribute *attr, char *buf)
{
int ret, zhist[TSENS_MTC_ZONE_HISTORY_SIZE];
struct tsens_tm_device *tmdev = NULL;
tmdev = tsens_controller_is_present();
if (!tmdev) {
pr_err("No TSENS controller present\n");
return -EPROBE_DEFER;
}
ret = tsens_get_mtc_zone_history(tmdev->mtcsys.zone_hist , zhist);
if (ret < 0) {
pr_err("Invalid command line arguments\n");
return -EINVAL;
}
return snprintf(buf, PAGE_SIZE,
"Cool = %d\nYellow = %d\nRed = %d\n",
zhist[0], zhist[1], zhist[2]);
}
static ssize_t
zonehist_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
struct tsens_tm_device *tmdev = NULL;
tmdev = tsens_controller_is_present();
if (!tmdev) {
pr_err("No TSENS controller present\n");
return -EPROBE_DEFER;
}
ret = kstrtou32(buf, 0, &tmdev->mtcsys.zone_hist);
if (ret < 0) {
pr_err("Invalid command line arguments\n");
return -EINVAL;
}
return count;
}
static struct device_attribute tsens_mtc_dev_attr[] = {
__ATTR(zonemask, 0644, zonemask_show, zonemask_store),
__ATTR(zonelog, 0644, zonelog_show, zonelog_store),
__ATTR(zonehist, 0644, zonehist_show, zonehist_store),
};
static int create_tsens_mtc_sysfs(struct platform_device *pdev)
{
int result = 0, i;
struct device_attribute *attr_ptr = NULL;
attr_ptr = tsens_mtc_dev_attr;
for (i = 0; i < ARRAY_SIZE(tsens_mtc_dev_attr); i++) {
result = device_create_file(&pdev->dev, &attr_ptr[i]);
if (result < 0)
goto error;
}
pr_debug("create_tsens_mtc_sysfs success\n");
return result;
error:
for (i--; i >= 0; i--)
device_remove_file(&pdev->dev, &attr_ptr[i]);
return result;
}
static int tsens_tz_code_to_degc(int adc_code, int sensor_sw_id,
struct tsens_tm_device *tmdev)
{
int degc, num, den, idx;
idx = sensor_sw_id;
num = ((adc_code * tmdev->tsens_factor) -
tmdev->sensor[idx].offset);
den = (int) tmdev->sensor[idx].slope_mul_tsens_factor;
if (num > 0)
degc = ((num + (den/2))/den);
else if (num < 0)
degc = ((num - (den/2))/den);
else
degc = num/den;
pr_debug("raw_code:0x%x, sensor_num:%d, degc:%d, offset:%d\n",
adc_code, idx, degc, tmdev->sensor[idx].offset);
return degc;
}
static int tsens_tz_degc_to_code(int degc, int idx,
struct tsens_tm_device *tmdev)
{
int code = ((degc * tmdev->sensor[idx].slope_mul_tsens_factor)
+ tmdev->sensor[idx].offset)/tmdev->tsens_factor;
if (code > TSENS_THRESHOLD_MAX_CODE)
code = TSENS_THRESHOLD_MAX_CODE;
else if (code < TSENS_THRESHOLD_MIN_CODE)
code = TSENS_THRESHOLD_MIN_CODE;
pr_debug("raw_code:0x%x, sensor_num:%d, degc:%d\n",
code, idx, degc);
return code;
}
static int msm_tsens_get_temp(int sensor_client_id, int *temp)
{
unsigned int code;
void __iomem *sensor_addr;
void __iomem *trdy_addr;
int sensor_sw_id = -EINVAL, rc = 0, last_temp = 0, last_temp2 = 0;
int last_temp3 = 0, last_temp_mask, valid_status_mask, code_mask = 0;
bool last_temp_valid = false, last_temp2_valid = false;
bool last_temp3_valid = false;
struct tsens_tm_device *tmdev = NULL;
uint32_t sensor_hw_num = 0;
tmdev = get_tsens_controller_for_client_id(sensor_client_id);
if (tmdev == NULL) {
pr_err("TSENS early init not done\n");
return -EPROBE_DEFER;
}
pr_debug("sensor_client_id:%d\n", sensor_client_id);
sensor_hw_num = get_tsens_sensor_for_client_id(tmdev, sensor_client_id);
if (sensor_hw_num < 0) {
pr_err("cannot read the temperature\n");
return sensor_hw_num;
}
pr_debug("sensor_hw_num:%d\n", sensor_hw_num);
if (tmdev->tsens_type == TSENS_TYPE2) {
trdy_addr = TSENS2_TRDY_ADDR(tmdev->tsens_addr);
sensor_addr = TSENS2_SN_STATUS_ADDR(tmdev->tsens_addr);
} else if (tmdev->tsens_type == TSENS_TYPE3) {
trdy_addr = TSENS_TM_TRDY(tmdev->tsens_addr);
sensor_addr = TSENS_TM_SN_STATUS(tmdev->tsens_addr);
} else if (tmdev->tsens_type == TSENS_TYPE4) {
trdy_addr = TSENS4_TRDY_ADDR(tmdev->tsens_addr);
sensor_addr = TSENS2_SN_STATUS_ADDR(tmdev->tsens_addr);
} else {
trdy_addr = TSENS_TRDY_ADDR(tmdev->tsens_addr);
sensor_addr = TSENS_S0_STATUS_ADDR(tmdev->tsens_addr);
}
if ((!tmdev->prev_reading_avail) && !tmdev->tsens_valid_status_check) {
while (!((readl_relaxed_no_log(trdy_addr)) & TSENS_TRDY_MASK))
usleep_range(TSENS_TRDY_RDY_MIN_TIME,
TSENS_TRDY_RDY_MAX_TIME);
tmdev->prev_reading_avail = true;
}
if (tmdev->tsens_type == TSENS_TYPE3)
last_temp_mask = TSENS_TM_SN_LAST_TEMP_MASK;
else
last_temp_mask = TSENS_SN_STATUS_TEMP_MASK;
code = readl_relaxed_no_log(sensor_addr +
(sensor_hw_num << TSENS_STATUS_ADDR_OFFSET));
last_temp = code & last_temp_mask;
if (tmdev->tsens_valid_status_check) {
if (tmdev->tsens_type == TSENS_TYPE3)
valid_status_mask = TSENS_TM_SN_STATUS_VALID_BIT;
else
valid_status_mask = TSENS2_SN_STATUS_VALID;
if (code & valid_status_mask)
last_temp_valid = true;
else {
code = readl_relaxed_no_log(sensor_addr +
(sensor_hw_num << TSENS_STATUS_ADDR_OFFSET));
last_temp2 = code & last_temp_mask;
if (code & valid_status_mask) {
last_temp = last_temp2;
last_temp2_valid = true;
} else {
code = readl_relaxed_no_log(sensor_addr +
(sensor_hw_num <<
TSENS_STATUS_ADDR_OFFSET));
last_temp3 = code & last_temp_mask;
if (code & valid_status_mask) {
last_temp = last_temp3;
last_temp3_valid = true;
}
}
}
}
if ((tmdev->tsens_valid_status_check) &&
(!last_temp_valid && !last_temp2_valid && !last_temp3_valid)) {
if (last_temp == last_temp2)
last_temp = last_temp2;
else if (last_temp2 == last_temp3)
last_temp = last_temp3;
}
if (tmdev->tsens_type != TSENS_TYPE3) {
/* Obtain SW index to map the corresponding thermal zone's
* offset and slope for code to degc conversion. */
rc = tsens_get_sw_id_mapping_for_controller(sensor_hw_num,
&sensor_sw_id, tmdev);
if (rc < 0) {
pr_err("tsens mapping index not found\n");
return rc;
}
*temp = tsens_tz_code_to_degc(last_temp, sensor_sw_id, tmdev);
} else {
if (last_temp & TSENS_TM_CODE_SIGN_BIT) {
/* Sign extension for negative value */
code_mask = ~TSENS_TM_CODE_BIT_MASK;
last_temp |= code_mask;
}
*temp = last_temp;
}
tmdev->sensor[sensor_hw_num].dbg_adc_code = last_temp;
trace_tsens_read(*temp, sensor_client_id);
return 0;
}
static int tsens_tz_get_temp(struct thermal_zone_device *thermal,
int *temp)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
struct tsens_tm_device *tmdev = NULL;
uint32_t idx = 0;
int rc = 0;
if (!tm_sensor || !temp)
return -EINVAL;
tmdev = tm_sensor->tm;
if (!tmdev)
return -EINVAL;
rc = msm_tsens_get_temp(tm_sensor->sensor_client_id, temp);
if (rc)
return rc;
idx = tmdev->sensor_dbg_info[tm_sensor->sensor_hw_num].idx;
tmdev->sensor_dbg_info[tm_sensor->sensor_hw_num].temp[idx%10] = *temp;
tmdev->sensor_dbg_info[tm_sensor->sensor_hw_num].time_stmp[idx%10] =
sched_clock();
tmdev->sensor_dbg_info[tm_sensor->sensor_hw_num].adccode[idx%10] =
tmdev->sensor[tm_sensor->sensor_hw_num].dbg_adc_code;
idx++;
tmdev->sensor_dbg_info[tm_sensor->sensor_hw_num].idx = idx;
return 0;
}
int tsens_get_temp(struct tsens_device *device, int *temp)
{
int rc = 0;
if (tsens_is_ready() <= 0) {
pr_debug("TSENS early init not done\n");
return -EPROBE_DEFER;
}
rc = msm_tsens_get_temp(device->sensor_num, temp);
if (rc)
return rc;
return 0;
}
EXPORT_SYMBOL(tsens_get_temp);
int tsens_get_max_sensor_num(uint32_t *tsens_num_sensors)
{
if (tsens_is_ready() <= 0) {
pr_debug("TSENS early init not done\n");
return -EPROBE_DEFER;
}
*tsens_num_sensors = 0;
if (get_all_tsens_controller_sensor_count(tsens_num_sensors) == NULL)
return -EINVAL;
pr_debug("%d\n", *tsens_num_sensors);
return 0;
}
EXPORT_SYMBOL(tsens_get_max_sensor_num);
static int tsens_tz_get_mode(struct thermal_zone_device *thermal,
enum thermal_device_mode *mode)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
if (!tm_sensor || !mode)
return -EINVAL;
*mode = tm_sensor->mode;
return 0;
}
static int tsens_tz_get_trip_type(struct thermal_zone_device *thermal,
int trip, enum thermal_trip_type *type)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
if (!tm_sensor || trip < 0 || !type)
return -EINVAL;
switch (trip) {
case TSENS_TRIP_WARM:
*type = THERMAL_TRIP_CONFIGURABLE_HI;
break;
case TSENS_TRIP_COOL:
*type = THERMAL_TRIP_CONFIGURABLE_LOW;
break;
default:
return -EINVAL;
}
return 0;
}
static int tsens_tm_get_trip_type(struct thermal_zone_device *thermal,
int trip, enum thermal_trip_type *type)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
if (!tm_sensor || trip < 0 || !type)
return -EINVAL;
switch (trip) {
case TSENS_TM_TRIP_WARM:
*type = THERMAL_TRIP_CONFIGURABLE_HI;
break;
case TSENS_TM_TRIP_COOL:
*type = THERMAL_TRIP_CONFIGURABLE_LOW;
break;
default:
return -EINVAL;
}
return 0;
}
static int tsens_tm_activate_trip_type(struct thermal_zone_device *thermal,
int trip, enum thermal_trip_activation_mode mode)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg_cntl, mask;
unsigned long flags;
struct tsens_tm_device *tmdev = NULL;
int rc = 0;
/* clear the interrupt and unmask */
if (!tm_sensor || trip < 0)
return -EINVAL;
tmdev = tm_sensor->tm;
if (!tmdev)
return -EINVAL;
spin_lock_irqsave(&tmdev->tsens_upp_low_lock, flags);
mask = (tm_sensor->sensor_hw_num);
switch (trip) {
case TSENS_TM_TRIP_CRITICAL:
tmdev->sensor[tm_sensor->sensor_hw_num].
debug_thr_state_copy.crit_th_state = mode;
reg_cntl = readl_relaxed(TSENS_TM_CRITICAL_INT_MASK
(tmdev->tsens_addr));
if (mode == THERMAL_TRIP_ACTIVATION_DISABLED)
writel_relaxed(reg_cntl | (1 << mask),
(TSENS_TM_CRITICAL_INT_MASK
(tmdev->tsens_addr)));
else
writel_relaxed(reg_cntl & ~(1 << mask),
(TSENS_TM_CRITICAL_INT_MASK
(tmdev->tsens_addr)));
break;
case TSENS_TM_TRIP_WARM:
tmdev->sensor[tm_sensor->sensor_hw_num].
debug_thr_state_copy.high_th_state = mode;
reg_cntl = readl_relaxed(TSENS_TM_UPPER_LOWER_INT_MASK
(tmdev->tsens_addr));
if (mode == THERMAL_TRIP_ACTIVATION_DISABLED)
writel_relaxed(reg_cntl |
(TSENS_TM_UPPER_INT_SET(mask)),
(TSENS_TM_UPPER_LOWER_INT_MASK
(tmdev->tsens_addr)));
else
writel_relaxed(reg_cntl &
~(TSENS_TM_UPPER_INT_SET(mask)),
(TSENS_TM_UPPER_LOWER_INT_MASK
(tmdev->tsens_addr)));
break;
case TSENS_TM_TRIP_COOL:
tmdev->sensor[tm_sensor->sensor_hw_num].
debug_thr_state_copy.low_th_state = mode;
reg_cntl = readl_relaxed(TSENS_TM_UPPER_LOWER_INT_MASK
(tmdev->tsens_addr));
if (mode == THERMAL_TRIP_ACTIVATION_DISABLED)
writel_relaxed(reg_cntl | (1 << mask),
(TSENS_TM_UPPER_LOWER_INT_MASK(tmdev->tsens_addr)));
else
writel_relaxed(reg_cntl & ~(1 << mask),
(TSENS_TM_UPPER_LOWER_INT_MASK(tmdev->tsens_addr)));
break;
default:
rc = -EINVAL;
}
spin_unlock_irqrestore(&tmdev->tsens_upp_low_lock, flags);
/* Activate and enable the respective trip threshold setting */
mb();
return rc;
}
static int tsens_tz_activate_trip_type(struct thermal_zone_device *thermal,
int trip, enum thermal_trip_activation_mode mode)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg_cntl, code, hi_code, lo_code, mask;
struct tsens_tm_device *tmdev = NULL;
if (!tm_sensor || trip < 0)
return -EINVAL;
tmdev = tm_sensor->tm;
if (!tmdev)
return -EINVAL;
lo_code = TSENS_THRESHOLD_MIN_CODE;
hi_code = TSENS_THRESHOLD_MAX_CODE;
reg_cntl = readl_relaxed((TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR
(tmdev->tsens_addr) +
(tm_sensor->sensor_hw_num *
TSENS_SN_ADDR_OFFSET)));
switch (trip) {
case TSENS_TRIP_WARM:
tmdev->sensor[tm_sensor->sensor_hw_num].
debug_thr_state_copy.high_th_state = mode;
code = (reg_cntl & TSENS_UPPER_THRESHOLD_MASK)
>> TSENS_UPPER_THRESHOLD_SHIFT;
mask = TSENS_UPPER_STATUS_CLR;
if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
lo_code = (reg_cntl & TSENS_LOWER_THRESHOLD_MASK);
break;
case TSENS_TRIP_COOL:
tmdev->sensor[tm_sensor->sensor_hw_num].
debug_thr_state_copy.low_th_state = mode;
code = (reg_cntl & TSENS_LOWER_THRESHOLD_MASK);
mask = TSENS_LOWER_STATUS_CLR;
if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
hi_code = (reg_cntl & TSENS_UPPER_THRESHOLD_MASK)
>> TSENS_UPPER_THRESHOLD_SHIFT;
break;
default:
return -EINVAL;
}
if (mode == THERMAL_TRIP_ACTIVATION_DISABLED)
writel_relaxed(reg_cntl | mask,
(TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR(tmdev->tsens_addr) +
(tm_sensor->sensor_hw_num * TSENS_SN_ADDR_OFFSET)));
else
writel_relaxed(reg_cntl & ~mask,
(TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR(tmdev->tsens_addr) +
(tm_sensor->sensor_hw_num * TSENS_SN_ADDR_OFFSET)));
/* Enable the thresholds */
mb();
return 0;
}
static int tsens_tm_get_trip_temp(struct thermal_zone_device *thermal,
int trip, int *temp)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
int reg_cntl, code_mask;
struct tsens_tm_device *tmdev = NULL;
if (!tm_sensor || trip < 0 || !temp)
return -EINVAL;
tmdev = tm_sensor->tm;
if (!tmdev)
return -EINVAL;
switch (trip) {
case TSENS_TM_TRIP_CRITICAL:
reg_cntl = readl_relaxed((TSENS_TM_SN_CRITICAL_THRESHOLD
(tmdev->tsens_addr)) +
(tm_sensor->sensor_hw_num *
TSENS_SN_ADDR_OFFSET));
if (reg_cntl & TSENS_TM_CODE_SIGN_BIT) {
/* Sign extension for negative value */
code_mask = ~TSENS_TM_CODE_BIT_MASK;
reg_cntl |= code_mask;
}
break;
case TSENS_TM_TRIP_WARM:
reg_cntl = readl_relaxed((TSENS_TM_UPPER_LOWER_THRESHOLD
(tmdev->tsens_addr)) +
(tm_sensor->sensor_hw_num *
TSENS_SN_ADDR_OFFSET));
reg_cntl = TSENS_TM_UPPER_THRESHOLD_VALUE(reg_cntl);
if (reg_cntl & TSENS_TM_CODE_SIGN_BIT) {
/* Sign extension for negative value */
code_mask = ~TSENS_TM_CODE_BIT_MASK;
reg_cntl |= code_mask;
}
break;
case TSENS_TM_TRIP_COOL:
reg_cntl = readl_relaxed((TSENS_TM_UPPER_LOWER_THRESHOLD
(tmdev->tsens_addr)) +
(tm_sensor->sensor_hw_num *
TSENS_SN_ADDR_OFFSET));
reg_cntl = TSENS_TM_LOWER_THRESHOLD_VALUE(reg_cntl);
if (reg_cntl & TSENS_TM_CODE_SIGN_BIT) {
/* Sign extension for negative value */
code_mask = ~TSENS_TM_CODE_BIT_MASK;
reg_cntl |= code_mask;
}
break;
default:
return -EINVAL;
}
*temp = reg_cntl;
return 0;
}
static int tsens_tz_get_trip_temp(struct thermal_zone_device *thermal,
int trip, int *temp)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg;
int sensor_sw_id = -EINVAL, rc = 0;
struct tsens_tm_device *tmdev = NULL;
if (!tm_sensor || trip < 0 || !temp)
return -EINVAL;
tmdev = tm_sensor->tm;
if (!tmdev)
return -EINVAL;
reg = readl_relaxed(TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR
(tmdev->tsens_addr) +
(tm_sensor->sensor_hw_num * TSENS_SN_ADDR_OFFSET));
switch (trip) {
case TSENS_TRIP_WARM:
reg = (reg & TSENS_UPPER_THRESHOLD_MASK) >>
TSENS_UPPER_THRESHOLD_SHIFT;
break;
case TSENS_TRIP_COOL:
reg = (reg & TSENS_LOWER_THRESHOLD_MASK);
break;
default:
return -EINVAL;
}
rc = tsens_get_sw_id_mapping_for_controller(tm_sensor->sensor_hw_num,
&sensor_sw_id, tmdev);
if (rc < 0) {
pr_err("tsens mapping index not found\n");
return rc;
}
*temp = tsens_tz_code_to_degc(reg, sensor_sw_id, tmdev);
return 0;
}
static int tsens_tz_notify(struct thermal_zone_device *thermal,
int count, enum thermal_trip_type type)
{
/* Critical temperature threshold are enabled and will
* shutdown the device once critical thresholds are crossed. */
pr_debug("%s debug\n", __func__);
return 1;
}
static int tsens_tm_set_trip_temp(struct thermal_zone_device *thermal,
int trip, int temp)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg_cntl;
unsigned long flags;
struct tsens_tm_device *tmdev = NULL;
int rc = 0;
if (!tm_sensor || trip < 0)
return -EINVAL;
tmdev = tm_sensor->tm;
if (!tmdev)
return -EINVAL;
spin_lock_irqsave(&tmdev->tsens_upp_low_lock, flags);
switch (trip) {
case TSENS_TM_TRIP_CRITICAL:
tmdev->sensor[tm_sensor->sensor_hw_num].
debug_thr_state_copy.crit_temp = temp;
temp &= TSENS_TM_SN_CRITICAL_THRESHOLD_MASK;
writel_relaxed(temp,
(TSENS_TM_SN_CRITICAL_THRESHOLD(tmdev->tsens_addr) +
(tm_sensor->sensor_hw_num * TSENS_SN_ADDR_OFFSET)));
break;
case TSENS_TM_TRIP_WARM:
tmdev->sensor[tm_sensor->sensor_hw_num].
debug_thr_state_copy.high_temp = temp;
reg_cntl = readl_relaxed((TSENS_TM_UPPER_LOWER_THRESHOLD
(tmdev->tsens_addr)) +
(tm_sensor->sensor_hw_num *
TSENS_SN_ADDR_OFFSET));
temp = TSENS_TM_UPPER_THRESHOLD_SET(temp);
temp &= TSENS_TM_UPPER_THRESHOLD_MASK;
reg_cntl &= ~TSENS_TM_UPPER_THRESHOLD_MASK;
writel_relaxed(reg_cntl | temp,
(TSENS_TM_UPPER_LOWER_THRESHOLD(tmdev->tsens_addr) +
(tm_sensor->sensor_hw_num * TSENS_SN_ADDR_OFFSET)));
break;
case TSENS_TM_TRIP_COOL:
tmdev->sensor[tm_sensor->sensor_hw_num].
debug_thr_state_copy.low_temp = temp;
reg_cntl = readl_relaxed((TSENS_TM_UPPER_LOWER_THRESHOLD
(tmdev->tsens_addr)) +
(tm_sensor->sensor_hw_num *
TSENS_SN_ADDR_OFFSET));
temp &= TSENS_TM_LOWER_THRESHOLD_MASK;
reg_cntl &= ~TSENS_TM_LOWER_THRESHOLD_MASK;
writel_relaxed(reg_cntl | temp,
(TSENS_TM_UPPER_LOWER_THRESHOLD(tmdev->tsens_addr) +
(tm_sensor->sensor_hw_num * TSENS_SN_ADDR_OFFSET)));
break;
default:
rc = -EINVAL;
}
spin_unlock_irqrestore(&tmdev->tsens_upp_low_lock, flags);
/* Set trip temperature thresholds */
mb();
return rc;
}
static int tsens_tz_set_trip_temp(struct thermal_zone_device *thermal,
int trip, int temp)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg_cntl;
int code, hi_code, lo_code, code_err_chk, sensor_sw_id = 0, rc = 0;
struct tsens_tm_device *tmdev = NULL;
if (!tm_sensor || trip < 0)
return -EINVAL;
tmdev = tm_sensor->tm;
if (!tmdev)
return -EINVAL;
rc = tsens_get_sw_id_mapping_for_controller(tm_sensor->sensor_hw_num,
&sensor_sw_id, tmdev);
if (rc < 0) {
pr_err("tsens mapping index not found\n");
return rc;
}
code_err_chk = code = tsens_tz_degc_to_code(temp, sensor_sw_id, tmdev);
if (!tm_sensor || trip < 0)
return -EINVAL;
lo_code = TSENS_THRESHOLD_MIN_CODE;
hi_code = TSENS_THRESHOLD_MAX_CODE;
reg_cntl = readl_relaxed(TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR
(tmdev->tsens_addr) + (tm_sensor->sensor_hw_num *
TSENS_SN_ADDR_OFFSET));
switch (trip) {
case TSENS_TRIP_WARM:
tmdev->sensor[tm_sensor->sensor_hw_num].
debug_thr_state_copy.high_adc_code = code;
tmdev->sensor[tm_sensor->sensor_hw_num].
debug_thr_state_copy.high_temp = temp;
code <<= TSENS_UPPER_THRESHOLD_SHIFT;
reg_cntl &= ~TSENS_UPPER_THRESHOLD_MASK;
if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
lo_code = (reg_cntl & TSENS_LOWER_THRESHOLD_MASK);
break;
case TSENS_TRIP_COOL:
tmdev->sensor[tm_sensor->sensor_hw_num].
debug_thr_state_copy.low_adc_code = code;
tmdev->sensor[tm_sensor->sensor_hw_num].
debug_thr_state_copy.low_temp = temp;
reg_cntl &= ~TSENS_LOWER_THRESHOLD_MASK;
if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
hi_code = (reg_cntl & TSENS_UPPER_THRESHOLD_MASK)
>> TSENS_UPPER_THRESHOLD_SHIFT;
break;
default:
return -EINVAL;
}
writel_relaxed(reg_cntl | code, (TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR
(tmdev->tsens_addr) +
(tm_sensor->sensor_hw_num *
TSENS_SN_ADDR_OFFSET)));
/* Activate the set trip temperature thresholds */
mb();
return 0;
}
static void tsens_poll(struct work_struct *work)
{
struct tsens_tm_device *tmdev = container_of(work,
struct tsens_tm_device, tsens_critical_poll_test.work);
unsigned int reg_cntl, mask, rc = 0, debug_dump, i = 0, loop = 0;
unsigned int debug_id = 0, cntrl_id = 0;
uint32_t r1, r2, r3, r4, offset = 0, idx = 0;
unsigned long temp, flags;
unsigned int status, int_mask, int_mask_val;
void __iomem *srot_addr;
void __iomem *controller_id_addr;
void __iomem *debug_id_addr;
void __iomem *debug_data_addr;
void __iomem *sensor_status_addr;
void __iomem *sensor_int_mask_addr;
void __iomem *sensor_critical_addr;
/* Set the Critical temperature threshold to a value of 10 that should
* guarantee a threshold to trigger. Check the interrupt count if
* it did. Schedule the next round of the above test again after
* 3 seconds.
*/
controller_id_addr = TSENS_CONTROLLER_ID(tmdev->tsens_addr);
debug_id_addr = TSENS_DEBUG_CONTROL(tmdev->tsens_addr);
debug_data_addr = TSENS_DEBUG_DATA(tmdev->tsens_addr);
srot_addr = TSENS_CTRL_ADDR(tmdev->tsens_addr);
temp = TSENS_DEBUG_DECIDEGC;
/* Sensor 0 on either of the controllers */
mask = 0;
reinit_completion(&tmdev->tsens_rslt_completion);
temp &= TSENS_TM_SN_CRITICAL_THRESHOLD_MASK;
writel_relaxed(temp,
(TSENS_TM_SN_CRITICAL_THRESHOLD(tmdev->tsens_addr) +
(mask * TSENS_SN_ADDR_OFFSET)));
/* debug */
idx = tmdev->crit_timestamp_last_run.idx;
tmdev->crit_timestamp_last_run.time_stmp[idx%10] = sched_clock();
tmdev->crit_timestamp_last_run.idx++;
tmdev->qtimer_val_detection_start = arch_counter_get_cntvct();
spin_lock_irqsave(&tmdev->tsens_crit_lock, flags);
/* Clear the sensor0 critical status */
int_mask_val = 1;
writel_relaxed(int_mask_val,
TSENS_TM_CRITICAL_INT_CLEAR(tmdev->tsens_addr));
writel_relaxed(0,
TSENS_TM_CRITICAL_INT_CLEAR(
tmdev->tsens_addr));
/* Clear the status */
mb();
tmdev->crit_set = true;
if (!tmdev->tsens_critical_poll) {
reg_cntl = readl_relaxed(
TSENS_TM_CRITICAL_INT_MASK(tmdev->tsens_addr));
writel_relaxed(reg_cntl & ~(1 << mask),
(TSENS_TM_CRITICAL_INT_MASK
(tmdev->tsens_addr)));
/* Enable the critical int mask */
mb();
}
spin_unlock_irqrestore(&tmdev->tsens_crit_lock, flags);
if (tmdev->tsens_critical_poll) {
msleep(TSENS_DEBUG_POLL_MS);
sensor_status_addr = TSENS_TM_SN_STATUS(tmdev->tsens_addr);
spin_lock_irqsave(&tmdev->tsens_crit_lock, flags);
status = readl_relaxed(sensor_status_addr);
spin_unlock_irqrestore(&tmdev->tsens_crit_lock, flags);
if (status & TSENS_TM_SN_STATUS_CRITICAL_STATUS)
goto re_schedule;
else {
pr_err("status:0x%x\n", status);
goto debug_start;
}
}
rc = wait_for_completion_timeout(
&tmdev->tsens_rslt_completion,
tsens_completion_timeout_hz);
if (!rc) {
pr_debug("Switch to polling, TSENS critical interrupt failed\n");
sensor_status_addr = TSENS_TM_SN_STATUS(tmdev->tsens_addr);
sensor_int_mask_addr =
TSENS_TM_CRITICAL_INT_MASK(tmdev->tsens_addr);
sensor_critical_addr =
TSENS_TM_SN_CRITICAL_THRESHOLD(tmdev->tsens_addr);
spin_lock_irqsave(&tmdev->tsens_crit_lock, flags);
if (!tmdev->crit_set) {
pr_debug("Ignore this check cycle\n");
spin_unlock_irqrestore(&tmdev->tsens_crit_lock, flags);
goto re_schedule;
}
status = readl_relaxed(sensor_status_addr);
int_mask = readl_relaxed(sensor_int_mask_addr);
tmdev->crit_set = false;
spin_unlock_irqrestore(&tmdev->tsens_crit_lock, flags);
idx = tmdev->crit_timestamp_last_poll_request.idx;
tmdev->crit_timestamp_last_poll_request.time_stmp[idx%10] =
sched_clock();
tmdev->crit_timestamp_last_poll_request.idx++;
tmdev->qtimer_val_last_polling_check =
arch_counter_get_cntvct();
if (status & TSENS_TM_SN_STATUS_CRITICAL_STATUS) {
spin_lock_irqsave(&tmdev->tsens_crit_lock, flags);
int_mask = readl_relaxed(sensor_int_mask_addr);
int_mask_val = 1;
/* Mask the corresponding interrupt for the sensors */
writel_relaxed(int_mask | int_mask_val,
TSENS_TM_CRITICAL_INT_MASK(
tmdev->tsens_addr));
/* Clear the corresponding sensors interrupt */
writel_relaxed(int_mask_val,
TSENS_TM_CRITICAL_INT_CLEAR(tmdev->tsens_addr));
writel_relaxed(0,
TSENS_TM_CRITICAL_INT_CLEAR(
tmdev->tsens_addr));
spin_unlock_irqrestore(&tmdev->tsens_crit_lock, flags);
/* Clear critical status */
mb();
goto re_schedule;
}
debug_start:
cntrl_id = readl_relaxed(controller_id_addr);
pr_err("Controller_id: 0x%x\n", cntrl_id);
loop = 0;
i = 0;
debug_id = readl_relaxed(debug_id_addr);
writel_relaxed((debug_id | (i << 1) | 1),
TSENS_DEBUG_CONTROL(tmdev->tsens_addr));
while (loop < TSENS_DEBUG_LOOP_COUNT_ID_0) {
debug_dump = readl_relaxed(debug_data_addr);
r1 = readl_relaxed(debug_data_addr);
r2 = readl_relaxed(debug_data_addr);
r3 = readl_relaxed(debug_data_addr);
r4 = readl_relaxed(debug_data_addr);
pr_err("cntrl:%d, bus-id:%d value:0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
cntrl_id, i, debug_dump, r1, r2, r3, r4);
loop++;
}
for (i = TSENS_DBG_BUS_ID_1; i <= TSENS_DBG_BUS_ID_15; i++) {
loop = 0;
debug_id = readl_relaxed(debug_id_addr);
debug_id = debug_id & TSENS_DEBUG_ID_MASK_1_4;
writel_relaxed((debug_id | (i << 1) | 1),
TSENS_DEBUG_CONTROL(tmdev->tsens_addr));
while (loop < TSENS_DEBUG_LOOP_COUNT) {
debug_dump = readl_relaxed(debug_data_addr);
pr_err("cntrl:%d, bus-id:%d with value: 0x%x\n",
cntrl_id, i, debug_dump);
if (i == TSENS_DBG_BUS_ID_2)
usleep_range(
TSENS_DEBUG_BUS_ID2_MIN_CYCLE,
TSENS_DEBUG_BUS_ID2_MAX_CYCLE);
loop++;
}
}
pr_err("Start of TSENS TM dump\n");
for (i = 0; i < TSENS_DEBUG_OFFSET_RANGE; i++) {
r1 = readl_relaxed(controller_id_addr + offset);
r2 = readl_relaxed(controller_id_addr + (offset +
TSENS_DEBUG_OFFSET_WORD1));
r3 = readl_relaxed(controller_id_addr + (offset +
TSENS_DEBUG_OFFSET_WORD2));
r4 = readl_relaxed(controller_id_addr + (offset +
TSENS_DEBUG_OFFSET_WORD3));
pr_err("ctrl:%d:0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
cntrl_id, offset, r1, r2, r3, r4);
offset += TSENS_DEBUG_OFFSET_ROW;
}
offset = 0;
pr_err("Start of TSENS SROT dump\n");
for (i = 0; i < TSENS_DEBUG_OFFSET_RANGE; i++) {
r1 = readl_relaxed(srot_addr + offset);
r2 = readl_relaxed(srot_addr + (offset +
TSENS_DEBUG_OFFSET_WORD1));
r3 = readl_relaxed(srot_addr + (offset +
TSENS_DEBUG_OFFSET_WORD2));
r4 = readl_relaxed(srot_addr + (offset +
TSENS_DEBUG_OFFSET_WORD3));
pr_err("ctrl:%d:0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
cntrl_id, offset, r1, r2, r3, r4);
offset += TSENS_DEBUG_OFFSET_ROW;
}
loop = 0;
while (loop < TSENS_DEBUG_LOOP_COUNT) {
offset = TSENS_DEBUG_OFFSET_ROW *
TSENS_DEBUG_STATUS_REG_START;
pr_err("Start of TSENS TM dump %d\n", loop);
/* Limited dump of the registers for the temperature */
for (i = 0; i < TSENS_DEBUG_LOOP_COUNT; i++) {
r1 = readl_relaxed(controller_id_addr + offset);
r2 = readl_relaxed(controller_id_addr +
(offset + TSENS_DEBUG_OFFSET_WORD1));
r3 = readl_relaxed(controller_id_addr +
(offset + TSENS_DEBUG_OFFSET_WORD2));
r4 = readl_relaxed(controller_id_addr +
(offset + TSENS_DEBUG_OFFSET_WORD3));
pr_err("ctrl:%d:0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
cntrl_id, offset, r1, r2, r3, r4);
offset += TSENS_DEBUG_OFFSET_ROW;
}
loop++;
msleep(TSENS_DEBUG_CYCLE_MS);
}
BUG();
}
re_schedule:
schedule_delayed_work(&tmdev->tsens_critical_poll_test,
msecs_to_jiffies(tsens_sec_to_msec_value));
}
int tsens_mtc_reset_history_counter(unsigned int zone)
{
unsigned int reg_cntl, is_valid;
void __iomem *sensor_addr;
struct tsens_tm_device *tmdev = NULL;
if (zone > TSENS_NUM_MTC_ZONES_SUPPORT)
return -EINVAL;
tmdev = tsens_controller_is_present();
if (!tmdev) {
pr_err("No TSENS controller present\n");
return -EPROBE_DEFER;
}
sensor_addr = TSENS_TM_MTC_ZONE0_SW_MASK_ADDR(tmdev->tsens_addr);
reg_cntl = readl_relaxed((sensor_addr +
(zone * TSENS_SN_ADDR_OFFSET)));
is_valid = (reg_cntl & TSENS_RESET_HISTORY_MASK)
>> TSENS_RESET_HISTORY_SHIFT;
if (!is_valid) {
/*Enable the bit to reset counter*/
writel_relaxed(reg_cntl | (1 << TSENS_RESET_HISTORY_SHIFT),
(sensor_addr + (zone * TSENS_SN_ADDR_OFFSET)));
reg_cntl = readl_relaxed((sensor_addr +
(zone * TSENS_SN_ADDR_OFFSET)));
pr_debug("tsens : zone =%d reg=%x\n", zone , reg_cntl);
}
/*Disble the bit to start counter*/
writel_relaxed(reg_cntl & ~(1 << TSENS_RESET_HISTORY_SHIFT),
(sensor_addr + (zone * TSENS_SN_ADDR_OFFSET)));
reg_cntl = readl_relaxed((sensor_addr +
(zone * TSENS_SN_ADDR_OFFSET)));
pr_debug("tsens : zone =%d reg=%x\n", zone , reg_cntl);
return 0;
}
EXPORT_SYMBOL(tsens_mtc_reset_history_counter);
int tsens_set_mtc_zone_sw_mask(unsigned int zone , unsigned int th1_enable,
unsigned int th2_enable)
{
unsigned int reg_cntl;
void __iomem *sensor_addr;
struct tsens_tm_device *tmdev = NULL;
if (zone > TSENS_NUM_MTC_ZONES_SUPPORT)
return -EINVAL;
tmdev = tsens_controller_is_present();
if (!tmdev) {
pr_err("No TSENS controller present\n");
return -EPROBE_DEFER;
}
if (tmdev->tsens_type == TSENS_TYPE3)
sensor_addr = TSENS_TM_MTC_ZONE0_SW_MASK_ADDR
(tmdev->tsens_addr);
else
sensor_addr = TSENS_MTC_ZONE0_SW_MASK_ADDR
(tmdev->tsens_addr);
if (th1_enable && th2_enable)
writel_relaxed(TSENS_MTC_IN_EFFECT,
(sensor_addr +
(zone * TSENS_SN_ADDR_OFFSET)));
if (!th1_enable && !th2_enable)
writel_relaxed(TSENS_MTC_DISABLE,
(sensor_addr +
(zone * TSENS_SN_ADDR_OFFSET)));
if (th1_enable && !th2_enable)
writel_relaxed(TSENS_TH1_MTC_IN_EFFECT,
(sensor_addr +
(zone * TSENS_SN_ADDR_OFFSET)));
if (!th1_enable && th2_enable)
writel_relaxed(TSENS_TH2_MTC_IN_EFFECT,
(sensor_addr +
(zone * TSENS_SN_ADDR_OFFSET)));
reg_cntl = readl_relaxed((sensor_addr +
(zone * TSENS_SN_ADDR_OFFSET)));
pr_debug("tsens : zone =%d th1=%d th2=%d reg=%x\n",
zone , th1_enable , th2_enable , reg_cntl);
return 0;
}
EXPORT_SYMBOL(tsens_set_mtc_zone_sw_mask);
int tsens_get_mtc_zone_log(unsigned int zone , void *zone_log)
{
unsigned int i , reg_cntl , is_valid , log[TSENS_MTC_ZONE_LOG_SIZE];
int *zlog = (int *)zone_log;
void __iomem *sensor_addr;
struct tsens_tm_device *tmdev = NULL;
if (zone > TSENS_NUM_MTC_ZONES_SUPPORT)
return -EINVAL;
tmdev = tsens_controller_is_present();
if (!tmdev) {
pr_err("No TSENS controller present\n");
return -EPROBE_DEFER;
}
if (tmdev->tsens_type == TSENS_TYPE3)
sensor_addr = TSENS_TM_MTC_ZONE0_LOG(tmdev->tsens_addr);
else
sensor_addr = TSENS_MTC_ZONE0_LOG(tmdev->tsens_addr);
reg_cntl = readl_relaxed((sensor_addr +
(zone * TSENS_SN_ADDR_OFFSET)));
is_valid = (reg_cntl & TSENS_LOGS_VALID_MASK)
>> TSENS_LOGS_VALID_SHIFT;
if (is_valid) {
log[0] = (reg_cntl & TSENS_LOGS_LATEST_MASK);
log[1] = (reg_cntl & TSENS_LOGS_LOG1_MASK)
>> TSENS_LOGS_LOG1_SHIFT;
log[2] = (reg_cntl & TSENS_LOGS_LOG2_MASK)
>> TSENS_LOGS_LOG2_SHIFT;
log[3] = (reg_cntl & TSENS_LOGS_LOG3_MASK)
>> TSENS_LOGS_LOG3_SHIFT;
log[4] = (reg_cntl & TSENS_LOGS_LOG4_MASK)
>> TSENS_LOGS_LOG4_SHIFT;
log[5] = (reg_cntl & TSENS_LOGS_LOG5_MASK)
>> TSENS_LOGS_LOG5_SHIFT;
for (i = 0; i < (TSENS_MTC_ZONE_LOG_SIZE); i++) {
*(zlog+i) = log[i];
pr_debug("Log[%d]=%d\n", i , log[i]);
}
} else {
pr_debug("tsens: Valid bit disabled\n");
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(tsens_get_mtc_zone_log);
int tsens_get_mtc_zone_history(unsigned int zone , void *zone_hist)
{
unsigned int i, reg_cntl, hist[TSENS_MTC_ZONE_HISTORY_SIZE];
int *zhist = (int *)zone_hist;
void __iomem *sensor_addr;
struct tsens_tm_device *tmdev = NULL;
if (zone > TSENS_NUM_MTC_ZONES_SUPPORT)
return -EINVAL;
tmdev = tsens_controller_is_present();
if (!tmdev) {
pr_err("No TSENS controller present\n");
return -EPROBE_DEFER;
}
sensor_addr = TSENS_TM_MTC_ZONE0_HISTORY(tmdev->tsens_addr);
reg_cntl = readl_relaxed((sensor_addr +
(zone * TSENS_SN_ADDR_OFFSET)));
hist[0] = (reg_cntl & TSENS_PS_COOL_CMD_MASK);
hist[1] = (reg_cntl & TSENS_PS_YELLOW_CMD_MASK)
>> TSENS_PS_YELLOW_CMD_SHIFT;
hist[2] = (reg_cntl & TSENS_PS_RED_CMD_MASK)
>> TSENS_PS_RED_CMD_SHIFT;
for (i = 0; i < (TSENS_MTC_ZONE_HISTORY_SIZE); i++) {
*(zhist+i) = hist[i];
pr_debug("tsens : %d\n", hist[i]);
}
return 0;
}
EXPORT_SYMBOL(tsens_get_mtc_zone_history);
static struct thermal_zone_device_ops tsens_thermal_zone_ops = {
.get_temp = tsens_tz_get_temp,
.get_mode = tsens_tz_get_mode,
.get_trip_type = tsens_tz_get_trip_type,
.activate_trip_type = tsens_tz_activate_trip_type,
.get_trip_temp = tsens_tz_get_trip_temp,
.set_trip_temp = tsens_tz_set_trip_temp,
.notify = tsens_tz_notify,
};
/* Thermal zone ops for decidegC */
static struct thermal_zone_device_ops tsens_tm_thermal_zone_ops = {
.get_temp = tsens_tz_get_temp,
.get_trip_type = tsens_tm_get_trip_type,
.activate_trip_type = tsens_tm_activate_trip_type,
.get_trip_temp = tsens_tm_get_trip_temp,
.set_trip_temp = tsens_tm_set_trip_temp,
.notify = tsens_tz_notify,
};
static irqreturn_t tsens_tm_critical_irq_thread(int irq, void *data)
{
struct tsens_tm_device *tm = data;
unsigned int i, status, idx = 0;
unsigned long flags;
void __iomem *sensor_status_addr;
void __iomem *sensor_int_mask_addr;
void __iomem *sensor_critical_addr;
void __iomem *wd_critical_addr;
int sensor_sw_id = -EINVAL, rc = 0;
int wd_mask;
tm->crit_set = false;
sensor_status_addr = TSENS_TM_SN_STATUS(tm->tsens_addr);
sensor_int_mask_addr =
TSENS_TM_CRITICAL_INT_MASK(tm->tsens_addr);
sensor_critical_addr =
TSENS_TM_SN_CRITICAL_THRESHOLD(tm->tsens_addr);
wd_critical_addr =
TSENS_TM_CRITICAL_INT_STATUS(tm->tsens_addr);
if (tm->wd_bark) {
wd_mask = readl_relaxed(wd_critical_addr);
/*
* Check whether the reason for critical interrupt is
* because of watchdog
*/
if (wd_mask & TSENS_TM_CRITICAL_WD_BARK) {
/*
* Clear watchdog interrupt and
* increment global wd count
*/
writel_relaxed(wd_mask | TSENS_TM_CRITICAL_WD_BARK,
(TSENS_TM_CRITICAL_INT_CLEAR
(tm->tsens_addr)));
writel_relaxed(wd_mask & ~(TSENS_TM_CRITICAL_WD_BARK),
(TSENS_TM_CRITICAL_INT_CLEAR
(tm->tsens_addr)));
tm->tsens_critical_wd_cnt++;
return IRQ_HANDLED;
}
}
for (i = 0; i < tm->tsens_num_sensor; i++) {
bool critical_thr = false;
int int_mask, int_mask_val;
uint32_t addr_offset;
spin_lock_irqsave(&tm->tsens_crit_lock, flags);
addr_offset = tm->sensor[i].sensor_hw_num *
TSENS_SN_ADDR_OFFSET;
status = readl_relaxed(sensor_status_addr + addr_offset);
int_mask = readl_relaxed(sensor_int_mask_addr);
if ((status & TSENS_TM_SN_STATUS_CRITICAL_STATUS) &&
!(int_mask & (1 << tm->sensor[i].sensor_hw_num))) {
int_mask = readl_relaxed(sensor_int_mask_addr);
int_mask_val = (1 << tm->sensor[i].sensor_hw_num);
/* Mask the corresponding interrupt for the sensors */
writel_relaxed(int_mask | int_mask_val,
TSENS_TM_CRITICAL_INT_MASK(
tm->tsens_addr));
/* Clear the corresponding sensors interrupt */
writel_relaxed(int_mask_val,
TSENS_TM_CRITICAL_INT_CLEAR(tm->tsens_addr));
writel_relaxed(0,
TSENS_TM_CRITICAL_INT_CLEAR(
tm->tsens_addr));
critical_thr = true;
tm->sensor[i].debug_thr_state_copy.
crit_th_state = THERMAL_DEVICE_DISABLED;
}
spin_unlock_irqrestore(&tm->tsens_crit_lock, flags);
if (critical_thr) {
int temp;
tsens_tz_get_temp(tm->sensor[i].tz_dev, &temp);
rc = tsens_get_sw_id_mapping_for_controller(
tm->sensor[i].sensor_hw_num,
&sensor_sw_id, tm);
if (rc < 0)
pr_err("tsens mapping index not found\n");
pr_debug("sensor:%d trigger temp (%d degC) with count:%d\n",
tm->sensor[i].sensor_hw_num,
(status & TSENS_TM_SN_LAST_TEMP_MASK),
tm->tsens_critical_irq_cnt);
tm->tsens_critical_irq_cnt++;
}
}
idx = tm->crit_timestamp_last_interrupt_handled.idx;
tm->crit_timestamp_last_interrupt_handled.dbg_count[idx%10]++;
tm->crit_timestamp_last_interrupt_handled.time_stmp[idx%10] =
sched_clock();
tm->qtimer_val_last_detection_interrupt = arch_counter_get_cntvct();
if (tsens_poll_check)
complete(&tm->tsens_rslt_completion);
/* Mask critical interrupt */
mb();
return IRQ_HANDLED;
}
static irqreturn_t tsens_tm_irq_thread(int irq, void *data)
{
struct tsens_tm_device *tm = data;
unsigned int i, status, threshold;
unsigned long flags;
void __iomem *sensor_status_addr;
void __iomem *sensor_int_mask_addr;
void __iomem *sensor_upper_lower_addr;
int sensor_sw_id = -EINVAL, rc = 0;
uint32_t addr_offset;
sensor_status_addr = TSENS_TM_SN_STATUS(tm->tsens_addr);
sensor_int_mask_addr =
TSENS_TM_UPPER_LOWER_INT_MASK(tm->tsens_addr);
sensor_upper_lower_addr =
TSENS_TM_UPPER_LOWER_THRESHOLD(tm->tsens_addr);
for (i = 0; i < tm->tsens_num_sensor; i++) {
bool upper_thr = false, lower_thr = false;
int int_mask, int_mask_val = 0;
spin_lock_irqsave(&tm->tsens_upp_low_lock, flags);
addr_offset = tm->sensor[i].sensor_hw_num *
TSENS_SN_ADDR_OFFSET;
status = readl_relaxed(sensor_status_addr + addr_offset);
threshold = readl_relaxed(sensor_upper_lower_addr +
addr_offset);
int_mask = readl_relaxed(sensor_int_mask_addr);
if ((status & TSENS_TM_SN_STATUS_UPPER_STATUS) &&
!(int_mask &
(1 << (tm->sensor[i].sensor_hw_num + 16)))) {
int_mask = readl_relaxed(sensor_int_mask_addr);
int_mask_val = TSENS_TM_UPPER_INT_SET(
tm->sensor[i].sensor_hw_num);
/* Mask the corresponding interrupt for the sensors */
writel_relaxed(int_mask | int_mask_val,
TSENS_TM_UPPER_LOWER_INT_MASK(
tm->tsens_addr));
/* Clear the corresponding sensors interrupt */
writel_relaxed(int_mask_val,
TSENS_TM_UPPER_LOWER_INT_CLEAR(
tm->tsens_addr));
writel_relaxed(0,
TSENS_TM_UPPER_LOWER_INT_CLEAR(
tm->tsens_addr));
upper_thr = true;
tm->sensor[i].debug_thr_state_copy.
high_th_state = THERMAL_DEVICE_DISABLED;
}
if ((status & TSENS_TM_SN_STATUS_LOWER_STATUS) &&
!(int_mask &
(1 << tm->sensor[i].sensor_hw_num))) {
int_mask = readl_relaxed(sensor_int_mask_addr);
int_mask_val = (1 << tm->sensor[i].sensor_hw_num);
/* Mask the corresponding interrupt for the sensors */
writel_relaxed(int_mask | int_mask_val,
TSENS_TM_UPPER_LOWER_INT_MASK(
tm->tsens_addr));
/* Clear the corresponding sensors interrupt */
writel_relaxed(int_mask_val,
TSENS_TM_UPPER_LOWER_INT_CLEAR(
tm->tsens_addr));
writel_relaxed(0,
TSENS_TM_UPPER_LOWER_INT_CLEAR(
tm->tsens_addr));
lower_thr = true;
tm->sensor[i].debug_thr_state_copy.
low_th_state = THERMAL_DEVICE_DISABLED;
}
spin_unlock_irqrestore(&tm->tsens_upp_low_lock, flags);
if (upper_thr || lower_thr) {
int temp;
enum thermal_trip_type trip =
THERMAL_TRIP_CONFIGURABLE_LOW;
if (upper_thr)
trip = THERMAL_TRIP_CONFIGURABLE_HI;
tsens_tz_get_temp(tm->sensor[i].tz_dev, &temp);
thermal_sensor_trip(tm->sensor[i].tz_dev, trip, temp);
rc = tsens_get_sw_id_mapping_for_controller(
tm->sensor[i].sensor_hw_num,
&sensor_sw_id, tm);
if (rc < 0)
pr_debug("tsens mapping index not found\n");
/* Use sensor_client_id for multiple controllers */
pr_debug("sensor:%d trigger temp (%d degC)\n",
tm->sensor[i].sensor_client_id,
(status & TSENS_TM_SN_LAST_TEMP_MASK));
if (upper_thr) {
trace_tsens_threshold_hit(
TSENS_TM_UPPER_THRESHOLD_VALUE(
threshold),
tm->sensor[i].sensor_client_id);
tm->tsens_upper_irq_cnt++;
} else {
trace_tsens_threshold_clear(
TSENS_TM_LOWER_THRESHOLD_VALUE(
threshold),
tm->sensor[i].sensor_client_id);
tm->tsens_lower_irq_cnt++;
}
}
}
/* Disable monitoring sensor trip threshold for triggered sensor */
mb();
return IRQ_HANDLED;
}
static irqreturn_t tsens_irq_thread(int irq, void *data)
{
struct tsens_tm_device *tm = data;
unsigned int i, status, threshold;
void __iomem *sensor_status_addr;
void __iomem *sensor_status_ctrl_addr;
int sensor_sw_id = -EINVAL;
uint32_t idx = 0;
if ((tm->tsens_type == TSENS_TYPE2) ||
(tm->tsens_type == TSENS_TYPE4))
sensor_status_addr = TSENS2_SN_STATUS_ADDR(tm->tsens_addr);
else
sensor_status_addr = TSENS_S0_STATUS_ADDR(tm->tsens_addr);
sensor_status_ctrl_addr =
TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR(tm->tsens_addr);
for (i = 0; i < tm->tsens_num_sensor; i++) {
bool upper_thr = false, lower_thr = false;
uint32_t addr_offset;
sensor_sw_id = tm->sensor[i].sensor_sw_id;
addr_offset = tm->sensor[i].sensor_hw_num *
TSENS_SN_ADDR_OFFSET;
status = readl_relaxed(sensor_status_addr + addr_offset);
threshold = readl_relaxed(sensor_status_ctrl_addr +
addr_offset);
if (status & TSENS_SN_STATUS_UPPER_STATUS) {
writel_relaxed(threshold | TSENS_UPPER_STATUS_CLR,
TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR(
tm->tsens_addr + addr_offset));
upper_thr = true;
tm->sensor[i].debug_thr_state_copy.
high_th_state = THERMAL_DEVICE_DISABLED;
}
if (status & TSENS_SN_STATUS_LOWER_STATUS) {
writel_relaxed(threshold | TSENS_LOWER_STATUS_CLR,
TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR(
tm->tsens_addr + addr_offset));
lower_thr = true;
tm->sensor[i].debug_thr_state_copy.
low_th_state = THERMAL_DEVICE_DISABLED;
}
if (upper_thr || lower_thr) {
int temp;
enum thermal_trip_type trip =
THERMAL_TRIP_CONFIGURABLE_LOW;
if (upper_thr)
trip = THERMAL_TRIP_CONFIGURABLE_HI;
tsens_tz_get_temp(tm->sensor[i].tz_dev, &temp);
thermal_sensor_trip(tm->sensor[i].tz_dev, trip, temp);
pr_debug("sensor:%d trigger temp (%d degC)\n",
tm->sensor[i].sensor_hw_num,
tsens_tz_code_to_degc((status &
TSENS_SN_STATUS_TEMP_MASK),
tm->sensor[i].sensor_sw_id, tm));
if (upper_thr)
trace_tsens_threshold_hit(
tsens_tz_code_to_degc((threshold &
TSENS_UPPER_THRESHOLD_MASK) >>
TSENS_UPPER_THRESHOLD_SHIFT,
sensor_sw_id, tm),
tm->sensor[i].sensor_hw_num);
else
trace_tsens_threshold_clear(
tsens_tz_code_to_degc((threshold &
TSENS_LOWER_THRESHOLD_MASK),
sensor_sw_id, tm),
tm->sensor[i].sensor_hw_num);
}
}
/* debug */
idx = tm->tsens_thread_iq_dbg.idx;
tm->tsens_thread_iq_dbg.dbg_count[idx%10]++;
tm->tsens_thread_iq_dbg.time_stmp[idx%10] = sched_clock();
tm->tsens_thread_iq_dbg.idx++;
/* Disable monitoring sensor trip threshold for triggered sensor */
mb();
return IRQ_HANDLED;
}
static int tsens_hw_init(struct tsens_tm_device *tmdev)
{
void __iomem *srot_addr;
void __iomem *sensor_int_mask_addr;
unsigned int srot_val;
int crit_mask;
if (!tmdev) {
pr_err("Invalid tsens device\n");
return -EINVAL;
}
if (tmdev->tsens_type == TSENS_TYPE3) {
srot_addr = TSENS_CTRL_ADDR(tmdev->tsens_addr + 0x4);
srot_val = readl_relaxed(srot_addr);
if (!(srot_val & TSENS_EN)) {
pr_err("TSENS device is not enabled\n");
return -ENODEV;
}
if (tmdev->cycle_compltn_monitor) {
sensor_int_mask_addr =
TSENS_TM_CRITICAL_INT_MASK(tmdev->tsens_addr);
crit_mask = readl_relaxed(sensor_int_mask_addr);
writel_relaxed(
crit_mask | tmdev->cycle_compltn_monitor_val,
(TSENS_TM_CRITICAL_INT_MASK
(tmdev->tsens_addr)));
/*Update critical cycle monitoring*/
mb();
}
writel_relaxed(TSENS_TM_CRITICAL_INT_EN |
TSENS_TM_UPPER_INT_EN | TSENS_TM_LOWER_INT_EN,
TSENS_TM_INT_EN(tmdev->tsens_addr));
} else
writel_relaxed(TSENS_INTERRUPT_EN,
TSENS_UPPER_LOWER_INTERRUPT_CTRL(tmdev->tsens_addr));
return 0;
}
static int get_device_tree_data(struct platform_device *pdev,
struct tsens_tm_device *tmdev)
{
struct device_node *of_node = pdev->dev.of_node;
struct resource *res_mem = NULL;
u32 *tsens_slope_data = NULL, *sensor_id, *client_id;
u32 *temp1_calib_offset_factor, *temp2_calib_offset_factor;
u32 rc = 0, i, tsens_num_sensors = 0;
u32 cycle_monitor = 0, wd_bark = 0;
const struct of_device_id *id;
rc = of_property_read_u32(of_node,
"qcom,sensors", &tsens_num_sensors);
if (rc) {
dev_err(&pdev->dev, "missing sensor number\n");
return -ENODEV;
}
if (tsens_num_sensors == 0) {
pr_err("No sensors?\n");
return -ENODEV;
}
/* TSENS calibration region */
tmdev->res_calib_mem = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "tsens_eeprom_physical");
if (!tmdev->res_calib_mem) {
pr_debug("Using controller programmed gain and offset\n");
tmdev->gain_offset_programmed = true;
} else {
tsens_slope_data = devm_kzalloc(&pdev->dev,
tsens_num_sensors * sizeof(u32), GFP_KERNEL);
if (!tsens_slope_data)
return -ENOMEM;
rc = of_property_read_u32_array(of_node,
"qcom,slope", tsens_slope_data, tsens_num_sensors);
if (rc) {
dev_err(&pdev->dev, "missing property: tsens-slope\n");
return rc;
};
}
if (!of_match_node(tsens_match, of_node)) {
pr_err("Need to read SoC specific fuse map\n");
return -ENODEV;
}
id = of_match_node(tsens_match, of_node);
if (id == NULL) {
pr_err("can not find tsens_match of_node\n");
return -ENODEV;
}
if (tsens_slope_data && !tmdev->gain_offset_programmed) {
for (i = 0; i < tsens_num_sensors; i++)
tmdev->sensor[i].slope_mul_tsens_factor =
tsens_slope_data[i];
tmdev->tsens_factor = TSENS_SLOPE_FACTOR;
}
tmdev->tsens_num_sensor = tsens_num_sensors;
tmdev->calibration_less_mode = of_property_read_bool(of_node,
"qcom,calibration-less-mode");
tmdev->tsens_local_init = of_property_read_bool(of_node,
"qcom,tsens-local-init");
sensor_id = devm_kzalloc(&pdev->dev,
tsens_num_sensors * sizeof(u32), GFP_KERNEL);
if (!sensor_id)
return -ENOMEM;
client_id = devm_kzalloc(&pdev->dev,
tsens_num_sensors * sizeof(u32), GFP_KERNEL);
if (!client_id)
return -ENOMEM;
rc = of_property_read_u32_array(of_node,
"qcom,client-id", client_id, tsens_num_sensors);
if (rc) {
for (i = 0; i < tsens_num_sensors; i++)
tmdev->sensor[i].sensor_client_id = i;
pr_debug("Default client id mapping\n");
} else {
for (i = 0; i < tsens_num_sensors; i++)
tmdev->sensor[i].sensor_client_id = client_id[i];
pr_debug("Use specified client id mapping\n");
}
rc = of_property_read_u32_array(of_node,
"qcom,sensor-id", sensor_id, tsens_num_sensors);
if (rc) {
pr_debug("Default sensor id mapping\n");
for (i = 0; i < tsens_num_sensors; i++) {
tmdev->sensor[i].sensor_hw_num = i;
tmdev->sensor[i].sensor_sw_id = i;
}
} else {
pr_debug("Use specified sensor id mapping\n");
for (i = 0; i < tsens_num_sensors; i++) {
tmdev->sensor[i].sensor_hw_num = sensor_id[i];
tmdev->sensor[i].sensor_sw_id = i;
}
}
rc = of_property_read_u32(of_node,
"qcom,cycle-monitor", &cycle_monitor);
if (rc) {
pr_debug("Default cycle completion monitor\n");
tmdev->cycle_compltn_monitor = false;
} else {
pr_debug("Use specified cycle completion monitor\n");
tmdev->cycle_compltn_monitor = true;
tmdev->cycle_compltn_monitor_val = cycle_monitor;
}
rc = of_property_read_u32(of_node,
"qcom,wd-bark", &wd_bark);
if (rc) {
pr_debug("Default Watchdog bark\n");
tmdev->wd_bark = false;
} else {
pr_debug("Use specified Watchdog bark\n");
tmdev->wd_bark = true;
tmdev->wd_bark_val = wd_bark;
}
if (!strcmp(id->compatible, "qcom,msm8996-tsens") ||
(!strcmp(id->compatible, "qcom,msm8998-tsens")))
tmdev->tsens_type = TSENS_TYPE3;
else if (!strcmp(id->compatible, "qcom,msmtitanium-tsens") ||
(!strcmp(id->compatible, "qcom,sdm660-tsens")) ||
(!strcmp(id->compatible, "qcom,sdm630-tsens")) ||
(!strcmp(id->compatible, "qcom,msmhamster-tsens"))) {
tmdev->tsens_type = TSENS_TYPE3;
tsens_poll_check = 0;
} else
tmdev->tsens_type = TSENS_TYPE0;
tmdev->tsens_valid_status_check = of_property_read_bool(of_node,
"qcom,valid-status-check");
if (!tmdev->tsens_valid_status_check) {
if (!strcmp(id->compatible, "qcom,msm8996-tsens") ||
(!strcmp(id->compatible, "qcom,msmtitanium-tsens")) ||
(!strcmp(id->compatible, "qcom,msm8998-tsens")) ||
(!strcmp(id->compatible, "qcom,sdm660-tsens")) ||
(!strcmp(id->compatible, "qcom,sdm630-tsens")) ||
(!strcmp(id->compatible, "qcom,msmhamster-tsens")))
tmdev->tsens_valid_status_check = true;
}
tmdev->tsens_irq = platform_get_irq_byname(pdev,
"tsens-upper-lower");
if (tmdev->tsens_irq < 0) {
pr_err("Invalid Upper/Lower get irq\n");
rc = tmdev->tsens_irq;
goto fail_tmdev;
}
if (!strcmp(id->compatible, "qcom,msm8996-tsens") ||
(!strcmp(id->compatible, "qcom,msm8998-tsens")) ||
(!strcmp(id->compatible, "qcom,msmhamster-tsens")) ||
(!strcmp(id->compatible, "qcom,sdm660-tsens")) ||
(!strcmp(id->compatible, "qcom,sdm630-tsens")) ||
(!strcmp(id->compatible, "qcom,msmtitanium-tsens"))) {
tmdev->tsens_critical_irq =
platform_get_irq_byname(pdev,
"tsens-critical");
if (tmdev->tsens_critical_irq < 0) {
pr_err("Invalid Critical get irq\n");
rc = tmdev->tsens_critical_irq;
goto fail_tmdev;
}
}
temp1_calib_offset_factor = devm_kzalloc(&pdev->dev,
tsens_num_sensors * sizeof(u32), GFP_KERNEL);
if (!temp1_calib_offset_factor)
return -ENOMEM;
rc = of_property_read_u32_array(of_node,
"qcom,temp1-offset", temp1_calib_offset_factor,
tsens_num_sensors);
if (rc) {
pr_debug("Default temp1-offsets\n");
for (i = 0; i < tsens_num_sensors; i++)
tmdev->sensor[i].wa_temp1_calib_offset_factor = 0;
} else {
pr_debug("Use specific temp1-offsets\n");
for (i = 0; i < tsens_num_sensors; i++)
tmdev->sensor[i].wa_temp1_calib_offset_factor =
temp1_calib_offset_factor[i];
}
temp2_calib_offset_factor = devm_kzalloc(&pdev->dev,
tsens_num_sensors * sizeof(u32), GFP_KERNEL);
if (!temp2_calib_offset_factor)
return -ENOMEM;
rc = of_property_read_u32_array(of_node,
"qcom,temp2-offset", temp2_calib_offset_factor,
tsens_num_sensors);
if (rc) {
pr_debug("Default temp2-offsets\n");
for (i = 0; i < tsens_num_sensors; i++)
tmdev->sensor[i].wa_temp2_calib_offset_factor = 0;
} else {
pr_debug("Use specific temp2-offsets\n");
for (i = 0; i < tsens_num_sensors; i++)
tmdev->sensor[i].wa_temp2_calib_offset_factor =
temp2_calib_offset_factor[i];
}
/* TSENS register region */
tmdev->res_tsens_mem = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "tsens_physical");
if (!tmdev->res_tsens_mem) {
pr_err("Could not get tsens physical address resource\n");
rc = -EINVAL;
goto fail_tmdev;
}
tmdev->tsens_len = tmdev->res_tsens_mem->end -
tmdev->res_tsens_mem->start + 1;
res_mem = request_mem_region(tmdev->res_tsens_mem->start,
tmdev->tsens_len, tmdev->res_tsens_mem->name);
if (!res_mem) {
pr_err("Request tsens physical memory region failed\n");
rc = -EINVAL;
goto fail_tmdev;
}
tmdev->tsens_addr = ioremap(res_mem->start, tmdev->tsens_len);
if (!tmdev->tsens_addr) {
pr_err("Failed to IO map TSENS registers.\n");
rc = -EINVAL;
goto fail_unmap_tsens_region;
}
if (!tmdev->gain_offset_programmed) {
tmdev->calib_len = tmdev->res_calib_mem->end -
tmdev->res_calib_mem->start + 1;
tmdev->tsens_calib_addr = ioremap(tmdev->res_calib_mem->start,
tmdev->calib_len);
if (!tmdev->tsens_calib_addr) {
pr_err("Failed to IO map EEPROM registers.\n");
rc = -EINVAL;
goto fail_unmap_tsens;
}
}
return 0;
fail_unmap_tsens:
if (tmdev->tsens_addr)
iounmap(tmdev->tsens_addr);
fail_unmap_tsens_region:
if (tmdev->res_tsens_mem)
release_mem_region(tmdev->res_tsens_mem->start,
tmdev->tsens_len);
fail_tmdev:
platform_set_drvdata(pdev, NULL);
return rc;
}
static int tsens_tm_probe(struct platform_device *pdev)
{
struct device_node *of_node = pdev->dev.of_node;
int rc, i;
u32 tsens_num_sensors;
struct tsens_tm_device *tmdev = NULL;
rc = of_property_read_u32(of_node,
"qcom,sensors", &tsens_num_sensors);
tmdev = devm_kzalloc(&pdev->dev,
sizeof(struct tsens_tm_device) +
tsens_num_sensors *
sizeof(struct tsens_tm_device_sensor),
GFP_KERNEL);
if (tmdev == NULL) {
pr_err("%s: kzalloc() failed.\n", __func__);
return -ENOMEM;
}
if (pdev->dev.of_node) {
rc = get_device_tree_data(pdev, tmdev);
if (rc) {
pr_err("Error reading TSENS DT\n");
return rc;
}
} else
return -ENODEV;
tmdev->pdev = pdev;
tmdev->tsens_critical_wq = alloc_workqueue("tsens_critical_wq",
WQ_HIGHPRI, 0);
if (!tmdev->tsens_critical_wq) {
rc = -ENOMEM;
goto fail;
}
rc = tsens_hw_init(tmdev);
if (rc)
return rc;
tmdev->prev_reading_avail = true;
for (i = 0; i < 16; i++)
tmdev->sensor_dbg_info[i].idx = 0;
spin_lock_init(&tmdev->tsens_crit_lock);
spin_lock_init(&tmdev->tsens_upp_low_lock);
tmdev->is_ready = true;
list_add_tail(&tmdev->list, &tsens_device_list);
platform_set_drvdata(pdev, tmdev);
rc = create_tsens_mtc_sysfs(pdev);
if (rc < 0)
pr_debug("Cannot create create_tsens_mtc_sysfs %d\n", rc);
return 0;
fail:
if (tmdev->tsens_critical_wq)
destroy_workqueue(tmdev->tsens_critical_wq);
if (tmdev->tsens_calib_addr)
iounmap(tmdev->tsens_calib_addr);
if (tmdev->tsens_addr)
iounmap(tmdev->tsens_addr);
if (tmdev->res_tsens_mem)
release_mem_region(tmdev->res_tsens_mem->start,
tmdev->tsens_len);
platform_set_drvdata(pdev, NULL);
return rc;
}
static ssize_t tsens_debugfs_read(struct file *file, char __user *ubuf,
size_t count, loff_t *ppos)
{
int nbytes = 0;
struct tsens_tm_device *tmdev = NULL;
list_for_each_entry(tmdev, &tsens_device_list, list) {
nbytes += scnprintf(dbg_buff + nbytes, 1024 - nbytes,
"TSENS Critical count: %d\n",
tmdev->tsens_critical_irq_cnt);
nbytes += scnprintf(dbg_buff + nbytes, 1024 - nbytes,
"TSENS Upper count: %d\n",
tmdev->tsens_upper_irq_cnt);
nbytes += scnprintf(dbg_buff + nbytes, 1024 - nbytes,
"TSENS Lower count: %d\n",
tmdev->tsens_lower_irq_cnt);
}
return simple_read_from_buffer(ubuf, count, ppos, dbg_buff, nbytes);
}
const struct file_operations tsens_stats_ops = {
.read = tsens_debugfs_read,
};
static void tsens_debugfs_init(void)
{
const mode_t read_only_mode = S_IRUSR | S_IRGRP | S_IROTH;
dent = debugfs_create_dir("tsens", 0);
if (IS_ERR(dent)) {
pr_err("Error creating TSENS directory\n");
return;
}
dfile_stats = debugfs_create_file("stats", read_only_mode, dent,
0, &tsens_stats_ops);
if (!dfile_stats || IS_ERR(dfile_stats)) {
pr_err("Failed to create TSENS folder\n");
return;
}
}
static int tsens_thermal_zone_register(struct tsens_tm_device *tmdev)
{
int rc = 0, i = 0;
if (tmdev == NULL) {
pr_err("Invalid tsens instance\n");
return -EINVAL;
}
for (i = 0; i < tmdev->tsens_num_sensor; i++) {
char name[18];
snprintf(name, sizeof(name), "tsens_tz_sensor%d",
tmdev->sensor[i].sensor_client_id);
tmdev->sensor[i].mode = THERMAL_DEVICE_ENABLED;
tmdev->sensor[i].tm = tmdev;
if (tmdev->tsens_type == TSENS_TYPE3) {
tmdev->sensor[i].tz_dev = thermal_zone_device_register(
name, TSENS_TRIP_NUM,
TSENS_WRITABLE_TRIPS_MASK,
&tmdev->sensor[i],
&tsens_tm_thermal_zone_ops, NULL, 0, 0);
if (IS_ERR(tmdev->sensor[i].tz_dev)) {
pr_err("%s: failed.\n", __func__);
rc = -ENODEV;
goto fail;
}
} else {
tmdev->sensor[i].tz_dev = thermal_zone_device_register(
name, TSENS_TRIP_NUM,
TSENS_WRITABLE_TRIPS_MASK,
&tmdev->sensor[i],
&tsens_thermal_zone_ops, NULL, 0, 0);
if (IS_ERR(tmdev->sensor[i].tz_dev)) {
pr_err("%s: failed.\n", __func__);
rc = -ENODEV;
goto fail;
}
}
}
if (tmdev->tsens_type == TSENS_TYPE3) {
rc = request_threaded_irq(tmdev->tsens_irq, NULL,
tsens_tm_irq_thread,
IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
"tsens_interrupt", tmdev);
if (rc < 0) {
pr_err("%s: request_irq FAIL: %d\n", __func__, rc);
for (i = 0; i < tmdev->tsens_num_sensor; i++)
thermal_zone_device_unregister(
tmdev->sensor[i].tz_dev);
goto fail;
} else {
enable_irq_wake(tmdev->tsens_irq);
}
rc = request_threaded_irq(tmdev->tsens_critical_irq, NULL,
tsens_tm_critical_irq_thread,
IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
"tsens_critical_interrupt", tmdev);
if (rc < 0) {
pr_err("%s: request_irq FAIL: %d\n", __func__, rc);
for (i = 0; i < tmdev->tsens_num_sensor; i++)
thermal_zone_device_unregister(
tmdev->sensor[i].tz_dev);
goto fail;
} else {
enable_irq_wake(tmdev->tsens_critical_irq);
}
if (tsens_poll_check) {
INIT_DEFERRABLE_WORK(&tmdev->tsens_critical_poll_test,
tsens_poll);
schedule_delayed_work(&tmdev->tsens_critical_poll_test,
msecs_to_jiffies(tsens_sec_to_msec_value));
init_completion(&tmdev->tsens_rslt_completion);
tmdev->tsens_critical_poll = true;
}
} else {
rc = request_threaded_irq(tmdev->tsens_irq, NULL,
tsens_irq_thread, IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
"tsens_interrupt", tmdev);
if (rc < 0) {
pr_err("%s: request_irq FAIL: %d\n", __func__, rc);
for (i = 0; i < tmdev->tsens_num_sensor; i++)
thermal_zone_device_unregister(
tmdev->sensor[i].tz_dev);
goto fail;
} else {
enable_irq_wake(tmdev->tsens_irq);
}
}
return 0;
fail:
if (tmdev->tsens_calib_addr)
iounmap(tmdev->tsens_calib_addr);
if (tmdev->tsens_addr)
iounmap(tmdev->tsens_addr);
if (tmdev->res_tsens_mem)
release_mem_region(tmdev->res_tsens_mem->start,
tmdev->tsens_len);
return rc;
}
static int _tsens_register_thermal(void)
{
struct tsens_tm_device *tmdev = NULL;
int rc;
if (tsens_is_ready() <= 0) {
pr_err("%s: TSENS early init not done\n", __func__);
return -ENODEV;
}
list_for_each_entry(tmdev, &tsens_device_list, list) {
rc = tsens_thermal_zone_register(tmdev);
if (rc) {
pr_err("Error registering the thermal zone\n");
return rc;
}
}
tsens_debugfs_init();
return 0;
}
static int tsens_tm_remove(struct platform_device *pdev)
{
struct tsens_tm_device *tmdev = platform_get_drvdata(pdev);
int i;
for (i = 0; i < tmdev->tsens_num_sensor; i++)
thermal_zone_device_unregister(tmdev->sensor[i].tz_dev);
if (tmdev->tsens_calib_addr)
iounmap(tmdev->tsens_calib_addr);
if (tmdev->tsens_addr)
iounmap(tmdev->tsens_addr);
if (tmdev->res_tsens_mem)
release_mem_region(tmdev->res_tsens_mem->start,
tmdev->tsens_len);
if (tmdev->tsens_critical_wq)
destroy_workqueue(tmdev->tsens_critical_wq);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver tsens_tm_driver = {
.probe = tsens_tm_probe,
.remove = tsens_tm_remove,
.driver = {
.name = "msm-tsens",
.owner = THIS_MODULE,
.of_match_table = tsens_match,
},
};
int __init tsens_tm_init_driver(void)
{
return platform_driver_register(&tsens_tm_driver);
}
arch_initcall(tsens_tm_init_driver);
static int __init tsens_thermal_register(void)
{
return _tsens_register_thermal();
}
module_init(tsens_thermal_register);
static void __exit _tsens_tm_remove(void)
{
platform_driver_unregister(&tsens_tm_driver);
}
module_exit(_tsens_tm_remove);
MODULE_ALIAS("platform:" TSENS_DRIVER_NAME);
MODULE_LICENSE("GPL v2");