blob: 49a63f705cee5ae1acfdcf0f5b7a862116030b13 [file] [log] [blame]
/* Copyright (c) 2010-2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/cpuidle.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ktime.h>
#include <linux/pm.h>
#include <linux/pm_qos.h>
#include <linux/smp.h>
#include <linux/suspend.h>
#include <linux/tick.h>
#include <linux/irqchip/arm-gic.h>
#include <mach/msm_iomap.h>
#include <mach/socinfo.h>
#include <mach/scm.h>
#include <mach/socinfo.h>
#include <asm/cacheflush.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/hardware/cache-l2x0.h>
#ifdef CONFIG_VFP
#include <asm/vfp.h>
#endif
#include "acpuclock.h"
#include "clock.h"
#include "avs.h"
#include <mach/cpuidle.h>
#include "idle.h"
#include "pm.h"
#include "scm-boot.h"
#include "spm.h"
#include "timer.h"
#include "pm-boot.h"
/******************************************************************************
* Debug Definitions
*****************************************************************************/
enum {
MSM_PM_DEBUG_SUSPEND = BIT(0),
MSM_PM_DEBUG_POWER_COLLAPSE = BIT(1),
MSM_PM_DEBUG_SUSPEND_LIMITS = BIT(2),
MSM_PM_DEBUG_CLOCK = BIT(3),
MSM_PM_DEBUG_RESET_VECTOR = BIT(4),
MSM_PM_DEBUG_IDLE_CLK = BIT(5),
MSM_PM_DEBUG_IDLE = BIT(6),
MSM_PM_DEBUG_IDLE_LIMITS = BIT(7),
MSM_PM_DEBUG_HOTPLUG = BIT(8),
};
static int msm_pm_debug_mask = 1;
module_param_named(
debug_mask, msm_pm_debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP
);
static int msm_pm_retention_tz_call;
/******************************************************************************
* Sleep Modes and Parameters
*****************************************************************************/
enum {
MSM_PM_MODE_ATTR_SUSPEND,
MSM_PM_MODE_ATTR_IDLE,
MSM_PM_MODE_ATTR_NR,
};
#define SCM_L2_RETENTION (0x2)
#define SCM_CMD_TERMINATE_PC (0x2)
static char *msm_pm_mode_attr_labels[MSM_PM_MODE_ATTR_NR] = {
[MSM_PM_MODE_ATTR_SUSPEND] = "suspend_enabled",
[MSM_PM_MODE_ATTR_IDLE] = "idle_enabled",
};
struct msm_pm_kobj_attribute {
unsigned int cpu;
struct kobj_attribute ka;
};
#define GET_CPU_OF_ATTR(attr) \
(container_of(attr, struct msm_pm_kobj_attribute, ka)->cpu)
struct msm_pm_sysfs_sleep_mode {
struct kobject *kobj;
struct attribute_group attr_group;
struct attribute *attrs[MSM_PM_MODE_ATTR_NR + 1];
struct msm_pm_kobj_attribute kas[MSM_PM_MODE_ATTR_NR];
};
static char *msm_pm_sleep_mode_labels[MSM_PM_SLEEP_MODE_NR] = {
[MSM_PM_SLEEP_MODE_POWER_COLLAPSE] = "power_collapse",
[MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT] = "wfi",
[MSM_PM_SLEEP_MODE_RETENTION] = "retention",
[MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE] =
"standalone_power_collapse",
};
static struct msm_pm_sleep_ops pm_sleep_ops;
/*
* Write out the attribute.
*/
static ssize_t msm_pm_mode_attr_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
int ret = -EINVAL;
int i;
for (i = 0; i < MSM_PM_SLEEP_MODE_NR; i++) {
struct kernel_param kp;
unsigned int cpu;
struct msm_pm_platform_data *mode;
if (msm_pm_sleep_mode_labels[i] == NULL)
continue;
if (strcmp(kobj->name, msm_pm_sleep_mode_labels[i]))
continue;
cpu = GET_CPU_OF_ATTR(attr);
mode = &msm_pm_sleep_modes[MSM_PM_MODE(cpu, i)];
if (!strcmp(attr->attr.name,
msm_pm_mode_attr_labels[MSM_PM_MODE_ATTR_SUSPEND])) {
u32 arg = mode->suspend_enabled;
kp.arg = &arg;
ret = param_get_ulong(buf, &kp);
} else if (!strcmp(attr->attr.name,
msm_pm_mode_attr_labels[MSM_PM_MODE_ATTR_IDLE])) {
u32 arg = mode->idle_enabled;
kp.arg = &arg;
ret = param_get_ulong(buf, &kp);
}
break;
}
if (ret > 0) {
strlcat(buf, "\n", PAGE_SIZE);
ret++;
}
return ret;
}
/*
* Read in the new attribute value.
*/
static ssize_t msm_pm_mode_attr_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = -EINVAL;
int i;
for (i = 0; i < MSM_PM_SLEEP_MODE_NR; i++) {
struct kernel_param kp;
unsigned int cpu;
struct msm_pm_platform_data *mode;
if (msm_pm_sleep_mode_labels[i] == NULL)
continue;
if (strcmp(kobj->name, msm_pm_sleep_mode_labels[i]))
continue;
cpu = GET_CPU_OF_ATTR(attr);
mode = &msm_pm_sleep_modes[MSM_PM_MODE(cpu, i)];
if (!strcmp(attr->attr.name,
msm_pm_mode_attr_labels[MSM_PM_MODE_ATTR_SUSPEND])) {
kp.arg = &mode->suspend_enabled;
ret = param_set_byte(buf, &kp);
} else if (!strcmp(attr->attr.name,
msm_pm_mode_attr_labels[MSM_PM_MODE_ATTR_IDLE])) {
kp.arg = &mode->idle_enabled;
ret = param_set_byte(buf, &kp);
}
break;
}
return ret ? ret : count;
}
/*
* Add sysfs entries for one cpu.
*/
static int __init msm_pm_mode_sysfs_add_cpu(
unsigned int cpu, struct kobject *modes_kobj)
{
char cpu_name[8];
struct kobject *cpu_kobj;
struct msm_pm_sysfs_sleep_mode *mode = NULL;
int i, j, k;
int ret;
snprintf(cpu_name, sizeof(cpu_name), "cpu%u", cpu);
cpu_kobj = kobject_create_and_add(cpu_name, modes_kobj);
if (!cpu_kobj) {
pr_err("%s: cannot create %s kobject\n", __func__, cpu_name);
ret = -ENOMEM;
goto mode_sysfs_add_cpu_exit;
}
for (i = 0; i < MSM_PM_SLEEP_MODE_NR; i++) {
int idx = MSM_PM_MODE(cpu, i);
if ((!msm_pm_sleep_modes[idx].suspend_supported)
&& (!msm_pm_sleep_modes[idx].idle_supported))
continue;
if (!msm_pm_sleep_mode_labels[i] ||
!msm_pm_sleep_mode_labels[i][0])
continue;
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode) {
pr_err("%s: cannot allocate memory for attributes\n",
__func__);
ret = -ENOMEM;
goto mode_sysfs_add_cpu_exit;
}
mode->kobj = kobject_create_and_add(
msm_pm_sleep_mode_labels[i], cpu_kobj);
if (!mode->kobj) {
pr_err("%s: cannot create kobject\n", __func__);
ret = -ENOMEM;
goto mode_sysfs_add_cpu_exit;
}
for (k = 0, j = 0; k < MSM_PM_MODE_ATTR_NR; k++) {
if ((k == MSM_PM_MODE_ATTR_IDLE) &&
!msm_pm_sleep_modes[idx].idle_supported)
continue;
if ((k == MSM_PM_MODE_ATTR_SUSPEND) &&
!msm_pm_sleep_modes[idx].suspend_supported)
continue;
sysfs_attr_init(&mode->kas[j].ka.attr);
mode->kas[j].cpu = cpu;
mode->kas[j].ka.attr.mode = 0644;
mode->kas[j].ka.show = msm_pm_mode_attr_show;
mode->kas[j].ka.store = msm_pm_mode_attr_store;
mode->kas[j].ka.attr.name = msm_pm_mode_attr_labels[k];
mode->attrs[j] = &mode->kas[j].ka.attr;
j++;
}
mode->attrs[j] = NULL;
mode->attr_group.attrs = mode->attrs;
ret = sysfs_create_group(mode->kobj, &mode->attr_group);
if (ret) {
pr_err("%s: cannot create kobject attribute group\n",
__func__);
goto mode_sysfs_add_cpu_exit;
}
}
ret = 0;
mode_sysfs_add_cpu_exit:
if (ret) {
if (mode && mode->kobj)
kobject_del(mode->kobj);
kfree(mode);
}
return ret;
}
/*
* Add sysfs entries for the sleep modes.
*/
static int __init msm_pm_mode_sysfs_add(void)
{
struct kobject *module_kobj;
struct kobject *modes_kobj;
unsigned int cpu;
int ret;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("%s: cannot find kobject for module %s\n",
__func__, KBUILD_MODNAME);
ret = -ENOENT;
goto mode_sysfs_add_exit;
}
modes_kobj = kobject_create_and_add("modes", module_kobj);
if (!modes_kobj) {
pr_err("%s: cannot create modes kobject\n", __func__);
ret = -ENOMEM;
goto mode_sysfs_add_exit;
}
for_each_possible_cpu(cpu) {
ret = msm_pm_mode_sysfs_add_cpu(cpu, modes_kobj);
if (ret)
goto mode_sysfs_add_exit;
}
ret = 0;
mode_sysfs_add_exit:
return ret;
}
/******************************************************************************
* Configure Hardware before/after Low Power Mode
*****************************************************************************/
/*
* Configure hardware registers in preparation for Apps power down.
*/
static void msm_pm_config_hw_before_power_down(void)
{
return;
}
/*
* Clear hardware registers after Apps powers up.
*/
static void msm_pm_config_hw_after_power_up(void)
{
}
/*
* Configure hardware registers in preparation for SWFI.
*/
static void msm_pm_config_hw_before_swfi(void)
{
return;
}
/*
* Configure/Restore hardware registers in preparation for Retention.
*/
static void msm_pm_config_hw_after_retention(void)
{
int ret;
ret = msm_spm_set_low_power_mode(MSM_SPM_MODE_CLOCK_GATING, false);
WARN_ON(ret);
}
static void msm_pm_config_hw_before_retention(void)
{
return;
}
/******************************************************************************
* Suspend Max Sleep Time
*****************************************************************************/
#ifdef CONFIG_MSM_SLEEP_TIME_OVERRIDE
static int msm_pm_sleep_time_override;
module_param_named(sleep_time_override,
msm_pm_sleep_time_override, int, S_IRUGO | S_IWUSR | S_IWGRP);
#endif
#define SCLK_HZ (32768)
#define MSM_PM_SLEEP_TICK_LIMIT (0x6DDD000)
static uint32_t msm_pm_max_sleep_time;
/*
* Convert time from nanoseconds to slow clock ticks, then cap it to the
* specified limit
*/
static int64_t msm_pm_convert_and_cap_time(int64_t time_ns, int64_t limit)
{
do_div(time_ns, NSEC_PER_SEC / SCLK_HZ);
return (time_ns > limit) ? limit : time_ns;
}
/*
* Set the sleep time for suspend. 0 means infinite sleep time.
*/
void msm_pm_set_max_sleep_time(int64_t max_sleep_time_ns)
{
if (max_sleep_time_ns == 0) {
msm_pm_max_sleep_time = 0;
} else {
msm_pm_max_sleep_time = (uint32_t)msm_pm_convert_and_cap_time(
max_sleep_time_ns, MSM_PM_SLEEP_TICK_LIMIT);
if (msm_pm_max_sleep_time == 0)
msm_pm_max_sleep_time = 1;
}
if (msm_pm_debug_mask & MSM_PM_DEBUG_SUSPEND)
pr_info("%s: Requested %lld ns Giving %u sclk ticks\n",
__func__, max_sleep_time_ns, msm_pm_max_sleep_time);
}
EXPORT_SYMBOL(msm_pm_set_max_sleep_time);
/******************************************************************************
*
*****************************************************************************/
static void *msm_pm_idle_rs_limits;
static bool msm_pm_use_qtimer;
static void msm_pm_swfi(void)
{
msm_pm_config_hw_before_swfi();
msm_arch_idle();
}
static void msm_pm_retention(void)
{
int ret = 0;
msm_pm_config_hw_before_retention();
ret = msm_spm_set_low_power_mode(MSM_SPM_MODE_POWER_RETENTION, false);
WARN_ON(ret);
if (msm_pm_retention_tz_call)
scm_call_atomic1(SCM_SVC_BOOT, SCM_CMD_TERMINATE_PC,
SCM_L2_RETENTION);
else
msm_arch_idle();
msm_pm_config_hw_after_retention();
}
#ifdef CONFIG_CACHE_L2X0
static inline bool msm_pm_l2x0_power_collapse(void)
{
bool collapsed = 0;
l2cc_suspend();
collapsed = msm_pm_collapse();
l2cc_resume();
return collapsed;
}
#else
static inline bool msm_pm_l2x0_power_collapse(void)
{
return msm_pm_collapse();
}
#endif
static bool __ref msm_pm_spm_power_collapse(
unsigned int cpu, bool from_idle, bool notify_rpm)
{
void *entry;
bool collapsed = 0;
int ret;
unsigned int saved_gic_cpu_ctrl;
saved_gic_cpu_ctrl = readl_relaxed(MSM_QGIC_CPU_BASE + GIC_CPU_CTRL);
mb();
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: notify_rpm %d\n",
cpu, __func__, (int) notify_rpm);
ret = msm_spm_set_low_power_mode(
MSM_SPM_MODE_POWER_COLLAPSE, notify_rpm);
WARN_ON(ret);
entry = (!cpu || from_idle) ?
msm_pm_collapse_exit : msm_secondary_startup;
msm_pm_boot_config_before_pc(cpu, virt_to_phys(entry));
if (MSM_PM_DEBUG_RESET_VECTOR & msm_pm_debug_mask)
pr_info("CPU%u: %s: program vector to %p\n",
cpu, __func__, entry);
#ifdef CONFIG_VFP
vfp_pm_suspend();
#endif
collapsed = msm_pm_l2x0_power_collapse();
msm_pm_boot_config_after_pc(cpu);
if (collapsed) {
#ifdef CONFIG_VFP
vfp_pm_resume();
#endif
cpu_init();
writel(0xF0, MSM_QGIC_CPU_BASE + GIC_CPU_PRIMASK);
writel_relaxed(saved_gic_cpu_ctrl,
MSM_QGIC_CPU_BASE + GIC_CPU_CTRL);
mb();
local_fiq_enable();
}
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: msm_pm_collapse returned, collapsed %d\n",
cpu, __func__, collapsed);
ret = msm_spm_set_low_power_mode(MSM_SPM_MODE_CLOCK_GATING, false);
WARN_ON(ret);
return collapsed;
}
static bool msm_pm_power_collapse_standalone(bool from_idle)
{
unsigned int cpu = smp_processor_id();
unsigned int avsdscr_setting;
bool collapsed;
avsdscr_setting = avs_get_avsdscr();
avs_disable();
collapsed = msm_pm_spm_power_collapse(cpu, from_idle, false);
avs_reset_delays(avsdscr_setting);
return collapsed;
}
static bool msm_pm_power_collapse(bool from_idle)
{
unsigned int cpu = smp_processor_id();
unsigned long saved_acpuclk_rate;
unsigned int avsdscr_setting;
bool collapsed;
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: idle %d\n",
cpu, __func__, (int)from_idle);
msm_pm_config_hw_before_power_down();
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: pre power down\n", cpu, __func__);
avsdscr_setting = avs_get_avsdscr();
avs_disable();
if (cpu_online(cpu))
saved_acpuclk_rate = acpuclk_power_collapse();
else
saved_acpuclk_rate = 0;
if (MSM_PM_DEBUG_CLOCK & msm_pm_debug_mask)
pr_info("CPU%u: %s: change clock rate (old rate = %lu)\n",
cpu, __func__, saved_acpuclk_rate);
collapsed = msm_pm_spm_power_collapse(cpu, from_idle, true);
if (cpu_online(cpu)) {
if (MSM_PM_DEBUG_CLOCK & msm_pm_debug_mask)
pr_info("CPU%u: %s: restore clock rate to %lu\n",
cpu, __func__, saved_acpuclk_rate);
if (acpuclk_set_rate(cpu, saved_acpuclk_rate, SETRATE_PC) < 0)
pr_err("CPU%u: %s: failed to restore clock rate(%lu)\n",
cpu, __func__, saved_acpuclk_rate);
} else {
unsigned int gic_dist_enabled;
unsigned int gic_dist_pending;
gic_dist_enabled = readl_relaxed(
MSM_QGIC_DIST_BASE + GIC_DIST_ENABLE_CLEAR);
gic_dist_pending = readl_relaxed(
MSM_QGIC_DIST_BASE + GIC_DIST_PENDING_SET);
mb();
gic_dist_pending &= gic_dist_enabled;
if (gic_dist_pending)
pr_err("CPU %d interrupted during hotplug.Pending int 0x%x\n",
cpu, gic_dist_pending);
}
avs_reset_delays(avsdscr_setting);
msm_pm_config_hw_after_power_up();
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: post power up\n", cpu, __func__);
if (MSM_PM_DEBUG_POWER_COLLAPSE & msm_pm_debug_mask)
pr_info("CPU%u: %s: return\n", cpu, __func__);
return collapsed;
}
static void msm_pm_qtimer_available(void)
{
if (machine_is_msm8974())
msm_pm_use_qtimer = true;
}
static int64_t msm_pm_timer_enter_idle(void)
{
if (msm_pm_use_qtimer)
return ktime_to_ns(tick_nohz_get_sleep_length());
return msm_timer_enter_idle();
}
static void msm_pm_timer_exit_idle(bool timer_halted)
{
if (msm_pm_use_qtimer)
return;
msm_timer_exit_idle((int) timer_halted);
}
static int64_t msm_pm_timer_enter_suspend(int64_t *period)
{
int64_t time = 0;
if (msm_pm_use_qtimer)
return sched_clock();
time = msm_timer_get_sclk_time(period);
if (!time)
pr_err("%s: Unable to read sclk.\n", __func__);
return time;
}
static int64_t msm_pm_timer_exit_suspend(int64_t time, int64_t period)
{
if (msm_pm_use_qtimer)
return sched_clock() - time;
if (time != 0) {
int64_t end_time = msm_timer_get_sclk_time(NULL);
if (end_time != 0) {
time = end_time - time;
if (time < 0)
time += period;
} else
time = 0;
}
return time;
}
/******************************************************************************
* External Idle/Suspend Functions
*****************************************************************************/
void arch_idle(void)
{
return;
}
int msm_pm_idle_prepare(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index)
{
uint32_t latency_us;
uint32_t sleep_us;
int i;
unsigned int power_usage = -1;
int ret = 0;
latency_us = (uint32_t) pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
sleep_us = (uint32_t) ktime_to_ns(tick_nohz_get_sleep_length());
sleep_us = DIV_ROUND_UP(sleep_us, 1000);
for (i = 0; i < dev->state_count; i++) {
struct cpuidle_state *state = &drv->states[i];
struct cpuidle_state_usage *st_usage = &dev->states_usage[i];
enum msm_pm_sleep_mode mode;
bool allow;
void *rs_limits = NULL;
uint32_t power;
int idx;
mode = (enum msm_pm_sleep_mode) cpuidle_get_statedata(st_usage);
idx = MSM_PM_MODE(dev->cpu, mode);
allow = msm_pm_sleep_modes[idx].idle_enabled &&
msm_pm_sleep_modes[idx].idle_supported;
switch (mode) {
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE:
if (!allow)
break;
if (num_online_cpus() > 1) {
allow = false;
break;
}
/* fall through */
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE:
if (!allow)
break;
/* fall through */
case MSM_PM_SLEEP_MODE_RETENTION:
if (!allow)
break;
if (num_online_cpus() > 1) {
allow = false;
break;
}
/* fall through */
case MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT:
if (!allow)
break;
if (pm_sleep_ops.lowest_limits)
rs_limits = pm_sleep_ops.lowest_limits(true,
mode, latency_us, sleep_us,
&power);
if (MSM_PM_DEBUG_IDLE & msm_pm_debug_mask)
pr_info("CPU%u: %s: %s, latency %uus, "
"sleep %uus, limit %p\n",
dev->cpu, __func__, state->desc,
latency_us, sleep_us, rs_limits);
if (!rs_limits)
allow = false;
break;
default:
allow = false;
break;
}
if (MSM_PM_DEBUG_IDLE & msm_pm_debug_mask)
pr_info("CPU%u: %s: allow %s: %d\n",
dev->cpu, __func__, state->desc, (int)allow);
if (allow) {
if (power < power_usage) {
power_usage = power;
ret = mode;
}
if (MSM_PM_SLEEP_MODE_POWER_COLLAPSE == mode)
msm_pm_idle_rs_limits = rs_limits;
}
}
return ret;
}
int msm_pm_idle_enter(enum msm_pm_sleep_mode sleep_mode)
{
int64_t time;
int exit_stat;
if (MSM_PM_DEBUG_IDLE & msm_pm_debug_mask)
pr_info("CPU%u: %s: mode %d\n",
smp_processor_id(), __func__, sleep_mode);
time = ktime_to_ns(ktime_get());
switch (sleep_mode) {
case MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT:
msm_pm_swfi();
exit_stat = MSM_PM_STAT_IDLE_WFI;
break;
case MSM_PM_SLEEP_MODE_RETENTION:
msm_pm_retention();
exit_stat = MSM_PM_STAT_RETENTION;
break;
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE:
msm_pm_power_collapse_standalone(true);
exit_stat = MSM_PM_STAT_IDLE_STANDALONE_POWER_COLLAPSE;
break;
case MSM_PM_SLEEP_MODE_POWER_COLLAPSE: {
int64_t timer_expiration = 0;
bool timer_halted = false;
uint32_t sleep_delay;
int ret = -ENODEV;
int notify_rpm =
(sleep_mode == MSM_PM_SLEEP_MODE_POWER_COLLAPSE);
int collapsed;
timer_expiration = msm_pm_timer_enter_idle();
sleep_delay = (uint32_t) msm_pm_convert_and_cap_time(
timer_expiration, MSM_PM_SLEEP_TICK_LIMIT);
if (sleep_delay == 0) /* 0 would mean infinite time */
sleep_delay = 1;
if (MSM_PM_DEBUG_IDLE_CLK & msm_pm_debug_mask)
clock_debug_print_enabled();
if (pm_sleep_ops.enter_sleep)
ret = pm_sleep_ops.enter_sleep(sleep_delay,
msm_pm_idle_rs_limits,
true, notify_rpm);
if (!ret) {
collapsed = msm_pm_power_collapse(true);
timer_halted = true;
if (pm_sleep_ops.exit_sleep)
pm_sleep_ops.exit_sleep(msm_pm_idle_rs_limits,
true, notify_rpm, collapsed);
}
msm_pm_timer_exit_idle(timer_halted);
exit_stat = MSM_PM_STAT_IDLE_POWER_COLLAPSE;
break;
}
default:
__WARN();
goto cpuidle_enter_bail;
}
time = ktime_to_ns(ktime_get()) - time;
msm_pm_add_stat(exit_stat, time);
do_div(time, 1000);
return (int) time;
cpuidle_enter_bail:
return 0;
}
void msm_pm_cpu_enter_lowpower(unsigned int cpu)
{
int i;
bool allow[MSM_PM_SLEEP_MODE_NR];
for (i = 0; i < MSM_PM_SLEEP_MODE_NR; i++) {
struct msm_pm_platform_data *mode;
mode = &msm_pm_sleep_modes[MSM_PM_MODE(cpu, i)];
allow[i] = mode->suspend_supported && mode->suspend_enabled;
}
if (MSM_PM_DEBUG_HOTPLUG & msm_pm_debug_mask)
pr_notice("CPU%u: %s: shutting down cpu\n", cpu, __func__);
if (allow[MSM_PM_SLEEP_MODE_POWER_COLLAPSE])
msm_pm_power_collapse(false);
else if (allow[MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE])
msm_pm_power_collapse_standalone(false);
else if (allow[MSM_PM_SLEEP_MODE_RETENTION])
msm_pm_retention();
else
msm_pm_swfi();
}
static int msm_pm_enter(suspend_state_t state)
{
bool allow[MSM_PM_SLEEP_MODE_NR];
int i;
int64_t period = 0;
int64_t time = msm_pm_timer_enter_suspend(&period);
if (MSM_PM_DEBUG_SUSPEND & msm_pm_debug_mask)
pr_info("%s\n", __func__);
if (smp_processor_id()) {
__WARN();
goto enter_exit;
}
for (i = 0; i < MSM_PM_SLEEP_MODE_NR; i++) {
struct msm_pm_platform_data *mode;
mode = &msm_pm_sleep_modes[MSM_PM_MODE(0, i)];
allow[i] = mode->suspend_supported && mode->suspend_enabled;
}
if (allow[MSM_PM_SLEEP_MODE_POWER_COLLAPSE]) {
void *rs_limits = NULL;
int ret = -ENODEV;
uint32_t power;
if (MSM_PM_DEBUG_SUSPEND & msm_pm_debug_mask)
pr_info("%s: power collapse\n", __func__);
clock_debug_print_enabled();
#ifdef CONFIG_MSM_SLEEP_TIME_OVERRIDE
if (msm_pm_sleep_time_override > 0) {
int64_t ns = NSEC_PER_SEC *
(int64_t) msm_pm_sleep_time_override;
msm_pm_set_max_sleep_time(ns);
msm_pm_sleep_time_override = 0;
}
#endif /* CONFIG_MSM_SLEEP_TIME_OVERRIDE */
if (pm_sleep_ops.lowest_limits)
rs_limits = pm_sleep_ops.lowest_limits(false,
MSM_PM_SLEEP_MODE_POWER_COLLAPSE, -1,
-1, &power);
if (rs_limits) {
if (pm_sleep_ops.enter_sleep)
ret = pm_sleep_ops.enter_sleep(
msm_pm_max_sleep_time,
rs_limits, false, true);
if (!ret) {
int collapsed = msm_pm_power_collapse(false);
if (pm_sleep_ops.exit_sleep) {
pm_sleep_ops.exit_sleep(rs_limits,
false, true, collapsed);
}
}
} else {
pr_err("%s: cannot find the lowest power limit\n",
__func__);
}
time = msm_pm_timer_exit_suspend(time, period);
msm_pm_add_stat(MSM_PM_STAT_SUSPEND, time);
} else if (allow[MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE]) {
if (MSM_PM_DEBUG_SUSPEND & msm_pm_debug_mask)
pr_info("%s: standalone power collapse\n", __func__);
msm_pm_power_collapse_standalone(false);
} else if (allow[MSM_PM_SLEEP_MODE_RETENTION]) {
if (MSM_PM_DEBUG_SUSPEND & msm_pm_debug_mask)
pr_info("%s: retention\n", __func__);
msm_pm_retention();
} else if (allow[MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT]) {
if (MSM_PM_DEBUG_SUSPEND & msm_pm_debug_mask)
pr_info("%s: swfi\n", __func__);
msm_pm_swfi();
}
enter_exit:
if (MSM_PM_DEBUG_SUSPEND & msm_pm_debug_mask)
pr_info("%s: return\n", __func__);
return 0;
}
static struct platform_suspend_ops msm_pm_ops = {
.enter = msm_pm_enter,
.valid = suspend_valid_only_mem,
};
/******************************************************************************
* Initialization routine
*****************************************************************************/
void msm_pm_set_sleep_ops(struct msm_pm_sleep_ops *ops)
{
if (ops)
pm_sleep_ops = *ops;
}
void __init msm_pm_set_tz_retention_flag(unsigned int flag)
{
msm_pm_retention_tz_call = flag;
}
static int __init msm_pm_init(void)
{
pgd_t *pc_pgd;
pmd_t *pmd;
unsigned long pmdval;
enum msm_pm_time_stats_id enable_stats[] = {
MSM_PM_STAT_IDLE_WFI,
MSM_PM_STAT_RETENTION,
MSM_PM_STAT_IDLE_STANDALONE_POWER_COLLAPSE,
MSM_PM_STAT_IDLE_POWER_COLLAPSE,
MSM_PM_STAT_SUSPEND,
};
unsigned long exit_phys;
/* Page table for cores to come back up safely. */
pc_pgd = pgd_alloc(&init_mm);
if (!pc_pgd)
return -ENOMEM;
exit_phys = virt_to_phys(msm_pm_collapse_exit);
pmd = pmd_offset(pud_offset(pc_pgd + pgd_index(exit_phys),exit_phys),
exit_phys);
pmdval = (exit_phys & PGDIR_MASK) |
PMD_TYPE_SECT | PMD_SECT_AP_WRITE;
pmd[0] = __pmd(pmdval);
pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
msm_saved_state_phys =
allocate_contiguous_ebi_nomap(CPU_SAVED_STATE_SIZE *
num_possible_cpus(), 4);
if (!msm_saved_state_phys)
return -ENOMEM;
msm_saved_state = ioremap_nocache(msm_saved_state_phys,
CPU_SAVED_STATE_SIZE *
num_possible_cpus());
if (!msm_saved_state)
return -ENOMEM;
/* It is remotely possible that the code in msm_pm_collapse_exit()
* which turns on the MMU with this mapping is in the
* next even-numbered megabyte beyond the
* start of msm_pm_collapse_exit().
* Map this megabyte in as well.
*/
pmd[2] = __pmd(pmdval + (2 << (PGDIR_SHIFT - 1)));
flush_pmd_entry(pmd);
msm_pm_pc_pgd = virt_to_phys(pc_pgd);
clean_caches((unsigned long)&msm_pm_pc_pgd, sizeof(msm_pm_pc_pgd),
virt_to_phys(&msm_pm_pc_pgd));
msm_pm_mode_sysfs_add();
msm_pm_add_stats(enable_stats, ARRAY_SIZE(enable_stats));
suspend_set_ops(&msm_pm_ops);
msm_pm_qtimer_available();
msm_cpuidle_init();
return 0;
}
late_initcall(msm_pm_init);