blob: 96f100745065432088f0ba77f65d41276e4a8001 [file] [log] [blame]
/* Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/rpmsg.h>
#include <linux/idr.h>
#include <linux/sizes.h>
#include <linux/delay.h>
#include <linux/regmap.h>
#include <linux/workqueue.h>
#include <linux/list.h>
#include <linux/sched.h>
#include <linux/kthread.h>
#include <linux/component.h>
#include <sound/wcd-dsp-mgr.h>
#include <sound/wcd-spi.h>
#include <linux/ipc_logging.h>
#include <linux/rpmsg/qcom_glink.h>
#include "rpmsg_internal.h"
#include "qcom_glink_native.h"
#define GLINK_LOG_PAGE_CNT 2
#define GLINK_INFO(ctxt, x, ...) \
do { \
if (ctxt->ilc) \
ipc_log_string(ctxt->ilc, "[%s]: "x, __func__, ##__VA_ARGS__); \
} while (0)
#define CH_INFO(ch, x, ...) \
do { \
if (ch->glink && ch->glink->ilc) \
ipc_log_string(ch->glink->ilc, "%s[%d:%d] %s: "x, ch->name, \
ch->lcid, ch->rcid, __func__, ##__VA_ARGS__); \
} while (0)
#define GLINK_ERR(ctxt, x, ...) \
do { \
pr_err_ratelimited("[%s]: "x, __func__, ##__VA_ARGS__); \
if (ctxt->ilc) \
ipc_log_string(ctxt->ilc, "[%s]: "x, __func__, ##__VA_ARGS__); \
} while (0)
#define SPI_ALIGNMENT 16
#define FIFO_FULL_RESERVE 8
#define TX_BLOCKED_CMD_RESERVE 16
#define DEFAULT_FIFO_SIZE 1024
#define SHORT_SIZE 16
#define XPRT_ALIGNMENT 4
#define MAX_INACTIVE_CYCLES 50
#define POLL_INTERVAL_US 500
#define TX_WAIT_US 500
#define ACTIVE_TX BIT(0)
#define ACTIVE_RX BIT(1)
#define ID_MASK 0xFFFFFF
#define GLINK_NAME_SIZE 32
#define GLINK_VERSION_1 1
#define SPI_GLINK_CID_MIN 1
#define SPI_GLINK_CID_MAX 65536
struct glink_spi_msg {
__le16 cmd;
__le16 param1;
__le32 param2;
__le32 param3;
__le32 param4;
u8 data[];
} __packed;
/**
* struct glink_spi_defer_cmd - deferred incoming control message
* @node: list node
* @msg: message header
* data: payload of the message
*
* Copy of a received control message, to be added to @rx_queue and processed
* by @rx_work of @glink_spi.
*/
struct glink_spi_defer_cmd {
struct list_head node;
struct glink_spi_msg msg;
u8 data[];
};
/**
* struct glink_spi_rx_intent - RX intent
* RX intent
*
* @data: pointer to the data (may be NULL for zero-copy)
* @id: remote or local intent ID
* @size: size of the original intent (do not modify)
* @addr: addr to read/write the data from
* @reuse: To mark if the intent can be reused after first use
* @in_use: To mark if intent is already in use for the channel
* @offset: next write offset (initially 0)
*/
struct glink_spi_rx_intent {
void *data;
u32 id;
size_t size;
u32 addr;
bool reuse;
bool in_use;
u32 offset;
struct list_head node;
};
/**
* @fifo_base: Base Address of the RX FIFO.
* @length: End Address of the RX FIFO.
* @tail_addr: Address of the TX FIFO Read Index Register.
* @head_addr: Address of the TX FIFO Write Index Register.
* @local_addr: Address of the RX FIFO Read Index Register.
*/
struct glink_spi_pipe {
u32 fifo_base;
u32 length;
u32 tail_addr;
u32 head_addr;
u32 local_addr;
};
/**
* struct glink_cmpnt - Component to cache spi component and its operations
* @master_dev: Device structure corresponding to spi device.
* @master_ops: Operations supported by the spi device.
*/
struct glink_cmpnt {
struct device *master_dev;
struct wdsp_mgr_ops *master_ops;
};
/**
* struct glink_spi - driver context, relates to one remote subsystem
* @dev: reference to the associated struct device
* @name: name of this edge
* @rx_pipe: pipe object for receive FIFO
* @tx_pipe: pipe object for transmit FIFO
* @rx_work: worker for handling received control messages
* @rx_worker: worker struct for handling received control messages
* @rx_task: task that runs the rx_worker
* @rx_lock: protects the @rx_queue
* @rx_queue: queue of received control messages to be processed in @rx_work
* @tx_lock: synchronizes operations on the tx fifo
* @idr_lock: synchronizes @lcids and @rcids modifications
* @lcids: idr of all channels with a known local channel id
* @rcids: idr of all channels with a known remote channel id
* @spi_ops: spi ops for sending data to the remote
* @cmpnt: component to be registered with the wdsp component manager
* @in_reset indicates that remote processor is in reset
* @ilc: ipc logging context reference
*/
struct glink_spi {
struct device dev;
const char *name;
struct glink_spi_pipe rx_pipe;
struct glink_spi_pipe tx_pipe;
struct kthread_work rx_work;
struct kthread_worker rx_worker;
struct task_struct *rx_task;
spinlock_t rx_lock;
struct list_head rx_queue;
struct work_struct rx_defer_work;
struct mutex tx_lock;
struct mutex idr_lock;
struct idr lcids;
struct idr rcids;
u32 features;
struct wcd_spi_ops spi_ops;
struct glink_cmpnt cmpnt;
atomic_t activity_cnt;
atomic_t in_reset;
void *ilc;
};
enum {
GLINK_STATE_CLOSED,
GLINK_STATE_OPENING,
GLINK_STATE_OPEN,
GLINK_STATE_CLOSING,
};
/**
* struct glink_spi_channel - internal representation of a channel
* @rpdev: rpdev reference, only used for primary endpoints
* @ept: rpmsg endpoint this channel is associated with
* @glink: glink_spi context handle
* @refcount: refcount for the channel object
* @recv_lock: guard for @ept.cb
* @name: unique channel name/identifier
* @lcid: channel id, in local space
* @rcid: channel id, in remote space
* @intent_lock: lock for protection of @liids, @riids
* @liids: idr of all local intents
* @riids: idr of all remote intents
* @open_ack: completed once remote has acked the open-request
* @open_req: completed once open-request has been received
* @intent_req_lock: Synchronises multiple intent requests
* @intent_req_result: Result of intent request
* @intent_req_comp: Completion for intent_req signalling
*/
struct glink_spi_channel {
struct rpmsg_endpoint ept;
struct rpmsg_device *rpdev;
struct glink_spi *glink;
struct kref refcount;
spinlock_t recv_lock;
char *name;
unsigned int lcid;
unsigned int rcid;
struct mutex intent_lock;
struct idr liids;
struct idr riids;
unsigned int lsigs;
unsigned int rsigs;
struct completion open_ack;
struct completion open_req;
struct mutex intent_req_lock;
bool intent_req_result;
struct completion intent_req_comp;
};
#define to_glink_channel(_ept) container_of(_ept, struct glink_spi_channel, ept)
static const struct rpmsg_endpoint_ops glink_endpoint_ops;
#define SPI_CMD_VERSION 0
#define SPI_CMD_VERSION_ACK 1
#define SPI_CMD_OPEN 2
#define SPI_CMD_CLOSE 3
#define SPI_CMD_OPEN_ACK 4
#define SPI_CMD_CLOSE_ACK 5
#define SPI_CMD_INTENT 6
#define SPI_CMD_RX_DONE 7
#define SPI_CMD_RX_DONE_W_REUSE 8
#define SPI_CMD_RX_INTENT_REQ 9
#define SPI_CMD_RX_INTENT_REQ_ACK 10
#define SPI_CMD_TX_DATA 11
#define SPI_CMD_TX_DATA_CONT 12
#define SPI_CMD_READ_NOTIF 13
#define SPI_CMD_SIGNALS 14
#define SPI_CMD_TX_SHORT_DATA 17
static void glink_spi_remove(struct glink_spi *glink);
/**
* spi_resume() - Vote for the spi device resume
* @cmpnt: Component to identify the spi device.
*
* Return: 0 on success, standard Linux error codes on failure.
*/
static int spi_resume(struct glink_cmpnt *cmpnt)
{
if (!cmpnt || !cmpnt->master_dev || !cmpnt->master_ops ||
!cmpnt->master_ops->resume)
return 0;
return cmpnt->master_ops->resume(cmpnt->master_dev);
}
/**
* glink_spi_xprt_set_poll_mode() - Set the transport to polling mode
* @glink: Edge information corresponding to the transport.
*
* This helper function indicates the start of RX polling. This will
* prevent the system from suspending and keeps polling for RX for a
* pre-defined duration.
*/
static void glink_spi_xprt_set_poll_mode(struct glink_spi *glink)
{
atomic_inc(&glink->activity_cnt);
spi_resume(&glink->cmpnt);
}
/**
* glink_spi_xprt_set_irq_mode() - Set the transport to IRQ mode
* @glink: Edge information corresponding to the transport.
*
* This helper indicates the end of RX polling. This will allow the
* system to suspend and new RX data can be handled only through an IRQ.
*/
static void glink_spi_xprt_set_irq_mode(struct glink_spi *glink)
{
atomic_dec(&glink->activity_cnt);
}
static struct glink_spi_channel *
glink_spi_alloc_channel(struct glink_spi *glink, const char *name)
{
struct glink_spi_channel *channel;
channel = kzalloc(sizeof(*channel), GFP_KERNEL);
if (!channel)
return ERR_PTR(-ENOMEM);
/* Setup glink internal glink_spi_channel data */
spin_lock_init(&channel->recv_lock);
mutex_init(&channel->intent_lock);
mutex_init(&channel->intent_req_lock);
channel->glink = glink;
channel->name = kstrdup(name, GFP_KERNEL);
init_completion(&channel->open_req);
init_completion(&channel->open_ack);
init_completion(&channel->intent_req_comp);
idr_init(&channel->liids);
idr_init(&channel->riids);
kref_init(&channel->refcount);
return channel;
}
static void glink_spi_channel_release(struct kref *ref)
{
struct glink_spi_channel *channel;
struct glink_spi_rx_intent *tmp;
int iid;
channel = container_of(ref, struct glink_spi_channel, refcount);
CH_INFO(channel, "\n");
channel->intent_req_result = 0;
complete(&channel->intent_req_comp);
mutex_lock(&channel->intent_lock);
idr_for_each_entry(&channel->liids, tmp, iid) {
kfree(tmp->data);
kfree(tmp);
}
idr_destroy(&channel->liids);
idr_for_each_entry(&channel->riids, tmp, iid)
kfree(tmp);
idr_destroy(&channel->riids);
mutex_unlock(&channel->intent_lock);
kfree(channel->name);
kfree(channel);
}
/**
* glink_spi_read() - Receive data over SPI bus
* @glink: Edge from which the data has to be received.
* @src: Source Address of the RX data.
* @dst: Address of the destination RX buffer.
* @size: Size of the RX data.
*
* This function is used to receive data or command as a byte stream from
* the remote subsystem over the SPI bus.
*
* Return: 0 on success, standard Linux error codes on failure.
*/
static int glink_spi_read(struct glink_spi *glink, u32 src, void *dst,
size_t size)
{
struct wcd_spi_msg spi_msg = { 0 };
if (unlikely(!glink->spi_ops.read_dev))
return -EINVAL;
spi_msg.data = dst;
spi_msg.remote_addr = src;
spi_msg.len = size;
return glink->spi_ops.read_dev(glink->spi_ops.spi_dev, &spi_msg);
}
/**
* glink_spi_write() - Transmit data over SPI bus
* @glink: Edge from which the data has to be received.
* @src: Address of the TX buffer.
* @dst: Destination Address of the TX Data.
* @size: Size of the TX data.
*
* This function is used to transmit data or command as a byte stream to
* the remote subsystem over the SPI bus.
*
* Return: 0 on success, standard Linux error codes on failure.
*/
static int glink_spi_write(struct glink_spi *glink, void *src, u32 dst,
size_t size)
{
struct wcd_spi_msg spi_msg = { 0 };
if (unlikely(!glink->spi_ops.write_dev))
return -EINVAL;
spi_msg.data = src;
spi_msg.remote_addr = dst;
spi_msg.len = size;
return glink->spi_ops.write_dev(glink->spi_ops.spi_dev, &spi_msg);
}
/**
* glink_spi_reg_read() - Read the TX/RX FIFO Read/Write Index registers
* @glink: Edge from which the registers have to be read.
* @reg_addr: Address of the register to be read.
* @data: Buffer into which the register data has to be read.
*
* Return: 0 on success, standard Linux error codes on failure.
*/
static int glink_spi_reg_read(struct glink_spi *glink, u32 reg_addr, u32 *data)
{
int ret;
ret = glink_spi_read(glink, reg_addr, data, sizeof(*data));
if (ret)
return ret;
/* SPI register reads need to be masked */
*data = *data & ID_MASK;
return 0;
}
/**
* glink_spi_reg_write() - Write the TX/RX FIFO Read/Write Index registers
* @glink: Edge to which the registers have to be written.
* @reg_addr: Address of the registers to be written.
* @data: Data to be written to the registers.
*
* Return: 0 on success, standard Linux error codes on failure.
*/
static int glink_spi_reg_write(struct glink_spi *glink, u32 reg_addr, u32 data)
{
return glink_spi_write(glink, &data, reg_addr, sizeof(data));
}
static size_t glink_spi_rx_avail(struct glink_spi *glink)
{
struct glink_spi_pipe *pipe = &glink->rx_pipe;
u32 head;
u32 tail;
int ret;
if (atomic_read(&glink->in_reset))
return 0;
if (unlikely(!pipe->fifo_base)) {
ret = glink_spi_reg_read(glink, pipe->tail_addr,
&pipe->local_addr);
if (ret < 0) {
GLINK_ERR(glink, "Error %d reading rx tail\n", ret);
return 0;
}
pipe->fifo_base = pipe->local_addr;
}
tail = pipe->local_addr;
ret = glink_spi_reg_read(glink, pipe->head_addr, &head);
if (ret < 0) {
GLINK_ERR(glink, "Error %d reading rx head\n", ret);
return 0;
}
if (head < tail)
return pipe->length - (tail - head);
else
return head - tail;
}
static void glink_spi_rx_peak(struct glink_spi *glink,
void *data, unsigned int offset, size_t count)
{
struct glink_spi_pipe *pipe = &glink->rx_pipe;
u32 fifo_end;
size_t len;
u32 tail;
fifo_end = pipe->fifo_base + pipe->length;
tail = pipe->local_addr;
tail += offset;
if (tail >= fifo_end)
tail -= pipe->length;
len = min_t(size_t, count, fifo_end - tail);
if (len)
glink_spi_read(glink, tail, data, len);
if (len != count)
glink_spi_read(glink, pipe->fifo_base, data + len, count - len);
}
static void glink_spi_rx_advance(struct glink_spi *glink, size_t count)
{
struct glink_spi_pipe *pipe = &glink->rx_pipe;
u32 tail;
int ret;
tail = pipe->local_addr;
tail += count;
if (tail >= pipe->fifo_base + pipe->length)
tail -= pipe->length;
pipe->local_addr = tail;
ret = glink_spi_reg_write(glink, pipe->tail_addr, tail);
if (ret)
GLINK_ERR(glink, "Error writing rx tail %d\n", ret);
}
static size_t glink_spi_tx_avail(struct glink_spi *glink)
{
struct glink_spi_pipe *pipe = &glink->tx_pipe;
u32 avail;
u32 head;
u32 tail;
int ret;
if (atomic_read(&glink->in_reset))
return 0;
if (unlikely(!pipe->fifo_base)) {
ret = glink_spi_reg_read(glink, pipe->head_addr,
&pipe->local_addr);
if (ret < 0) {
GLINK_ERR(glink, "Error %d reading tx head\n", ret);
return 0;
}
pipe->fifo_base = pipe->local_addr;
}
head = pipe->local_addr;
ret = glink_spi_reg_read(glink, pipe->tail_addr, &tail);
if (ret < 0) {
GLINK_ERR(glink, "Error %d reading tx tail\n", ret);
return 0;
}
if (tail <= head)
avail = pipe->fifo_base + pipe->length - head + tail;
else
avail = tail - head;
if (avail < (FIFO_FULL_RESERVE + TX_BLOCKED_CMD_RESERVE))
avail = 0;
else
avail -= FIFO_FULL_RESERVE + TX_BLOCKED_CMD_RESERVE;
return avail;
}
static unsigned int glink_spi_tx_write_one(struct glink_spi *glink, u32 head,
void *data, size_t count)
{
struct glink_spi_pipe *pipe = &glink->tx_pipe;
size_t len;
int ret;
len = min_t(size_t, count, pipe->fifo_base + pipe->length - head);
if (len) {
ret = glink_spi_write(glink, data, head, len);
if (ret)
GLINK_ERR(glink, "Error %d writing tx data\n", ret);
}
if (len != count) {
ret = glink_spi_write(glink, data + len, pipe->fifo_base,
count - len);
if (ret)
GLINK_ERR(glink, "Error %d writing tx data\n", ret);
}
head += count;
if (head >= pipe->fifo_base + pipe->length)
head -= pipe->length;
return head;
}
static void glink_spi_tx_write(struct glink_spi *glink, void *hdr, size_t hlen,
void *data, size_t dlen)
{
struct glink_spi_pipe *pipe = &glink->tx_pipe;
u32 head;
int ret;
head = pipe->local_addr;
if (hlen)
head = glink_spi_tx_write_one(glink, head, hdr, hlen);
if (dlen)
head = glink_spi_tx_write_one(glink, head, data, dlen);
/* Ensure head is always aligned to 8 bytes */
head = ALIGN(head, SPI_ALIGNMENT);
if (head >= pipe->fifo_base + pipe->length)
head -= pipe->length;
pipe->local_addr = head;
ret = glink_spi_reg_write(glink, pipe->head_addr, head);
if (ret)
GLINK_ERR(glink, "Error %d writing tx head\n", ret);
}
static int glink_spi_tx(struct glink_spi *glink, void *hdr, size_t hlen,
void *data, size_t dlen, bool wait)
{
unsigned int tlen = hlen + dlen;
int ret = 0;
if (tlen >= glink->tx_pipe.length)
return -EINVAL;
mutex_lock(&glink->tx_lock);
while (glink_spi_tx_avail(glink) < tlen) {
if (!wait) {
ret = -EAGAIN;
goto out;
}
if (atomic_read(&glink->in_reset)) {
ret = -ENXIO;
goto out;
}
/* Wait without holding the tx_lock */
mutex_unlock(&glink->tx_lock);
usleep_range(TX_WAIT_US, TX_WAIT_US + 50);
mutex_lock(&glink->tx_lock);
}
glink_spi_tx_write(glink, hdr, hlen, data, dlen);
out:
mutex_unlock(&glink->tx_lock);
return ret;
}
static int glink_spi_send_version(struct glink_spi *glink)
{
struct glink_spi_msg msg = { 0 };
msg.cmd = cpu_to_le16(SPI_CMD_VERSION);
msg.param1 = cpu_to_le16(GLINK_VERSION_1);
msg.param2 = cpu_to_le32(glink->features);
GLINK_INFO(glink, "vers:%d features:%d\n", msg.param1, msg.param2);
return glink_spi_tx(glink, &msg, sizeof(msg), NULL, 0, true);
}
static void glink_spi_send_version_ack(struct glink_spi *glink)
{
struct glink_spi_msg msg = { 0 };
msg.cmd = cpu_to_le16(SPI_CMD_VERSION_ACK);
msg.param1 = cpu_to_le16(GLINK_VERSION_1);
msg.param2 = cpu_to_le32(glink->features);
GLINK_INFO(glink, "vers:%d features:%d\n", msg.param1, msg.param2);
glink_spi_tx(glink, &msg, sizeof(msg), NULL, 0, true);
}
/**
* glink_spi_receive_version() - receive version/features from remote system
*
* @glink: pointer to transport interface
* @r_version: remote version
* @r_features: remote features
*
* This function is called in response to a remote-initiated version/feature
* negotiation sequence.
*/
static void glink_spi_receive_version(struct glink_spi *glink,
u32 version,
u32 features)
{
GLINK_INFO(glink, "vers:%d features:%d\n", version, features);
switch (version) {
case 0:
break;
case GLINK_VERSION_1:
glink->features &= features;
/* FALLTHROUGH */
default:
glink_spi_send_version_ack(glink);
break;
}
}
/**
* glink_spi_receive_version_ack() - receive negotiation ack from remote system
*
* @glink: pointer to transport interface
* @r_version: remote version response
* @r_features: remote features response
*
* This function is called in response to a local-initiated version/feature
* negotiation sequence and is the counter-offer from the remote side based
* upon the initial version and feature set requested.
*/
static void glink_spi_receive_version_ack(struct glink_spi *glink,
u32 version,
u32 features)
{
GLINK_INFO(glink, "vers:%d features:%d\n", version, features);
switch (version) {
case 0:
/* Version negotiation failed */
break;
case GLINK_VERSION_1:
if (features == glink->features)
break;
glink->features &= features;
/* FALLTHROUGH */
default:
glink_spi_send_version(glink);
break;
}
}
/**
* glink_spi_send_open_req() - send a SPI_CMD_OPEN request to the remote
* @glink: Ptr to the glink edge
* @channel: Ptr to the channel that the open req is sent
*
* Allocates a local channel id and sends a SPI_CMD_OPEN message to the remote.
* Will return with refcount held, regardless of outcome.
*
* Returns 0 on success, negative errno otherwise.
*/
static int glink_spi_send_open_req(struct glink_spi *glink,
struct glink_spi_channel *channel)
{
struct cmd_msg {
__le16 cmd;
__le16 lcid;
__le16 length;
__le16 req_xprt;
__le64 reserved;
};
struct {
struct cmd_msg msg;
u8 name[GLINK_NAME_SIZE];
} __packed req;
int name_len = strlen(channel->name) + 1;
int req_len = ALIGN(sizeof(req.msg) + name_len, SPI_ALIGNMENT);
int ret;
kref_get(&channel->refcount);
mutex_lock(&glink->idr_lock);
ret = idr_alloc_cyclic(&glink->lcids, channel,
SPI_GLINK_CID_MIN, SPI_GLINK_CID_MAX,
GFP_ATOMIC);
mutex_unlock(&glink->idr_lock);
if (ret < 0)
return ret;
channel->lcid = ret;
CH_INFO(channel, "\n");
memset(&req, 0, sizeof(req));
req.msg.cmd = cpu_to_le16(SPI_CMD_OPEN);
req.msg.lcid = cpu_to_le16(channel->lcid);
req.msg.length = cpu_to_le16(name_len);
strlcpy(req.name, channel->name, GLINK_NAME_SIZE);
ret = glink_spi_tx(glink, &req, req_len, NULL, 0, true);
if (ret)
goto remove_idr;
return 0;
remove_idr:
CH_INFO(channel, "remove_idr\n");
mutex_lock(&glink->idr_lock);
idr_remove(&glink->lcids, channel->lcid);
channel->lcid = 0;
mutex_unlock(&glink->idr_lock);
return ret;
}
static void glink_spi_send_open_ack(struct glink_spi *glink,
struct glink_spi_channel *channel)
{
struct glink_spi_msg msg = { 0 };
msg.cmd = cpu_to_le16(SPI_CMD_OPEN_ACK);
msg.param1 = cpu_to_le16(channel->rcid);
CH_INFO(channel, "\n");
glink_spi_tx(glink, &msg, sizeof(msg), NULL, 0, true);
}
static int glink_spi_rx_open_ack(struct glink_spi *glink, unsigned int lcid)
{
struct glink_spi_channel *channel;
mutex_lock(&glink->idr_lock);
channel = idr_find(&glink->lcids, lcid);
mutex_unlock(&glink->idr_lock);
if (!channel) {
GLINK_ERR(glink, "Invalid open ack packet %d\n", lcid);
return -EINVAL;
}
CH_INFO(channel, "\n");
complete_all(&channel->open_ack);
return 0;
}
static void glink_spi_send_close_req(struct glink_spi *glink,
struct glink_spi_channel *channel)
{
struct glink_spi_msg req = { 0 };
req.cmd = cpu_to_le16(SPI_CMD_CLOSE);
req.param1 = cpu_to_le16(channel->lcid);
CH_INFO(channel, "\n");
glink_spi_tx(glink, &req, sizeof(req), NULL, 0, true);
}
static void glink_spi_send_close_ack(struct glink_spi *glink,
unsigned int rcid)
{
struct glink_spi_msg req = { 0 };
req.cmd = cpu_to_le16(SPI_CMD_CLOSE_ACK);
req.param1 = cpu_to_le16(rcid);
GLINK_INFO(glink, "rcid:%d\n", rcid);
glink_spi_tx(glink, &req, sizeof(req), NULL, 0, true);
}
static int glink_spi_request_intent(struct glink_spi *glink,
struct glink_spi_channel *channel,
size_t size)
{
struct glink_spi_msg req = { 0 };
int ret;
kref_get(&channel->refcount);
mutex_lock(&channel->intent_req_lock);
reinit_completion(&channel->intent_req_comp);
req.cmd = cpu_to_le16(SPI_CMD_RX_INTENT_REQ);
req.param1 = cpu_to_le16(channel->lcid);
req.param2 = cpu_to_le32(size);
CH_INFO(channel, "size:%lu\n", size);
ret = glink_spi_tx(glink, &req, sizeof(req), NULL, 0, true);
if (ret)
goto unlock;
ret = wait_for_completion_timeout(&channel->intent_req_comp, 10 * HZ);
if (!ret) {
dev_err(&glink->dev, "intent request timed out\n");
ret = -ETIMEDOUT;
} else {
ret = channel->intent_req_result ? 0 : -ECANCELED;
}
unlock:
mutex_unlock(&channel->intent_req_lock);
kref_put(&channel->refcount, glink_spi_channel_release);
return ret;
}
static int glink_spi_handle_intent(struct glink_spi *glink,
unsigned int cid,
unsigned int count,
void *rx_data,
size_t avail)
{
struct glink_spi_rx_intent *intent;
struct glink_spi_channel *channel;
struct intent_pair {
__le32 size;
__le32 iid;
__le64 addr;
};
struct intent_pair *intents;
const size_t msglen = sizeof(struct intent_pair) * count;
int ret;
int i;
if (avail < msglen) {
dev_err(&glink->dev, "Not enough data in buf\n");
return avail;
}
mutex_lock(&glink->idr_lock);
channel = idr_find(&glink->rcids, cid);
mutex_unlock(&glink->idr_lock);
if (!channel) {
dev_err(&glink->dev, "intents for non-existing channel\n");
return msglen;
}
intents = (struct intent_pair *)rx_data;
for (i = 0; i < count; ++i) {
intent = kzalloc(sizeof(*intent), GFP_ATOMIC);
if (!intent)
break;
intent->id = le32_to_cpu(intents[i].iid);
intent->size = le32_to_cpu(intents[i].size);
intent->addr = (u32)le64_to_cpu(intents[i].addr);
CH_INFO(channel, "riid:%d size:%lu\n", intent->id,
intent->size);
mutex_lock(&channel->intent_lock);
ret = idr_alloc(&channel->riids, intent,
intent->id, intent->id + 1, GFP_ATOMIC);
mutex_unlock(&channel->intent_lock);
if (ret < 0)
dev_err(&glink->dev, "failed to store remote intent\n");
}
return msglen;
}
static void glink_spi_handle_intent_req_ack(struct glink_spi *glink,
unsigned int cid, bool granted)
{
struct glink_spi_channel *channel;
mutex_lock(&glink->idr_lock);
channel = idr_find(&glink->rcids, cid);
mutex_unlock(&glink->idr_lock);
if (!channel) {
dev_err(&glink->dev, "unable to find channel\n");
return;
}
channel->intent_req_result = granted;
complete(&channel->intent_req_comp);
CH_INFO(channel, "\n");
}
/**
* glink_spi_send_intent_req_ack() - convert an rx intent request ack cmd to
wire format and transmit
* @glink: The transport to transmit on.
* @channel: The glink channel
* @granted: The request response to encode.
*
* Return: 0 on success or standard Linux error code.
*/
static int glink_spi_send_intent_req_ack(struct glink_spi *glink,
struct glink_spi_channel *channel,
bool granted)
{
struct glink_spi_msg msg = { 0 };
msg.cmd = cpu_to_le16(SPI_CMD_RX_INTENT_REQ_ACK);
msg.param1 = cpu_to_le16(channel->lcid);
msg.param2 = cpu_to_le32(granted);
CH_INFO(channel, "\n");
glink_spi_tx(glink, &msg, sizeof(msg), NULL, 0, true);
return 0;
}
static struct glink_spi_rx_intent *
glink_spi_alloc_intent(struct glink_spi *glink,
struct glink_spi_channel *channel,
size_t size,
bool reuseable)
{
struct glink_spi_rx_intent *intent;
int ret;
intent = kzalloc(sizeof(*intent), GFP_KERNEL);
if (!intent)
return NULL;
intent->data = kzalloc(size, GFP_KERNEL);
if (!intent->data)
goto free_intent;
mutex_lock(&channel->intent_lock);
ret = idr_alloc_cyclic(&channel->liids, intent, 1, -1, GFP_ATOMIC);
if (ret < 0) {
mutex_unlock(&channel->intent_lock);
goto free_data;
}
mutex_unlock(&channel->intent_lock);
intent->id = ret;
intent->size = size;
intent->reuse = reuseable;
return intent;
free_data:
kfree(intent->data);
free_intent:
kfree(intent);
return NULL;
}
/**
* glink_spi_advertise_intent - convert an rx intent cmd to wire format and
* transmit
* @glink: The transport to transmit on.
* @channel: The local channel
* @size: The intent to pass on to remote.
*
* Return: 0 on success or standard Linux error code.
*/
static int glink_spi_advertise_intent(struct glink_spi *glink,
struct glink_spi_channel *channel,
struct glink_spi_rx_intent *intent)
{
struct command {
struct glink_spi_msg msg;
__le32 size;
__le32 liid;
__le64 addr;
} __packed;
struct command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.msg.cmd = cpu_to_le16(SPI_CMD_INTENT);
cmd.msg.param1 = cpu_to_le16(channel->lcid);
cmd.msg.param2 = cpu_to_le32(1);
cmd.size = cpu_to_le32(intent->size);
cmd.liid = cpu_to_le32(intent->id);
CH_INFO(channel, "count:%d size:%lu liid:%d\n", 1,
intent->size, intent->id);
glink_spi_tx(glink, &cmd, sizeof(cmd), NULL, 0, true);
return 0;
}
/**
* glink_spi_handle_intent_req() - Receive a request for rx_intent
* from remote side
* if_ptr: Pointer to the transport interface
* rcid: Remote channel ID
* size: size of the intent
*
* The function searches for the local channel to which the request for
* rx_intent has arrived and allocates and notifies the remote back
*/
static void glink_spi_handle_intent_req(struct glink_spi *glink,
u32 cid, size_t size)
{
struct glink_spi_rx_intent *intent;
struct glink_spi_channel *channel;
mutex_lock(&glink->idr_lock);
channel = idr_find(&glink->rcids, cid);
mutex_unlock(&glink->idr_lock);
if (!channel) {
pr_err("%s channel not found for cid %d\n", __func__, cid);
return;
}
intent = glink_spi_alloc_intent(glink, channel, size, false);
if (intent)
glink_spi_advertise_intent(glink, channel, intent);
glink_spi_send_intent_req_ack(glink, channel, !!intent);
}
static int glink_spi_send_short(struct glink_spi_channel *channel,
void *data, int len,
struct glink_spi_rx_intent *intent, bool wait)
{
struct glink_spi *glink = channel->glink;
struct {
struct glink_spi_msg msg;
u8 data[SHORT_SIZE];
} __packed req;
CH_INFO(channel, "intent offset:%d len:%d\n", intent->offset, len);
req.msg.cmd = cpu_to_le16(SPI_CMD_TX_SHORT_DATA);
req.msg.param1 = cpu_to_le16(channel->lcid);
req.msg.param2 = cpu_to_le32(intent->id);
req.msg.param3 = cpu_to_le32(len);
req.msg.param4 = cpu_to_be32(0);
memcpy(req.data, data, len);
mutex_lock(&glink->tx_lock);
while (glink_spi_tx_avail(glink) < sizeof(req)) {
if (!wait) {
mutex_unlock(&glink->tx_lock);
return -EAGAIN;
}
if (atomic_read(&glink->in_reset)) {
mutex_unlock(&glink->tx_lock);
return -EINVAL;
}
/* Wait without holding the tx_lock */
mutex_unlock(&glink->tx_lock);
usleep_range(TX_WAIT_US, TX_WAIT_US + 50);
mutex_lock(&glink->tx_lock);
}
glink_spi_tx_write(glink, &req, sizeof(req), NULL, 0);
mutex_unlock(&glink->tx_lock);
return 0;
}
static int glink_spi_send_data(struct glink_spi_channel *channel,
void *data, int chunk_size, int left_size,
struct glink_spi_rx_intent *intent, bool wait)
{
struct glink_spi *glink = channel->glink;
struct {
struct glink_spi_msg msg;
__le32 chunk_size;
__le32 left_size;
} __packed req;
CH_INFO(channel, "chunk:%d, left:%d\n", chunk_size, left_size);
memset(&req, 0, sizeof(req));
if (intent->offset)
req.msg.cmd = cpu_to_le16(SPI_CMD_TX_DATA_CONT);
else
req.msg.cmd = cpu_to_le16(SPI_CMD_TX_DATA);
req.msg.param1 = cpu_to_le16(channel->lcid);
req.msg.param2 = cpu_to_le32(intent->id);
req.chunk_size = cpu_to_le32(chunk_size);
req.left_size = cpu_to_le32(left_size);
mutex_lock(&glink->tx_lock);
while (glink_spi_tx_avail(glink) < sizeof(req)) {
if (!wait) {
mutex_unlock(&glink->tx_lock);
return -EAGAIN;
}
if (atomic_read(&glink->in_reset)) {
mutex_unlock(&glink->tx_lock);
return -EINVAL;
}
/* Wait without holding the tx_lock */
mutex_unlock(&glink->tx_lock);
usleep_range(TX_WAIT_US, TX_WAIT_US + 50);
mutex_lock(&glink->tx_lock);
}
glink_spi_write(glink, data, intent->addr + intent->offset, chunk_size);
intent->offset += chunk_size;
glink_spi_tx_write(glink, &req, sizeof(req), NULL, 0);
mutex_unlock(&glink->tx_lock);
return 0;
}
static int __glink_spi_send(struct glink_spi_channel *channel,
void *data, int len, bool wait)
{
struct glink_spi *glink = channel->glink;
struct glink_spi_rx_intent *intent = NULL;
struct glink_spi_rx_intent *tmp;
int size = len;
int iid = 0;
int ret = 0;
CH_INFO(channel, "size:%d, wait:%d\n", len, wait);
atomic_inc(&glink->activity_cnt);
spi_resume(&glink->cmpnt);
while (!intent) {
mutex_lock(&channel->intent_lock);
idr_for_each_entry(&channel->riids, tmp, iid) {
if (tmp->size >= len && !tmp->in_use) {
if (!intent)
intent = tmp;
else if (intent->size > tmp->size)
intent = tmp;
if (intent->size == len)
break;
}
}
if (intent)
intent->in_use = true;
mutex_unlock(&channel->intent_lock);
/* We found an available intent */
if (intent)
break;
if (!wait) {
ret = -EBUSY;
goto tx_exit;
}
ret = glink_spi_request_intent(glink, channel, len);
if (ret < 0)
goto tx_exit;
}
if (len <= SHORT_SIZE)
size = 0;
else if (size & (XPRT_ALIGNMENT - 1))
size = ALIGN(len - SHORT_SIZE, XPRT_ALIGNMENT);
if (size) {
ret = glink_spi_send_data(channel, data, size, len - size,
intent, wait);
if (ret)
goto tx_exit;
}
data = (char *)data + size;
size = len - size;
if (size)
ret = glink_spi_send_short(channel, data, size, intent, wait);
tx_exit:
/* Mark intent available if we failed */
if (ret && intent)
intent->in_use = false;
atomic_dec(&glink->activity_cnt);
return ret;
}
static void glink_spi_handle_rx_done(struct glink_spi *glink,
u32 cid, uint32_t iid,
bool reuse)
{
struct glink_spi_rx_intent *intent;
struct glink_spi_channel *channel;
mutex_lock(&glink->idr_lock);
channel = idr_find(&glink->rcids, cid);
mutex_unlock(&glink->idr_lock);
if (!channel) {
dev_err(&glink->dev, "invalid channel id received\n");
return;
}
mutex_lock(&channel->intent_lock);
intent = idr_find(&channel->riids, iid);
if (!intent) {
mutex_unlock(&channel->intent_lock);
dev_err(&glink->dev, "invalid intent id received\n");
return;
}
intent->offset = 0;
intent->in_use = false;
CH_INFO(channel, "reuse:%d iid:%d\n", reuse, intent->id);
if (!reuse) {
idr_remove(&channel->riids, intent->id);
kfree(intent);
}
mutex_unlock(&channel->intent_lock);
}
/**
* glink_spi_send_rx_done() - send a rx done to remote side
* glink: The transport to transmit on
* channel: The glink channel
* intent: the intent to send rx done for
*
* This function assumes the intent lock is held
*/
static void glink_spi_send_rx_done(struct glink_spi *glink,
struct glink_spi_channel *channel,
struct glink_spi_rx_intent *intent)
{
struct {
u16 id;
u16 lcid;
u32 liid;
u64 reserved;
} __packed cmd;
unsigned int cid = channel->lcid;
unsigned int iid = intent->id;
bool reuse = intent->reuse;
cmd.id = reuse ? SPI_CMD_RX_DONE_W_REUSE : SPI_CMD_RX_DONE;
cmd.lcid = cid;
cmd.liid = iid;
glink_spi_tx(glink, &cmd, sizeof(cmd), NULL, 0, true);
CH_INFO(channel, "reuse:%d liid:%d", reuse, iid);
}
/**
* glink_spi_free_intent() - Reset and free intent if not reusuable
* channel: The glink channel
* intent: the intent to send rx done for
*
* This function assumes the intent lock is held
*/
static void glink_spi_free_intent(struct glink_spi_channel *channel,
struct glink_spi_rx_intent *intent)
{
CH_INFO(channel, "reuse:%d liid:%d", intent->reuse, intent->id);
intent->offset = 0;
if (!intent->reuse) {
idr_remove(&channel->liids, intent->id);
kfree(intent->data);
kfree(intent);
}
}
/* Locally initiated rpmsg_create_ept */
static struct glink_spi_channel *glink_spi_create_local(struct glink_spi *glink,
const char *name)
{
struct glink_spi_channel *channel;
int ret;
channel = glink_spi_alloc_channel(glink, name);
if (IS_ERR(channel))
return ERR_CAST(channel);
CH_INFO(channel, "\n");
ret = glink_spi_send_open_req(glink, channel);
if (ret)
goto release_channel;
ret = wait_for_completion_timeout(&channel->open_ack, 5 * HZ);
if (!ret)
goto err_timeout;
ret = wait_for_completion_timeout(&channel->open_req, 5 * HZ);
if (!ret)
goto err_timeout;
glink_spi_send_open_ack(glink, channel);
return channel;
err_timeout:
CH_INFO(channel, "err_timeout\n");
/* glink_spi_send_open_req() did register the channel in lcids*/
mutex_lock(&glink->idr_lock);
idr_remove(&glink->lcids, channel->lcid);
mutex_unlock(&glink->idr_lock);
release_channel:
CH_INFO(channel, "release_channel\n");
/* Release glink_spi_send_open_req() reference */
kref_put(&channel->refcount, glink_spi_channel_release);
/* Release glink_spi_alloc_channel() reference */
kref_put(&channel->refcount, glink_spi_channel_release);
return ERR_PTR(-ETIMEDOUT);
}
/* Remote initiated rpmsg_create_ept */
static int glink_spi_create_remote(struct glink_spi *glink,
struct glink_spi_channel *channel)
{
int ret;
CH_INFO(channel, "\n");
glink_spi_send_open_ack(glink, channel);
ret = glink_spi_send_open_req(glink, channel);
if (ret)
goto close_link;
ret = wait_for_completion_timeout(&channel->open_ack, 5 * HZ);
if (!ret) {
ret = -ETIMEDOUT;
goto close_link;
}
return 0;
close_link:
CH_INFO(channel, "close_link %d\n", ret);
/*
* Send a close request to "undo" our open-ack. The close-ack will
* release glink_spi_send_open_req() reference and the last reference
* will be release after rx_close or transport unregister by calling
* glink_spi_remove().
*/
glink_spi_send_close_req(glink, channel);
return ret;
}
static struct rpmsg_endpoint *
glink_spi_create_ept(struct rpmsg_device *rpdev, rpmsg_rx_cb_t cb, void *priv,
struct rpmsg_channel_info chinfo)
{
struct glink_spi_channel *parent = to_glink_channel(rpdev->ept);
struct glink_spi_channel *channel;
struct glink_spi *glink = parent->glink;
struct rpmsg_endpoint *ept;
const char *name = chinfo.name;
int cid;
int ret;
mutex_lock(&glink->idr_lock);
idr_for_each_entry(&glink->rcids, channel, cid) {
if (!strcmp(channel->name, name))
break;
}
mutex_unlock(&glink->idr_lock);
if (!channel) {
channel = glink_spi_create_local(glink, name);
if (IS_ERR(channel))
return NULL;
} else {
ret = glink_spi_create_remote(glink, channel);
if (ret)
return NULL;
}
ept = &channel->ept;
ept->rpdev = rpdev;
ept->cb = cb;
ept->priv = priv;
ept->ops = &glink_endpoint_ops;
return ept;
}
static int glink_spi_announce_create(struct rpmsg_device *rpdev)
{
struct glink_spi_channel *channel = to_glink_channel(rpdev->ept);
struct device_node *np = rpdev->dev.of_node;
struct glink_spi *glink = channel->glink;
struct glink_spi_rx_intent *intent;
const struct property *prop = NULL;
__be32 defaults[] = { cpu_to_be32(SZ_1K), cpu_to_be32(5) };
int num_intents;
int num_groups = 1;
__be32 *val = defaults;
int size;
if (!completion_done(&channel->open_ack))
return 0;
prop = of_find_property(np, "qcom,intents", NULL);
if (prop) {
val = prop->value;
num_groups = prop->length / sizeof(u32) / 2;
}
/* Channel is now open, advertise base set of intents */
while (num_groups--) {
size = be32_to_cpup(val++);
num_intents = be32_to_cpup(val++);
while (num_intents--) {
intent = glink_spi_alloc_intent(glink, channel, size,
true);
if (!intent)
break;
glink_spi_advertise_intent(glink, channel, intent);
}
}
return 0;
}
static void glink_spi_destroy_ept(struct rpmsg_endpoint *ept)
{
struct glink_spi_channel *channel = to_glink_channel(ept);
struct glink_spi *glink = channel->glink;
unsigned long flags;
spin_lock_irqsave(&channel->recv_lock, flags);
channel->ept.cb = NULL;
spin_unlock_irqrestore(&channel->recv_lock, flags);
/* Decouple the potential rpdev from the channel */
channel->rpdev = NULL;
glink_spi_send_close_req(glink, channel);
}
static void glink_spi_rx_close(struct glink_spi *glink, unsigned int rcid)
{
struct rpmsg_channel_info chinfo;
struct glink_spi_channel *channel;
mutex_lock(&glink->idr_lock);
channel = idr_find(&glink->rcids, rcid);
mutex_unlock(&glink->idr_lock);
if (WARN(!channel, "close request on unknown channel\n"))
return;
CH_INFO(channel, "\n");
if (channel->rpdev) {
strlcpy(chinfo.name, channel->name, sizeof(chinfo.name));
chinfo.src = RPMSG_ADDR_ANY;
chinfo.dst = RPMSG_ADDR_ANY;
rpmsg_unregister_device(&glink->dev, &chinfo);
}
glink_spi_send_close_ack(glink, channel->rcid);
mutex_lock(&glink->idr_lock);
idr_remove(&glink->rcids, channel->rcid);
channel->rcid = 0;
mutex_unlock(&glink->idr_lock);
kref_put(&channel->refcount, glink_spi_channel_release);
}
static void glink_spi_rx_close_ack(struct glink_spi *glink, unsigned int lcid)
{
struct glink_spi_channel *channel;
mutex_lock(&glink->idr_lock);
channel = idr_find(&glink->lcids, lcid);
if (WARN(!channel, "close ack on unknown channel\n")) {
mutex_unlock(&glink->idr_lock);
return;
}
CH_INFO(channel, "\n");
idr_remove(&glink->lcids, channel->lcid);
channel->lcid = 0;
mutex_unlock(&glink->idr_lock);
kref_put(&channel->refcount, glink_spi_channel_release);
}
static int glink_spi_send(struct rpmsg_endpoint *ept, void *data, int len)
{
struct glink_spi_channel *channel = to_glink_channel(ept);
return __glink_spi_send(channel, data, len, true);
}
static int glink_spi_trysend(struct rpmsg_endpoint *ept, void *data, int len)
{
struct glink_spi_channel *channel = to_glink_channel(ept);
return __glink_spi_send(channel, data, len, false);
}
/**
* glink_spi_send_signals() - convert a signal cmd to wire format and transmit
* @glink: The transport to transmit on.
* @channel: The glink channel
* @sigs: The signals to encode.
*
* Return: 0 on success or standard Linux error code.
*/
static int glink_spi_send_signals(struct glink_spi *glink,
struct glink_spi_channel *channel,
u32 sigs)
{
struct glink_spi_msg msg;
msg.cmd = cpu_to_le16(SPI_CMD_SIGNALS);
msg.param1 = cpu_to_le16(channel->lcid);
msg.param2 = cpu_to_le32(sigs);
GLINK_INFO(glink, "sigs:%d\n", sigs);
return glink_spi_tx(glink, &msg, sizeof(msg), NULL, 0, true);
}
static int glink_spi_handle_signals(struct glink_spi *glink,
unsigned int rcid, unsigned int signals)
{
struct glink_spi_channel *channel;
u32 old;
mutex_lock(&glink->idr_lock);
channel = idr_find(&glink->rcids, rcid);
mutex_unlock(&glink->idr_lock);
if (!channel) {
dev_err(&glink->dev, "signal for non-existing channel\n");
return -EINVAL;
}
old = channel->rsigs;
channel->rsigs = signals;
if (channel->ept.sig_cb)
channel->ept.sig_cb(channel->ept.rpdev, old, channel->rsigs);
CH_INFO(channel, "old:%d new:%d\n", old, channel->rsigs);
return 0;
}
static int glink_spi_get_sigs(struct rpmsg_endpoint *ept,
u32 *lsigs, u32 *rsigs)
{
struct glink_spi_channel *channel = to_glink_channel(ept);
*lsigs = channel->lsigs;
*rsigs = channel->rsigs;
return 0;
}
static int glink_spi_set_sigs(struct rpmsg_endpoint *ept, u32 sigs)
{
struct glink_spi_channel *channel = to_glink_channel(ept);
struct glink_spi *glink = channel->glink;
channel->lsigs = sigs;
return glink_spi_send_signals(glink, channel, sigs);
}
/*
* Finds the device_node for the glink child interested in this channel.
*/
static struct device_node *glink_spi_match_channel(struct device_node *node,
const char *channel)
{
struct device_node *child;
const char *name;
const char *key;
int ret;
for_each_available_child_of_node(node, child) {
key = "qcom,glink-channels";
ret = of_property_read_string(child, key, &name);
if (ret)
continue;
if (strcmp(name, channel) == 0)
return child;
}
return NULL;
}
static const struct rpmsg_device_ops glink_device_ops = {
.create_ept = glink_spi_create_ept,
.announce_create = glink_spi_announce_create,
};
static const struct rpmsg_endpoint_ops glink_endpoint_ops = {
.destroy_ept = glink_spi_destroy_ept,
.send = glink_spi_send,
.trysend = glink_spi_trysend,
.get_sigs = glink_spi_get_sigs,
.set_sigs = glink_spi_set_sigs,
};
static void glink_spi_rpdev_release(struct device *dev)
{
struct rpmsg_device *rpdev = to_rpmsg_device(dev);
struct glink_spi_channel *channel = to_glink_channel(rpdev->ept);
channel->rpdev = NULL;
kfree(rpdev);
}
static int glink_spi_rx_open(struct glink_spi *glink, unsigned int rcid,
char *name)
{
struct glink_spi_channel *channel;
struct rpmsg_device *rpdev;
bool create_device = false;
struct device_node *node;
int lcid;
int ret;
mutex_lock(&glink->idr_lock);
idr_for_each_entry(&glink->lcids, channel, lcid) {
if (!strcmp(channel->name, name))
break;
}
mutex_unlock(&glink->idr_lock);
if (!channel) {
channel = glink_spi_alloc_channel(glink, name);
if (IS_ERR(channel))
return PTR_ERR(channel);
/* The opening dance was initiated by the remote */
create_device = true;
}
mutex_lock(&glink->idr_lock);
ret = idr_alloc(&glink->rcids, channel, rcid, rcid + 1, GFP_ATOMIC);
if (ret < 0) {
dev_err(&glink->dev, "Unable to insert channel into rcid list\n");
mutex_unlock(&glink->idr_lock);
goto free_channel;
}
channel->rcid = ret;
mutex_unlock(&glink->idr_lock);
complete_all(&channel->open_req);
if (create_device) {
rpdev = kzalloc(sizeof(*rpdev), GFP_KERNEL);
if (!rpdev) {
ret = -ENOMEM;
goto rcid_remove;
}
rpdev->ept = &channel->ept;
strlcpy(rpdev->id.name, name, RPMSG_NAME_SIZE);
rpdev->src = RPMSG_ADDR_ANY;
rpdev->dst = RPMSG_ADDR_ANY;
rpdev->ops = &glink_device_ops;
node = glink_spi_match_channel(glink->dev.of_node, name);
rpdev->dev.of_node = node;
rpdev->dev.parent = &glink->dev;
rpdev->dev.release = glink_spi_rpdev_release;
ret = rpmsg_register_device(rpdev);
if (ret)
goto free_rpdev;
channel->rpdev = rpdev;
}
CH_INFO(channel, "\n");
return 0;
free_rpdev:
CH_INFO(channel, "free_rpdev\n");
kfree(rpdev);
rcid_remove:
CH_INFO(channel, "rcid_remove\n");
mutex_lock(&glink->idr_lock);
idr_remove(&glink->rcids, channel->rcid);
channel->rcid = 0;
mutex_unlock(&glink->idr_lock);
free_channel:
CH_INFO(channel, "free_channel\n");
/* Release the reference, iff we took it */
if (create_device)
kref_put(&channel->refcount, glink_spi_channel_release);
return ret;
}
static int glink_spi_rx_data(struct glink_spi *glink,
unsigned int rcid, unsigned int liid,
void *rx_data, size_t avail)
{
struct glink_spi_rx_intent *intent;
struct glink_spi_channel *channel;
struct data_desc {
__le32 chunk_size;
__le32 left_size;
__le64 addr;
};
struct data_desc *hdr;
unsigned int chunk_size;
unsigned int left_size;
u32 addr;
size_t msglen;
unsigned long flags;
msglen = sizeof(*hdr);
if (avail < msglen) {
dev_dbg(&glink->dev, "Not enough data in fifo\n");
return avail;
}
hdr = (struct data_desc *)rx_data;
chunk_size = le32_to_cpu(hdr->chunk_size);
left_size = le32_to_cpu(hdr->left_size);
addr = (u32)le64_to_cpu(hdr->addr);
mutex_lock(&glink->idr_lock);
channel = idr_find(&glink->rcids, rcid);
mutex_unlock(&glink->idr_lock);
if (!channel) {
dev_dbg(&glink->dev, "Data on non-existing channel\n");
return msglen;
}
CH_INFO(channel, "chunk_size:%d left_size:%d\n", chunk_size, left_size);
mutex_lock(&channel->intent_lock);
intent = idr_find(&channel->liids, liid);
if (!intent) {
dev_err(&glink->dev,
"no intent found for channel %s intent %d",
channel->name, liid);
mutex_unlock(&channel->intent_lock);
return msglen;
}
if (intent->size - intent->offset < chunk_size) {
dev_err(&glink->dev, "Insufficient space in intent\n");
mutex_unlock(&channel->intent_lock);
/* The packet header lied, drop payload */
return msglen;
}
/* Read message from addr sent by WDSP */
glink_spi_read(glink, addr, intent->data + intent->offset, chunk_size);
intent->offset += chunk_size;
/* Handle message when no fragments remain to be received */
if (!left_size) {
glink_spi_send_rx_done(glink, channel, intent);
spin_lock_irqsave(&channel->recv_lock, flags);
if (channel->ept.cb) {
channel->ept.cb(channel->ept.rpdev,
intent->data,
intent->offset,
channel->ept.priv,
RPMSG_ADDR_ANY);
}
spin_unlock_irqrestore(&channel->recv_lock, flags);
glink_spi_free_intent(channel, intent);
}
mutex_unlock(&channel->intent_lock);
return msglen;
}
static int glink_spi_rx_short_data(struct glink_spi *glink,
unsigned int rcid, unsigned int liid,
unsigned int chunk_size,
unsigned int left_size,
void *src, size_t avail)
{
struct glink_spi_rx_intent *intent;
struct glink_spi_channel *channel;
size_t msglen = SHORT_SIZE;
unsigned long flags;
if (avail < msglen) {
dev_dbg(&glink->dev, "Not enough data in fifo\n");
return avail;
}
mutex_lock(&glink->idr_lock);
channel = idr_find(&glink->rcids, rcid);
mutex_unlock(&glink->idr_lock);
if (!channel) {
dev_dbg(&glink->dev, "Data on non-existing channel\n");
return msglen;
}
CH_INFO(channel, "chunk_size:%d left_size:%d\n", chunk_size, left_size);
mutex_lock(&channel->intent_lock);
intent = idr_find(&channel->liids, liid);
if (!intent) {
dev_err(&glink->dev,
"no intent found for channel %s intent %d",
channel->name, liid);
mutex_unlock(&channel->intent_lock);
return msglen;
}
if (intent->size - intent->offset < chunk_size) {
dev_err(&glink->dev, "Insufficient space in intent\n");
mutex_unlock(&channel->intent_lock);
/* The packet header lied, drop payload */
return msglen;
}
/* Read message from addr sent by WDSP */
memcpy(intent->data + intent->offset, src, chunk_size);
intent->offset += chunk_size;
/* Handle message when no fragments remain to be received */
if (!left_size) {
glink_spi_send_rx_done(glink, channel, intent);
spin_lock_irqsave(&channel->recv_lock, flags);
if (channel->ept.cb) {
channel->ept.cb(channel->ept.rpdev,
intent->data,
intent->offset,
channel->ept.priv,
RPMSG_ADDR_ANY);
}
spin_unlock_irqrestore(&channel->recv_lock, flags);
glink_spi_free_intent(channel, intent);
}
mutex_unlock(&channel->intent_lock);
return msglen;
}
static void glink_spi_defer_work(struct work_struct *work)
{
struct glink_spi *glink = container_of(work, struct glink_spi,
rx_defer_work);
struct glink_spi_defer_cmd *dcmd;
struct glink_spi_msg *msg;
unsigned long flags;
unsigned int param1;
unsigned int param2;
unsigned int param3;
unsigned int param4;
unsigned int cmd;
atomic_inc(&glink->activity_cnt);
spi_resume(&glink->cmpnt);
for (;;) {
spin_lock_irqsave(&glink->rx_lock, flags);
if (list_empty(&glink->rx_queue)) {
spin_unlock_irqrestore(&glink->rx_lock, flags);
break;
}
dcmd = list_first_entry(&glink->rx_queue,
struct glink_spi_defer_cmd, node);
list_del(&dcmd->node);
spin_unlock_irqrestore(&glink->rx_lock, flags);
msg = &dcmd->msg;
cmd = le16_to_cpu(msg->cmd);
param1 = le16_to_cpu(msg->param1);
param2 = le32_to_cpu(msg->param2);
param3 = le32_to_cpu(msg->param3);
param4 = le32_to_cpu(msg->param4);
switch (cmd) {
case SPI_CMD_OPEN:
glink_spi_rx_open(glink, param1, msg->data);
break;
case SPI_CMD_CLOSE:
glink_spi_rx_close(glink, param1);
break;
case SPI_CMD_CLOSE_ACK:
glink_spi_rx_close_ack(glink, param1);
break;
default:
WARN(1, "Unknown defer object %d\n", cmd);
break;
}
kfree(dcmd);
}
atomic_dec(&glink->activity_cnt);
}
static int glink_spi_rx_defer(struct glink_spi *glink,
void *rx_data, u32 rx_avail, size_t extra)
{
struct glink_spi_defer_cmd *dcmd;
extra = ALIGN(extra, SPI_ALIGNMENT);
if (rx_avail < sizeof(struct glink_spi_msg) + extra) {
dev_dbg(&glink->dev, "Insufficient data in rx fifo");
return -ENXIO;
}
dcmd = kzalloc(sizeof(*dcmd) + extra, GFP_KERNEL);
if (!dcmd)
return -ENOMEM;
INIT_LIST_HEAD(&dcmd->node);
memcpy(&dcmd->msg, rx_data, sizeof(dcmd->msg) + extra);
spin_lock(&glink->rx_lock);
list_add_tail(&dcmd->node, &glink->rx_queue);
spin_unlock(&glink->rx_lock);
schedule_work(&glink->rx_defer_work);
return 0;
}
static void glink_spi_process_cmd(struct glink_spi *glink, void *rx_data,
u32 rx_size)
{
struct glink_spi_msg *msg;
unsigned int param1;
unsigned int param2;
unsigned int param3;
unsigned int param4;
unsigned int cmd;
int offset = 0;
int ret;
u16 name_len;
char *name;
while (offset < rx_size) {
msg = (struct glink_spi_msg *)(rx_data + offset);
offset += sizeof(*msg);
cmd = le16_to_cpu(msg->cmd);
param1 = le16_to_cpu(msg->param1);
param2 = le32_to_cpu(msg->param2);
param3 = le32_to_cpu(msg->param3);
param4 = le32_to_cpu(msg->param4);
switch (cmd) {
case SPI_CMD_VERSION:
if (param3) {
glink->rx_pipe.length = param3;
glink->tx_pipe.length = param3;
}
glink_spi_receive_version(glink, param1, param2);
break;
case SPI_CMD_VERSION_ACK:
glink_spi_receive_version_ack(glink, param1, param2);
break;
case SPI_CMD_CLOSE:
case SPI_CMD_CLOSE_ACK:
glink_spi_rx_defer(glink,
rx_data + offset - sizeof(*msg),
rx_size + offset - sizeof(*msg), 0);
break;
case SPI_CMD_RX_INTENT_REQ:
glink_spi_handle_intent_req(glink, param1, param2);
break;
case SPI_CMD_OPEN_ACK:
ret = glink_spi_rx_open_ack(glink, param1);
break;
case SPI_CMD_OPEN:
name_len = (u16)(param2 & 0xFFFF);
name = rx_data + offset;
glink_spi_rx_defer(glink,
rx_data + offset - sizeof(*msg),
rx_size + offset - sizeof(*msg),
ALIGN(name_len, SPI_ALIGNMENT));
offset += ALIGN(name_len, SPI_ALIGNMENT);
break;
case SPI_CMD_TX_DATA:
case SPI_CMD_TX_DATA_CONT:
ret = glink_spi_rx_data(glink, param1, param2,
rx_data + offset,
rx_size - offset);
offset += ALIGN(ret, SPI_ALIGNMENT);
break;
case SPI_CMD_TX_SHORT_DATA:
ret = glink_spi_rx_short_data(glink,
param1, param2,
param3, param4,
rx_data + offset,
rx_size - offset);
offset += ALIGN(ret, SPI_ALIGNMENT);
break;
case SPI_CMD_READ_NOTIF:
break;
case SPI_CMD_INTENT:
ret = glink_spi_handle_intent(glink,
param1, param2,
rx_data + offset,
rx_size - offset);
offset += ALIGN(ret, SPI_ALIGNMENT);
break;
case SPI_CMD_RX_DONE:
glink_spi_handle_rx_done(glink, param1, param2, false);
break;
case SPI_CMD_RX_DONE_W_REUSE:
glink_spi_handle_rx_done(glink, param1, param2, true);
break;
case SPI_CMD_RX_INTENT_REQ_ACK:
glink_spi_handle_intent_req_ack(glink, param1, param2);
break;
case SPI_CMD_SIGNALS:
glink_spi_handle_signals(glink, param1, param2);
break;
default:
dev_err(&glink->dev, "unhandled rx cmd: %d\n", cmd);
break;
}
}
}
static void glink_spi_work(struct kthread_work *work)
{
struct glink_spi *glink = container_of(work, struct glink_spi,
rx_work);
u32 inactive_cycles = 0;
u32 rx_avail;
void *rx_data;
glink_spi_xprt_set_poll_mode(glink);
do {
rx_avail = glink_spi_rx_avail(glink);
if (!rx_avail) {
usleep_range(POLL_INTERVAL_US, POLL_INTERVAL_US + 50);
inactive_cycles++;
continue;
}
inactive_cycles = 0;
rx_data = kzalloc(rx_avail, GFP_KERNEL);
if (!rx_data)
break;
glink_spi_rx_peak(glink, rx_data, 0, rx_avail);
glink_spi_process_cmd(glink, rx_data, rx_avail);
kfree(rx_data);
glink_spi_rx_advance(glink, rx_avail);
} while (inactive_cycles < MAX_INACTIVE_CYCLES &&
!atomic_read(&glink->in_reset));
glink_spi_xprt_set_irq_mode(glink);
}
static int glink_spi_cmpnt_init(struct device *dev, void *priv)
{
return 0;
}
static int glink_spi_cmpnt_deinit(struct device *dev, void *priv)
{
return 0;
}
static int glink_spi_cmpnt_event_handler(struct device *dev, void *priv,
enum wdsp_event_type event,
void *data)
{
struct glink_spi *glink = dev_get_drvdata(dev);
struct glink_cmpnt *cmpnt = &glink->cmpnt;
int ret = 0;
switch (event) {
case WDSP_EVENT_PRE_BOOTUP:
if (!cmpnt || !cmpnt->master_dev || !cmpnt->master_ops ||
!cmpnt->master_ops->get_devops_for_cmpnt)
break;
ret = cmpnt->master_ops->get_devops_for_cmpnt(cmpnt->master_dev,
WDSP_CMPNT_TRANSPORT, &glink->spi_ops);
if (ret)
GLINK_ERR(glink, "Failed to get transport device\n");
break;
case WDSP_EVENT_POST_BOOTUP:
atomic_set(&glink->in_reset, 0);
ret = glink_spi_send_version(glink);
if (ret)
GLINK_ERR(glink, "failed to send version %d\n", ret);
/* FALLTHROUGH */
case WDSP_EVENT_IPC1_INTR:
kthread_queue_work(&glink->rx_worker, &glink->rx_work);
break;
case WDSP_EVENT_PRE_SHUTDOWN:
glink_spi_remove(glink);
break;
case WDSP_EVENT_RESUME:
break;
case WDSP_EVENT_SUSPEND:
if (atomic_read(&glink->activity_cnt))
ret = -EBUSY;
break;
default:
GLINK_INFO(glink, "unhandled event %d", event);
break;
}
return ret;
}
/* glink_spi_cmpnt_ops - Callback operations registered wtih wdsp framework */
static struct wdsp_cmpnt_ops glink_spi_cmpnt_ops = {
.init = glink_spi_cmpnt_init,
.deinit = glink_spi_cmpnt_deinit,
.event_handler = glink_spi_cmpnt_event_handler,
};
static int glink_component_bind(struct device *dev, struct device *master,
void *data)
{
struct glink_spi *glink = dev_get_drvdata(dev);
struct glink_cmpnt *cmpnt = &glink->cmpnt;
int ret = 0;
cmpnt->master_dev = master;
cmpnt->master_ops = data;
if (cmpnt->master_ops && cmpnt->master_ops->register_cmpnt_ops)
ret = cmpnt->master_ops->register_cmpnt_ops(master, dev, glink,
&glink_spi_cmpnt_ops);
else
ret = -EINVAL;
if (ret)
dev_err(dev, "%s: register_cmpnt_ops failed, err = %d\n",
__func__, ret);
return ret;
}
static void glink_component_unbind(struct device *dev, struct device *master,
void *data)
{
struct glink_spi *glink = dev_get_drvdata(dev);
struct glink_cmpnt *cmpnt = &glink->cmpnt;
cmpnt->master_dev = NULL;
cmpnt->master_ops = NULL;
}
static const struct component_ops glink_component_ops = {
.bind = glink_component_bind,
.unbind = glink_component_unbind,
};
static int glink_spi_init_pipe(const char *key, struct device_node *node,
struct glink_spi_pipe *pipe)
{
const struct property *prop = NULL;
__be32 *addrs;
prop = of_find_property(node, key, NULL);
if (!prop) {
pr_err("%s failed to find prop %s", __func__, key);
return -ENODEV;
}
if ((prop->length / sizeof(u32)) != 2) {
pr_err("%s %s wrong length %d", __func__, key, prop->length);
return -EINVAL;
}
addrs = prop->value;
pipe->tail_addr = be32_to_cpup(addrs++);
pipe->head_addr = be32_to_cpup(addrs++);
pipe->length = DEFAULT_FIFO_SIZE;
return 0;
}
static void glink_spi_release(struct device *dev)
{
struct glink_spi *glink = container_of(dev, struct glink_spi, dev);
kfree(glink);
}
struct glink_spi *qcom_glink_spi_register(struct device *parent,
struct device_node *node)
{
struct glink_spi *glink;
struct device *dev;
int ret;
glink = kzalloc(sizeof(*glink), GFP_KERNEL);
if (!glink)
return ERR_PTR(-ENOMEM);
dev = &glink->dev;
dev->parent = parent;
dev->of_node = node;
dev->release = glink_spi_release;
dev_set_name(dev, "%s:%s", node->parent->name, node->name);
ret = device_register(dev);
if (ret) {
pr_err("failed to register glink edge\n");
return ERR_PTR(ret);
}
dev_set_drvdata(dev, glink);
ret = of_property_read_string(dev->of_node, "label", &glink->name);
if (ret < 0)
glink->name = dev->of_node->name;
glink->features = GLINK_FEATURE_INTENT_REUSE;
mutex_init(&glink->tx_lock);
spin_lock_init(&glink->rx_lock);
INIT_LIST_HEAD(&glink->rx_queue);
INIT_WORK(&glink->rx_defer_work, glink_spi_defer_work);
kthread_init_work(&glink->rx_work, glink_spi_work);
kthread_init_worker(&glink->rx_worker);
mutex_init(&glink->idr_lock);
idr_init(&glink->lcids);
idr_init(&glink->rcids);
atomic_set(&glink->in_reset, 1);
atomic_set(&glink->activity_cnt, 0);
ret = glink_spi_init_pipe("tx-descriptors", node, &glink->tx_pipe);
if (ret)
goto err_put_dev;
ret = glink_spi_init_pipe("rx-descriptors", node, &glink->rx_pipe);
if (ret)
goto err_put_dev;
ret = component_add(dev, &glink_component_ops);
if (ret) {
dev_err(dev, "component_add failed, err = %d\n", ret);
goto err_put_dev;
}
glink->ilc = ipc_log_context_create(GLINK_LOG_PAGE_CNT, glink->name, 0);
glink->rx_task = kthread_run(kthread_worker_fn, &glink->rx_worker,
"spi_%s", glink->name);
if (IS_ERR(glink->rx_task)) {
ret = PTR_ERR(glink->rx_task);
dev_err(dev, "kthread run failed %d\n", ret);
goto err_put_dev;
}
return glink;
err_put_dev:
dev_set_drvdata(dev, NULL);
put_device(dev);
return ERR_PTR(ret);
}
EXPORT_SYMBOL(qcom_glink_spi_register);
static int glink_spi_remove_device(struct device *dev, void *data)
{
device_unregister(dev);
return 0;
}
static void glink_spi_remove(struct glink_spi *glink)
{
struct glink_spi_pipe *rx_pipe = &glink->rx_pipe;
struct glink_spi_pipe *tx_pipe = &glink->tx_pipe;
struct glink_spi_channel *channel;
int cid;
int ret;
GLINK_INFO(glink, "\n");
atomic_set(&glink->in_reset, 1);
kthread_cancel_work_sync(&glink->rx_work);
cancel_work_sync(&glink->rx_defer_work);
ret = device_for_each_child(&glink->dev, NULL, glink_spi_remove_device);
if (ret)
dev_warn(&glink->dev, "Can't remove GLINK devices: %d\n", ret);
mutex_lock(&glink->idr_lock);
/* Release any defunct local channels, waiting for close-ack */
idr_for_each_entry(&glink->lcids, channel, cid) {
/* Wakeup threads waiting for intent*/
complete(&channel->intent_req_comp);
kref_put(&channel->refcount, glink_spi_channel_release);
idr_remove(&glink->lcids, cid);
}
/* Release any defunct local channels, waiting for close-req */
idr_for_each_entry(&glink->rcids, channel, cid) {
kref_put(&channel->refcount, glink_spi_channel_release);
idr_remove(&glink->rcids, cid);
}
idr_destroy(&glink->lcids);
idr_destroy(&glink->rcids);
mutex_unlock(&glink->idr_lock);
tx_pipe->fifo_base = 0;
tx_pipe->local_addr = 0;
tx_pipe->length = DEFAULT_FIFO_SIZE;
rx_pipe->fifo_base = 0;
rx_pipe->local_addr = 0;
rx_pipe->length = DEFAULT_FIFO_SIZE;
}
void qcom_glink_spi_unregister(struct glink_spi *glink)
{
device_unregister(&glink->dev);
}
EXPORT_SYMBOL(qcom_glink_spi_unregister);
MODULE_DESCRIPTION("QTI GLINK SPI Transport");
MODULE_LICENSE("GPL v2");