blob: 39b94eea04845381825d444c9a324115b120cacc [file] [log] [blame]
/*
* Simple synchronous userspace interface to SPI devices
*
* Copyright (C) 2006 SWAPP
* Andrea Paterniani <a.paterniani@swapp-eng.it>
* Copyright (C) 2007 David Brownell (simplification, cleanup)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/ioctl.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/compat.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/spidev.h>
#include <linux/interrupt.h>
#include <linux/uaccess.h>
#include <linux/of_gpio.h>
#include <linux/delay.h>
#include <linux/wakelock.h>
/*
* This supports access to SPI devices using normal userspace I/O calls.
* Note that while traditional UNIX/POSIX I/O semantics are half duplex,
* and often mask message boundaries, full SPI support requires full duplex
* transfers. There are several kinds of internal message boundaries to
* handle chipselect management and other protocol options.
*
* SPI has a character major number assigned. We allocate minor numbers
* dynamically using a bitmask. You must use hotplug tools, such as udev
* (or mdev with busybox) to create and destroy the /dev/spidevB.C device
* nodes, since there is no fixed association of minor numbers with any
* particular SPI bus or device.
*/
#define SPIDEV_MAJOR 153 /* assigned */
#define N_SPI_MINORS 32 /* ... up to 256 */
#define SPIDEV_BUF_MAX_NODE_N 64
#define SPIDEV_NON_BLOCK_READ_TIMEOUT (2*HZ)
#define SPIDEV_READ_DELAY_TIME_US (100)
#define SPIDEV_READ_MAX_DELAY_TIMES (50)
#define SPIDEV_WRITE_DELAY_TIME_US (100)
#define SPIDEV_WRITE_MAX_DELAY_TIMES (5000)
/* MCU wake ap timeout */
#define DATA_TRANSFER_INTERVAL (1*HZ)
#define WAKEUP_DISPLAY_INTERVAL (1*HZ)
static DECLARE_BITMAP(minors, N_SPI_MINORS);
/* Bit masks for spi_device.mode management. Note that incorrect
* settings for some settings can cause *lots* of trouble for other
* devices on a shared bus:
*
* - CS_HIGH ... this device will be active when it shouldn't be
* - 3WIRE ... when active, it won't behave as it should
* - NO_CS ... there will be no explicit message boundaries; this
* is completely incompatible with the shared bus model
* - READY ... transfers may proceed when they shouldn't.
*
* REVISIT should changing those flags be privileged?
*/
#define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
| SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
| SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
typedef struct _spidev_buf_list
{
struct list_head list;
unsigned int read_cnt;
unsigned char *buffer;
}spidev_buf_list;
struct spidev_data {
dev_t devt;
spinlock_t spi_lock;
struct spi_device *spi;
struct list_head device_entry;
/* TX/RX buffers are NULL unless this device is open (users > 0) */
struct mutex buf_lock;
struct mutex tx_buf_lock;
struct mutex buf_list_lock;
struct mutex spi_op_lock;
unsigned users;
u8 *tx_buffer;
u8 *rx_buffer;
unsigned char *tx_buf;
unsigned int wake_irq;
unsigned int wake_display_irq;
int wake_irq_gpio;
int wakeup_mcu_gpio;
int read_sync_gpio;
int write_sync_gpio;
int wake_display_gpio;
spidev_work_mode_type work_mode;
spidev_wakeup_disp_type wakeup_disp_enable;
bool is_suspended;
bool pending_irq;
spidev_buf_list *idle_buf_head;
spidev_buf_list *read_buf_head;
struct completion read_compl;
struct work_struct wakeup_read_work;
struct work_struct wakeup_display_work;
struct wake_lock wake_lock;
struct wake_lock wake_display_lock;
};
static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_lock);
static unsigned bufsiz = 4096;
module_param(bufsiz, uint, S_IRUGO);
MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
/*
* This can be used for testing the controller, given the busnum and the
* cs required to use. If those parameters are used, spidev is
* dynamically added as device on the busnum, and messages can be sent
* via this interface.
*/
static int busnum = -1;
module_param(busnum, int, S_IRUGO);
MODULE_PARM_DESC(busnum, "bus num of the controller");
static int chipselect = -1;
module_param(chipselect, int, S_IRUGO);
MODULE_PARM_DESC(chipselect, "chip select of the desired device");
static int maxspeed = 10000000;
module_param(maxspeed, int, S_IRUGO);
MODULE_PARM_DESC(maxspeed, "max_speed of the desired device");
static int spimode = SPI_MODE_3;
module_param(spimode, int, S_IRUGO);
MODULE_PARM_DESC(spimode, "mode of the desired device");
static struct spi_device *spi;
/*-------------------------------------------------------------------------*/
/*
* We can't use the standard synchronous wrappers for file I/O; we
* need to protect against async removal of the underlying spi_device.
*/
static void spidev_complete(void *arg)
{
complete(arg);
}
static ssize_t
spidev_sync(struct spidev_data *spidev, struct spi_message *message)
{
DECLARE_COMPLETION_ONSTACK(done);
int status;
message->complete = spidev_complete;
message->context = &done;
spin_lock_irq(&spidev->spi_lock);
if (spidev->spi == NULL)
status = -ESHUTDOWN;
else
status = spi_async(spidev->spi, message);
spin_unlock_irq(&spidev->spi_lock);
if (status == 0) {
wait_for_completion(&done);
status = message->status;
if (status == 0)
status = message->actual_length;
}
return status;
}
static inline ssize_t
spidev_sync_write(struct spidev_data *spidev, size_t len)
{
struct spi_transfer t = {
.tx_buf = spidev->tx_buffer,
.len = len,
};
struct spi_message m;
spi_message_init(&m);
spi_message_add_tail(&t, &m);
return spidev_sync(spidev, &m);
}
static inline ssize_t
spidev_sync_read(struct spidev_data *spidev, size_t len)
{
struct spi_transfer t = {
.rx_buf = spidev->rx_buffer,
.len = len,
};
struct spi_message m;
spi_message_init(&m);
spi_message_add_tail(&t, &m);
return spidev_sync(spidev, &m);
}
static inline ssize_t
spidev_sync_write_ext(struct spidev_data *spidev, size_t len)
{
struct spi_transfer t = {
.tx_buf = spidev->tx_buf,
.len = len,
};
struct spi_message m;
spi_message_init(&m);
spi_message_add_tail(&t, &m);
return spidev_sync(spidev, &m);
}
static inline ssize_t
spidev_sync_read_ext(struct spidev_data *spidev, spidev_buf_list *node, size_t len)
{
struct spi_transfer t = {
.rx_buf = node->buffer,
.len = len,
};
struct spi_message m;
spi_message_init(&m);
spi_message_add_tail(&t, &m);
return spidev_sync(spidev, &m);
}
static int spidev_request_gpio(struct spidev_data *spidev)
{
struct device_node *np = NULL;
/*Get MCU Wakeup AP GPIO*/
np = of_find_compatible_node(NULL, NULL, "mcu,wakeupap");
if (!np)
{
pr_err("%s: %s node not found\n", __FUNCTION__, "mcu,wakeupap");
return -ENODEV;
}
spidev->wake_irq_gpio= of_get_named_gpio(np, "mcu_wakeup_ap", 0);
if (spidev->wake_irq_gpio < 0)
{
pr_err("mcu_wakeup_ap:%d.\n", spidev->wake_irq_gpio);
return -ENODEV;
}
if (gpio_request(spidev->wake_irq_gpio, "mcu_wakeup_ap") < 0)
{
pr_err("Failed to request gpio %d for mcu_wakeup_ap\n",spidev->wake_irq_gpio);
return -ENODEV;
}
if (gpio_direction_input(spidev->wake_irq_gpio) < 0)
{
pr_err("Failed to set dir %d for mcu_wakeup_ap\n",spidev->wake_irq_gpio);
return -ENODEV;
}
spidev->wake_irq = gpio_to_irq(spidev->wake_irq_gpio);
pr_info("spidev_request_irq_gpio spidev->wake_irq = %u",spidev->wake_irq);
/*Get AP Wakeup MCU Gpio*/
np = of_find_compatible_node(NULL, NULL, "mcu,wakeupmcu");
if (!np)
{
pr_err("%s: %s node not found\n", __FUNCTION__, "mcu,wakeupmcu");
return -ENODEV;
}
spidev->wakeup_mcu_gpio= of_get_named_gpio(np, "ap_wakeup_mcu", 0);
if (spidev->wakeup_mcu_gpio < 0)
{
pr_err("%s: %s gpio not found:\n", __FUNCTION__, "ap_wakeup_mcu");
return -ENODEV;
}
if (gpio_request(spidev->wakeup_mcu_gpio, "ap_wakeup_mcu"))
{
pr_err("Failed to request gpio %d for ap_wakeup_mcu\n", spidev->wakeup_mcu_gpio);
return -ENODEV;
}
pr_info("gpio_request ap_wakeup_mcu gpio:%d done\n", spidev->wakeup_mcu_gpio);
/*Get AP Read Sync Gpio*/
np = of_find_compatible_node(NULL, NULL, "mcu,readsync");
if (!np)
{
pr_err("%s: %s node not found\n", __FUNCTION__, "mcu,readsync");
return -ENODEV;
}
spidev->read_sync_gpio= of_get_named_gpio(np, "ap_read_sync", 0);
if (spidev->read_sync_gpio < 0)
{
pr_err("%s: %s gpio not found:\n", __FUNCTION__, "read_sync_gpio");
return -ENODEV;
}
if (gpio_request(spidev->read_sync_gpio, "ap_read_sync"))
{
pr_err("Failed to request gpio %d for ap_wakeup_mcu\n", spidev->read_sync_gpio);
return -ENODEV;
}
pr_info("gpio_request read_sync_gpio gpio:%d done\n", spidev->read_sync_gpio);
/*Get AP Write Sync Gpio*/
np = of_find_compatible_node(NULL, NULL, "mcu,writesync");
if (!np)
{
pr_err("%s: %s node not found\n", __FUNCTION__, "mcu,writesync");
return -ENODEV;
}
spidev->write_sync_gpio = of_get_named_gpio(np, "ap_write_sync", 0);
if (spidev->write_sync_gpio < 0)
{
pr_err("%s: %s gpio not found:\n", __FUNCTION__, "write_sync_gpio");
return -ENODEV;
}
if (gpio_request(spidev->write_sync_gpio, "ap_write_sync"))
{
pr_err("Failed to request gpio %d for ap_write_sync\n", spidev->write_sync_gpio);
return -ENODEV;
}
if (gpio_direction_input(spidev->write_sync_gpio) < 0)
{
pr_err("Failed to set dir %d for write_sync_gpio\n",spidev->write_sync_gpio);
return -ENODEV;
}
pr_info("gpio_request write_sync_gpio gpio:%d done\n", spidev->write_sync_gpio);
/*Get MCU Wakeup Display GPIO*/
np = of_find_compatible_node(NULL, NULL, "mcu,wakeupdisplay");
if (!np)
{
pr_err("%s: %s node not found\n", __FUNCTION__, "mcu,wakeupdisplay");
return -ENODEV;
}
spidev->wake_display_gpio= of_get_named_gpio(np, "mcu_wakeup_display", 0);
if (spidev->wake_display_gpio < 0)
{
pr_err("mcu_wakeup_display:%d.\n", spidev->wake_display_gpio);
return -ENODEV;
}
if (gpio_request(spidev->wake_display_gpio, "mcu_wakeup_display") < 0)
{
pr_err("Failed to request gpio %d for mcu_wakeup_display\n",spidev->wake_display_gpio);
return -ENODEV;
}
if (gpio_direction_input(spidev->wake_display_gpio) < 0)
{
pr_err("Failed to set dir %d for mcu_wakeup_display\n",spidev->wake_display_gpio);
return -ENODEV;
}
spidev->wake_display_irq = gpio_to_irq(spidev->wake_display_gpio);
pr_info("spidev_request_gpio spidev->wake_display_gpio = %u",spidev->wake_display_gpio);
return 0;
}
static void spidev_release_gpio(struct spidev_data *spidev)
{
if (spidev)
{
gpio_free(spidev->wake_irq_gpio);
gpio_free(spidev->wakeup_mcu_gpio);
gpio_free(spidev->read_sync_gpio);
gpio_free(spidev->write_sync_gpio);
gpio_free(spidev->wake_display_gpio);
}
}
/*-------------------------------------------------------------------------*/
/* Read-only message with current device setup */
static ssize_t
spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
struct spidev_data *spidev;
ssize_t status = 0;
spidev_buf_list *spidev_buf_node = NULL;
/* chipselect only toggles at start or end of operation */
if (count > bufsiz)
return -EMSGSIZE;
spidev = filp->private_data;
if (spidev->work_mode == SPIDEV_WORK_MODE_USER)
{
mutex_lock(&spidev->buf_lock);
status = spidev_sync_read(spidev, count);
if (status > 0) {
unsigned long missing;
missing = copy_to_user(buf, spidev->rx_buffer, status);
if (missing == status)
status = -EFAULT;
else
status = status - missing;
}
mutex_unlock(&spidev->buf_lock);
}
else
{
pr_debug("spidev read in kernel mode\n");
/*wait for spi read complete*/
if (filp->f_flags & O_NONBLOCK)
{
if(wait_for_completion_timeout(&spidev->read_compl, SPIDEV_NON_BLOCK_READ_TIMEOUT) == 0)
{
pr_info("O_NONBLOCK, spidev_read timeout\n");
return -ETIMEDOUT;
}
}
else
{
if (wait_for_completion_interruptible(&spidev->read_compl) < 0)
{
pr_info("spidev_read interuptible\n");
return -ERESTARTSYS;
}
}
mutex_lock(&spidev->buf_list_lock);
if (!list_empty(&spidev->read_buf_head->list))
{
spidev_buf_node = list_first_entry(&spidev->read_buf_head->list, spidev_buf_list, list);
/*spi read completion, and copy to userspace*/
status = spidev_buf_node->read_cnt;
if (status > 0)
{
unsigned long missing = 0;
missing = copy_to_user(buf, spidev_buf_node->buffer, status);
if (missing == status)
{
status = -EFAULT;
}
else
{
status = status - missing;
}
}
list_move_tail(&spidev_buf_node->list, &spidev->idle_buf_head->list);
if (list_empty(&spidev->read_buf_head->list))
{
wake_unlock(&spidev->wake_lock);
}
}
else
{
status = -EFAULT;
}
mutex_unlock(&spidev->buf_list_lock);
pr_debug("SPIDEV: user read done: %d\n", status);
}
return status;
}
/* Write-only message with current device setup */
static ssize_t
spidev_write(struct file *filp, const char __user *buf,
size_t count, loff_t *f_pos)
{
struct spidev_data *spidev;
ssize_t status = 0;
unsigned long missing;
unsigned int delay_times = 0;
/* chipselect only toggles at start or end of operation */
if (count > bufsiz)
return -EMSGSIZE;
spidev = filp->private_data;
if (spidev->work_mode == SPIDEV_WORK_MODE_USER)
{
mutex_lock(&spidev->buf_lock);
missing = copy_from_user(spidev->tx_buffer, buf, count);
if (missing == 0) {
status = spidev_sync_write(spidev, count);
} else
status = -EFAULT;
mutex_unlock(&spidev->buf_lock);
}
else
{
pr_debug("spidev write in kernel mode\n");
/*spidev kernel mode write*/
if (count > SPIDEV_KERNEL_MODE_LENGTH)
{
pr_err("SPIDEV Kernel mode tx length = %d out of range \n",count);
status = -EINVAL;
}
else
{
mutex_lock(&spidev->spi_op_lock);
memset(spidev->tx_buf, 0x00, SPIDEV_KERNEL_MODE_LENGTH);
missing = copy_from_user(spidev->tx_buf, buf, count);
if (missing == 0)
{
gpio_direction_output(spidev->wakeup_mcu_gpio, 1);
do
{
udelay(SPIDEV_WRITE_DELAY_TIME_US);
delay_times++;
if (SPIDEV_WRITE_MAX_DELAY_TIMES < delay_times)
{
status = -ETIME;
gpio_direction_output(spidev->wakeup_mcu_gpio, 0);
mutex_unlock(&spidev->spi_op_lock);
pr_err("spidev_write delay times is out of range\n");
return status;
}
}while(gpio_get_value(spidev->write_sync_gpio) != 1);
status = spidev_sync_write_ext(spidev, SPIDEV_KERNEL_MODE_LENGTH);
gpio_direction_output(spidev->wakeup_mcu_gpio, 0);
}
else
{
pr_err("SPIDEV data missing while copy from user\n");
status = -EFAULT;
}
mutex_unlock(&spidev->spi_op_lock);
}
}
return status;
}
static int spidev_message(struct spidev_data *spidev,
struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
{
struct spi_message msg;
struct spi_transfer *k_xfers;
struct spi_transfer *k_tmp;
struct spi_ioc_transfer *u_tmp;
unsigned n, total;
u8 *tx_buf, *rx_buf;
int status = -EFAULT;
spi_message_init(&msg);
k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
if (k_xfers == NULL)
return -ENOMEM;
/* Construct spi_message, copying any tx data to bounce buffer.
* We walk the array of user-provided transfers, using each one
* to initialize a kernel version of the same transfer.
*/
tx_buf = spidev->tx_buffer;
rx_buf = spidev->rx_buffer;
total = 0;
for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
n;
n--, k_tmp++, u_tmp++) {
k_tmp->len = u_tmp->len;
total += k_tmp->len;
/* Check total length of transfers. Also check each
* transfer length to avoid arithmetic overflow.
*/
if (total > bufsiz || k_tmp->len > bufsiz) {
status = -EMSGSIZE;
goto done;
}
if (u_tmp->rx_buf) {
k_tmp->rx_buf = rx_buf;
if (!access_ok(VERIFY_WRITE, (u8 __user *)
(uintptr_t) u_tmp->rx_buf,
u_tmp->len))
goto done;
}
if (u_tmp->tx_buf) {
k_tmp->tx_buf = tx_buf;
if (copy_from_user(tx_buf, (const u8 __user *)
(uintptr_t) u_tmp->tx_buf,
u_tmp->len))
goto done;
}
tx_buf += k_tmp->len;
rx_buf += k_tmp->len;
k_tmp->cs_change = !!u_tmp->cs_change;
k_tmp->tx_nbits = u_tmp->tx_nbits;
k_tmp->rx_nbits = u_tmp->rx_nbits;
k_tmp->bits_per_word = u_tmp->bits_per_word;
k_tmp->delay_usecs = u_tmp->delay_usecs;
k_tmp->speed_hz = u_tmp->speed_hz;
#ifdef VERBOSE
dev_dbg(&spidev->spi->dev,
" xfer len %zd %s%s%s%dbits %u usec %uHz\n",
u_tmp->len,
u_tmp->rx_buf ? "rx " : "",
u_tmp->tx_buf ? "tx " : "",
u_tmp->cs_change ? "cs " : "",
u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
u_tmp->delay_usecs,
u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
#endif
spi_message_add_tail(k_tmp, &msg);
}
status = spidev_sync(spidev, &msg);
if (status < 0)
goto done;
/* copy any rx data out of bounce buffer */
rx_buf = spidev->rx_buffer;
for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
if (u_tmp->rx_buf) {
if (__copy_to_user((u8 __user *)
(uintptr_t) u_tmp->rx_buf, rx_buf,
u_tmp->len)) {
status = -EFAULT;
goto done;
}
}
rx_buf += u_tmp->len;
}
status = total;
done:
kfree(k_xfers);
return status;
}
void build_wakeup_display_data_struct(spidev_buf_list *buf_node)
{
static char wakeup_gesture_data[] =
{0x12,0x5A,0x00,0x0C,0x00,0x15,0x81,0x01,0x01,0x44,0x02,0x01,0x00,0x03,0x01,0x00,0xAC,0x00};
if (NULL == buf_node)
{
return;
}
/*build wakeup gesture data in node*/
memcpy(buf_node->buffer, wakeup_gesture_data, sizeof(wakeup_gesture_data));
buf_node->read_cnt = sizeof(wakeup_gesture_data);
}
static void spidev_wakeup_read_work(struct work_struct *work)
{
struct spidev_data *spidev = container_of(work, struct spidev_data, wakeup_read_work);
spidev_buf_list *spidev_buf_node = NULL;
unsigned int delay_times = 0;
mutex_lock(&spidev->spi_op_lock);
if (spidev)
{
retry:
mutex_lock(&spidev->buf_list_lock);
if (!list_empty(&spidev->idle_buf_head->list))
{
/*Get buf note from idle list*/
spidev_buf_node = list_entry(spidev->idle_buf_head->list.prev, spidev_buf_list, list);
gpio_direction_output(spidev->read_sync_gpio, 1);
do
{
udelay(SPIDEV_READ_DELAY_TIME_US);
if (delay_times++ > SPIDEV_READ_MAX_DELAY_TIMES)
{
pr_err("spidev_wakeup_read_work delay times is out of range\n");
break;
}
}while(gpio_get_value(spidev->wake_irq_gpio) == 1);
/*Execute Sync Read Operation*/
spidev_buf_node->read_cnt = spidev_sync_read_ext(spidev, spidev_buf_node, SPIDEV_KERNEL_MODE_LENGTH);
gpio_direction_output(spidev->read_sync_gpio, 0);
/*move the buf node to read buf list*/
list_move_tail(&spidev_buf_node->list, &spidev->read_buf_head->list);
mutex_unlock(&spidev->buf_list_lock);
spidev_complete(&spidev->read_compl);
wake_lock_timeout(&spidev->wake_lock, DATA_TRANSFER_INTERVAL);
}
else
{
/*No Buf in idle list, sleep 2ms and retry*/
mutex_unlock(&spidev->buf_list_lock);
pr_info("spidev_wakeup_read_work buf list is full wait 2ms\n");
msleep(2);
goto retry;
}
}
else
{
pr_err("spidev_wakeup_read_task spidev NULL\n");
}
mutex_unlock(&spidev->spi_op_lock);
}
static void spidev_wakeup_display_work(struct work_struct *work)
{
struct spidev_data *spidev = container_of(work, struct spidev_data, wakeup_display_work);
spidev_buf_list *spidev_buf_node = NULL;
if (spidev)
{
wake_lock_timeout(&spidev->wake_display_lock, WAKEUP_DISPLAY_INTERVAL);
retry:
mutex_lock(&spidev->buf_list_lock);
if (!list_empty(&spidev->idle_buf_head->list))
{
/*Get buf note from idle list*/
spidev_buf_node = list_entry(spidev->idle_buf_head->list.prev, spidev_buf_list, list);
build_wakeup_display_data_struct(spidev_buf_node);
/*move the buf node to read buf list*/
list_move(&spidev_buf_node->list, &spidev->read_buf_head->list);
mutex_unlock(&spidev->buf_list_lock);
spidev_complete(&spidev->read_compl);
wake_lock_timeout(&spidev->wake_lock, DATA_TRANSFER_INTERVAL);
}
else
{
/*No Buf in idle list, sleep 2ms and retry*/
mutex_unlock(&spidev->buf_list_lock);
pr_info("spidev_wakeup_display_work buf list is full wait 2ms\n");
msleep(2);
goto retry;
}
}
else
{
pr_err("spidev_wakeup_display_work spidev NULL\n");
}
}
static irqreturn_t spidev_wake_irq(int irq, void *arg)
{
struct spidev_data *spidev = (struct spidev_data *)arg;
if (spidev && (spidev->work_mode == SPIDEV_WORK_MODE_KERNEL))
{
if (spidev->is_suspended)
{
spidev->pending_irq = true;
}
else
{
schedule_work(&spidev->wakeup_read_work);
}
}
return IRQ_HANDLED;
}
static irqreturn_t spidev_wakeup_display_irq(int irq, void *arg)
{
struct spidev_data *spidev = (struct spidev_data *)arg;
if (spidev && (SPIDEV_WORK_MODE_KERNEL == spidev->work_mode)
&& (SPIDEV_WAKEUP_DISPLAY_ENALBE == spidev->wakeup_disp_enable))
{
schedule_work(&spidev->wakeup_display_work);
}
return IRQ_HANDLED;
}
static long
spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int err = 0;
int retval = 0;
struct spidev_data *spidev;
struct spi_device *spi;
u32 tmp;
unsigned n_ioc;
struct spi_ioc_transfer *ioc;
spidev_work_mode_type old_work_mode;
/* Check type and command number */
if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
return -ENOTTY;
/* Check access direction once here; don't repeat below.
* IOC_DIR is from the user perspective, while access_ok is
* from the kernel perspective; so they look reversed.
*/
if (_IOC_DIR(cmd) & _IOC_READ)
err = !access_ok(VERIFY_WRITE,
(void __user *)arg, _IOC_SIZE(cmd));
if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
err = !access_ok(VERIFY_READ,
(void __user *)arg, _IOC_SIZE(cmd));
if (err)
return -EFAULT;
/* guard against device removal before, or while,
* we issue this ioctl.
*/
spidev = filp->private_data;
spin_lock_irq(&spidev->spi_lock);
spi = spi_dev_get(spidev->spi);
spin_unlock_irq(&spidev->spi_lock);
if (spi == NULL)
return -ESHUTDOWN;
/* use the buffer lock here for triple duty:
* - prevent I/O (from us) so calling spi_setup() is safe;
* - prevent concurrent SPI_IOC_WR_* from morphing
* data fields while SPI_IOC_RD_* reads them;
* - SPI_IOC_MESSAGE needs the buffer locked "normally".
*/
mutex_lock(&spidev->buf_lock);
switch (cmd) {
/* read requests */
case SPI_IOC_RD_MODE:
retval = __put_user(spi->mode & SPI_MODE_MASK,
(__u8 __user *)arg);
break;
case SPI_IOC_RD_MODE32:
retval = __put_user(spi->mode & SPI_MODE_MASK,
(__u32 __user *)arg);
break;
case SPI_IOC_RD_LSB_FIRST:
retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
(__u8 __user *)arg);
break;
case SPI_IOC_RD_BITS_PER_WORD:
retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
break;
case SPI_IOC_RD_MAX_SPEED_HZ:
retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
break;
/* write requests */
case SPI_IOC_WR_MODE:
case SPI_IOC_WR_MODE32:
if (cmd == SPI_IOC_WR_MODE)
retval = __get_user(tmp, (u8 __user *)arg);
else
retval = __get_user(tmp, (u32 __user *)arg);
if (retval == 0) {
u32 save = spi->mode;
if (tmp & ~SPI_MODE_MASK) {
retval = -EINVAL;
break;
}
tmp |= spi->mode & ~SPI_MODE_MASK;
spi->mode = (u16)tmp;
retval = spi_setup(spi);
if (retval < 0)
spi->mode = save;
else
dev_dbg(&spi->dev, "spi mode %x\n", tmp);
}
break;
case SPI_IOC_WR_LSB_FIRST:
retval = __get_user(tmp, (__u8 __user *)arg);
if (retval == 0) {
u32 save = spi->mode;
if (tmp)
spi->mode |= SPI_LSB_FIRST;
else
spi->mode &= ~SPI_LSB_FIRST;
retval = spi_setup(spi);
if (retval < 0)
spi->mode = save;
else
dev_dbg(&spi->dev, "%csb first\n",
tmp ? 'l' : 'm');
}
break;
case SPI_IOC_WR_BITS_PER_WORD:
retval = __get_user(tmp, (__u8 __user *)arg);
if (retval == 0) {
u8 save = spi->bits_per_word;
spi->bits_per_word = tmp;
retval = spi_setup(spi);
if (retval < 0)
spi->bits_per_word = save;
else
dev_dbg(&spi->dev, "%d bits per word\n", tmp);
}
break;
case SPI_IOC_WR_MAX_SPEED_HZ:
retval = __get_user(tmp, (__u32 __user *)arg);
if (retval == 0) {
u32 save = spi->max_speed_hz;
spi->max_speed_hz = tmp;
retval = spi_setup(spi);
if (retval < 0)
spi->max_speed_hz = save;
else
dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
}
break;
case SPI_IOC_WR_WORK_MODE:
retval = __get_user(tmp, (__u32 __user *)arg);
if (retval != 0)
{
dev_err(&spi->dev, "get user data error\n");
break;
}
if (((spidev_work_mode_type)tmp == SPIDEV_WORK_MODE_KERNEL)
&& (bufsiz < SPIDEV_KERNEL_MODE_LENGTH))
{
dev_err(&spi->dev, "spi buffer size is not enough to run in kernel mode\n");
retval = -EPERM;
break;
}
/*Set Spi mode*/
old_work_mode = spidev->work_mode;
spidev->work_mode = (spidev_work_mode_type)(tmp == 0 ? 0 : 1);
pr_info("spi work mode = %d spidev->wake_irq:%d\n",spidev->work_mode, spidev->wake_irq);
if (old_work_mode == spidev->work_mode)
{
dev_info(&spi->dev, "spi work mode is not changed\n");
break;
}
if (spidev->work_mode == SPIDEV_WORK_MODE_KERNEL)
{
retval = request_irq(spidev->wake_irq, spidev_wake_irq,
IRQF_DISABLED | IRQF_TRIGGER_RISING,
"spidev wake irq", spidev);
if (retval < 0)
{
dev_err(&spi->dev,"Couldn't acquire MCU HOST WAKE UP IRQ reval = %d\n",retval);
break;
}
}
else if (SPIDEV_WORK_MODE_USER == spidev->work_mode)
{
dev_err(&spi->dev,"set work mode is user cancel work,free irq \n");
cancel_work_sync(&spidev->wakeup_read_work);
free_irq(spidev->wake_irq, spidev);
if (SPIDEV_WAKEUP_DISPLAY_ENALBE == spidev->wakeup_disp_enable)
{
cancel_work_sync(&spidev->wakeup_display_work);
free_irq(spidev->wake_display_irq, spidev);
spidev->wakeup_disp_enable = SPIDEV_WAKEUP_DISPLAY_DISABLE;
}
}
else
{
;
}
break;
case SPI_IOC_WAKEUP_DISPLAY_CTRL:
retval = __get_user(tmp, (__u32 __user *)arg);
if (retval != 0)
{
dev_err(&spi->dev, "wakeup display get user data error\n");
break;
}
pr_info("spi work mode = %d, spidev->wakeup_display_irq:%d, enable:%d\n",
spidev->work_mode, spidev->wake_display_irq, tmp);
if (SPIDEV_WORK_MODE_KERNEL == spidev->work_mode)
{
if (spidev->wakeup_disp_enable == (spidev_wakeup_disp_type)(tmp == 0? 0: 1))
{
pr_info("wakeup display control is not charged:%d\n",spidev->wakeup_disp_enable);
}
else
{
if (SPIDEV_WAKEUP_DISPLAY_ENALBE == (spidev_wakeup_disp_type)(!!tmp))
{
retval = request_irq(spidev->wake_display_irq, spidev_wakeup_display_irq,
IRQF_DISABLED | IRQF_TRIGGER_RISING,
"spidev wakeup display irq", spidev);
if (retval < 0)
{
dev_err(&spi->dev,"Couldn't acquire mcu wakeup display IRQ reval = %d\n",retval);
}
}
else
{
free_irq(spidev->wake_display_irq, spidev);
}
spidev->wakeup_disp_enable = (spidev_wakeup_disp_type)(!!tmp);
}
}
break;
default:
/* segmented and/or full-duplex I/O request */
if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
|| _IOC_DIR(cmd) != _IOC_WRITE) {
retval = -ENOTTY;
break;
}
tmp = _IOC_SIZE(cmd);
if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {
retval = -EINVAL;
break;
}
n_ioc = tmp / sizeof(struct spi_ioc_transfer);
if (n_ioc == 0)
break;
/* copy into scratch area */
ioc = kmalloc(tmp, GFP_KERNEL);
if (!ioc) {
retval = -ENOMEM;
break;
}
if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
kfree(ioc);
retval = -EFAULT;
break;
}
/* translate to spi_message, execute */
retval = spidev_message(spidev, ioc, n_ioc);
kfree(ioc);
break;
}
mutex_unlock(&spidev->buf_lock);
spi_dev_put(spi);
return retval;
}
#ifdef CONFIG_COMPAT
static long
spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
}
#else
#define spidev_compat_ioctl NULL
#endif /* CONFIG_COMPAT */
static int spidev_open(struct inode *inode, struct file *filp)
{
struct spidev_data *spidev;
int status = -ENXIO;
int idx = 0;
spidev_buf_list *spidev_buf_node = NULL;
spidev_buf_list *spidev_tmp_node = NULL;
mutex_lock(&device_list_lock);
list_for_each_entry(spidev, &device_list, device_entry) {
if (spidev->devt == inode->i_rdev) {
status = 0;
break;
}
}
if (status) {
pr_debug("spidev: nothing for minor %d\n", iminor(inode));
goto err_find_dev;
}
if (!spidev->tx_buffer) {
spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
if (!spidev->tx_buffer) {
dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
status = -ENOMEM;
goto err_find_dev;
}
}
if (!spidev->rx_buffer) {
spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
if (!spidev->rx_buffer) {
dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
status = -ENOMEM;
goto err_alloc_rx_buf;
}
}
if (!spidev->tx_buf)
{
spidev->tx_buf = kmalloc(SPIDEV_KERNEL_MODE_LENGTH, GFP_KERNEL);
if (!spidev->tx_buf)
{
dev_dbg(&spidev->spi->dev, "open tx buf/ENOMEM\n");
status = -ENOMEM;
goto err_alloc_rx_buf;
}
}
if (!spidev->read_buf_head)
{
spidev->read_buf_head = kmalloc(sizeof(spidev_buf_list), GFP_KERNEL);
if (!spidev->read_buf_head)
{
dev_err(&spidev->spi->dev, "open read_buf_head alloc /ENOMEM\n");
status = -ENOMEM;
goto err_alloc_rx_buf;
}
else
{
INIT_LIST_HEAD(&spidev->read_buf_head->list);
}
}
if (!spidev->idle_buf_head)
{
spidev->idle_buf_head = kmalloc(sizeof(spidev_buf_list), GFP_KERNEL);
if (!spidev->idle_buf_head)
{
dev_err(&spidev->spi->dev, "open idle_buf_head alloc /ENOMEM\n");
status = -ENOMEM;
goto err_alloc_rx_buf;
}
else
{
INIT_LIST_HEAD(&spidev->idle_buf_head->list);
/*alloc spidev node buffer*/
for (idx = 0; idx < SPIDEV_BUF_MAX_NODE_N; idx++)
{
spidev_buf_node = kmalloc(sizeof(spidev_buf_list), GFP_KERNEL);
if (spidev_buf_node == NULL)
{
dev_err(&spidev->spi->dev, "open spidev buf node/ENOMEM\n");
status = -ENOMEM;
goto err_alloc_rx_buf;
}
else
{
list_add_tail(&spidev_buf_node->list, &spidev->idle_buf_head->list);
spidev_buf_node->read_cnt = 0;
spidev_buf_node->buffer = kmalloc(SPIDEV_KERNEL_MODE_LENGTH, GFP_KERNEL);
if (spidev_buf_node->buffer == NULL)
{
dev_err(&spidev->spi->dev, "open spidev buf /ENOMEM\n");
status = -ENOMEM;
goto err_alloc_rx_buf;
}
}
}
}
}
spidev->users++;
filp->private_data = spidev;
nonseekable_open(inode, filp);
mutex_unlock(&device_list_lock);
return 0;
err_alloc_rx_buf:
kfree(spidev->tx_buffer);
spidev->tx_buffer = NULL;
if (spidev->rx_buffer)
{
kfree(spidev->rx_buffer);
spidev->rx_buffer = NULL;
}
if (spidev->tx_buf)
{
kfree(spidev->tx_buf);
spidev->tx_buf = NULL;
}
if (spidev->read_buf_head)
{
kfree(spidev->read_buf_head);
spidev->read_buf_head = NULL;
}
if (spidev->idle_buf_head)
{
/*free buffer node*/
list_for_each_entry_safe(spidev_buf_node, spidev_tmp_node, &(spidev->idle_buf_head->list), list)
{
if (spidev_buf_node)
{
if (spidev_buf_node->buffer)
{
kfree(spidev_buf_node->buffer);
}
list_del(&spidev_buf_node->list);
kfree(spidev_buf_node);
}
}
/*free head list*/
kfree(spidev->idle_buf_head);
spidev->idle_buf_head = NULL;
}
err_find_dev:
mutex_unlock(&device_list_lock);
return status;
}
static int spidev_release(struct inode *inode, struct file *filp)
{
struct spidev_data *spidev;
int status = 0;
spidev_buf_list *spidev_buf_node = NULL;
spidev_buf_list *spidev_tmp_node = NULL;
mutex_lock(&device_list_lock);
spidev = filp->private_data;
filp->private_data = NULL;
/* last close? */
spidev->users--;
if (!spidev->users) {
int dofree;
if (SPIDEV_WORK_MODE_KERNEL == spidev->work_mode)
{
cancel_work_sync(&spidev->wakeup_read_work);
free_irq(spidev->wake_irq, spidev);
if (SPIDEV_WAKEUP_DISPLAY_ENALBE == spidev->wakeup_disp_enable)
{
cancel_work_sync(&spidev->wakeup_display_work);
free_irq(spidev->wake_display_irq, spidev);
spidev->wakeup_disp_enable = SPIDEV_WAKEUP_DISPLAY_DISABLE;
}
spidev->work_mode = SPIDEV_WORK_MODE_USER;
}
kfree(spidev->tx_buffer);
spidev->tx_buffer = NULL;
kfree(spidev->rx_buffer);
spidev->rx_buffer = NULL;
kfree(spidev->tx_buf);
spidev->tx_buf = NULL;
list_for_each_entry_safe(spidev_buf_node, spidev_tmp_node,&(spidev->idle_buf_head->list), list)
{
kfree(spidev_buf_node->buffer);
list_del(&spidev_buf_node->list);
kfree(spidev_buf_node);
}
list_for_each_entry_safe(spidev_buf_node, spidev_tmp_node,&(spidev->read_buf_head->list), list)
{
kfree(spidev_buf_node->buffer);
list_del(&spidev_buf_node->list);
kfree(spidev_buf_node);
}
kfree(spidev->idle_buf_head);
spidev->idle_buf_head = NULL;
kfree(spidev->read_buf_head);
spidev->read_buf_head = NULL;
/* ... after we unbound from the underlying device? */
spin_lock_irq(&spidev->spi_lock);
dofree = (spidev->spi == NULL);
spin_unlock_irq(&spidev->spi_lock);
if (dofree)
kfree(spidev);
}
mutex_unlock(&device_list_lock);
return status;
}
static const struct file_operations spidev_fops = {
.owner = THIS_MODULE,
/* REVISIT switch to aio primitives, so that userspace
* gets more complete API coverage. It'll simplify things
* too, except for the locking.
*/
.write = spidev_write,
.read = spidev_read,
.unlocked_ioctl = spidev_ioctl,
.compat_ioctl = spidev_compat_ioctl,
.open = spidev_open,
.release = spidev_release,
.llseek = no_llseek,
};
/*-------------------------------------------------------------------------*/
/* The main reason to have this class is to make mdev/udev create the
* /dev/spidevB.C character device nodes exposing our userspace API.
* It also simplifies memory management.
*/
static struct class *spidev_class;
/*-------------------------------------------------------------------------*/
static int spidev_probe(struct spi_device *spi)
{
struct spidev_data *spidev;
int status;
unsigned long minor;
/* Allocate driver data */
spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
if (!spidev)
return -ENOMEM;
/* Initialize the driver data */
spidev->spi = spi;
spin_lock_init(&spidev->spi_lock);
mutex_init(&spidev->buf_lock);
mutex_init(&spidev->tx_buf_lock);
mutex_init(&spidev->buf_list_lock);
mutex_init(&spidev->spi_op_lock);
INIT_LIST_HEAD(&spidev->device_entry);
/* If we can allocate a minor number, hook up this device.
* Reusing minors is fine so long as udev or mdev is working.
*/
mutex_lock(&device_list_lock);
minor = find_first_zero_bit(minors, N_SPI_MINORS);
if (minor < N_SPI_MINORS) {
struct device *dev;
spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
dev = device_create(spidev_class, &spi->dev, spidev->devt,
spidev, "spidev%d.%d",
spi->master->bus_num, spi->chip_select);
status = PTR_ERR_OR_ZERO(dev);
} else {
dev_dbg(&spi->dev, "no minor number available!\n");
status = -ENODEV;
}
if (status == 0) {
set_bit(minor, minors);
list_add(&spidev->device_entry, &device_list);
}
init_completion(&spidev->read_compl);
status = spidev_request_gpio(spidev);
INIT_WORK(&spidev->wakeup_read_work,spidev_wakeup_read_work);
INIT_WORK(&spidev->wakeup_display_work,spidev_wakeup_display_work);
mutex_unlock(&device_list_lock);
wake_lock_init(&spidev->wake_lock, WAKE_LOCK_SUSPEND, "mcu_commu");
wake_lock_init(&spidev->wake_display_lock, WAKE_LOCK_SUSPEND, "mcu_display");
if (status == 0)
spi_set_drvdata(spi, spidev);
else
kfree(spidev);
return status;
}
static int spidev_remove(struct spi_device *spi)
{
struct spidev_data *spidev = spi_get_drvdata(spi);
/* make sure ops on existing fds can abort cleanly */
spin_lock_irq(&spidev->spi_lock);
spidev->spi = NULL;
spin_unlock_irq(&spidev->spi_lock);
wake_lock_destroy(&spidev->wake_lock);
wake_lock_destroy(&spidev->wake_display_lock);
/* prevent new opens */
mutex_lock(&device_list_lock);
if (spidev->work_mode == SPIDEV_WORK_MODE_KERNEL)
{
cancel_work_sync(&spidev->wakeup_read_work);
free_irq(spidev->wake_irq, spidev);
if (SPIDEV_WAKEUP_DISPLAY_ENALBE == spidev->wakeup_disp_enable)
{
cancel_work_sync(&spidev->wakeup_display_work);
free_irq(spidev->wake_display_irq, spidev);
spidev->wakeup_disp_enable = SPIDEV_WAKEUP_DISPLAY_DISABLE;
}
spidev->work_mode = SPIDEV_WORK_MODE_USER;
}
spidev_release_gpio(spidev);
list_del(&spidev->device_entry);
device_destroy(spidev_class, spidev->devt);
clear_bit(MINOR(spidev->devt), minors);
if (spidev->users == 0)
kfree(spidev);
mutex_unlock(&device_list_lock);
return 0;
}
static int spidev_suspend(struct spi_device *spi, pm_message_t mesg)
{
struct spidev_data *spidev = spi_get_drvdata(spi);
int retval = 0;
pr_info("%s:enter",__func__);
if (spidev->work_mode == SPIDEV_WORK_MODE_KERNEL)
{
retval = enable_irq_wake(spidev->wake_irq);
if (retval < 0)
{
dev_err(&spi->dev,"Couldn't enable mcu_host_wake as wakeup interrupt\n");
}
if (SPIDEV_WAKEUP_DISPLAY_ENALBE == spidev->wakeup_disp_enable)
{
retval = enable_irq_wake(spidev->wake_display_irq);
if (retval < 0)
{
dev_err(&spi->dev,"Couldn't enable mcu wakeup display irq as wakeup interrupt\n");
}
}
/*Reset flag to capture pending irq before resume */
spidev->pending_irq = false;
spidev->is_suspended = true;
}
return 0;
}
static int spidev_resume(struct spi_device *spi)
{
struct spidev_data *spidev = spi_get_drvdata(spi);
int retval = 0;
pr_info("%s:enter",__func__);
if (spidev->work_mode == SPIDEV_WORK_MODE_KERNEL)
{
retval = disable_irq_wake(spidev->wake_irq);
if (retval < 0)
{
dev_err(&spi->dev,"Couldn't disable mcu_host_wake as wakeup interrupt\n");
}
if (SPIDEV_WAKEUP_DISPLAY_ENALBE == spidev->wakeup_disp_enable)
{
retval = disable_irq_wake(spidev->wake_display_irq);
if (retval < 0)
{
dev_err(&spi->dev,"Couldn't disable mcu wakeup display irq as wakeup interrupt\n");
}
}
spidev->is_suspended = false;
if (spidev->pending_irq)
{
pr_info("%s: pending spidev irq\n", __func__);
spidev->pending_irq = false;
schedule_work(&spidev->wakeup_read_work);
}
}
return 0;
}
static const struct of_device_id spidev_dt_ids[] = {
{ .compatible = "rohm,dh2228fv", },
{ .compatible = "qcom,spi-msm-codec-slave", },
{},
};
MODULE_DEVICE_TABLE(of, spidev_dt_ids);
static struct spi_driver spidev_spi_driver = {
.driver = {
.name = "spidev",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(spidev_dt_ids),
},
.probe = spidev_probe,
.remove = spidev_remove,
.suspend = spidev_suspend,
.resume = spidev_resume,
/* NOTE: suspend/resume methods are not necessary here.
* We don't do anything except pass the requests to/from
* the underlying controller. The refrigerator handles
* most issues; the controller driver handles the rest.
*/
};
/*-------------------------------------------------------------------------*/
static int __init spidev_init(void)
{
int status;
/* Claim our 256 reserved device numbers. Then register a class
* that will key udev/mdev to add/remove /dev nodes. Last, register
* the driver which manages those device numbers.
*/
BUILD_BUG_ON(N_SPI_MINORS > 256);
status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
if (status < 0)
return status;
spidev_class = class_create(THIS_MODULE, "spidev");
if (IS_ERR(spidev_class)) {
status = PTR_ERR(spidev_class);
goto error_class;
}
status = spi_register_driver(&spidev_spi_driver);
if (status < 0)
goto error_register;
if (busnum != -1 && chipselect != -1) {
struct spi_board_info chip = {
.modalias = "spidev",
.mode = spimode,
.bus_num = busnum,
.chip_select = chipselect,
.max_speed_hz = maxspeed,
};
struct spi_master *master;
master = spi_busnum_to_master(busnum);
if (!master) {
status = -ENODEV;
goto error_busnum;
}
/* We create a virtual device that will sit on the bus */
spi = spi_new_device(master, &chip);
if (!spi) {
status = -EBUSY;
goto error_mem;
}
dev_dbg(&spi->dev, "busnum=%d cs=%d bufsiz=%d maxspeed=%d",
busnum, chipselect, bufsiz, maxspeed);
}
return 0;
error_mem:
error_busnum:
spi_unregister_driver(&spidev_spi_driver);
error_register:
class_destroy(spidev_class);
error_class:
unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
return status;
}
module_init(spidev_init);
static void __exit spidev_exit(void)
{
if (spi) {
spi_unregister_device(spi);
spi = NULL;
}
spi_unregister_driver(&spidev_spi_driver);
class_destroy(spidev_class);
unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
}
module_exit(spidev_exit);
MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
MODULE_DESCRIPTION("User mode SPI device interface");
MODULE_LICENSE("GPL");
MODULE_ALIAS("spi:spidev");