blob: 4d40fc141b4213a55016e1c28931a580d1ecfb00 [file] [log] [blame]
/* Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/poll.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/input/mt.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <uapi/linux/hbtp_input.h>
#include "../input-compat.h"
#include <linux/ktime.h>
#include <linux/uaccess.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/delay.h>
#include <linux/completion.h>
#if defined(CONFIG_FB)
#include <linux/notifier.h>
#include <linux/fb.h>
#endif
#define HBTP_INPUT_NAME "hbtp_input"
#define DISP_COORDS_SIZE 2
#define NUM_DEVICES 1
#define HBTP_PINCTRL_VALID_STATE_CNT (2)
#define HBTP_HOLD_DURATION_US (10)
#define HBTP_PINCTRL_DDIC_SEQ_NUM (4)
static DEFINE_IDA(hbtp_minor_id);
struct hbtp_data {
struct platform_device *pdev;
struct cdev cdev;
struct device *dev;
dev_t hbtp_dev;
struct class *drv_class;
struct input_dev *input_dev;
s32 count;
struct mutex mutex;
struct mutex sensormutex;
struct hbtp_sensor_data *sensor_data;
bool touch_status[HBTP_MAX_FINGER];
#if defined(CONFIG_FB)
struct notifier_block fb_notif;
#endif
struct pinctrl *ts_pinctrl;
struct pinctrl_state *gpio_state_active;
struct pinctrl_state *gpio_state_suspend;
bool ddic_rst_enabled;
struct pinctrl_state *ddic_rst_state_active;
struct pinctrl_state *ddic_rst_state_suspend;
u32 ts_pinctrl_seq_delay;
u32 ddic_pinctrl_seq_delay[HBTP_PINCTRL_DDIC_SEQ_NUM];
u32 fb_resume_seq_delay;
bool lcd_on;
bool power_suspended;
bool power_sync_enabled;
bool power_sig_enabled;
struct completion power_resume_sig;
struct completion power_suspend_sig;
struct regulator *vcc_ana;
struct regulator *vcc_dig;
int afe_load_ua;
int afe_vtg_min_uv;
int afe_vtg_max_uv;
int dig_load_ua;
int dig_vtg_min_uv;
int dig_vtg_max_uv;
int disp_maxx; /* Display Max X */
int disp_maxy; /* Display Max Y */
int def_maxx; /* Default Max X */
int def_maxy; /* Default Max Y */
int des_maxx; /* Desired Max X */
int des_maxy; /* Desired Max Y */
bool use_scaling;
bool override_disp_coords;
bool manage_afe_power_ana;
bool manage_power_dig;
u32 power_on_delay;
u32 power_off_delay;
bool manage_pin_ctrl;
struct kobject *sysfs_kobject;
s16 ROI[MAX_ROI_SIZE];
s16 accelBuffer[MAX_ACCEL_SIZE];
u32 display_status;
};
static struct hbtp_data *hbtp;
static struct kobject *sensor_kobject;
#if defined(CONFIG_FB)
static int hbtp_fb_suspend(struct hbtp_data *ts);
static int hbtp_fb_early_resume(struct hbtp_data *ts);
static int hbtp_fb_resume(struct hbtp_data *ts);
#endif
#if defined(CONFIG_FB)
static int fb_notifier_callback(struct notifier_block *self,
unsigned long event, void *data)
{
int blank;
struct fb_event *evdata = data;
struct hbtp_data *hbtp_data =
container_of(self, struct hbtp_data, fb_notif);
if (evdata && evdata->data && hbtp_data &&
(event == FB_EARLY_EVENT_BLANK ||
event == FB_R_EARLY_EVENT_BLANK)) {
blank = *(int *)(evdata->data);
if (event == FB_EARLY_EVENT_BLANK) {
if (blank == FB_BLANK_UNBLANK) {
pr_debug("%s: receives EARLY_BLANK:UNBLANK\n",
__func__);
hbtp_data->lcd_on = true;
hbtp_fb_early_resume(hbtp_data);
} else if (blank == FB_BLANK_POWERDOWN) {
pr_debug("%s: receives EARLY_BLANK:POWERDOWN\n",
__func__);
hbtp_data->lcd_on = false;
}
} else if (event == FB_R_EARLY_EVENT_BLANK) {
if (blank == FB_BLANK_UNBLANK) {
pr_debug("%s: receives R_EARLY_BALNK:UNBLANK\n",
__func__);
hbtp_data->lcd_on = false;
hbtp_fb_suspend(hbtp_data);
} else if (blank == FB_BLANK_POWERDOWN) {
pr_debug("%s: receives R_EARLY_BALNK:POWERDOWN\n",
__func__);
hbtp_data->lcd_on = true;
}
}
}
if (evdata && evdata->data && hbtp_data &&
event == FB_EVENT_BLANK) {
blank = *(int *)(evdata->data);
if (blank == FB_BLANK_POWERDOWN) {
pr_debug("%s: receives BLANK:POWERDOWN\n", __func__);
hbtp_fb_suspend(hbtp_data);
} else if (blank == FB_BLANK_UNBLANK) {
pr_debug("%s: receives BLANK:UNBLANK\n", __func__);
hbtp_fb_resume(hbtp_data);
}
}
return 0;
}
#endif
static ssize_t hbtp_sensor_roi_show(struct file *dev, struct kobject *kobj,
struct bin_attribute *attr, char *buf, loff_t pos,
size_t size)
{
mutex_lock(&hbtp->sensormutex);
memcpy(buf, hbtp->ROI, size);
mutex_unlock(&hbtp->sensormutex);
return size;
}
static ssize_t hbtp_sensor_vib_show(struct file *dev, struct kobject *kobj,
struct bin_attribute *attr, char *buf, loff_t pos,
size_t size)
{
mutex_lock(&hbtp->sensormutex);
memcpy(buf, hbtp->accelBuffer, size);
mutex_unlock(&hbtp->sensormutex);
return size;
}
static struct bin_attribute capdata_attr = {
.attr = {
.name = "capdata",
.mode = 0444,
},
.size = 1024,
.read = hbtp_sensor_roi_show,
.write = NULL,
};
static struct bin_attribute vibdata_attr = {
.attr = {
.name = "vib_data",
.mode = 0444,
},
.size = MAX_ACCEL_SIZE*sizeof(int16_t),
.read = hbtp_sensor_vib_show,
.write = NULL,
};
static int hbtp_input_open(struct inode *inode, struct file *file)
{
mutex_lock(&hbtp->mutex);
if (hbtp->count) {
pr_err("%s is busy\n", HBTP_INPUT_NAME);
mutex_unlock(&hbtp->mutex);
return -EBUSY;
}
hbtp->count++;
mutex_unlock(&hbtp->mutex);
return 0;
}
static int hbtp_input_release(struct inode *inode, struct file *file)
{
mutex_lock(&hbtp->mutex);
if (!hbtp->count) {
pr_err("%s wasn't opened\n", HBTP_INPUT_NAME);
mutex_unlock(&hbtp->mutex);
return -ENOTTY;
}
hbtp->count--;
if (hbtp->power_sig_enabled)
hbtp->power_sig_enabled = false;
mutex_unlock(&hbtp->mutex);
return 0;
}
static int hbtp_input_create_input_dev(struct hbtp_input_absinfo *absinfo)
{
struct input_dev *input_dev;
struct hbtp_input_absinfo *abs;
int error;
int i;
input_dev = input_allocate_device();
if (!input_dev) {
pr_err("%s: input_allocate_device failed\n", __func__);
return -ENOMEM;
}
kfree(input_dev->name);
input_dev->name = kstrndup(HBTP_INPUT_NAME, sizeof(HBTP_INPUT_NAME),
GFP_KERNEL);
__set_bit(EV_ABS, input_dev->evbit);
__set_bit(EV_KEY, input_dev->evbit);
__set_bit(BTN_TOUCH, input_dev->keybit);
__set_bit(INPUT_PROP_DIRECT, input_dev->propbit);
for (i = KEY_HOME; i <= KEY_MICMUTE; i++)
__set_bit(i, input_dev->keybit);
/* For multi touch */
input_mt_init_slots(input_dev, HBTP_MAX_FINGER, 0);
for (i = 0; i <= ABS_MT_LAST - ABS_MT_FIRST; i++) {
abs = absinfo + i;
if (abs->active) {
if (abs->code >= 0 && abs->code < ABS_CNT)
input_set_abs_params(input_dev, abs->code,
abs->minimum, abs->maximum, 0, 0);
else
pr_err("%s: ABS code out of bound\n", __func__);
}
}
if (hbtp->override_disp_coords) {
input_set_abs_params(input_dev, ABS_MT_POSITION_X,
0, hbtp->disp_maxx, 0, 0);
input_set_abs_params(input_dev, ABS_MT_POSITION_Y,
0, hbtp->disp_maxy, 0, 0);
}
error = input_register_device(input_dev);
if (error) {
pr_err("%s: input_register_device failed\n", __func__);
goto err_input_reg_dev;
}
hbtp->input_dev = input_dev;
return 0;
err_input_reg_dev:
input_free_device(input_dev);
return error;
}
static int hbtp_input_report_events(struct hbtp_data *hbtp_data,
struct hbtp_input_mt *mt_data)
{
int i;
struct hbtp_input_touch *tch;
for (i = 0; i < HBTP_MAX_FINGER; i++) {
tch = &(mt_data->touches[i]);
if (tch->active || hbtp_data->touch_status[i]) {
input_mt_slot(hbtp_data->input_dev, i);
input_mt_report_slot_state(hbtp_data->input_dev,
MT_TOOL_FINGER, tch->active);
if (tch->active) {
input_report_abs(hbtp_data->input_dev,
ABS_MT_TOOL_TYPE,
tch->tool);
input_report_abs(hbtp_data->input_dev,
ABS_MT_TOUCH_MAJOR,
tch->major);
input_report_abs(hbtp_data->input_dev,
ABS_MT_TOUCH_MINOR,
tch->minor);
input_report_abs(hbtp_data->input_dev,
ABS_MT_ORIENTATION,
tch->orientation);
input_report_abs(hbtp_data->input_dev,
ABS_MT_PRESSURE,
tch->pressure);
/*
* Scale up/down the X-coordinate as per
* DT property
*/
if (hbtp_data->use_scaling &&
hbtp_data->def_maxx > 0 &&
hbtp_data->des_maxx > 0)
tch->x = (tch->x * hbtp_data->des_maxx)
/ hbtp_data->def_maxx;
input_report_abs(hbtp_data->input_dev,
ABS_MT_POSITION_X,
tch->x);
/*
* Scale up/down the Y-coordinate as per
* DT property
*/
if (hbtp_data->use_scaling &&
hbtp_data->def_maxy > 0 &&
hbtp_data->des_maxy > 0)
tch->y = (tch->y * hbtp_data->des_maxy)
/ hbtp_data->def_maxy;
input_report_abs(hbtp_data->input_dev,
ABS_MT_POSITION_Y,
tch->y);
}
hbtp_data->touch_status[i] = tch->active;
}
}
input_report_key(hbtp->input_dev, BTN_TOUCH, mt_data->num_touches > 0);
input_sync(hbtp->input_dev);
return 0;
}
static int reg_set_load_check(struct regulator *reg, int load_uA)
{
return (regulator_count_voltages(reg) > 0) ?
regulator_set_load(reg, load_uA) : 0;
}
static int hbtp_pdev_power_on(struct hbtp_data *hbtp, bool on)
{
int ret;
if (!hbtp->vcc_ana)
pr_err("%s: analog regulator is not available\n", __func__);
if (!hbtp->vcc_dig)
pr_err("%s: digital regulator is not available\n", __func__);
if (!hbtp->vcc_ana && !hbtp->vcc_dig) {
pr_err("%s: no regulators available\n", __func__);
return -EINVAL;
}
if (!on)
goto reg_off;
if (hbtp->vcc_ana) {
ret = reg_set_load_check(hbtp->vcc_ana,
hbtp->afe_load_ua);
if (ret < 0) {
pr_err("%s: Regulator vcc_ana set_opt failed rc=%d\n",
__func__, ret);
return ret;
}
ret = regulator_enable(hbtp->vcc_ana);
if (ret) {
pr_err("%s: Regulator vcc_ana enable failed rc=%d\n",
__func__, ret);
reg_set_load_check(hbtp->vcc_ana, 0);
return ret;
}
}
if (hbtp->power_on_delay) {
pr_debug("%s: power-on-delay = %u\n", __func__,
hbtp->power_on_delay);
usleep_range(hbtp->power_on_delay,
hbtp->power_on_delay + HBTP_HOLD_DURATION_US);
}
if (hbtp->vcc_dig) {
ret = reg_set_load_check(hbtp->vcc_dig,
hbtp->dig_load_ua);
if (ret < 0) {
pr_err("%s: Regulator vcc_dig set_opt failed rc=%d\n",
__func__, ret);
return ret;
}
ret = regulator_enable(hbtp->vcc_dig);
if (ret) {
pr_err("%s: Regulator vcc_dig enable failed rc=%d\n",
__func__, ret);
reg_set_load_check(hbtp->vcc_dig, 0);
return ret;
}
}
return 0;
reg_off:
if (hbtp->vcc_dig) {
reg_set_load_check(hbtp->vcc_dig, 0);
regulator_disable(hbtp->vcc_dig);
}
if (hbtp->power_off_delay) {
pr_debug("%s: power-off-delay = %u\n", __func__,
hbtp->power_off_delay);
usleep_range(hbtp->power_off_delay,
hbtp->power_off_delay + HBTP_HOLD_DURATION_US);
}
if (hbtp->vcc_ana) {
reg_set_load_check(hbtp->vcc_ana, 0);
regulator_disable(hbtp->vcc_ana);
}
return 0;
}
static int hbtp_gpio_select(struct hbtp_data *data, bool on)
{
struct pinctrl_state *pins_state;
int ret = 0;
pins_state = on ? data->gpio_state_active : data->gpio_state_suspend;
if (!IS_ERR_OR_NULL(pins_state)) {
ret = pinctrl_select_state(data->ts_pinctrl, pins_state);
if (ret) {
dev_err(&data->pdev->dev,
"can not set %s pins\n",
on ? "ts_active" : "ts_suspend");
return ret;
}
if (on) {
if (data->ts_pinctrl_seq_delay) {
usleep_range(data->ts_pinctrl_seq_delay,
data->ts_pinctrl_seq_delay +
HBTP_HOLD_DURATION_US);
dev_dbg(&data->pdev->dev, "ts_pinctrl_seq_delay = %u\n",
data->ts_pinctrl_seq_delay);
}
}
} else {
dev_warn(&data->pdev->dev,
"not a valid '%s' pinstate\n",
on ? "ts_active" : "ts_suspend");
return ret;
}
return ret;
}
static int hbtp_ddic_rst_select(struct hbtp_data *data, bool on)
{
struct pinctrl_state *active, *suspend;
int ret = 0;
active = data->ddic_rst_state_active;
if (IS_ERR_OR_NULL(active)) {
dev_warn(&data->pdev->dev,
"not a valid ddic_rst_active pinstate\n");
return ret;
}
suspend = data->ddic_rst_state_suspend;
if (IS_ERR_OR_NULL(suspend)) {
dev_warn(&data->pdev->dev,
"not a valid ddic_rst_suspend pinstate\n");
return ret;
}
if (on) {
if (data->ddic_pinctrl_seq_delay[0]) {
usleep_range(data->ddic_pinctrl_seq_delay[0],
data->ddic_pinctrl_seq_delay[0] +
HBTP_HOLD_DURATION_US);
dev_dbg(&data->pdev->dev, "ddic_seq_delay[0] = %u\n",
data->ddic_pinctrl_seq_delay[0]);
}
ret = pinctrl_select_state(data->ts_pinctrl, active);
if (ret) {
dev_err(&data->pdev->dev,
"can not set ddic_rst_active pins\n");
return ret;
}
if (data->ddic_pinctrl_seq_delay[1]) {
usleep_range(data->ddic_pinctrl_seq_delay[1],
data->ddic_pinctrl_seq_delay[1] +
HBTP_HOLD_DURATION_US);
dev_dbg(&data->pdev->dev, "ddic_seq_delay[1] = %u\n",
data->ddic_pinctrl_seq_delay[1]);
}
ret = pinctrl_select_state(data->ts_pinctrl, suspend);
if (ret) {
dev_err(&data->pdev->dev,
"can not set ddic_rst_suspend pins\n");
return ret;
}
if (data->ddic_pinctrl_seq_delay[2]) {
usleep_range(data->ddic_pinctrl_seq_delay[2],
data->ddic_pinctrl_seq_delay[2] +
HBTP_HOLD_DURATION_US);
dev_dbg(&data->pdev->dev, "ddic_seq_delay[2] = %u\n",
data->ddic_pinctrl_seq_delay[2]);
}
ret = pinctrl_select_state(data->ts_pinctrl, active);
if (ret) {
dev_err(&data->pdev->dev,
"can not set ddic_rst_active pins\n");
return ret;
}
if (data->ddic_pinctrl_seq_delay[3]) {
usleep_range(data->ddic_pinctrl_seq_delay[3],
data->ddic_pinctrl_seq_delay[3] +
HBTP_HOLD_DURATION_US);
dev_dbg(&data->pdev->dev, "ddic_seq_delay[3] = %u\n",
data->ddic_pinctrl_seq_delay[3]);
}
} else {
ret = pinctrl_select_state(data->ts_pinctrl, suspend);
if (ret) {
dev_err(&data->pdev->dev,
"can not set ddic_rst_suspend pins\n");
return ret;
}
}
return ret;
}
static int hbtp_pinctrl_enable(struct hbtp_data *ts, bool on)
{
int rc = 0;
if (!ts->manage_pin_ctrl) {
pr_info("%s: pinctrl info is not available\n", __func__);
return 0;
}
if (!on)
goto pinctrl_suspend;
rc = hbtp_gpio_select(ts, true);
if (rc < 0)
return -EINVAL;
if (ts->ddic_rst_enabled) {
rc = hbtp_ddic_rst_select(ts, true);
if (rc < 0)
goto err_ddic_rst_pinctrl_enable;
}
return rc;
pinctrl_suspend:
if (ts->ddic_rst_enabled)
hbtp_ddic_rst_select(ts, false);
err_ddic_rst_pinctrl_enable:
hbtp_gpio_select(ts, false);
return rc;
}
static long hbtp_input_ioctl_handler(struct file *file, unsigned int cmd,
unsigned long arg, void __user *p)
{
int error = 0;
struct hbtp_input_mt mt_data;
struct hbtp_input_absinfo absinfo[ABS_MT_LAST - ABS_MT_FIRST + 1];
struct hbtp_input_key key_data;
enum hbtp_afe_power_cmd power_cmd;
enum hbtp_afe_signal afe_signal;
enum hbtp_afe_power_ctrl afe_power_ctrl;
switch (cmd) {
case HBTP_SET_ABSPARAM:
if (hbtp && hbtp->input_dev) {
pr_err("%s: The input device is already created\n",
__func__);
return 0;
}
if (copy_from_user(absinfo, (void *)arg,
sizeof(struct hbtp_input_absinfo) *
(ABS_MT_LAST - ABS_MT_FIRST + 1))) {
pr_err("%s: Error copying data for ABS param\n",
__func__);
return -EFAULT;
}
error = hbtp_input_create_input_dev(absinfo);
if (error)
pr_err("%s, hbtp_input_create_input_dev failed (%d)\n",
__func__, error);
break;
case HBTP_SET_TOUCHDATA:
if (!hbtp || !hbtp->input_dev) {
pr_err("%s: The input device hasn't been created\n",
__func__);
return -EFAULT;
}
if (copy_from_user(&mt_data, (void *)arg,
sizeof(struct hbtp_input_mt))) {
pr_err("%s: Error copying data\n", __func__);
return -EFAULT;
}
hbtp_input_report_events(hbtp, &mt_data);
error = 0;
break;
case HBTP_SET_POWERSTATE:
if (!hbtp || !hbtp->input_dev) {
pr_err("%s: The input device hasn't been created\n",
__func__);
return -EFAULT;
}
if (copy_from_user(&power_cmd, (void *)arg,
sizeof(enum hbtp_afe_power_cmd))) {
pr_err("%s: Error copying data\n", __func__);
return -EFAULT;
}
switch (power_cmd) {
case HBTP_AFE_POWER_ON:
error = hbtp_pdev_power_on(hbtp, true);
if (error)
pr_err("%s: failed to power on\n", __func__);
break;
case HBTP_AFE_POWER_OFF:
error = hbtp_pdev_power_on(hbtp, false);
if (error)
pr_err("%s: failed to power off\n", __func__);
break;
default:
pr_err("%s: Unsupported command for power state, %d\n",
__func__, power_cmd);
return -EINVAL;
}
break;
case HBTP_SET_KEYDATA:
if (!hbtp || !hbtp->input_dev) {
pr_err("%s: The input device hasn't been created\n",
__func__);
return -EFAULT;
}
if (copy_from_user(&key_data, (void *)arg,
sizeof(struct hbtp_input_key))) {
pr_err("%s: Error copying data for key info\n",
__func__);
return -EFAULT;
}
input_report_key(hbtp->input_dev, key_data.code,
key_data.value);
input_sync(hbtp->input_dev);
break;
case HBTP_SET_SYNCSIGNAL:
if (!hbtp || !hbtp->input_dev) {
pr_err("%s: The input device hasn't been created\n",
__func__);
return -EFAULT;
}
if (!hbtp->power_sig_enabled) {
pr_err("%s: power_signal is not enabled", __func__);
return -EPERM;
}
if (copy_from_user(&afe_signal, (void *)arg,
sizeof(enum hbtp_afe_signal))) {
pr_err("%s: Error copying data\n", __func__);
return -EFAULT;
}
pr_debug("%s: receives %d signal\n", __func__, afe_signal);
switch (afe_signal) {
case HBTP_AFE_SIGNAL_ON_RESUME:
mutex_lock(&hbtp->mutex);
if (!hbtp->power_suspended) {
complete(&hbtp->power_resume_sig);
} else {
pr_err("%s: resume signal in wrong state\n",
__func__);
}
mutex_unlock(&hbtp->mutex);
break;
case HBTP_AFE_SIGNAL_ON_SUSPEND:
mutex_lock(&hbtp->mutex);
if (hbtp->power_suspended) {
complete(&hbtp->power_suspend_sig);
} else {
pr_err("%s: suspend signal in wrong state\n",
__func__);
}
mutex_unlock(&hbtp->mutex);
break;
default:
pr_err("%s: Unsupported command for afe signal, %d\n",
__func__, afe_signal);
return -EINVAL;
}
break;
case HBTP_SET_POWER_CTRL:
if (!hbtp || !hbtp->input_dev) {
pr_err("%s: The input device hasn't been created\n",
__func__);
return -EFAULT;
}
if (copy_from_user(&afe_power_ctrl, (void *)arg,
sizeof(enum hbtp_afe_power_ctrl))) {
pr_err("%s: Error copying data\n", __func__);
return -EFAULT;
}
switch (afe_power_ctrl) {
case HBTP_AFE_POWER_ENABLE_SYNC:
pr_debug("%s: power_sync is enabled\n", __func__);
if (!hbtp->manage_pin_ctrl || !hbtp->manage_power_dig ||
!hbtp->manage_afe_power_ana) {
pr_err("%s: power/pin is not available\n",
__func__);
return -EFAULT;
}
mutex_lock(&hbtp->mutex);
error = hbtp_pdev_power_on(hbtp, true);
if (error) {
mutex_unlock(&hbtp->mutex);
pr_err("%s: failed to power on\n", __func__);
return error;
}
error = hbtp_pinctrl_enable(hbtp, true);
if (error) {
mutex_unlock(&hbtp->mutex);
pr_err("%s: failed to enable pins\n", __func__);
hbtp_pdev_power_on(hbtp, false);
return error;
}
hbtp->power_sync_enabled = true;
mutex_unlock(&hbtp->mutex);
pr_debug("%s: power_sync option is enabled\n",
__func__);
break;
case HBTP_AFE_POWER_ENABLE_SYNC_SIGNAL:
if (!hbtp->power_sync_enabled) {
pr_err("%s: power_sync is not enabled\n",
__func__);
return -EFAULT;
}
mutex_lock(&hbtp->mutex);
init_completion(&hbtp->power_resume_sig);
init_completion(&hbtp->power_suspend_sig);
hbtp->power_sig_enabled = true;
mutex_unlock(&hbtp->mutex);
pr_err("%s: sync_signal option is enabled\n", __func__);
break;
default:
pr_err("%s: unsupported power ctrl, %d\n",
__func__, afe_power_ctrl);
return -EINVAL;
}
break;
case HBTP_SET_SENSORDATA:
if (copy_from_user(hbtp->sensor_data, (void __user *)arg,
sizeof(struct hbtp_sensor_data))) {
pr_err("%s: Error copying data\n", __func__);
return -EFAULT;
}
mutex_lock(&hbtp->sensormutex);
memcpy(hbtp->ROI, hbtp->sensor_data->ROI, sizeof(hbtp->ROI));
memcpy(hbtp->accelBuffer, hbtp->sensor_data->accelBuffer,
sizeof(hbtp->accelBuffer));
mutex_unlock(&hbtp->sensormutex);
error = 0;
break;
default:
pr_err("%s: Unsupported ioctl command %u\n", __func__, cmd);
error = -EINVAL;
break;
}
return error;
}
static long hbtp_input_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
return hbtp_input_ioctl_handler(file, cmd, arg, (void __user *)arg);
}
#ifdef CONFIG_COMPAT
static long hbtp_input_compat_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
return hbtp_input_ioctl_handler(file, cmd, arg, compat_ptr(arg));
}
#endif
static const struct file_operations hbtp_input_fops = {
.owner = THIS_MODULE,
.open = hbtp_input_open,
.release = hbtp_input_release,
.unlocked_ioctl = hbtp_input_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = hbtp_input_compat_ioctl,
#endif
};
#ifdef CONFIG_OF
static int hbtp_parse_dt(struct device *dev)
{
int rc, size, en_gpio;
struct device_node *np = dev->of_node;
struct property *prop;
u32 temp_val;
u32 disp_reso[DISP_COORDS_SIZE];
if (of_find_property(np, "vcc_ana-supply", NULL))
hbtp->manage_afe_power_ana = true;
if (of_find_property(np, "vcc_dig-supply", NULL))
hbtp->manage_power_dig = true;
if (hbtp->manage_afe_power_ana) {
rc = of_property_read_u32(np, "qcom,afe-load", &temp_val);
if (!rc) {
hbtp->afe_load_ua = (int) temp_val;
} else {
dev_err(dev, "Unable to read AFE load\n");
return rc;
}
rc = of_property_read_u32(np, "qcom,afe-vtg-min", &temp_val);
if (!rc) {
hbtp->afe_vtg_min_uv = (int) temp_val;
} else {
dev_err(dev, "Unable to read AFE min voltage\n");
return rc;
}
rc = of_property_read_u32(np, "qcom,afe-vtg-max", &temp_val);
if (!rc) {
hbtp->afe_vtg_max_uv = (int) temp_val;
} else {
dev_err(dev, "Unable to read AFE max voltage\n");
return rc;
}
}
if (hbtp->manage_power_dig) {
rc = of_property_read_u32(np, "qcom,dig-load", &temp_val);
if (!rc) {
hbtp->dig_load_ua = (int) temp_val;
} else {
dev_err(dev, "Unable to read digital load\n");
return rc;
}
rc = of_property_read_u32(np, "qcom,dig-vtg-min", &temp_val);
if (!rc) {
hbtp->dig_vtg_min_uv = (int) temp_val;
} else {
dev_err(dev, "Unable to read digital min voltage\n");
return rc;
}
rc = of_property_read_u32(np, "qcom,dig-vtg-max", &temp_val);
if (!rc) {
hbtp->dig_vtg_max_uv = (int) temp_val;
} else {
dev_err(dev, "Unable to read digital max voltage\n");
return rc;
}
}
if (hbtp->manage_power_dig && hbtp->manage_afe_power_ana) {
rc = of_property_read_u32(np,
"qcom,afe-power-on-delay-us", &temp_val);
if (!rc)
hbtp->power_on_delay = (u32)temp_val;
else
dev_info(dev, "Power-On Delay is not specified\n");
rc = of_property_read_u32(np,
"qcom,afe-power-off-delay-us", &temp_val);
if (!rc)
hbtp->power_off_delay = (u32)temp_val;
else
dev_info(dev, "Power-Off Delay is not specified\n");
dev_dbg(dev, "power-on-delay = %u, power-off-delay = %u\n",
hbtp->power_on_delay, hbtp->power_off_delay);
}
prop = of_find_property(np, "qcom,display-resolution", NULL);
if (prop != NULL) {
if (!prop->value)
return -ENODATA;
size = prop->length / sizeof(u32);
if (size != DISP_COORDS_SIZE) {
dev_err(dev, "invalid qcom,display-resolution DT property\n");
return -EINVAL;
}
rc = of_property_read_u32_array(np, "qcom,display-resolution",
disp_reso, size);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read DT property qcom,display-resolution\n");
return rc;
}
hbtp->disp_maxx = disp_reso[0];
hbtp->disp_maxy = disp_reso[1];
hbtp->override_disp_coords = true;
}
hbtp->use_scaling = of_property_read_bool(np, "qcom,use-scale");
if (hbtp->use_scaling) {
rc = of_property_read_u32(np, "qcom,default-max-x", &temp_val);
if (!rc) {
hbtp->def_maxx = (int) temp_val;
} else if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read default max x\n");
return rc;
}
rc = of_property_read_u32(np, "qcom,desired-max-x", &temp_val);
if (!rc) {
hbtp->des_maxx = (int) temp_val;
} else if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read desired max x\n");
return rc;
}
/*
* Either both DT properties i.e. Default max X and
* Desired max X should be defined simultaneously, or none
* of them should be defined.
*/
if ((hbtp->def_maxx == 0 && hbtp->des_maxx != 0) ||
(hbtp->def_maxx != 0 && hbtp->des_maxx == 0)) {
dev_err(dev, "default or desired max-X properties are incorrect\n");
return -EINVAL;
}
rc = of_property_read_u32(np, "qcom,default-max-y", &temp_val);
if (!rc) {
hbtp->def_maxy = (int) temp_val;
} else if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read default max y\n");
return rc;
}
rc = of_property_read_u32(np, "qcom,desired-max-y", &temp_val);
if (!rc) {
hbtp->des_maxy = (int) temp_val;
} else if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read desired max y\n");
return rc;
}
/*
* Either both DT properties i.e. Default max X and
* Desired max X should be defined simultaneously, or none
* of them should be defined.
*/
if ((hbtp->def_maxy == 0 && hbtp->des_maxy != 0) ||
(hbtp->def_maxy != 0 && hbtp->des_maxy == 0)) {
dev_err(dev, "default or desired max-Y properties are incorrect\n");
return -EINVAL;
}
}
/*
* "qcom,platform-en-gpio" is optinal.
* But if it is defined in dtsi, should check the GPIO value
* to continue the probe function or not.
*/
en_gpio = of_get_named_gpio(np, "qcom,platform-en-gpio", 0);
if (gpio_is_valid(en_gpio)) {
rc = gpio_request(en_gpio, "qcom,platform-en-gpio");
if (!rc) {
rc = gpio_direction_input(en_gpio);
if (!rc && gpio_get_value(en_gpio)) {
gpio_free(en_gpio);
return -EINVAL;
}
gpio_free(en_gpio);
}
}
return 0;
}
#else
static int hbtp_parse_dt(struct device *dev)
{
return -ENODEV;
}
#endif
static int hbtp_pinctrl_init(struct hbtp_data *data)
{
const char *statename;
int rc;
int state_cnt, i;
struct device_node *np = data->pdev->dev.of_node;
bool pinctrl_state_act_found = false;
bool pinctrl_state_sus_found = false;
bool pinctrl_ddic_act_found = false;
bool pinctrl_ddic_sus_found = false;
int count = 0;
data->ts_pinctrl = devm_pinctrl_get(&(data->pdev->dev));
if (IS_ERR_OR_NULL(data->ts_pinctrl)) {
dev_err(&data->pdev->dev,
"Target does not use pinctrl\n");
rc = PTR_ERR(data->ts_pinctrl);
data->ts_pinctrl = NULL;
return rc;
}
state_cnt = of_property_count_strings(np, "pinctrl-names");
if (state_cnt < HBTP_PINCTRL_VALID_STATE_CNT) {
/*
*if pinctrl names are not available then,
*power_sync can't be enabled
*/
dev_info(&data->pdev->dev,
"pinctrl names are not available\n");
rc = -EINVAL;
goto error;
}
for (i = 0; i < state_cnt; i++) {
rc = of_property_read_string_index(np,
"pinctrl-names", i, &statename);
if (rc) {
dev_err(&data->pdev->dev,
"failed to read pinctrl states by index\n");
goto error;
}
if (!strcmp(statename, "pmx_ts_active")) {
data->gpio_state_active
= pinctrl_lookup_state(data->ts_pinctrl,
statename);
if (IS_ERR_OR_NULL(data->gpio_state_active)) {
dev_err(&data->pdev->dev,
"Can not get ts default state\n");
rc = PTR_ERR(data->gpio_state_active);
goto error;
}
pinctrl_state_act_found = true;
} else if (!strcmp(statename, "pmx_ts_suspend")) {
data->gpio_state_suspend
= pinctrl_lookup_state(data->ts_pinctrl,
statename);
if (IS_ERR_OR_NULL(data->gpio_state_suspend)) {
dev_err(&data->pdev->dev,
"Can not get ts sleep state\n");
rc = PTR_ERR(data->gpio_state_suspend);
goto error;
}
pinctrl_state_sus_found = true;
} else if (!strcmp(statename, "ddic_rst_active")) {
data->ddic_rst_state_active
= pinctrl_lookup_state(data->ts_pinctrl,
statename);
if (IS_ERR(data->ddic_rst_state_active)) {
dev_err(&data->pdev->dev,
"Can not get DDIC rst act state\n");
rc = PTR_ERR(data->ddic_rst_state_active);
goto error;
}
pinctrl_ddic_act_found = true;
} else if (!strcmp(statename, "ddic_rst_suspend")) {
data->ddic_rst_state_suspend
= pinctrl_lookup_state(data->ts_pinctrl,
statename);
if (IS_ERR(data->ddic_rst_state_suspend)) {
dev_err(&data->pdev->dev,
"Can not get DDIC rst sleep state\n");
rc = PTR_ERR(data->ddic_rst_state_suspend);
goto error;
}
pinctrl_ddic_sus_found = true;
} else {
dev_err(&data->pdev->dev, "invalid pinctrl state\n");
rc = -EINVAL;
goto error;
}
}
if (!pinctrl_state_act_found || !pinctrl_state_sus_found) {
dev_err(&data->pdev->dev,
"missing required pinctrl states\n");
rc = -EINVAL;
goto error;
}
if (of_property_read_u32(np, "qcom,pmx-ts-on-seq-delay-us",
&data->ts_pinctrl_seq_delay)) {
dev_warn(&data->pdev->dev, "Can not find ts seq delay\n");
}
if (of_property_read_u32(np, "qcom,fb-resume-delay-us",
&data->fb_resume_seq_delay)) {
dev_warn(&data->pdev->dev, "Can not find fb resume seq delay\n");
}
if (pinctrl_ddic_act_found && pinctrl_ddic_sus_found) {
count = of_property_count_u32_elems(np,
"qcom,ddic-rst-on-seq-delay-us");
if (count == HBTP_PINCTRL_DDIC_SEQ_NUM) {
of_property_read_u32_array(np,
"qcom,ddic-rst-on-seq-delay-us",
data->ddic_pinctrl_seq_delay, count);
} else {
dev_err(&data->pdev->dev, "count(%u) is not same as %u\n",
(u32)count, HBTP_PINCTRL_DDIC_SEQ_NUM);
}
data->ddic_rst_enabled = true;
} else {
dev_warn(&data->pdev->dev, "ddic pinctrl act/sus not found\n");
}
data->manage_pin_ctrl = true;
return 0;
error:
devm_pinctrl_put(data->ts_pinctrl);
data->ts_pinctrl = NULL;
return rc;
}
static int hbtp_fb_suspend(struct hbtp_data *ts)
{
int rc;
char *envp[2] = {HBTP_EVENT_TYPE_DISPLAY, NULL};
mutex_lock(&hbtp->mutex);
if (ts->pdev && ts->power_sync_enabled) {
pr_debug("%s: power_sync is enabled\n", __func__);
if (ts->power_suspended) {
mutex_unlock(&hbtp->mutex);
pr_err("%s: power is not resumed\n", __func__);
return 0;
}
rc = hbtp_pinctrl_enable(ts, false);
if (rc) {
pr_err("%s: failed to disable GPIO pins\n", __func__);
goto err_pin_disable;
}
rc = hbtp_pdev_power_on(ts, false);
if (rc) {
pr_err("%s: failed to disable power\n", __func__);
goto err_power_disable;
}
ts->power_suspended = true;
}
if (ts->input_dev) {
kobject_uevent_env(&ts->input_dev->dev.kobj,
KOBJ_OFFLINE, envp);
if (ts->power_sig_enabled) {
pr_debug("%s: power_sig is enabled, wait for signal\n",
__func__);
mutex_unlock(&hbtp->mutex);
rc = wait_for_completion_interruptible(
&hbtp->power_suspend_sig);
if (rc != 0) {
pr_err("%s: wait for suspend is interrupted\n",
__func__);
}
mutex_lock(&hbtp->mutex);
pr_debug("%s: Wait is done for suspend\n", __func__);
} else {
pr_debug("%s: power_sig is NOT enabled", __func__);
}
}
mutex_unlock(&hbtp->mutex);
return 0;
err_power_disable:
hbtp_pinctrl_enable(ts, true);
err_pin_disable:
mutex_unlock(&hbtp->mutex);
return rc;
}
static int hbtp_fb_early_resume(struct hbtp_data *ts)
{
char *envp[2] = {HBTP_EVENT_TYPE_DISPLAY, NULL};
int rc;
mutex_lock(&hbtp->mutex);
pr_debug("%s: enter\n", __func__);
if (ts->pdev && ts->power_sync_enabled) {
pr_debug("%s: power_sync is enabled\n", __func__);
if (!ts->power_suspended) {
pr_err("%s: power is not suspended\n", __func__);
mutex_unlock(&hbtp->mutex);
return 0;
}
rc = hbtp_pdev_power_on(ts, true);
if (rc) {
pr_err("%s: failed to enable panel power\n", __func__);
goto err_power_on;
}
rc = hbtp_pinctrl_enable(ts, true);
if (rc) {
pr_err("%s: failed to enable pin\n", __func__);
goto err_pin_enable;
}
ts->power_suspended = false;
if (ts->input_dev) {
kobject_uevent_env(&ts->input_dev->dev.kobj,
KOBJ_ONLINE, envp);
if (ts->power_sig_enabled) {
pr_err("%s: power_sig is enabled, wait for signal\n",
__func__);
mutex_unlock(&hbtp->mutex);
rc = wait_for_completion_interruptible(
&hbtp->power_resume_sig);
if (rc != 0) {
pr_err("%s: wait for resume is interrupted\n",
__func__);
}
mutex_lock(&hbtp->mutex);
pr_debug("%s: wait is done\n", __func__);
} else {
pr_debug("%s: power_sig is NOT enabled\n",
__func__);
}
if (ts->fb_resume_seq_delay) {
usleep_range(ts->fb_resume_seq_delay,
ts->fb_resume_seq_delay +
HBTP_HOLD_DURATION_US);
pr_err("%s: fb_resume_seq_delay = %u\n",
__func__, ts->fb_resume_seq_delay);
}
}
}
mutex_unlock(&hbtp->mutex);
return 0;
err_pin_enable:
hbtp_pdev_power_on(ts, false);
err_power_on:
mutex_unlock(&hbtp->mutex);
return rc;
}
static int hbtp_fb_resume(struct hbtp_data *ts)
{
char *envp[2] = {HBTP_EVENT_TYPE_DISPLAY, NULL};
mutex_lock(&hbtp->mutex);
if (!ts->power_sync_enabled) {
pr_debug("%s: power_sync is disabled, send uevent\n", __func__);
if (ts->input_dev) {
kobject_uevent_env(&ts->input_dev->dev.kobj,
KOBJ_ONLINE, envp);
}
}
mutex_unlock(&hbtp->mutex);
return 0;
}
static int hbtp_pdev_probe(struct platform_device *pdev)
{
int error;
struct regulator *vcc_ana, *vcc_dig;
hbtp->pdev = pdev;
if (pdev->dev.of_node) {
error = hbtp_parse_dt(&pdev->dev);
if (error) {
pr_debug("%s: parse dt failed, rc=%d\n", __func__,
error);
sysfs_remove_bin_file(sensor_kobject, &vibdata_attr);
sysfs_remove_bin_file(sensor_kobject, &capdata_attr);
kobject_put(sensor_kobject);
return error;
}
}
platform_set_drvdata(pdev, hbtp);
error = hbtp_pinctrl_init(hbtp);
if (error) {
pr_info("%s: pinctrl isn't available, rc=%d\n", __func__,
error);
}
if (hbtp->manage_afe_power_ana) {
vcc_ana = regulator_get(&pdev->dev, "vcc_ana");
if (IS_ERR(vcc_ana)) {
error = PTR_ERR(vcc_ana);
pr_err("%s: regulator get failed vcc_ana rc=%d\n",
__func__, error);
return error;
}
if (regulator_count_voltages(vcc_ana) > 0) {
error = regulator_set_voltage(vcc_ana,
hbtp->afe_vtg_min_uv, hbtp->afe_vtg_max_uv);
if (error) {
pr_err("%s: regulator set vtg failed vcc_ana rc=%d\n",
__func__, error);
regulator_put(vcc_ana);
return error;
}
}
hbtp->vcc_ana = vcc_ana;
}
if (hbtp->manage_power_dig) {
vcc_dig = regulator_get(&pdev->dev, "vcc_dig");
if (IS_ERR(vcc_dig)) {
error = PTR_ERR(vcc_dig);
pr_err("%s: regulator get failed vcc_dig rc=%d\n",
__func__, error);
return error;
}
if (regulator_count_voltages(vcc_dig) > 0) {
error = regulator_set_voltage(vcc_dig,
hbtp->dig_vtg_min_uv, hbtp->dig_vtg_max_uv);
if (error) {
pr_err("%s: regulator set vtg failed vcc_dig rc=%d\n",
__func__, error);
regulator_put(vcc_dig);
return error;
}
}
hbtp->vcc_dig = vcc_dig;
}
return 0;
}
static int hbtp_pdev_remove(struct platform_device *pdev)
{
if (hbtp->vcc_ana || hbtp->vcc_dig) {
hbtp_pdev_power_on(hbtp, false);
if (hbtp->vcc_ana)
regulator_put(hbtp->vcc_ana);
if (hbtp->vcc_dig)
regulator_put(hbtp->vcc_dig);
}
if (hbtp->ts_pinctrl)
devm_pinctrl_put(hbtp->ts_pinctrl);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id hbtp_match_table[] = {
{ .compatible = "qcom,hbtp-input",},
{ },
};
#else
#define hbtp_match_table NULL
#endif
static struct platform_driver hbtp_pdev_driver = {
.probe = hbtp_pdev_probe,
.remove = hbtp_pdev_remove,
.driver = {
.name = "hbtp",
.owner = THIS_MODULE,
.of_match_table = hbtp_match_table,
},
};
static ssize_t hbtp_display_pwr_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
u32 status;
ssize_t ret;
char *envp[2] = {HBTP_EVENT_TYPE_DISPLAY, NULL};
mutex_lock(&hbtp->mutex);
ret = kstrtou32(buf, 10, &status);
if (ret) {
pr_err("hbtp: ret error: %zd\n", ret);
mutex_unlock(&hbtp->mutex);
return 0;
}
hbtp->display_status = status;
if (!hbtp->input_dev) {
pr_err("hbtp: hbtp->input_dev not ready!\n");
mutex_unlock(&hbtp->mutex);
return ret;
}
if (status) {
pr_debug("hbtp: display power on!\n");
kobject_uevent_env(&hbtp->input_dev->dev.kobj,
KOBJ_ONLINE, envp);
} else {
pr_debug("hbtp: display power off!\n");
kobject_uevent_env(&hbtp->input_dev->dev.kobj,
KOBJ_OFFLINE, envp);
}
mutex_unlock(&hbtp->mutex);
return count;
}
static ssize_t hbtp_display_pwr_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
ssize_t ret = 0;
mutex_lock(&hbtp->mutex);
ret = snprintf(buf, PAGE_SIZE, "%u\n", hbtp->display_status);
mutex_unlock(&hbtp->mutex);
return ret;
}
static struct kobj_attribute hbtp_display_attribute =
__ATTR(display_pwr, 0660, hbtp_display_pwr_show,
hbtp_display_pwr_store);
static int __init hbtp_init(void)
{
int error = 0;
int minor;
hbtp = kzalloc(sizeof(struct hbtp_data), GFP_KERNEL);
if (!hbtp)
return -ENOMEM;
hbtp->sensor_data = kzalloc(sizeof(struct hbtp_sensor_data),
GFP_KERNEL);
if (!hbtp->sensor_data)
goto err_sensordata;
mutex_init(&hbtp->mutex);
mutex_init(&hbtp->sensormutex);
hbtp->display_status = 1;
hbtp->drv_class = class_create(THIS_MODULE, HBTP_INPUT_NAME);
error = alloc_chrdev_region(&hbtp->hbtp_dev, 0, NUM_DEVICES,
HBTP_INPUT_NAME);
if (error) {
pr_err("%s: alloc_chrdev_region failed: %d\n", __func__, error);
goto err_allocate_chrdev_region;
}
minor = ida_simple_get(&hbtp_minor_id, 0, NUM_DEVICES, GFP_KERNEL);
if (minor < 0) {
pr_err("%s: No more minor numbers left! rc:%d\n",
__func__, minor);
goto err_out_of_minors;
}
hbtp->dev = device_create(hbtp->drv_class, NULL,
MKDEV(MAJOR(hbtp->hbtp_dev), minor), hbtp, HBTP_INPUT_NAME);
if (IS_ERR(hbtp->dev)) {
error = PTR_ERR(hbtp->dev);
pr_err("%s: device_create failed for %s (%d)", __func__,
HBTP_INPUT_NAME, error);
goto err_device_create;
}
cdev_init(&hbtp->cdev, &hbtp_input_fops);
error = cdev_add(&hbtp->cdev, MKDEV(MAJOR(hbtp->hbtp_dev), minor),
NUM_DEVICES);
if (error < 0) {
pr_err("%s: cdev_add failed for %s (%d)", __func__,
HBTP_INPUT_NAME, error);
goto err_cdev_add;
}
#if defined(CONFIG_FB)
hbtp->fb_notif.notifier_call = fb_notifier_callback;
error = fb_register_client(&hbtp->fb_notif);
if (error) {
pr_err("%s: Unable to register fb_notifier: %d\n",
HBTP_INPUT_NAME, error);
goto err_fb_reg;
}
#endif
sensor_kobject = kobject_create_and_add("hbtpsensor", kernel_kobj);
if (!sensor_kobject) {
pr_err("%s: Could not create hbtpsensor kobject\n", __func__);
goto err_kobject_create;
}
error = sysfs_create_bin_file(sensor_kobject, &capdata_attr);
if (error < 0) {
pr_err("%s: hbtp capdata sysfs creation failed: %d\n", __func__,
error);
goto err_sysfs_create_capdata;
}
pr_debug("capdata sysfs creation success\n");
error = sysfs_create_bin_file(sensor_kobject, &vibdata_attr);
if (error < 0) {
pr_err("%s: vibdata sysfs creation failed: %d\n", __func__,
error);
goto err_sysfs_create_vibdata;
}
pr_debug("vibdata sysfs creation success\n");
error = platform_driver_register(&hbtp_pdev_driver);
if (error) {
pr_err("Failed to register platform driver: %d\n", error);
goto err_platform_drv_reg;
}
hbtp->sysfs_kobject = kobject_create_and_add("hbtp", kernel_kobj);
if (!hbtp->sysfs_kobject)
pr_err("%s: Could not create sysfs kobject\n", __func__);
else {
error = sysfs_create_file(hbtp->sysfs_kobject,
&hbtp_display_attribute.attr);
if (error)
pr_err("failed to create the display_pwr sysfs\n");
}
return 0;
err_platform_drv_reg:
sysfs_remove_bin_file(sensor_kobject, &vibdata_attr);
err_sysfs_create_vibdata:
sysfs_remove_bin_file(sensor_kobject, &capdata_attr);
err_sysfs_create_capdata:
kobject_put(sensor_kobject);
err_kobject_create:
#if defined(CONFIG_FB)
fb_unregister_client(&hbtp->fb_notif);
err_fb_reg:
#endif
cdev_del(&hbtp->cdev);
err_cdev_add:
device_unregister(hbtp->dev);
err_device_create:
ida_simple_remove(&hbtp_minor_id, minor);
err_out_of_minors:
err_allocate_chrdev_region:
kfree(hbtp->sensor_data);
err_sensordata:
kfree(hbtp);
return error;
}
static void __exit hbtp_exit(void)
{
int minor = MINOR(hbtp->cdev.dev);
sysfs_remove_bin_file(sensor_kobject, &vibdata_attr);
sysfs_remove_bin_file(sensor_kobject, &capdata_attr);
kobject_put(sensor_kobject);
sysfs_remove_file(hbtp->sysfs_kobject, &hbtp_display_attribute.attr);
kobject_put(hbtp->sysfs_kobject);
if (hbtp->input_dev)
input_unregister_device(hbtp->input_dev);
#if defined(CONFIG_FB)
fb_unregister_client(&hbtp->fb_notif);
#endif
platform_driver_unregister(&hbtp_pdev_driver);
cdev_del(&hbtp->cdev);
device_unregister(hbtp->dev);
ida_simple_remove(&hbtp_minor_id, minor);
kfree(hbtp->sensor_data);
kfree(hbtp);
}
MODULE_DESCRIPTION("Kernel driver to support host based touch processing");
MODULE_LICENSE("GPL v2");
module_init(hbtp_init);
module_exit(hbtp_exit);