blob: e54269c0f3331a03ff6b9c1bf5f26cf76c57f8a5 [file] [log] [blame]
/*
* Synaptics TCM touchscreen driver
*
* Copyright (C) 2017-2019 Synaptics Incorporated. All rights reserved.
*
* Copyright (C) 2017-2019 Scott Lin <scott.lin@tw.synaptics.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED "AS-IS," AND SYNAPTICS
* EXPRESSLY DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
* AND ANY WARRANTIES OF NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS.
* IN NO EVENT SHALL SYNAPTICS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION
* WITH THE USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, HOWEVER CAUSED
* AND BASED ON ANY THEORY OF LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, AND EVEN IF SYNAPTICS WAS ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE. IF A TRIBUNAL OF COMPETENT JURISDICTION DOES
* NOT PERMIT THE DISCLAIMER OF DIRECT DAMAGES OR ANY OTHER DAMAGES, SYNAPTICS'
* TOTAL CUMULATIVE LIABILITY TO ANY PARTY SHALL NOT EXCEED ONE HUNDRED U.S.
* DOLLARS.
*/
#include <linux/spi/spi.h>
#include <linux/of_gpio.h>
#include "synaptics_tcm_core.h"
static unsigned char *buf;
static unsigned int buf_size;
static struct spi_transfer *xfer;
static struct syna_tcm_bus_io bus_io;
static struct syna_tcm_hw_interface hw_if;
static struct platform_device *syna_tcm_spi_device;
#ifdef CONFIG_OF
static int parse_dt(struct device *dev, struct syna_tcm_board_data *bdata)
{
int retval;
u32 value;
struct property *prop;
struct device_node *np = dev->of_node;
const char *name;
prop = of_find_property(np, "synaptics,irq-gpio", NULL);
if (prop && prop->length) {
bdata->irq_gpio = of_get_named_gpio_flags(np,
"synaptics,irq-gpio", 0,
(enum of_gpio_flags *)&bdata->irq_flags);
} else {
bdata->irq_gpio = -1;
}
retval = of_property_read_u32(np, "synaptics,irq-on-state", &value);
if (retval < 0)
bdata->irq_on_state = 0;
else
bdata->irq_on_state = value;
retval = of_property_read_string(np, "synaptics,pwr-reg-name", &name);
if (retval < 0)
bdata->pwr_reg_name = NULL;
else
bdata->pwr_reg_name = name;
retval = of_property_read_string(np, "synaptics,bus-reg-name", &name);
if (retval < 0)
bdata->bus_reg_name = NULL;
else
bdata->bus_reg_name = name;
prop = of_find_property(np, "synaptics,power-gpio", NULL);
if (prop && prop->length) {
bdata->power_gpio = of_get_named_gpio_flags(np,
"synaptics,power-gpio", 0, NULL);
} else {
bdata->power_gpio = -1;
}
prop = of_find_property(np, "synaptics,power-on-state", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,power-on-state",
&value);
if (retval < 0) {
LOGE(dev,
"Failed to read synaptics,power-on-state\n");
return retval;
}
bdata->power_on_state = value;
} else {
bdata->power_on_state = 0;
}
prop = of_find_property(np, "synaptics,power-delay-ms", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,power-delay-ms",
&value);
if (retval < 0) {
LOGE(dev, "Failed to read synaptics,power-delay-ms\n");
return retval;
}
bdata->power_delay_ms = value;
} else {
bdata->power_delay_ms = 0;
}
prop = of_find_property(np, "synaptics,reset-gpio", NULL);
if (prop && prop->length) {
bdata->reset_gpio = of_get_named_gpio_flags(np,
"synaptics,reset-gpio", 0, NULL);
} else {
bdata->reset_gpio = -1;
}
prop = of_find_property(np, "synaptics,reset-on-state", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,reset-on-state",
&value);
if (retval < 0) {
LOGE(dev, "Failed to read synaptics,reset-on-state\n");
return retval;
}
bdata->reset_on_state = value;
} else {
bdata->reset_on_state = 0;
}
prop = of_find_property(np, "synaptics,reset-active-ms", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,reset-active-ms",
&value);
if (retval < 0) {
LOGE(dev, "Failed to read synaptics,reset-active-ms\n");
return retval;
}
bdata->reset_active_ms = value;
} else {
bdata->reset_active_ms = 0;
}
prop = of_find_property(np, "synaptics,reset-delay-ms", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,reset-delay-ms",
&value);
if (retval < 0) {
LOGE(dev, "Unable to read synaptics,reset-delay-ms\n");
return retval;
}
bdata->reset_delay_ms = value;
} else {
bdata->reset_delay_ms = 0;
}
prop = of_find_property(np, "synaptics,x-flip", NULL);
bdata->x_flip = prop > 0 ? true : false;
prop = of_find_property(np, "synaptics,y-flip", NULL);
bdata->y_flip = prop > 0 ? true : false;
prop = of_find_property(np, "synaptics,swap-axes", NULL);
bdata->swap_axes = prop > 0 ? true : false;
prop = of_find_property(np, "synaptics,byte-delay-us", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,byte-delay-us",
&value);
if (retval < 0) {
LOGE(dev, "Unable to read synaptics,byte-delay-us\n");
return retval;
}
bdata->byte_delay_us = value;
} else {
bdata->byte_delay_us = 0;
}
prop = of_find_property(np, "synaptics,block-delay-us", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,block-delay-us",
&value);
if (retval < 0) {
LOGE(dev, "Unable to read synaptics,block-delay-us\n");
return retval;
}
bdata->block_delay_us = value;
} else {
bdata->block_delay_us = 0;
}
prop = of_find_property(np, "synaptics,spi-mode", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,spi-mode",
&value);
if (retval < 0) {
LOGE(dev, "Unable to read synaptics,spi-mode\n");
return retval;
}
bdata->spi_mode = value;
} else {
bdata->spi_mode = 0;
}
prop = of_find_property(np, "synaptics,ubl-max-freq", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,ubl-max-freq",
&value);
if (retval < 0) {
LOGE(dev, "Unable to read synaptics,ubl-max-freq\n");
return retval;
}
bdata->ubl_max_freq = value;
} else {
bdata->ubl_max_freq = 0;
}
prop = of_find_property(np, "synaptics,ubl-byte-delay-us", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,ubl-byte-delay-us",
&value);
if (retval < 0) {
LOGE(dev,
"Unable to read synaptics,ubl-byte-delay-us\n");
return retval;
}
bdata->ubl_byte_delay_us = value;
} else {
bdata->ubl_byte_delay_us = 0;
}
return 0;
}
#endif
static int syna_tcm_spi_alloc_mem(struct syna_tcm_hcd *tcm_hcd,
unsigned int count, unsigned int size)
{
static unsigned int xfer_count;
struct spi_device *spi = to_spi_device(tcm_hcd->pdev->dev.parent);
if (count > xfer_count) {
kfree(xfer);
xfer = kcalloc(count, sizeof(*xfer), GFP_KERNEL);
if (!xfer) {
LOGE(&spi->dev,
"Failed to allocate memory for xfer\n");
xfer_count = 0;
return -ENOMEM;
}
xfer_count = count;
} else {
memset(xfer, 0, count * sizeof(*xfer));
}
if (size > buf_size) {
if (buf_size)
kfree(buf);
buf = kmalloc(size, GFP_KERNEL);
if (!buf) {
LOGE(&spi->dev,
"Failed to allocate memory for buf\n");
buf_size = 0;
return -ENOMEM;
}
buf_size = size;
}
return 0;
}
static int syna_tcm_spi_rmi_read(struct syna_tcm_hcd *tcm_hcd,
unsigned short addr, unsigned char *data, unsigned int length)
{
int retval;
unsigned int idx;
unsigned int mode;
unsigned int byte_count;
struct spi_message msg;
struct spi_device *spi = to_spi_device(tcm_hcd->pdev->dev.parent);
const struct syna_tcm_board_data *bdata = tcm_hcd->hw_if->bdata;
mutex_lock(&tcm_hcd->io_ctrl_mutex);
spi_message_init(&msg);
byte_count = length + 2;
if (bdata->ubl_byte_delay_us == 0)
retval = syna_tcm_spi_alloc_mem(tcm_hcd, 2, byte_count);
else
retval = syna_tcm_spi_alloc_mem(tcm_hcd, byte_count, 3);
if (retval < 0) {
LOGE(&spi->dev,
"Failed to allocate memory\n");
goto exit;
}
buf[0] = (unsigned char)(addr >> 8) | 0x80;
buf[1] = (unsigned char)addr;
if (bdata->ubl_byte_delay_us == 0) {
xfer[0].len = 2;
xfer[0].tx_buf = buf;
xfer[0].speed_hz = bdata->ubl_max_freq;
spi_message_add_tail(&xfer[0], &msg);
memset(&buf[2], 0xff, length);
xfer[1].len = length;
xfer[1].tx_buf = &buf[2];
xfer[1].rx_buf = data;
if (bdata->block_delay_us)
xfer[1].delay_usecs = bdata->block_delay_us;
xfer[1].speed_hz = bdata->ubl_max_freq;
spi_message_add_tail(&xfer[1], &msg);
} else {
buf[2] = 0xff;
for (idx = 0; idx < byte_count; idx++) {
xfer[idx].len = 1;
if (idx < 2) {
xfer[idx].tx_buf = &buf[idx];
} else {
xfer[idx].tx_buf = &buf[2];
xfer[idx].rx_buf = &data[idx - 2];
}
xfer[idx].delay_usecs = bdata->ubl_byte_delay_us;
if (bdata->block_delay_us && (idx == byte_count - 1))
xfer[idx].delay_usecs = bdata->block_delay_us;
xfer[idx].speed_hz = bdata->ubl_max_freq;
spi_message_add_tail(&xfer[idx], &msg);
}
}
mode = spi->mode;
spi->mode = SPI_MODE_3;
retval = spi_sync(spi, &msg);
if (retval == 0) {
retval = length;
} else {
LOGE(&spi->dev,
"Failed to complete SPI transfer, error = %d\n",
retval);
}
spi->mode = mode;
exit:
mutex_unlock(&tcm_hcd->io_ctrl_mutex);
return retval;
}
static int syna_tcm_spi_rmi_write(struct syna_tcm_hcd *tcm_hcd,
unsigned short addr, unsigned char *data, unsigned int length)
{
int retval;
unsigned int mode;
unsigned int byte_count;
struct spi_message msg;
struct spi_device *spi = to_spi_device(tcm_hcd->pdev->dev.parent);
const struct syna_tcm_board_data *bdata = tcm_hcd->hw_if->bdata;
mutex_lock(&tcm_hcd->io_ctrl_mutex);
spi_message_init(&msg);
byte_count = length + 2;
retval = syna_tcm_spi_alloc_mem(tcm_hcd, 1, byte_count);
if (retval < 0) {
LOGE(&spi->dev,
"Failed to allocate memory\n");
goto exit;
}
buf[0] = (unsigned char)(addr >> 8) & ~0x80;
buf[1] = (unsigned char)addr;
retval = secure_memcpy(&buf[2],
buf_size - 2,
data,
length,
length);
if (retval < 0) {
LOGE(&spi->dev,
"Failed to copy write data\n");
goto exit;
}
xfer[0].len = byte_count;
xfer[0].tx_buf = buf;
if (bdata->block_delay_us)
xfer[0].delay_usecs = bdata->block_delay_us;
spi_message_add_tail(&xfer[0], &msg);
mode = spi->mode;
spi->mode = SPI_MODE_3;
retval = spi_sync(spi, &msg);
if (retval == 0) {
retval = length;
} else {
LOGE(&spi->dev,
"Failed to complete SPI transfer, error = %d\n",
retval);
}
spi->mode = mode;
exit:
mutex_unlock(&tcm_hcd->io_ctrl_mutex);
return retval;
}
static int syna_tcm_spi_read(struct syna_tcm_hcd *tcm_hcd, unsigned char *data,
unsigned int length)
{
int retval;
unsigned int idx;
struct spi_message msg;
struct spi_device *spi = to_spi_device(tcm_hcd->pdev->dev.parent);
const struct syna_tcm_board_data *bdata = tcm_hcd->hw_if->bdata;
mutex_lock(&tcm_hcd->io_ctrl_mutex);
spi_message_init(&msg);
if (bdata->byte_delay_us == 0)
retval = syna_tcm_spi_alloc_mem(tcm_hcd, 1, length);
else
retval = syna_tcm_spi_alloc_mem(tcm_hcd, length, 1);
if (retval < 0) {
LOGE(tcm_hcd->pdev->dev.parent,
"Failed to allocate memory\n");
goto exit;
}
if (bdata->byte_delay_us == 0) {
memset(buf, 0xff, length);
xfer[0].len = length;
xfer[0].tx_buf = buf;
xfer[0].rx_buf = data;
if (bdata->block_delay_us)
xfer[0].delay_usecs = bdata->block_delay_us;
spi_message_add_tail(&xfer[0], &msg);
} else {
buf[0] = 0xff;
for (idx = 0; idx < length; idx++) {
xfer[idx].len = 1;
xfer[idx].tx_buf = buf;
xfer[idx].rx_buf = &data[idx];
xfer[idx].delay_usecs = bdata->byte_delay_us;
if (bdata->block_delay_us && (idx == length - 1))
xfer[idx].delay_usecs = bdata->block_delay_us;
spi_message_add_tail(&xfer[idx], &msg);
}
}
retval = spi_sync(spi, &msg);
if (retval == 0) {
retval = length;
} else {
LOGE(&spi->dev,
"Failed to complete SPI transfer, error = %d\n",
retval);
}
exit:
mutex_unlock(&tcm_hcd->io_ctrl_mutex);
return retval;
}
static int syna_tcm_spi_write(struct syna_tcm_hcd *tcm_hcd, unsigned char *data,
unsigned int length)
{
int retval;
unsigned int idx;
struct spi_message msg;
struct spi_device *spi = to_spi_device(tcm_hcd->pdev->dev.parent);
const struct syna_tcm_board_data *bdata = tcm_hcd->hw_if->bdata;
mutex_lock(&tcm_hcd->io_ctrl_mutex);
spi_message_init(&msg);
if (bdata->byte_delay_us == 0)
retval = syna_tcm_spi_alloc_mem(tcm_hcd, 1, 0);
else
retval = syna_tcm_spi_alloc_mem(tcm_hcd, length, 0);
if (retval < 0) {
LOGE(&spi->dev,
"Failed to allocate memory\n");
goto exit;
}
if (bdata->byte_delay_us == 0) {
xfer[0].len = length;
xfer[0].tx_buf = data;
if (bdata->block_delay_us)
xfer[0].delay_usecs = bdata->block_delay_us;
spi_message_add_tail(&xfer[0], &msg);
} else {
for (idx = 0; idx < length; idx++) {
xfer[idx].len = 1;
xfer[idx].tx_buf = &data[idx];
xfer[idx].delay_usecs = bdata->byte_delay_us;
if (bdata->block_delay_us && (idx == length - 1))
xfer[idx].delay_usecs = bdata->block_delay_us;
spi_message_add_tail(&xfer[idx], &msg);
}
}
retval = spi_sync(spi, &msg);
if (retval == 0) {
retval = length;
} else {
LOGE(&spi->dev,
"Failed to complete SPI transfer, error = %d\n",
retval);
}
exit:
mutex_unlock(&tcm_hcd->io_ctrl_mutex);
return retval;
}
static int syna_tcm_spi_probe(struct spi_device *spi)
{
int retval;
if (spi->master->flags & SPI_MASTER_HALF_DUPLEX) {
LOGE(&spi->dev,
"Full duplex not supported by host\n");
return -EIO;
}
syna_tcm_spi_device = platform_device_alloc(PLATFORM_DRIVER_NAME, 0);
if (!syna_tcm_spi_device) {
LOGE(&spi->dev,
"Failed to allocate platform device\n");
return -ENOMEM;
}
#ifdef CONFIG_OF
hw_if.bdata = devm_kzalloc(&spi->dev, sizeof(*hw_if.bdata), GFP_KERNEL);
if (!hw_if.bdata) {
LOGE(&spi->dev,
"Failed to allocate memory for board data\n");
return -ENOMEM;
}
parse_dt(&spi->dev, hw_if.bdata);
#else
hw_if.bdata = spi->dev.platform_data;
#endif
switch (hw_if.bdata->spi_mode) {
case 0:
spi->mode = SPI_MODE_0;
break;
case 1:
spi->mode = SPI_MODE_1;
break;
case 2:
spi->mode = SPI_MODE_2;
break;
case 3:
spi->mode = SPI_MODE_3;
break;
}
bus_io.type = BUS_SPI;
bus_io.read = syna_tcm_spi_read;
bus_io.write = syna_tcm_spi_write;
bus_io.rmi_read = syna_tcm_spi_rmi_read;
bus_io.rmi_write = syna_tcm_spi_rmi_write;
hw_if.bus_io = &bus_io;
spi->bits_per_word = 8;
retval = spi_setup(spi);
if (retval < 0) {
LOGE(&spi->dev,
"Failed to set up SPI protocol driver\n");
return retval;
}
syna_tcm_spi_device->dev.parent = &spi->dev;
syna_tcm_spi_device->dev.platform_data = &hw_if;
retval = platform_device_add(syna_tcm_spi_device);
if (retval < 0) {
LOGE(&spi->dev,
"Failed to add platform device\n");
return retval;
}
return 0;
}
static int syna_tcm_spi_remove(struct spi_device *spi)
{
syna_tcm_spi_device->dev.platform_data = NULL;
platform_device_unregister(syna_tcm_spi_device);
return 0;
}
static const struct spi_device_id syna_tcm_id_table[] = {
{SPI_MODULE_NAME, 0},
{},
};
MODULE_DEVICE_TABLE(spi, syna_tcm_id_table);
#ifdef CONFIG_OF
static const struct of_device_id syna_tcm_of_match_table[] = {
{
.compatible = "synaptics,tcm-spi",
},
{},
};
MODULE_DEVICE_TABLE(of, syna_tcm_of_match_table);
#else
#define syna_tcm_of_match_table NULL
#endif
static struct spi_driver syna_tcm_spi_driver = {
.driver = {
.name = SPI_MODULE_NAME,
.owner = THIS_MODULE,
.of_match_table = syna_tcm_of_match_table,
},
.probe = syna_tcm_spi_probe,
.remove = syna_tcm_spi_remove,
.id_table = syna_tcm_id_table,
};
int syna_tcm_bus_init(void)
{
return spi_register_driver(&syna_tcm_spi_driver);
}
EXPORT_SYMBOL(syna_tcm_bus_init);
void syna_tcm_bus_exit(void)
{
kfree(buf);
kfree(xfer);
spi_unregister_driver(&syna_tcm_spi_driver);
}
EXPORT_SYMBOL(syna_tcm_bus_exit);
MODULE_AUTHOR("Synaptics, Inc.");
MODULE_DESCRIPTION("Synaptics TCM SPI Bus Module");
MODULE_LICENSE("GPL v2");