| /* | 
 |  *  arch/arm/include/asm/pgtable.h | 
 |  * | 
 |  *  Copyright (C) 1995-2002 Russell King | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  */ | 
 | #ifndef _ASMARM_PGTABLE_H | 
 | #define _ASMARM_PGTABLE_H | 
 |  | 
 | #include <linux/const.h> | 
 | #include <asm-generic/4level-fixup.h> | 
 | #include <asm/proc-fns.h> | 
 |  | 
 | #ifndef CONFIG_MMU | 
 |  | 
 | #include "pgtable-nommu.h" | 
 |  | 
 | #else | 
 |  | 
 | #include <asm/memory.h> | 
 | #include <mach/vmalloc.h> | 
 | #include <asm/pgtable-hwdef.h> | 
 |  | 
 | /* | 
 |  * Just any arbitrary offset to the start of the vmalloc VM area: the | 
 |  * current 8MB value just means that there will be a 8MB "hole" after the | 
 |  * physical memory until the kernel virtual memory starts.  That means that | 
 |  * any out-of-bounds memory accesses will hopefully be caught. | 
 |  * The vmalloc() routines leaves a hole of 4kB between each vmalloced | 
 |  * area for the same reason. ;) | 
 |  * | 
 |  * Note that platforms may override VMALLOC_START, but they must provide | 
 |  * VMALLOC_END.  VMALLOC_END defines the (exclusive) limit of this space, | 
 |  * which may not overlap IO space. | 
 |  */ | 
 | #ifndef VMALLOC_START | 
 | #define VMALLOC_OFFSET		(8*1024*1024) | 
 | #define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) | 
 | #endif | 
 |  | 
 | /* | 
 |  * Hardware-wise, we have a two level page table structure, where the first | 
 |  * level has 4096 entries, and the second level has 256 entries.  Each entry | 
 |  * is one 32-bit word.  Most of the bits in the second level entry are used | 
 |  * by hardware, and there aren't any "accessed" and "dirty" bits. | 
 |  * | 
 |  * Linux on the other hand has a three level page table structure, which can | 
 |  * be wrapped to fit a two level page table structure easily - using the PGD | 
 |  * and PTE only.  However, Linux also expects one "PTE" table per page, and | 
 |  * at least a "dirty" bit. | 
 |  * | 
 |  * Therefore, we tweak the implementation slightly - we tell Linux that we | 
 |  * have 2048 entries in the first level, each of which is 8 bytes (iow, two | 
 |  * hardware pointers to the second level.)  The second level contains two | 
 |  * hardware PTE tables arranged contiguously, preceded by Linux versions | 
 |  * which contain the state information Linux needs.  We, therefore, end up | 
 |  * with 512 entries in the "PTE" level. | 
 |  * | 
 |  * This leads to the page tables having the following layout: | 
 |  * | 
 |  *    pgd             pte | 
 |  * |        | | 
 |  * +--------+ | 
 |  * |        |       +------------+ +0 | 
 |  * +- - - - +       | Linux pt 0 | | 
 |  * |        |       +------------+ +1024 | 
 |  * +--------+ +0    | Linux pt 1 | | 
 |  * |        |-----> +------------+ +2048 | 
 |  * +- - - - + +4    |  h/w pt 0  | | 
 |  * |        |-----> +------------+ +3072 | 
 |  * +--------+ +8    |  h/w pt 1  | | 
 |  * |        |       +------------+ +4096 | 
 |  * | 
 |  * See L_PTE_xxx below for definitions of bits in the "Linux pt", and | 
 |  * PTE_xxx for definitions of bits appearing in the "h/w pt". | 
 |  * | 
 |  * PMD_xxx definitions refer to bits in the first level page table. | 
 |  * | 
 |  * The "dirty" bit is emulated by only granting hardware write permission | 
 |  * iff the page is marked "writable" and "dirty" in the Linux PTE.  This | 
 |  * means that a write to a clean page will cause a permission fault, and | 
 |  * the Linux MM layer will mark the page dirty via handle_pte_fault(). | 
 |  * For the hardware to notice the permission change, the TLB entry must | 
 |  * be flushed, and ptep_set_access_flags() does that for us. | 
 |  * | 
 |  * The "accessed" or "young" bit is emulated by a similar method; we only | 
 |  * allow accesses to the page if the "young" bit is set.  Accesses to the | 
 |  * page will cause a fault, and handle_pte_fault() will set the young bit | 
 |  * for us as long as the page is marked present in the corresponding Linux | 
 |  * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is | 
 |  * up to date. | 
 |  * | 
 |  * However, when the "young" bit is cleared, we deny access to the page | 
 |  * by clearing the hardware PTE.  Currently Linux does not flush the TLB | 
 |  * for us in this case, which means the TLB will retain the transation | 
 |  * until either the TLB entry is evicted under pressure, or a context | 
 |  * switch which changes the user space mapping occurs. | 
 |  */ | 
 | #define PTRS_PER_PTE		512 | 
 | #define PTRS_PER_PMD		1 | 
 | #define PTRS_PER_PGD		2048 | 
 |  | 
 | #define PTE_HWTABLE_PTRS	(PTRS_PER_PTE) | 
 | #define PTE_HWTABLE_OFF		(PTE_HWTABLE_PTRS * sizeof(pte_t)) | 
 | #define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u32)) | 
 |  | 
 | /* | 
 |  * PMD_SHIFT determines the size of the area a second-level page table can map | 
 |  * PGDIR_SHIFT determines what a third-level page table entry can map | 
 |  */ | 
 | #define PMD_SHIFT		21 | 
 | #define PGDIR_SHIFT		21 | 
 |  | 
 | #define LIBRARY_TEXT_START	0x0c000000 | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 | extern void __pte_error(const char *file, int line, pte_t); | 
 | extern void __pmd_error(const char *file, int line, pmd_t); | 
 | extern void __pgd_error(const char *file, int line, pgd_t); | 
 |  | 
 | #define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte) | 
 | #define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd) | 
 | #define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd) | 
 | #endif /* !__ASSEMBLY__ */ | 
 |  | 
 | #define PMD_SIZE		(1UL << PMD_SHIFT) | 
 | #define PMD_MASK		(~(PMD_SIZE-1)) | 
 | #define PGDIR_SIZE		(1UL << PGDIR_SHIFT) | 
 | #define PGDIR_MASK		(~(PGDIR_SIZE-1)) | 
 |  | 
 | /* | 
 |  * This is the lowest virtual address we can permit any user space | 
 |  * mapping to be mapped at.  This is particularly important for | 
 |  * non-high vector CPUs. | 
 |  */ | 
 | #define FIRST_USER_ADDRESS	PAGE_SIZE | 
 |  | 
 | #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE) | 
 |  | 
 | /* | 
 |  * section address mask and size definitions. | 
 |  */ | 
 | #define SECTION_SHIFT		20 | 
 | #define SECTION_SIZE		(1UL << SECTION_SHIFT) | 
 | #define SECTION_MASK		(~(SECTION_SIZE-1)) | 
 |  | 
 | /* | 
 |  * ARMv6 supersection address mask and size definitions. | 
 |  */ | 
 | #define SUPERSECTION_SHIFT	24 | 
 | #define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT) | 
 | #define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1)) | 
 |  | 
 | /* | 
 |  * "Linux" PTE definitions. | 
 |  * | 
 |  * We keep two sets of PTEs - the hardware and the linux version. | 
 |  * This allows greater flexibility in the way we map the Linux bits | 
 |  * onto the hardware tables, and allows us to have YOUNG and DIRTY | 
 |  * bits. | 
 |  * | 
 |  * The PTE table pointer refers to the hardware entries; the "Linux" | 
 |  * entries are stored 1024 bytes below. | 
 |  */ | 
 | #define L_PTE_PRESENT		(_AT(pteval_t, 1) << 0) | 
 | #define L_PTE_YOUNG		(_AT(pteval_t, 1) << 1) | 
 | #define L_PTE_FILE		(_AT(pteval_t, 1) << 2)	/* only when !PRESENT */ | 
 | #define L_PTE_DIRTY		(_AT(pteval_t, 1) << 6) | 
 | #define L_PTE_RDONLY		(_AT(pteval_t, 1) << 7) | 
 | #define L_PTE_USER		(_AT(pteval_t, 1) << 8) | 
 | #define L_PTE_XN		(_AT(pteval_t, 1) << 9) | 
 | #define L_PTE_SHARED		(_AT(pteval_t, 1) << 10)	/* shared(v6), coherent(xsc3) */ | 
 |  | 
 | /* | 
 |  * These are the memory types, defined to be compatible with | 
 |  * pre-ARMv6 CPUs cacheable and bufferable bits:   XXCB | 
 |  */ | 
 | #define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0x00) << 2)	/* 0000 */ | 
 | #define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 0x01) << 2)	/* 0001 */ | 
 | #define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 0x02) << 2)	/* 0010 */ | 
 | #define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 0x03) << 2)	/* 0011 */ | 
 | #define L_PTE_MT_MINICACHE	(_AT(pteval_t, 0x06) << 2)	/* 0110 (sa1100, xscale) */ | 
 | #define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 0x07) << 2)	/* 0111 */ | 
 | #define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 0x04) << 2)	/* 0100 */ | 
 | #define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 0x0c) << 2)	/* 1100 */ | 
 | #define L_PTE_MT_DEV_WC		(_AT(pteval_t, 0x09) << 2)	/* 1001 */ | 
 | #define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 0x0b) << 2)	/* 1011 */ | 
 | #define L_PTE_MT_MASK		(_AT(pteval_t, 0x0f) << 2) | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 |  | 
 | /* | 
 |  * The pgprot_* and protection_map entries will be fixed up in runtime | 
 |  * to include the cachable and bufferable bits based on memory policy, | 
 |  * as well as any architecture dependent bits like global/ASID and SMP | 
 |  * shared mapping bits. | 
 |  */ | 
 | #define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG | 
 |  | 
 | extern pgprot_t		pgprot_user; | 
 | extern pgprot_t		pgprot_kernel; | 
 |  | 
 | #define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b)) | 
 |  | 
 | #define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY) | 
 | #define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN) | 
 | #define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER) | 
 | #define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN) | 
 | #define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY) | 
 | #define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN) | 
 | #define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY) | 
 | #define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN) | 
 | #define PAGE_KERNEL_EXEC	pgprot_kernel | 
 |  | 
 | #define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN) | 
 | #define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN) | 
 | #define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER) | 
 | #define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN) | 
 | #define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY) | 
 | #define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN) | 
 | #define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY) | 
 |  | 
 | #define __pgprot_modify(prot,mask,bits)		\ | 
 | 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits)) | 
 |  | 
 | #define pgprot_noncached(prot) \ | 
 | 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED) | 
 |  | 
 | #define pgprot_writecombine(prot) \ | 
 | 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE) | 
 |  | 
 | #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE | 
 | #define pgprot_dmacoherent(prot) \ | 
 | 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN) | 
 | #define __HAVE_PHYS_MEM_ACCESS_PROT | 
 | struct file; | 
 | extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, | 
 | 				     unsigned long size, pgprot_t vma_prot); | 
 | #else | 
 | #define pgprot_dmacoherent(prot) \ | 
 | 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN) | 
 | #endif | 
 |  | 
 | #endif /* __ASSEMBLY__ */ | 
 |  | 
 | /* | 
 |  * The table below defines the page protection levels that we insert into our | 
 |  * Linux page table version.  These get translated into the best that the | 
 |  * architecture can perform.  Note that on most ARM hardware: | 
 |  *  1) We cannot do execute protection | 
 |  *  2) If we could do execute protection, then read is implied | 
 |  *  3) write implies read permissions | 
 |  */ | 
 | #define __P000  __PAGE_NONE | 
 | #define __P001  __PAGE_READONLY | 
 | #define __P010  __PAGE_COPY | 
 | #define __P011  __PAGE_COPY | 
 | #define __P100  __PAGE_READONLY_EXEC | 
 | #define __P101  __PAGE_READONLY_EXEC | 
 | #define __P110  __PAGE_COPY_EXEC | 
 | #define __P111  __PAGE_COPY_EXEC | 
 |  | 
 | #define __S000  __PAGE_NONE | 
 | #define __S001  __PAGE_READONLY | 
 | #define __S010  __PAGE_SHARED | 
 | #define __S011  __PAGE_SHARED | 
 | #define __S100  __PAGE_READONLY_EXEC | 
 | #define __S101  __PAGE_READONLY_EXEC | 
 | #define __S110  __PAGE_SHARED_EXEC | 
 | #define __S111  __PAGE_SHARED_EXEC | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 | /* | 
 |  * ZERO_PAGE is a global shared page that is always zero: used | 
 |  * for zero-mapped memory areas etc.. | 
 |  */ | 
 | extern struct page *empty_zero_page; | 
 | #define ZERO_PAGE(vaddr)	(empty_zero_page) | 
 |  | 
 |  | 
 | extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; | 
 |  | 
 | /* to find an entry in a page-table-directory */ | 
 | #define pgd_index(addr)		((addr) >> PGDIR_SHIFT) | 
 |  | 
 | #define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr)) | 
 |  | 
 | /* to find an entry in a kernel page-table-directory */ | 
 | #define pgd_offset_k(addr)	pgd_offset(&init_mm, addr) | 
 |  | 
 | /* | 
 |  * The "pgd_xxx()" functions here are trivial for a folded two-level | 
 |  * setup: the pgd is never bad, and a pmd always exists (as it's folded | 
 |  * into the pgd entry) | 
 |  */ | 
 | #define pgd_none(pgd)		(0) | 
 | #define pgd_bad(pgd)		(0) | 
 | #define pgd_present(pgd)	(1) | 
 | #define pgd_clear(pgdp)		do { } while (0) | 
 | #define set_pgd(pgd,pgdp)	do { } while (0) | 
 | #define set_pud(pud,pudp)	do { } while (0) | 
 |  | 
 |  | 
 | /* Find an entry in the second-level page table.. */ | 
 | #define pmd_offset(dir, addr)	((pmd_t *)(dir)) | 
 |  | 
 | #define pmd_none(pmd)		(!pmd_val(pmd)) | 
 | #define pmd_present(pmd)	(pmd_val(pmd)) | 
 | #define pmd_bad(pmd)		(pmd_val(pmd) & 2) | 
 |  | 
 | #define copy_pmd(pmdpd,pmdps)		\ | 
 | 	do {				\ | 
 | 		pmdpd[0] = pmdps[0];	\ | 
 | 		pmdpd[1] = pmdps[1];	\ | 
 | 		flush_pmd_entry(pmdpd);	\ | 
 | 	} while (0) | 
 |  | 
 | #define pmd_clear(pmdp)			\ | 
 | 	do {				\ | 
 | 		pmdp[0] = __pmd(0);	\ | 
 | 		pmdp[1] = __pmd(0);	\ | 
 | 		clean_pmd_entry(pmdp);	\ | 
 | 	} while (0) | 
 |  | 
 | static inline pte_t *pmd_page_vaddr(pmd_t pmd) | 
 | { | 
 | 	return __va(pmd_val(pmd) & PAGE_MASK); | 
 | } | 
 |  | 
 | #define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd))) | 
 |  | 
 | /* we don't need complex calculations here as the pmd is folded into the pgd */ | 
 | #define pmd_addr_end(addr,end)	(end) | 
 |  | 
 |  | 
 | #ifndef CONFIG_HIGHPTE | 
 | #define __pte_map(pmd)		pmd_page_vaddr(*(pmd)) | 
 | #define __pte_unmap(pte)	do { } while (0) | 
 | #else | 
 | #define __pte_map(pmd)		(pte_t *)kmap_atomic(pmd_page(*(pmd))) | 
 | #define __pte_unmap(pte)	kunmap_atomic(pte) | 
 | #endif | 
 |  | 
 | #define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) | 
 |  | 
 | #define pte_offset_kernel(pmd,addr)	(pmd_page_vaddr(*(pmd)) + pte_index(addr)) | 
 |  | 
 | #define pte_offset_map(pmd,addr)	(__pte_map(pmd) + pte_index(addr)) | 
 | #define pte_unmap(pte)			__pte_unmap(pte) | 
 |  | 
 | #define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT) | 
 | #define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot)) | 
 |  | 
 | #define pte_page(pte)		pfn_to_page(pte_pfn(pte)) | 
 | #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot) | 
 |  | 
 | #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext) | 
 | #define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0) | 
 |  | 
 | #if __LINUX_ARM_ARCH__ < 6 | 
 | static inline void __sync_icache_dcache(pte_t pteval) | 
 | { | 
 | } | 
 | #else | 
 | extern void __sync_icache_dcache(pte_t pteval); | 
 | #endif | 
 |  | 
 | static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, | 
 | 			      pte_t *ptep, pte_t pteval) | 
 | { | 
 | 	if (addr >= TASK_SIZE) | 
 | 		set_pte_ext(ptep, pteval, 0); | 
 | 	else { | 
 | 		__sync_icache_dcache(pteval); | 
 | 		set_pte_ext(ptep, pteval, PTE_EXT_NG); | 
 | 	} | 
 | } | 
 |  | 
 | #define pte_none(pte)		(!pte_val(pte)) | 
 | #define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT) | 
 | #define pte_write(pte)		(!(pte_val(pte) & L_PTE_RDONLY)) | 
 | #define pte_dirty(pte)		(pte_val(pte) & L_PTE_DIRTY) | 
 | #define pte_young(pte)		(pte_val(pte) & L_PTE_YOUNG) | 
 | #define pte_exec(pte)		(!(pte_val(pte) & L_PTE_XN)) | 
 | #define pte_special(pte)	(0) | 
 |  | 
 | #define pte_present_user(pte) \ | 
 | 	((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \ | 
 | 	 (L_PTE_PRESENT | L_PTE_USER)) | 
 |  | 
 | #define PTE_BIT_FUNC(fn,op) \ | 
 | static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; } | 
 |  | 
 | PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY); | 
 | PTE_BIT_FUNC(mkwrite,   &= ~L_PTE_RDONLY); | 
 | PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY); | 
 | PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY); | 
 | PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG); | 
 | PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG); | 
 |  | 
 | static inline pte_t pte_mkspecial(pte_t pte) { return pte; } | 
 |  | 
 | static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) | 
 | { | 
 | 	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER; | 
 | 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); | 
 | 	return pte; | 
 | } | 
 |  | 
 | /* | 
 |  * Encode and decode a swap entry.  Swap entries are stored in the Linux | 
 |  * page tables as follows: | 
 |  * | 
 |  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 | 
 |  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 | 
 |  *   <--------------- offset --------------------> <- type --> 0 0 0 | 
 |  * | 
 |  * This gives us up to 63 swap files and 32GB per swap file.  Note that | 
 |  * the offset field is always non-zero. | 
 |  */ | 
 | #define __SWP_TYPE_SHIFT	3 | 
 | #define __SWP_TYPE_BITS		6 | 
 | #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1) | 
 | #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) | 
 |  | 
 | #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) | 
 | #define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT) | 
 | #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) | 
 |  | 
 | #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) }) | 
 | #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val }) | 
 |  | 
 | /* | 
 |  * It is an error for the kernel to have more swap files than we can | 
 |  * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES | 
 |  * is increased beyond what we presently support. | 
 |  */ | 
 | #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) | 
 |  | 
 | /* | 
 |  * Encode and decode a file entry.  File entries are stored in the Linux | 
 |  * page tables as follows: | 
 |  * | 
 |  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 | 
 |  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 | 
 |  *   <----------------------- offset ------------------------> 1 0 0 | 
 |  */ | 
 | #define pte_file(pte)		(pte_val(pte) & L_PTE_FILE) | 
 | #define pte_to_pgoff(x)		(pte_val(x) >> 3) | 
 | #define pgoff_to_pte(x)		__pte(((x) << 3) | L_PTE_FILE) | 
 |  | 
 | #define PTE_FILE_MAX_BITS	29 | 
 |  | 
 | /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ | 
 | /* FIXME: this is not correct */ | 
 | #define kern_addr_valid(addr)	(1) | 
 |  | 
 | #include <asm-generic/pgtable.h> | 
 |  | 
 | /* | 
 |  * We provide our own arch_get_unmapped_area to cope with VIPT caches. | 
 |  */ | 
 | #define HAVE_ARCH_UNMAPPED_AREA | 
 |  | 
 | /* | 
 |  * remap a physical page `pfn' of size `size' with page protection `prot' | 
 |  * into virtual address `from' | 
 |  */ | 
 | #define io_remap_pfn_range(vma,from,pfn,size,prot) \ | 
 | 		remap_pfn_range(vma, from, pfn, size, prot) | 
 |  | 
 | #define pgtable_cache_init() do { } while (0) | 
 |  | 
 | void identity_mapping_add(pgd_t *, unsigned long, unsigned long); | 
 | void identity_mapping_del(pgd_t *, unsigned long, unsigned long); | 
 |  | 
 | #endif /* !__ASSEMBLY__ */ | 
 |  | 
 | #endif /* CONFIG_MMU */ | 
 |  | 
 | #endif /* _ASMARM_PGTABLE_H */ |