blob: 77f77fc4b80dd3f2c76a20900c3cda3376d0d6b2 [file] [log] [blame]
/* Copyright (c) 2010-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <asm/cacheflush.h>
#include <asm/compiler.h>
#include <soc/qcom/scm.h>
#define SCM_ENOMEM -5
#define SCM_EOPNOTSUPP -4
#define SCM_EINVAL_ADDR -3
#define SCM_EINVAL_ARG -2
#define SCM_ERROR -1
#define SCM_INTERRUPTED 1
#define SCM_EBUSY -55
#define SCM_V2_EBUSY -12
static DEFINE_MUTEX(scm_lock);
/*
* MSM8996 V2 requires a lock to protect against
* concurrent accesses between the limits management
* driver and the clock controller
*/
DEFINE_MUTEX(scm_lmh_lock);
#define SCM_EBUSY_WAIT_MS 30
#define SCM_EBUSY_MAX_RETRY 20
#define N_EXT_SCM_ARGS 7
#define FIRST_EXT_ARG_IDX 3
#define SMC_ATOMIC_SYSCALL 31
#define N_REGISTER_ARGS (MAX_SCM_ARGS - N_EXT_SCM_ARGS + 1)
#define SMC64_MASK 0x40000000
#define SMC_ATOMIC_MASK 0x80000000
#define IS_CALL_AVAIL_CMD 1
#define SCM_BUF_LEN(__cmd_size, __resp_size) \
(sizeof(struct scm_command) + sizeof(struct scm_response) + \
__cmd_size + __resp_size)
/**
* struct scm_command - one SCM command buffer
* @len: total available memory for command and response
* @buf_offset: start of command buffer
* @resp_hdr_offset: start of response buffer
* @id: command to be executed
* @buf: buffer returned from scm_get_command_buffer()
*
* An SCM command is laid out in memory as follows:
*
* ------------------- <--- struct scm_command
* | command header |
* ------------------- <--- scm_get_command_buffer()
* | command buffer |
* ------------------- <--- struct scm_response and
* | response header | scm_command_to_response()
* ------------------- <--- scm_get_response_buffer()
* | response buffer |
* -------------------
*
* There can be arbitrary padding between the headers and buffers so
* you should always use the appropriate scm_get_*_buffer() routines
* to access the buffers in a safe manner.
*/
struct scm_command {
u32 len;
u32 buf_offset;
u32 resp_hdr_offset;
u32 id;
u32 buf[0];
};
/**
* struct scm_response - one SCM response buffer
* @len: total available memory for response
* @buf_offset: start of response data relative to start of scm_response
* @is_complete: indicates if the command has finished processing
*/
struct scm_response {
u32 len;
u32 buf_offset;
u32 is_complete;
};
#ifdef CONFIG_ARM64
#define R0_STR "x0"
#define R1_STR "x1"
#define R2_STR "x2"
#define R3_STR "x3"
#define R4_STR "x4"
#define R5_STR "x5"
#define R6_STR "x6"
/* Outer caches unsupported on ARM64 platforms */
#define outer_inv_range(x, y)
#define outer_flush_range(x, y)
#define __cpuc_flush_dcache_area __flush_dcache_area
#else
#define R0_STR "r0"
#define R1_STR "r1"
#define R2_STR "r2"
#define R3_STR "r3"
#define R4_STR "r4"
#define R5_STR "r5"
#define R6_STR "r6"
#endif
/**
* scm_command_to_response() - Get a pointer to a scm_response
* @cmd: command
*
* Returns a pointer to a response for a command.
*/
static inline struct scm_response *scm_command_to_response(
const struct scm_command *cmd)
{
return (void *)cmd + cmd->resp_hdr_offset;
}
/**
* scm_get_command_buffer() - Get a pointer to a command buffer
* @cmd: command
*
* Returns a pointer to the command buffer of a command.
*/
static inline void *scm_get_command_buffer(const struct scm_command *cmd)
{
return (void *)cmd->buf;
}
/**
* scm_get_response_buffer() - Get a pointer to a response buffer
* @rsp: response
*
* Returns a pointer to a response buffer of a response.
*/
static inline void *scm_get_response_buffer(const struct scm_response *rsp)
{
return (void *)rsp + rsp->buf_offset;
}
static int scm_remap_error(int err)
{
switch (err) {
case SCM_ERROR:
return -EIO;
case SCM_EINVAL_ADDR:
case SCM_EINVAL_ARG:
return -EINVAL;
case SCM_EOPNOTSUPP:
return -EOPNOTSUPP;
case SCM_ENOMEM:
return -ENOMEM;
case SCM_EBUSY:
return SCM_EBUSY;
case SCM_V2_EBUSY:
return SCM_V2_EBUSY;
}
return -EINVAL;
}
static u32 smc(u32 cmd_addr)
{
int context_id;
register u32 r0 asm("r0") = 1;
register u32 r1 asm("r1") = (uintptr_t)&context_id;
register u32 r2 asm("r2") = cmd_addr;
do {
asm volatile(
__asmeq("%0", R0_STR)
__asmeq("%1", R0_STR)
__asmeq("%2", R1_STR)
__asmeq("%3", R2_STR)
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0\n"
: "=r" (r0)
: "r" (r0), "r" (r1), "r" (r2)
: "r3");
} while (r0 == SCM_INTERRUPTED);
return r0;
}
static int __scm_call(const struct scm_command *cmd)
{
int ret;
u32 cmd_addr = virt_to_phys(cmd);
/*
* Flush the command buffer so that the secure world sees
* the correct data.
*/
__cpuc_flush_dcache_area((void *)cmd, cmd->len);
outer_flush_range(cmd_addr, cmd_addr + cmd->len);
ret = smc(cmd_addr);
if (ret < 0) {
if (ret != SCM_EBUSY)
pr_err("scm_call failed with error code %d\n", ret);
ret = scm_remap_error(ret);
}
return ret;
}
#ifndef CONFIG_ARM64
static void scm_inv_range(unsigned long start, unsigned long end)
{
u32 cacheline_size, ctr;
asm volatile("mrc p15, 0, %0, c0, c0, 1" : "=r" (ctr));
cacheline_size = 4 << ((ctr >> 16) & 0xf);
start = round_down(start, cacheline_size);
end = round_up(end, cacheline_size);
outer_inv_range(start, end);
while (start < end) {
asm ("mcr p15, 0, %0, c7, c6, 1" : : "r" (start)
: "memory");
start += cacheline_size;
}
dsb();
isb();
}
#else
static void scm_inv_range(unsigned long start, unsigned long end)
{
dmac_inv_range((void *)start, (void *)end);
}
#endif
/**
* scm_call_common() - Send an SCM command
* @svc_id: service identifier
* @cmd_id: command identifier
* @cmd_buf: command buffer
* @cmd_len: length of the command buffer
* @resp_buf: response buffer
* @resp_len: length of the response buffer
* @scm_buf: internal scm structure used for passing data
* @scm_buf_len: length of the internal scm structure
*
* Core function to scm call. Initializes the given cmd structure with
* appropriate values and makes the actual scm call. Validation of cmd
* pointer and length must occur in the calling function.
*
* Returns the appropriate error code from the scm call
*/
static int scm_call_common(u32 svc_id, u32 cmd_id, const void *cmd_buf,
size_t cmd_len, void *resp_buf, size_t resp_len,
struct scm_command *scm_buf,
size_t scm_buf_length)
{
int ret;
struct scm_response *rsp;
unsigned long start, end;
scm_buf->len = scm_buf_length;
scm_buf->buf_offset = offsetof(struct scm_command, buf);
scm_buf->resp_hdr_offset = scm_buf->buf_offset + cmd_len;
scm_buf->id = (svc_id << 10) | cmd_id;
if (cmd_buf)
memcpy(scm_get_command_buffer(scm_buf), cmd_buf, cmd_len);
mutex_lock(&scm_lock);
ret = __scm_call(scm_buf);
mutex_unlock(&scm_lock);
if (ret)
return ret;
rsp = scm_command_to_response(scm_buf);
start = (unsigned long)rsp;
do {
scm_inv_range(start, start + sizeof(*rsp));
} while (!rsp->is_complete);
end = (unsigned long)scm_get_response_buffer(rsp) + resp_len;
scm_inv_range(start, end);
if (resp_buf)
memcpy(resp_buf, scm_get_response_buffer(rsp), resp_len);
return ret;
}
/*
* Sometimes the secure world may be busy waiting for a particular resource.
* In those situations, it is expected that the secure world returns a special
* error code (SCM_EBUSY). Retry any scm_call that fails with this error code,
* but with a timeout in place. Also, don't move this into scm_call_common,
* since we want the first attempt to be the "fastpath".
*/
static int _scm_call_retry(u32 svc_id, u32 cmd_id, const void *cmd_buf,
size_t cmd_len, void *resp_buf, size_t resp_len,
struct scm_command *cmd,
size_t len)
{
int ret, retry_count = 0;
do {
ret = scm_call_common(svc_id, cmd_id, cmd_buf, cmd_len,
resp_buf, resp_len, cmd, len);
if (ret == SCM_EBUSY)
msleep(SCM_EBUSY_WAIT_MS);
} while (ret == SCM_EBUSY && (retry_count++ < SCM_EBUSY_MAX_RETRY));
if (ret == SCM_EBUSY)
pr_err("scm: secure world busy (rc = SCM_EBUSY)\n");
return ret;
}
/**
* scm_call_noalloc - Send an SCM command
*
* Same as scm_call except clients pass in a buffer (@scm_buf) to be used for
* scm internal structures. The buffer should be allocated with
* DEFINE_SCM_BUFFER to account for the proper alignment and size.
*/
int scm_call_noalloc(u32 svc_id, u32 cmd_id, const void *cmd_buf,
size_t cmd_len, void *resp_buf, size_t resp_len,
void *scm_buf, size_t scm_buf_len)
{
int ret;
size_t len = SCM_BUF_LEN(cmd_len, resp_len);
if (cmd_len > scm_buf_len || resp_len > scm_buf_len ||
len > scm_buf_len)
return -EINVAL;
if (!IS_ALIGNED((unsigned long)scm_buf, PAGE_SIZE))
return -EINVAL;
memset(scm_buf, 0, scm_buf_len);
ret = scm_call_common(svc_id, cmd_id, cmd_buf, cmd_len, resp_buf,
resp_len, scm_buf, len);
return ret;
}
#ifdef CONFIG_ARM64
static int __scm_call_armv8_64(u64 x0, u64 x1, u64 x2, u64 x3, u64 x4, u64 x5,
u64 *ret1, u64 *ret2, u64 *ret3)
{
register u64 r0 asm("r0") = x0;
register u64 r1 asm("r1") = x1;
register u64 r2 asm("r2") = x2;
register u64 r3 asm("r3") = x3;
register u64 r4 asm("r4") = x4;
register u64 r5 asm("r5") = x5;
register u64 r6 asm("r6") = 0;
do {
asm volatile(
__asmeq("%0", R0_STR)
__asmeq("%1", R1_STR)
__asmeq("%2", R2_STR)
__asmeq("%3", R3_STR)
__asmeq("%4", R0_STR)
__asmeq("%5", R1_STR)
__asmeq("%6", R2_STR)
__asmeq("%7", R3_STR)
__asmeq("%8", R4_STR)
__asmeq("%9", R5_STR)
__asmeq("%10", R6_STR)
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0\n"
: "=r" (r0), "=r" (r1), "=r" (r2), "=r" (r3)
: "r" (r0), "r" (r1), "r" (r2), "r" (r3), "r" (r4),
"r" (r5), "r" (r6)
: "x7", "x8", "x9", "x10", "x11", "x12", "x13",
"x14", "x15", "x16", "x17");
} while (r0 == SCM_INTERRUPTED);
if (ret1)
*ret1 = r1;
if (ret2)
*ret2 = r2;
if (ret3)
*ret3 = r3;
return r0;
}
static int __scm_call_armv8_32(u32 w0, u32 w1, u32 w2, u32 w3, u32 w4, u32 w5,
u64 *ret1, u64 *ret2, u64 *ret3)
{
register u32 r0 asm("r0") = w0;
register u32 r1 asm("r1") = w1;
register u32 r2 asm("r2") = w2;
register u32 r3 asm("r3") = w3;
register u32 r4 asm("r4") = w4;
register u32 r5 asm("r5") = w5;
register u32 r6 asm("r6") = 0;
do {
asm volatile(
__asmeq("%0", R0_STR)
__asmeq("%1", R1_STR)
__asmeq("%2", R2_STR)
__asmeq("%3", R3_STR)
__asmeq("%4", R0_STR)
__asmeq("%5", R1_STR)
__asmeq("%6", R2_STR)
__asmeq("%7", R3_STR)
__asmeq("%8", R4_STR)
__asmeq("%9", R5_STR)
__asmeq("%10", R6_STR)
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0\n"
: "=r" (r0), "=r" (r1), "=r" (r2), "=r" (r3)
: "r" (r0), "r" (r1), "r" (r2), "r" (r3), "r" (r4),
"r" (r5), "r" (r6)
: "x7", "x8", "x9", "x10", "x11", "x12", "x13",
"x14", "x15", "x16", "x17");
} while (r0 == SCM_INTERRUPTED);
if (ret1)
*ret1 = r1;
if (ret2)
*ret2 = r2;
if (ret3)
*ret3 = r3;
return r0;
}
#else
static int __scm_call_armv8_32(u32 w0, u32 w1, u32 w2, u32 w3, u32 w4, u32 w5,
u64 *ret1, u64 *ret2, u64 *ret3)
{
register u32 r0 asm("r0") = w0;
register u32 r1 asm("r1") = w1;
register u32 r2 asm("r2") = w2;
register u32 r3 asm("r3") = w3;
register u32 r4 asm("r4") = w4;
register u32 r5 asm("r5") = w5;
register u32 r6 asm("r6") = 0;
do {
asm volatile(
__asmeq("%0", R0_STR)
__asmeq("%1", R1_STR)
__asmeq("%2", R2_STR)
__asmeq("%3", R3_STR)
__asmeq("%4", R0_STR)
__asmeq("%5", R1_STR)
__asmeq("%6", R2_STR)
__asmeq("%7", R3_STR)
__asmeq("%8", R4_STR)
__asmeq("%9", R5_STR)
__asmeq("%10", R6_STR)
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0\n"
: "=r" (r0), "=r" (r1), "=r" (r2), "=r" (r3)
: "r" (r0), "r" (r1), "r" (r2), "r" (r3), "r" (r4),
"r" (r5), "r" (r6));
} while (r0 == SCM_INTERRUPTED);
if (ret1)
*ret1 = r1;
if (ret2)
*ret2 = r2;
if (ret3)
*ret3 = r3;
return r0;
}
static int __scm_call_armv8_64(u64 x0, u64 x1, u64 x2, u64 x3, u64 x4, u64 x5,
u64 *ret1, u64 *ret2, u64 *ret3)
{
return 0;
}
#endif
struct scm_extra_arg {
union {
u32 args32[N_EXT_SCM_ARGS];
u64 args64[N_EXT_SCM_ARGS];
};
};
static enum scm_interface_version {
SCM_UNKNOWN,
SCM_LEGACY,
SCM_ARMV8_32,
SCM_ARMV8_64,
} scm_version = SCM_UNKNOWN;
/* This will be set to specify SMC32 or SMC64 */
static u32 scm_version_mask;
bool is_scm_armv8(void)
{
int ret;
u64 ret1, x0;
if (likely(scm_version != SCM_UNKNOWN))
return (scm_version == SCM_ARMV8_32) ||
(scm_version == SCM_ARMV8_64);
/*
* This is a one time check that runs on the first ever
* invocation of is_scm_armv8. We might be called in atomic
* context so no mutexes etc. Also, we can't use the scm_call2
* or scm_call2_APIs directly since they depend on this init.
*/
/* First try a SMC64 call */
scm_version = SCM_ARMV8_64;
ret1 = 0;
x0 = SCM_SIP_FNID(SCM_SVC_INFO, IS_CALL_AVAIL_CMD) | SMC_ATOMIC_MASK;
ret = __scm_call_armv8_64(x0 | SMC64_MASK, SCM_ARGS(1), x0, 0, 0, 0,
&ret1, NULL, NULL);
if (ret || !ret1) {
/* Try SMC32 call */
ret1 = 0;
ret = __scm_call_armv8_32(x0, SCM_ARGS(1), x0, 0, 0, 0,
&ret1, NULL, NULL);
if (ret || !ret1)
scm_version = SCM_LEGACY;
else
scm_version = SCM_ARMV8_32;
} else
scm_version_mask = SMC64_MASK;
pr_debug("scm_call: scm version is %x, mask is %x\n", scm_version,
scm_version_mask);
return (scm_version == SCM_ARMV8_32) ||
(scm_version == SCM_ARMV8_64);
}
EXPORT_SYMBOL(is_scm_armv8);
/*
* If there are more than N_REGISTER_ARGS, allocate a buffer and place
* the additional arguments in it. The extra argument buffer will be
* pointed to by X5.
*/
static int allocate_extra_arg_buffer(struct scm_desc *desc, gfp_t flags)
{
int i, j;
struct scm_extra_arg *argbuf;
int arglen = desc->arginfo & 0xf;
size_t argbuflen = PAGE_ALIGN(sizeof(struct scm_extra_arg));
desc->x5 = desc->args[FIRST_EXT_ARG_IDX];
if (likely(arglen <= N_REGISTER_ARGS)) {
desc->extra_arg_buf = NULL;
return 0;
}
argbuf = kzalloc(argbuflen, flags);
if (!argbuf) {
pr_err("scm_call: failed to alloc mem for extended argument buffer\n");
return -ENOMEM;
}
desc->extra_arg_buf = argbuf;
j = FIRST_EXT_ARG_IDX;
if (scm_version == SCM_ARMV8_64)
for (i = 0; i < N_EXT_SCM_ARGS; i++)
argbuf->args64[i] = desc->args[j++];
else
for (i = 0; i < N_EXT_SCM_ARGS; i++)
argbuf->args32[i] = desc->args[j++];
desc->x5 = virt_to_phys(argbuf);
__cpuc_flush_dcache_area(argbuf, argbuflen);
outer_flush_range(virt_to_phys(argbuf),
virt_to_phys(argbuf) + argbuflen);
return 0;
}
/**
* scm_call2() - Invoke a syscall in the secure world
* @fn_id: The function ID for this syscall
* @desc: Descriptor structure containing arguments and return values
*
* Sends a command to the SCM and waits for the command to finish processing.
* This should *only* be called in pre-emptible context.
*
* A note on cache maintenance:
* Note that any buffers that are expected to be accessed by the secure world
* must be flushed before invoking scm_call and invalidated in the cache
* immediately after scm_call returns. An important point that must be noted
* is that on ARMV8 architectures, invalidation actually also causes a dirty
* cache line to be cleaned (flushed + unset-dirty-bit). Therefore it is of
* paramount importance that the buffer be flushed before invoking scm_call2,
* even if you don't care about the contents of that buffer.
*
* Note that cache maintenance on the argument buffer (desc->args) is taken care
* of by scm_call2; however, callers are responsible for any other cached
* buffers passed over to the secure world.
*/
int scm_call2(u32 fn_id, struct scm_desc *desc)
{
int arglen = desc->arginfo & 0xf;
int ret, retry_count = 0;
u64 x0;
if (unlikely(!is_scm_armv8()))
return -ENODEV;
ret = allocate_extra_arg_buffer(desc, GFP_KERNEL);
if (ret)
return ret;
x0 = fn_id | scm_version_mask;
do {
mutex_lock(&scm_lock);
if (SCM_SVC_ID(fn_id) == SCM_SVC_LMH)
mutex_lock(&scm_lmh_lock);
desc->ret[0] = desc->ret[1] = desc->ret[2] = 0;
pr_debug("scm_call: func id %#llx, args: %#x, %#llx, %#llx, %#llx, %#llx\n",
x0, desc->arginfo, desc->args[0], desc->args[1],
desc->args[2], desc->x5);
if (scm_version == SCM_ARMV8_64)
ret = __scm_call_armv8_64(x0, desc->arginfo,
desc->args[0], desc->args[1],
desc->args[2], desc->x5,
&desc->ret[0], &desc->ret[1],
&desc->ret[2]);
else
ret = __scm_call_armv8_32(x0, desc->arginfo,
desc->args[0], desc->args[1],
desc->args[2], desc->x5,
&desc->ret[0], &desc->ret[1],
&desc->ret[2]);
if (SCM_SVC_ID(fn_id) == SCM_SVC_LMH)
mutex_unlock(&scm_lmh_lock);
mutex_unlock(&scm_lock);
if (ret == SCM_V2_EBUSY)
msleep(SCM_EBUSY_WAIT_MS);
} while (ret == SCM_V2_EBUSY && (retry_count++ < SCM_EBUSY_MAX_RETRY));
if (ret < 0)
pr_err("scm_call failed: func id %#llx, arginfo: %#x, args: %#llx, %#llx, %#llx, %#llx, ret: %d, syscall returns: %#llx, %#llx, %#llx\n",
x0, desc->arginfo, desc->args[0], desc->args[1],
desc->args[2], desc->x5, ret, desc->ret[0],
desc->ret[1], desc->ret[2]);
if (arglen > N_REGISTER_ARGS)
kfree(desc->extra_arg_buf);
if (ret < 0)
return scm_remap_error(ret);
return 0;
}
EXPORT_SYMBOL(scm_call2);
/**
* scm_call2_atomic() - Invoke a syscall in the secure world
*
* Similar to scm_call2 except that this can be invoked in atomic context.
* There is also no retry mechanism implemented. Please ensure that the
* secure world syscall can be executed in such a context and can complete
* in a timely manner.
*/
int scm_call2_atomic(u32 fn_id, struct scm_desc *desc)
{
int arglen = desc->arginfo & 0xf;
int ret;
u64 x0;
if (unlikely(!is_scm_armv8()))
return -ENODEV;
ret = allocate_extra_arg_buffer(desc, GFP_ATOMIC);
if (ret)
return ret;
x0 = fn_id | BIT(SMC_ATOMIC_SYSCALL) | scm_version_mask;
pr_debug("scm_call: func id %#llx, args: %#x, %#llx, %#llx, %#llx, %#llx\n",
x0, desc->arginfo, desc->args[0], desc->args[1],
desc->args[2], desc->x5);
if (scm_version == SCM_ARMV8_64)
ret = __scm_call_armv8_64(x0, desc->arginfo, desc->args[0],
desc->args[1], desc->args[2],
desc->x5, &desc->ret[0],
&desc->ret[1], &desc->ret[2]);
else
ret = __scm_call_armv8_32(x0, desc->arginfo, desc->args[0],
desc->args[1], desc->args[2],
desc->x5, &desc->ret[0],
&desc->ret[1], &desc->ret[2]);
if (ret < 0)
pr_err("scm_call failed: func id %#llx, arginfo: %#x, args: %#llx, %#llx, %#llx, %#llx, ret: %d, syscall returns: %#llx, %#llx, %#llx\n",
x0, desc->arginfo, desc->args[0], desc->args[1],
desc->args[2], desc->x5, ret, desc->ret[0],
desc->ret[1], desc->ret[2]);
if (arglen > N_REGISTER_ARGS)
kfree(desc->extra_arg_buf);
if (ret < 0)
return scm_remap_error(ret);
return ret;
}
/**
* scm_call() - Send an SCM command
* @svc_id: service identifier
* @cmd_id: command identifier
* @cmd_buf: command buffer
* @cmd_len: length of the command buffer
* @resp_buf: response buffer
* @resp_len: length of the response buffer
*
* Sends a command to the SCM and waits for the command to finish processing.
*
* A note on cache maintenance:
* Note that any buffers that are expected to be accessed by the secure world
* must be flushed before invoking scm_call and invalidated in the cache
* immediately after scm_call returns. Cache maintenance on the command and
* response buffers is taken care of by scm_call; however, callers are
* responsible for any other cached buffers passed over to the secure world.
*/
int scm_call(u32 svc_id, u32 cmd_id, const void *cmd_buf, size_t cmd_len,
void *resp_buf, size_t resp_len)
{
struct scm_command *cmd;
int ret;
size_t len = SCM_BUF_LEN(cmd_len, resp_len);
if (cmd_len > len || resp_len > len)
return -EINVAL;
cmd = kzalloc(PAGE_ALIGN(len), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
ret = scm_call_common(svc_id, cmd_id, cmd_buf, cmd_len, resp_buf,
resp_len, cmd, len);
if (unlikely(ret == SCM_EBUSY))
ret = _scm_call_retry(svc_id, cmd_id, cmd_buf, cmd_len,
resp_buf, resp_len, cmd, PAGE_ALIGN(len));
kfree(cmd);
return ret;
}
EXPORT_SYMBOL(scm_call);
#define SCM_CLASS_REGISTER (0x2 << 8)
#define SCM_MASK_IRQS BIT(5)
#define SCM_ATOMIC(svc, cmd, n) (((((svc) << 10)|((cmd) & 0x3ff)) << 12) | \
SCM_CLASS_REGISTER | \
SCM_MASK_IRQS | \
(n & 0xf))
/**
* scm_call_atomic1() - Send an atomic SCM command with one argument
* @svc_id: service identifier
* @cmd_id: command identifier
* @arg1: first argument
*
* This shall only be used with commands that are guaranteed to be
* uninterruptable, atomic and SMP safe.
*/
s32 scm_call_atomic1(u32 svc, u32 cmd, u32 arg1)
{
int context_id;
register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 1);
register u32 r1 asm("r1") = (uintptr_t)&context_id;
register u32 r2 asm("r2") = arg1;
asm volatile(
__asmeq("%0", R0_STR)
__asmeq("%1", R0_STR)
__asmeq("%2", R1_STR)
__asmeq("%3", R2_STR)
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0\n"
: "=r" (r0)
: "r" (r0), "r" (r1), "r" (r2)
: "r3");
return r0;
}
EXPORT_SYMBOL(scm_call_atomic1);
/**
* scm_call_atomic1_1() - SCM command with one argument and one return value
* @svc_id: service identifier
* @cmd_id: command identifier
* @arg1: first argument
* @ret1: first return value
*
* This shall only be used with commands that are guaranteed to be
* uninterruptable, atomic and SMP safe.
*/
s32 scm_call_atomic1_1(u32 svc, u32 cmd, u32 arg1, u32 *ret1)
{
int context_id;
register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 1);
register u32 r1 asm("r1") = (uintptr_t)&context_id;
register u32 r2 asm("r2") = arg1;
asm volatile(
__asmeq("%0", R0_STR)
__asmeq("%1", R1_STR)
__asmeq("%2", R0_STR)
__asmeq("%3", R1_STR)
__asmeq("%4", R2_STR)
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0\n"
: "=r" (r0), "=r" (r1)
: "r" (r0), "r" (r1), "r" (r2)
: "r3");
if (ret1)
*ret1 = r1;
return r0;
}
EXPORT_SYMBOL(scm_call_atomic1_1);
/**
* scm_call_atomic2() - Send an atomic SCM command with two arguments
* @svc_id: service identifier
* @cmd_id: command identifier
* @arg1: first argument
* @arg2: second argument
*
* This shall only be used with commands that are guaranteed to be
* uninterruptable, atomic and SMP safe.
*/
s32 scm_call_atomic2(u32 svc, u32 cmd, u32 arg1, u32 arg2)
{
int context_id;
register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 2);
register u32 r1 asm("r1") = (uintptr_t)&context_id;
register u32 r2 asm("r2") = arg1;
register u32 r3 asm("r3") = arg2;
asm volatile(
__asmeq("%0", R0_STR)
__asmeq("%1", R0_STR)
__asmeq("%2", R1_STR)
__asmeq("%3", R2_STR)
__asmeq("%4", R3_STR)
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0\n"
: "=r" (r0)
: "r" (r0), "r" (r1), "r" (r2), "r" (r3));
return r0;
}
EXPORT_SYMBOL(scm_call_atomic2);
/**
* scm_call_atomic3() - Send an atomic SCM command with three arguments
* @svc_id: service identifier
* @cmd_id: command identifier
* @arg1: first argument
* @arg2: second argument
* @arg3: third argument
*
* This shall only be used with commands that are guaranteed to be
* uninterruptable, atomic and SMP safe.
*/
s32 scm_call_atomic3(u32 svc, u32 cmd, u32 arg1, u32 arg2, u32 arg3)
{
int context_id;
register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 3);
register u32 r1 asm("r1") = (uintptr_t)&context_id;
register u32 r2 asm("r2") = arg1;
register u32 r3 asm("r3") = arg2;
register u32 r4 asm("r4") = arg3;
asm volatile(
__asmeq("%0", R0_STR)
__asmeq("%1", R0_STR)
__asmeq("%2", R1_STR)
__asmeq("%3", R2_STR)
__asmeq("%4", R3_STR)
__asmeq("%5", R4_STR)
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0\n"
: "=r" (r0)
: "r" (r0), "r" (r1), "r" (r2), "r" (r3), "r" (r4));
return r0;
}
EXPORT_SYMBOL(scm_call_atomic3);
s32 scm_call_atomic4_3(u32 svc, u32 cmd, u32 arg1, u32 arg2,
u32 arg3, u32 arg4, u32 *ret1, u32 *ret2)
{
int ret;
int context_id;
register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 4);
register u32 r1 asm("r1") = (uintptr_t)&context_id;
register u32 r2 asm("r2") = arg1;
register u32 r3 asm("r3") = arg2;
register u32 r4 asm("r4") = arg3;
register u32 r5 asm("r5") = arg4;
asm volatile(
__asmeq("%0", R0_STR)
__asmeq("%1", R1_STR)
__asmeq("%2", R2_STR)
__asmeq("%3", R0_STR)
__asmeq("%4", R1_STR)
__asmeq("%5", R2_STR)
__asmeq("%6", R3_STR)
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0\n"
: "=r" (r0), "=r" (r1), "=r" (r2)
: "r" (r0), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5));
ret = r0;
if (ret1)
*ret1 = r1;
if (ret2)
*ret2 = r2;
return r0;
}
EXPORT_SYMBOL(scm_call_atomic4_3);
/**
* scm_call_atomic5_3() - SCM command with five argument and three return value
* @svc_id: service identifier
* @cmd_id: command identifier
* @arg1: first argument
* @arg2: second argument
* @arg3: third argument
* @arg4: fourth argument
* @arg5: fifth argument
* @ret1: first return value
* @ret2: second return value
* @ret3: third return value
*
* This shall only be used with commands that are guaranteed to be
* uninterruptable, atomic and SMP safe.
*/
s32 scm_call_atomic5_3(u32 svc, u32 cmd, u32 arg1, u32 arg2,
u32 arg3, u32 arg4, u32 arg5, u32 *ret1, u32 *ret2, u32 *ret3)
{
int ret;
int context_id;
register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 5);
register u32 r1 asm("r1") = (uintptr_t)&context_id;
register u32 r2 asm("r2") = arg1;
register u32 r3 asm("r3") = arg2;
register u32 r4 asm("r4") = arg3;
register u32 r5 asm("r5") = arg4;
register u32 r6 asm("r6") = arg5;
asm volatile(
__asmeq("%0", R0_STR)
__asmeq("%1", R1_STR)
__asmeq("%2", R2_STR)
__asmeq("%3", R3_STR)
__asmeq("%4", R0_STR)
__asmeq("%5", R1_STR)
__asmeq("%6", R2_STR)
__asmeq("%7", R3_STR)
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0\n"
: "=r" (r0), "=r" (r1), "=r" (r2), "=r" (r3)
: "r" (r0), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5),
"r" (r6));
ret = r0;
if (ret1)
*ret1 = r1;
if (ret2)
*ret2 = r2;
if (ret3)
*ret3 = r3;
return r0;
}
EXPORT_SYMBOL(scm_call_atomic5_3);
u32 scm_get_version(void)
{
int context_id;
static u32 version = -1;
register u32 r0 asm("r0");
register u32 r1 asm("r1");
if (version != -1)
return version;
mutex_lock(&scm_lock);
r0 = 0x1 << 8;
r1 = (uintptr_t)&context_id;
do {
asm volatile(
__asmeq("%0", R0_STR)
__asmeq("%1", R1_STR)
__asmeq("%2", R0_STR)
__asmeq("%3", R1_STR)
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0\n"
: "=r" (r0), "=r" (r1)
: "r" (r0), "r" (r1)
: "r2", "r3");
} while (r0 == SCM_INTERRUPTED);
version = r1;
mutex_unlock(&scm_lock);
return version;
}
EXPORT_SYMBOL(scm_get_version);
#define SCM_IO_READ 0x1
#define SCM_IO_WRITE 0x2
u32 scm_io_read(phys_addr_t address)
{
if (!is_scm_armv8()) {
return scm_call_atomic1(SCM_SVC_IO, SCM_IO_READ, address);
} else {
struct scm_desc desc = {
.args[0] = address,
.arginfo = SCM_ARGS(1),
};
scm_call2_atomic(SCM_SIP_FNID(SCM_SVC_IO, SCM_IO_READ), &desc);
return desc.ret[0];
}
}
EXPORT_SYMBOL(scm_io_read);
int scm_io_write(phys_addr_t address, u32 val)
{
int ret;
if (!is_scm_armv8()) {
ret = scm_call_atomic2(SCM_SVC_IO, SCM_IO_WRITE, address, val);
} else {
struct scm_desc desc = {
.args[0] = address,
.args[1] = val,
.arginfo = SCM_ARGS(2),
};
ret = scm_call2_atomic(SCM_SIP_FNID(SCM_SVC_IO, SCM_IO_WRITE),
&desc);
}
return ret;
}
EXPORT_SYMBOL(scm_io_write);
int scm_is_call_available(u32 svc_id, u32 cmd_id)
{
int ret;
struct scm_desc desc = {0};
if (!is_scm_armv8()) {
u32 ret_val = 0;
u32 svc_cmd = (svc_id << 10) | cmd_id;
ret = scm_call(SCM_SVC_INFO, IS_CALL_AVAIL_CMD, &svc_cmd,
sizeof(svc_cmd), &ret_val, sizeof(ret_val));
if (ret)
return ret;
return ret_val;
}
desc.arginfo = SCM_ARGS(1);
desc.args[0] = SCM_SIP_FNID(svc_id, cmd_id);
ret = scm_call2(SCM_SIP_FNID(SCM_SVC_INFO, IS_CALL_AVAIL_CMD), &desc);
if (ret)
return ret;
return desc.ret[0];
}
EXPORT_SYMBOL(scm_is_call_available);
#define GET_FEAT_VERSION_CMD 3
int scm_get_feat_version(u32 feat)
{
struct scm_desc desc = {0};
int ret;
if (!is_scm_armv8()) {
if (scm_is_call_available(SCM_SVC_INFO, GET_FEAT_VERSION_CMD)) {
u32 version;
if (!scm_call(SCM_SVC_INFO, GET_FEAT_VERSION_CMD, &feat,
sizeof(feat), &version, sizeof(version)))
return version;
}
return 0;
}
ret = scm_is_call_available(SCM_SVC_INFO, GET_FEAT_VERSION_CMD);
if (ret <= 0)
return 0;
desc.args[0] = feat;
desc.arginfo = SCM_ARGS(1);
ret = scm_call2(SCM_SIP_FNID(SCM_SVC_INFO, GET_FEAT_VERSION_CMD),
&desc);
if (!ret)
return desc.ret[0];
return 0;
}
EXPORT_SYMBOL(scm_get_feat_version);
#define RESTORE_SEC_CFG 2
int scm_restore_sec_cfg(u32 device_id, u32 spare, int *scm_ret)
{
struct scm_desc desc = {0};
int ret;
struct restore_sec_cfg {
u32 device_id;
u32 spare;
} cfg;
cfg.device_id = device_id;
cfg.spare = spare;
if (IS_ERR_OR_NULL(scm_ret))
return -EINVAL;
if (!is_scm_armv8())
return scm_call(SCM_SVC_MP, RESTORE_SEC_CFG, &cfg, sizeof(cfg),
scm_ret, sizeof(*scm_ret));
desc.args[0] = device_id;
desc.args[1] = spare;
desc.arginfo = SCM_ARGS(2);
ret = scm_call2(SCM_SIP_FNID(SCM_SVC_MP, RESTORE_SEC_CFG), &desc);
if (ret)
return ret;
*scm_ret = desc.ret[0];
return 0;
}
EXPORT_SYMBOL(scm_restore_sec_cfg);