blob: 6125a3b4a569cd04b98ebdb43ea76e71e095dcd8 [file] [log] [blame]
/*
* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include "cpr3-regulator.h"
#define MSM8996_MMSS_FUSE_CORNERS 4
/**
* struct cpr3_msm8996_mmss_fuses - MMSS specific fuse data for MSM8996
* @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value
* for each fuse corner (raw, not converted to a voltage)
* @offset_voltage: The closed-loop voltage margin adjustment fuse parameter
* value for each fuse corner (raw, not converted to a
* voltage)
* @speed_bin: Graphics processor speed bin fuse parameter value for
* the given chip
* @cpr_fusing_rev: CPR fusing revision fuse parameter value
* @limitation: CPR limitation select fuse parameter value
* @aging_init_quot_diff: Initial quotient difference between CPR aging
* min and max sensors measured at time of manufacturing
*
* This struct holds the values for all of the fuses read from memory.
*/
struct cpr3_msm8996_mmss_fuses {
u64 init_voltage[MSM8996_MMSS_FUSE_CORNERS];
u64 offset_voltage[MSM8996_MMSS_FUSE_CORNERS];
u64 speed_bin;
u64 cpr_fusing_rev;
u64 limitation;
u64 aging_init_quot_diff;
};
/* Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 */
#define CPR3_MSM8996_MMSS_FUSE_COMBO_COUNT 8
/*
* Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 with speed bin fuse = 0.
* Fuse combos 8 - 15 map to CPR fusing revision 0 - 7 with speed bin fuse = 1.
*/
#define CPR3_MSM8996PRO_MMSS_FUSE_COMBO_COUNT 16
/* Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 */
#define CPR3_MSMCOBALT_MMSS_FUSE_COMBO_COUNT 8
/*
* MSM8996 MMSS fuse parameter locations:
*
* Structs are organized with the following dimensions:
* Outer: 0 to 3 for fuse corners from lowest to highest corner
* Inner: large enough to hold the longest set of parameter segments which
* fully defines a fuse parameter, +1 (for NULL termination).
* Each segment corresponds to a contiguous group of bits from a
* single fuse row. These segments are concatentated together in
* order to form the full fuse parameter value. The segments for
* a given parameter may correspond to different fuse rows.
*/
static const struct cpr3_fuse_param
msm8996_mmss_init_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = {
{{63, 55, 59}, {} },
{{63, 50, 54}, {} },
{{63, 45, 49}, {} },
{{63, 40, 44}, {} },
};
static const struct cpr3_fuse_param msm8996_cpr_fusing_rev_param[] = {
{39, 48, 50},
{},
};
static const struct cpr3_fuse_param msm8996_cpr_limitation_param[] = {
{41, 31, 32},
{},
};
static const struct cpr3_fuse_param
msm8996_mmss_aging_init_quot_diff_param[] = {
{68, 26, 31},
{},
};
/* Offset voltages are defined for SVS and Turbo fuse corners only */
static const struct cpr3_fuse_param
msm8996_mmss_offset_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = {
{{} },
{{66, 42, 44}, {} },
{{} },
{{64, 58, 61}, {} },
};
static const struct cpr3_fuse_param msm8996pro_mmss_speed_bin_param[] = {
{39, 60, 61},
{},
};
/* MSMCOBALT MMSS fuse parameter locations: */
static const struct cpr3_fuse_param
msmcobalt_mmss_init_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = {
{{65, 39, 43}, {} },
{{65, 34, 38}, {} },
{{65, 29, 33}, {} },
{{65, 24, 28}, {} },
};
static const struct cpr3_fuse_param msmcobalt_cpr_fusing_rev_param[] = {
{39, 48, 50},
{},
};
static const struct cpr3_fuse_param msmcobalt_cpr_limitation_param[] = {
{41, 46, 47},
{},
};
static const struct cpr3_fuse_param
msmcobalt_mmss_aging_init_quot_diff_param[] = {
{65, 60, 63},
{66, 0, 3},
{},
};
static const struct cpr3_fuse_param
msmcobalt_mmss_offset_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = {
{{65, 56, 59}, {} },
{{65, 52, 55}, {} },
{{65, 48, 51}, {} },
{{65, 44, 47}, {} },
};
#define MSM8996PRO_SOC_ID 4
#define MSMCOBALT_SOC_ID 5
/*
* Some initial msm8996 parts cannot be used in a meaningful way by software.
* Other parts can only be used when operating with CPR disabled (i.e. at the
* fused open-loop voltage) when no voltage interpolation is applied. A fuse
* parameter is provided so that software can properly handle these limitations.
*/
enum msm8996_cpr_limitation {
MSM8996_CPR_LIMITATION_NONE = 0,
MSM8996_CPR_LIMITATION_UNSUPPORTED = 2,
MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION = 3,
};
/* Additional MSM8996 specific data: */
/* Open loop voltage fuse reference voltages in microvolts */
static const int msm8996_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = {
670000,
745000,
905000,
1015000,
};
static const int msm8996pro_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = {
670000,
745000,
905000,
1065000,
};
static const int msmcobalt_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = {
632000,
768000,
896000,
1032000,
};
#define MSM8996_MMSS_FUSE_STEP_VOLT 10000
#define MSM8996_MMSS_OFFSET_FUSE_STEP_VOLT 10000
#define MSM8996_MMSS_VOLTAGE_FUSE_SIZE 5
#define MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SCALE 2
#define MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SIZE 6
#define MSM8996_MMSS_CPR_SENSOR_COUNT 35
#define MSM8996_MMSS_CPR_CLOCK_RATE 19200000
#define MSM8996_MMSS_AGING_SENSOR_ID 29
#define MSM8996_MMSS_AGING_BYPASS_MASK0 (GENMASK(23, 0))
/* Use scaled gate count (GCNT) for aging measurements */
#define MSM8996_MMSS_AGING_GCNT_SCALING_FACTOR 1500
#define MSMCOBALT_MMSS_AGING_INIT_QUOT_DIFF_SCALE 1
#define MSMCOBALT_MMSS_AGING_INIT_QUOT_DIFF_SIZE 8
#define MSMCOBALT_MMSS_CPR_SENSOR_COUNT 35
#define MSMCOBALT_MMSS_AGING_SENSOR_ID 17
#define MSMCOBALT_MMSS_AGING_BYPASS_MASK0 0
#define MSMCOBALT_MMSS_MAX_TEMP_POINTS 3
#define MSMCOBALT_MMSS_TEMP_SENSOR_ID_START 12
#define MSMCOBALT_MMSS_TEMP_SENSOR_ID_END 13
/**
* cpr3_msm8996_mmss_read_fuse_data() - load MMSS specific fuse parameter values
* @vreg: Pointer to the CPR3 regulator
*
* This function allocates a cpr3_msm8996_mmss_fuses struct, fills it with
* values read out of hardware fuses, and finally copies common fuse values
* into the regulator struct.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_msm8996_mmss_read_fuse_data(struct cpr3_regulator *vreg)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
struct cpr3_msm8996_mmss_fuses *fuse;
int i, rc, combo_max;
fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
if (!fuse)
return -ENOMEM;
if (vreg->thread->ctrl->soc_revision == MSM8996PRO_SOC_ID) {
rc = cpr3_read_fuse_param(base, msm8996pro_mmss_speed_bin_param,
&fuse->speed_bin);
if (rc) {
cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin);
}
rc = cpr3_read_fuse_param(base,
vreg->thread->ctrl->soc_revision == MSMCOBALT_SOC_ID
? msmcobalt_cpr_fusing_rev_param
: msm8996_cpr_fusing_rev_param,
&fuse->cpr_fusing_rev);
if (rc) {
cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
rc = cpr3_read_fuse_param(base,
vreg->thread->ctrl->soc_revision == MSMCOBALT_SOC_ID
? msmcobalt_cpr_limitation_param
: msm8996_cpr_limitation_param,
&fuse->limitation);
if (rc) {
cpr3_err(vreg, "Unable to read CPR limitation fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "CPR limitation = %s\n",
fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED
? "unsupported chip" : fuse->limitation
== MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION
? "CPR disabled and no interpolation" : "none");
rc = cpr3_read_fuse_param(base,
vreg->thread->ctrl->soc_revision == MSMCOBALT_SOC_ID
? msmcobalt_mmss_aging_init_quot_diff_param
: msm8996_mmss_aging_init_quot_diff_param,
&fuse->aging_init_quot_diff);
if (rc) {
cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n",
rc);
return rc;
}
for (i = 0; i < MSM8996_MMSS_FUSE_CORNERS; i++) {
rc = cpr3_read_fuse_param(base,
vreg->thread->ctrl->soc_revision == MSMCOBALT_SOC_ID
? msmcobalt_mmss_init_voltage_param[i]
: msm8996_mmss_init_voltage_param[i],
&fuse->init_voltage[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
vreg->thread->ctrl->soc_revision == MSMCOBALT_SOC_ID
? msmcobalt_mmss_offset_voltage_param[i]
: msm8996_mmss_offset_voltage_param[i],
&fuse->offset_voltage[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d offset voltage fuse, rc=%d\n",
i, rc);
return rc;
}
}
if (vreg->thread->ctrl->soc_revision == MSMCOBALT_SOC_ID) {
combo_max = CPR3_MSMCOBALT_MMSS_FUSE_COMBO_COUNT;
vreg->fuse_combo = fuse->cpr_fusing_rev;
} else if (vreg->thread->ctrl->soc_revision == MSM8996PRO_SOC_ID) {
combo_max = CPR3_MSM8996PRO_MMSS_FUSE_COMBO_COUNT;
vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
} else {
combo_max = CPR3_MSM8996_MMSS_FUSE_COMBO_COUNT;
vreg->fuse_combo = fuse->cpr_fusing_rev;
}
if (vreg->fuse_combo >= combo_max) {
cpr3_err(vreg, "invalid CPR fuse combo = %d found, not in range 0 - %d\n",
vreg->fuse_combo, combo_max - 1);
return -EINVAL;
}
vreg->speed_bin_fuse = fuse->speed_bin;
vreg->cpr_rev_fuse = fuse->cpr_fusing_rev;
vreg->fuse_corner_count = MSM8996_MMSS_FUSE_CORNERS;
vreg->platform_fuses = fuse;
return 0;
}
/**
* cpr3_mmss_parse_corner_data() - parse MMSS corner data from device tree
* properties of the regulator's device node
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr3_mmss_parse_corner_data(struct cpr3_regulator *vreg)
{
int i, rc;
u32 *temp;
rc = cpr3_parse_common_corner_data(vreg);
if (rc) {
cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
return rc;
}
temp = kcalloc(vreg->corner_count * CPR3_RO_COUNT, sizeof(*temp),
GFP_KERNEL);
if (!temp)
return -ENOMEM;
rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-target-quotients",
CPR3_RO_COUNT, temp);
if (rc) {
cpr3_err(vreg, "could not load target quotients, rc=%d\n", rc);
goto done;
}
for (i = 0; i < vreg->corner_count; i++)
memcpy(vreg->corner[i].target_quot, &temp[i * CPR3_RO_COUNT],
sizeof(*temp) * CPR3_RO_COUNT);
done:
kfree(temp);
return rc;
}
/**
* cpr3_msm8996_mmss_apply_closed_loop_offset_voltages() - modify the
* closed-loop voltage adjustments by the amounts that are needed
* for this fuse combo
* @vreg: Pointer to the CPR3 regulator
* @volt_adjust: Array of closed-loop voltage adjustment values of length
* vreg->corner_count which is further adjusted based upon
* offset voltage fuse values.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_msm8996_mmss_apply_closed_loop_offset_voltages(
struct cpr3_regulator *vreg, int *volt_adjust)
{
struct cpr3_msm8996_mmss_fuses *fuse = vreg->platform_fuses;
const struct cpr3_fuse_param (*offset_param)[2];
u32 *corner_map;
int *volt_offset;
int rc = 0, i, fuse_len;
if (!of_find_property(vreg->of_node,
"qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL)) {
/* No closed-loop offset required. */
return 0;
}
corner_map = kcalloc(vreg->corner_count, sizeof(*corner_map),
GFP_KERNEL);
volt_offset = kcalloc(vreg->fuse_corner_count, sizeof(*volt_offset),
GFP_KERNEL);
if (!corner_map || !volt_offset) {
rc = -ENOMEM;
goto done;
}
rc = cpr3_parse_corner_array_property(vreg,
"qcom,cpr-fused-closed-loop-voltage-adjustment-map",
1, corner_map);
if (rc)
goto done;
offset_param = vreg->thread->ctrl->soc_revision == MSMCOBALT_SOC_ID
? msmcobalt_mmss_offset_voltage_param
: msm8996_mmss_offset_voltage_param;
for (i = 0; i < vreg->fuse_corner_count; i++) {
fuse_len = offset_param[i][0].bit_end + 1
- offset_param[i][0].bit_start;
volt_offset[i] = cpr3_convert_open_loop_voltage_fuse(
0, MSM8996_MMSS_OFFSET_FUSE_STEP_VOLT,
fuse->offset_voltage[i], fuse_len);
if (volt_offset[i])
cpr3_info(vreg, "fuse_corner[%d] offset=%7d uV\n",
i, volt_offset[i]);
}
for (i = 0; i < vreg->corner_count; i++) {
if (corner_map[i] == 0) {
continue;
} else if (corner_map[i] > vreg->fuse_corner_count) {
cpr3_err(vreg, "corner %d mapped to invalid fuse corner: %u\n",
i, corner_map[i]);
rc = -EINVAL;
goto done;
}
volt_adjust[i] += volt_offset[corner_map[i] - 1];
}
done:
kfree(corner_map);
kfree(volt_offset);
return rc;
}
/**
* cpr3_mmss_enforce_inc_quotient_monotonicity() - Ensure that target quotients
* increase monotonically from lower to higher corners
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static void cpr3_mmss_enforce_inc_quotient_monotonicity(
struct cpr3_regulator *vreg)
{
int i, j;
for (i = 1; i < vreg->corner_count; i++) {
for (j = 0; j < CPR3_RO_COUNT; j++) {
if (vreg->corner[i].target_quot[j]
&& vreg->corner[i].target_quot[j]
< vreg->corner[i - 1].target_quot[j]) {
cpr3_debug(vreg, "corner %d RO%u target quot=%u < corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
i, j,
vreg->corner[i].target_quot[j],
i - 1, j,
vreg->corner[i - 1].target_quot[j],
i, j,
vreg->corner[i - 1].target_quot[j]);
vreg->corner[i].target_quot[j]
= vreg->corner[i - 1].target_quot[j];
}
}
}
}
/**
* cpr3_mmss_enforce_dec_quotient_monotonicity() - Ensure that target quotients
* decrease monotonically from higher to lower corners
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static void cpr3_mmss_enforce_dec_quotient_monotonicity(
struct cpr3_regulator *vreg)
{
int i, j;
for (i = vreg->corner_count - 2; i >= 0; i--) {
for (j = 0; j < CPR3_RO_COUNT; j++) {
if (vreg->corner[i + 1].target_quot[j]
&& vreg->corner[i].target_quot[j]
> vreg->corner[i + 1].target_quot[j]) {
cpr3_debug(vreg, "corner %d RO%u target quot=%u > corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
i, j,
vreg->corner[i].target_quot[j],
i + 1, j,
vreg->corner[i + 1].target_quot[j],
i, j,
vreg->corner[i + 1].target_quot[j]);
vreg->corner[i].target_quot[j]
= vreg->corner[i + 1].target_quot[j];
}
}
}
}
/**
* _cpr3_mmss_adjust_target_quotients() - adjust the target quotients for each
* corner of the regulator according to input adjustment and
* scaling arrays
* @vreg: Pointer to the CPR3 regulator
* @volt_adjust: Pointer to an array of closed-loop voltage adjustments
* with units of microvolts. The array must have
* vreg->corner_count number of elements.
* @ro_scale: Pointer to a flattened 2D array of RO scaling factors.
* The array must have an inner dimension of CPR3_RO_COUNT
* and an outer dimension of vreg->corner_count
* @label: Null terminated string providing a label for the type
* of adjustment.
*
* Return: true if any corners received a positive voltage adjustment (> 0),
* else false
*/
static bool _cpr3_mmss_adjust_target_quotients(struct cpr3_regulator *vreg,
const int *volt_adjust, const int *ro_scale, const char *label)
{
int i, j, quot_adjust;
bool is_increasing = false;
u32 prev_quot;
for (i = 0; i < vreg->corner_count; i++) {
for (j = 0; j < CPR3_RO_COUNT; j++) {
if (vreg->corner[i].target_quot[j]) {
quot_adjust = cpr3_quot_adjustment(
ro_scale[i * CPR3_RO_COUNT + j],
volt_adjust[i]);
if (quot_adjust) {
prev_quot = vreg->corner[i].
target_quot[j];
vreg->corner[i].target_quot[j]
+= quot_adjust;
cpr3_debug(vreg, "adjusted corner %d RO%d target quot %s: %u --> %u (%d uV)\n",
i, j, label, prev_quot,
vreg->corner[i].target_quot[j],
volt_adjust[i]);
}
}
}
if (volt_adjust[i] > 0)
is_increasing = true;
}
return is_increasing;
}
/**
* cpr3_mmss_adjust_target_quotients() - adjust the target quotients for each
* corner according to device tree values and fuse values
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr3_mmss_adjust_target_quotients(struct cpr3_regulator *vreg)
{
int i, rc;
int *volt_adjust, *ro_scale;
bool explicit_adjustment, fused_adjustment, is_increasing;
explicit_adjustment = of_find_property(vreg->of_node,
"qcom,cpr-closed-loop-voltage-adjustment", NULL);
fused_adjustment = of_find_property(vreg->of_node,
"qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL);
if (!explicit_adjustment && !fused_adjustment && !vreg->aging_allowed) {
/* No adjustment required. */
return 0;
} else if (!of_find_property(vreg->of_node,
"qcom,cpr-ro-scaling-factor", NULL)) {
cpr3_err(vreg, "qcom,cpr-ro-scaling-factor is required for closed-loop voltage adjustment, but is missing\n");
return -EINVAL;
}
volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
GFP_KERNEL);
ro_scale = kcalloc(vreg->corner_count * CPR3_RO_COUNT,
sizeof(*ro_scale), GFP_KERNEL);
if (!volt_adjust || !ro_scale) {
rc = -ENOMEM;
goto done;
}
rc = cpr3_parse_corner_array_property(vreg,
"qcom,cpr-ro-scaling-factor", CPR3_RO_COUNT, ro_scale);
if (rc) {
cpr3_err(vreg, "could not load RO scaling factors, rc=%d\n",
rc);
goto done;
}
for (i = 0; i < vreg->corner_count; i++)
memcpy(vreg->corner[i].ro_scale, &ro_scale[i * CPR3_RO_COUNT],
sizeof(*ro_scale) * CPR3_RO_COUNT);
if (explicit_adjustment) {
rc = cpr3_parse_corner_array_property(vreg,
"qcom,cpr-closed-loop-voltage-adjustment",
1, volt_adjust);
if (rc) {
cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
rc);
goto done;
}
_cpr3_mmss_adjust_target_quotients(vreg, volt_adjust, ro_scale,
"from DT");
cpr3_mmss_enforce_inc_quotient_monotonicity(vreg);
}
if (fused_adjustment) {
memset(volt_adjust, 0,
sizeof(*volt_adjust) * vreg->corner_count);
rc = cpr3_msm8996_mmss_apply_closed_loop_offset_voltages(vreg,
volt_adjust);
if (rc) {
cpr3_err(vreg, "could not apply fused closed-loop voltage reductions, rc=%d\n",
rc);
goto done;
}
is_increasing = _cpr3_mmss_adjust_target_quotients(vreg,
volt_adjust, ro_scale, "from fuse");
if (is_increasing)
cpr3_mmss_enforce_inc_quotient_monotonicity(vreg);
else
cpr3_mmss_enforce_dec_quotient_monotonicity(vreg);
}
done:
kfree(volt_adjust);
kfree(ro_scale);
return rc;
}
/**
* cpr3_msm8996_mmss_calculate_open_loop_voltages() - calculate the open-loop
* voltage for each corner of a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* If open-loop voltage interpolation is allowed in both device tree and in
* hardware fuses, then this function calculates the open-loop voltage for a
* given corner using linear interpolation. This interpolation is performed
* using the processor frequencies of the lower and higher Fmax corners along
* with their fused open-loop voltages.
*
* If open-loop voltage interpolation is not allowed, then this function uses
* the Fmax fused open-loop voltage for all of the corners associated with a
* given fuse corner.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_msm8996_mmss_calculate_open_loop_voltages(
struct cpr3_regulator *vreg)
{
struct device_node *node = vreg->of_node;
struct cpr3_msm8996_mmss_fuses *fuse = vreg->platform_fuses;
int rc = 0;
bool allow_interpolation;
u64 freq_low, volt_low, freq_high, volt_high;
int i, j;
const int *ref_volt;
int *fuse_volt;
int *fmax_corner;
fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
GFP_KERNEL);
fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
GFP_KERNEL);
if (!fuse_volt || !fmax_corner) {
rc = -ENOMEM;
goto done;
}
if (vreg->thread->ctrl->soc_revision == MSMCOBALT_SOC_ID)
ref_volt = msmcobalt_mmss_fuse_ref_volt;
else if (vreg->thread->ctrl->soc_revision == MSM8996PRO_SOC_ID)
ref_volt = msm8996pro_mmss_fuse_ref_volt;
else
ref_volt = msm8996_mmss_fuse_ref_volt;
for (i = 0; i < vreg->fuse_corner_count; i++) {
fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(ref_volt[i],
MSM8996_MMSS_FUSE_STEP_VOLT, fuse->init_voltage[i],
MSM8996_MMSS_VOLTAGE_FUSE_SIZE);
cpr3_info(vreg, "fuse_corner[%d] open-loop=%7d uV\n",
i, fuse_volt[i]);
}
rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
if (rc) {
cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
rc);
goto done;
}
allow_interpolation = of_property_read_bool(node,
"qcom,allow-voltage-interpolation");
for (i = 1; i < vreg->fuse_corner_count; i++) {
if (fuse_volt[i] < fuse_volt[i - 1]) {
cpr3_debug(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
i, fuse_volt[i], i - 1, fuse_volt[i - 1],
i, fuse_volt[i - 1]);
fuse_volt[i] = fuse_volt[i - 1];
}
}
if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION)
allow_interpolation = false;
if (!allow_interpolation) {
/* Use fused open-loop voltage for lower frequencies. */
for (i = 0; i < vreg->corner_count; i++)
vreg->corner[i].open_loop_volt
= fuse_volt[vreg->corner[i].cpr_fuse_corner];
goto done;
}
/* Determine highest corner mapped to each fuse corner */
j = vreg->fuse_corner_count - 1;
for (i = vreg->corner_count - 1; i >= 0; i--) {
if (vreg->corner[i].cpr_fuse_corner == j) {
fmax_corner[j] = i;
j--;
}
}
if (j >= 0) {
cpr3_err(vreg, "invalid fuse corner mapping\n");
rc = -EINVAL;
goto done;
}
/*
* Interpolation is not possible for corners mapped to the lowest fuse
* corner so use the fuse corner value directly.
*/
for (i = 0; i <= fmax_corner[0]; i++)
vreg->corner[i].open_loop_volt = fuse_volt[0];
/* Interpolate voltages for the higher fuse corners. */
for (i = 1; i < vreg->fuse_corner_count; i++) {
freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
volt_low = fuse_volt[i - 1];
freq_high = vreg->corner[fmax_corner[i]].proc_freq;
volt_high = fuse_volt[i];
for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
vreg->corner[j].open_loop_volt = cpr3_interpolate(
freq_low, volt_low, freq_high, volt_high,
vreg->corner[j].proc_freq);
}
done:
if (rc == 0) {
cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
for (i = 0; i < vreg->corner_count; i++)
cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
vreg->corner[i].open_loop_volt);
rc = cpr3_adjust_open_loop_voltages(vreg);
if (rc)
cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
rc);
}
kfree(fuse_volt);
kfree(fmax_corner);
return rc;
}
/**
* cpr3_mmss_print_settings() - print out MMSS CPR configuration settings into
* the kernel log for debugging purposes
* @vreg: Pointer to the CPR3 regulator
*/
static void cpr3_mmss_print_settings(struct cpr3_regulator *vreg)
{
struct cpr3_corner *corner;
int i;
cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
for (i = 0; i < vreg->corner_count; i++) {
corner = &vreg->corner[i];
cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
i, corner->proc_freq, corner->cpr_fuse_corner,
corner->floor_volt, corner->open_loop_volt,
corner->ceiling_volt);
}
}
/**
* cpr3_mmss_init_aging() - perform MMSS CPR3 controller specific
* aging initializations
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr3_mmss_init_aging(struct cpr3_controller *ctrl)
{
struct cpr3_msm8996_mmss_fuses *fuse;
struct cpr3_regulator *vreg;
u32 aging_ro_scale;
int rc;
vreg = &ctrl->thread[0].vreg[0];
ctrl->aging_required = vreg->aging_allowed;
fuse = vreg->platform_fuses;
if (!ctrl->aging_required || !fuse)
return 0;
rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-ro-scaling-factor",
1, &aging_ro_scale);
if (rc)
return rc;
if (aging_ro_scale == 0) {
cpr3_err(ctrl, "aging RO scaling factor is invalid: %u\n",
aging_ro_scale);
return -EINVAL;
}
ctrl->aging_vdd_mode = REGULATOR_MODE_NORMAL;
ctrl->aging_complete_vdd_mode = REGULATOR_MODE_IDLE;
ctrl->aging_sensor_count = 1;
ctrl->aging_sensor = kzalloc(sizeof(*ctrl->aging_sensor), GFP_KERNEL);
if (!ctrl->aging_sensor)
return -ENOMEM;
ctrl->aging_sensor->ro_scale = aging_ro_scale;
ctrl->aging_gcnt_scaling_factor
= MSM8996_MMSS_AGING_GCNT_SCALING_FACTOR;
if (vreg->thread->ctrl->soc_revision == MSMCOBALT_SOC_ID) {
ctrl->aging_sensor->sensor_id = MSMCOBALT_MMSS_AGING_SENSOR_ID;
ctrl->aging_sensor->bypass_mask[0]
= MSMCOBALT_MMSS_AGING_BYPASS_MASK0;
ctrl->aging_sensor->init_quot_diff
= cpr3_convert_open_loop_voltage_fuse(0,
MSMCOBALT_MMSS_AGING_INIT_QUOT_DIFF_SCALE,
fuse->aging_init_quot_diff,
MSMCOBALT_MMSS_AGING_INIT_QUOT_DIFF_SIZE);
} else {
ctrl->aging_sensor->sensor_id = MSM8996_MMSS_AGING_SENSOR_ID;
ctrl->aging_sensor->bypass_mask[0]
= MSM8996_MMSS_AGING_BYPASS_MASK0;
ctrl->aging_sensor->init_quot_diff
= cpr3_convert_open_loop_voltage_fuse(0,
MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SCALE,
fuse->aging_init_quot_diff,
MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SIZE);
}
cpr3_debug(ctrl, "sensor %u aging init quotient diff = %d, aging RO scale = %u QUOT/V\n",
ctrl->aging_sensor->sensor_id,
ctrl->aging_sensor->init_quot_diff,
ctrl->aging_sensor->ro_scale);
return 0;
}
/**
* cpr3_mmss_init_thread() - perform all steps necessary to initialize the
* configuration data for a CPR3 thread
* @thread: Pointer to the CPR3 thread
*
* Return: 0 on success, errno on failure
*/
static int cpr3_mmss_init_thread(struct cpr3_thread *thread)
{
struct cpr3_regulator *vreg = &thread->vreg[0];
struct cpr3_msm8996_mmss_fuses *fuse;
int rc;
rc = cpr3_parse_common_thread_data(thread);
if (rc) {
cpr3_err(vreg, "unable to read CPR thread data from device tree, rc=%d\n",
rc);
return rc;
}
rc = cpr3_msm8996_mmss_read_fuse_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
return rc;
}
fuse = vreg->platform_fuses;
if (fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED) {
cpr3_err(vreg, "this chip requires an unsupported voltage\n");
return -EPERM;
} else if (fuse->limitation
== MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION) {
thread->ctrl->cpr_allowed_hw = false;
}
rc = cpr3_mmss_parse_corner_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
rc);
return rc;
}
rc = cpr3_mmss_adjust_target_quotients(vreg);
if (rc) {
cpr3_err(vreg, "unable to adjust target quotients, rc=%d\n",
rc);
return rc;
}
rc = cpr3_msm8996_mmss_calculate_open_loop_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
rc);
return rc;
}
rc = cpr3_limit_open_loop_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
rc);
return rc;
}
cpr3_open_loop_voltage_as_ceiling(vreg);
rc = cpr3_limit_floor_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
return rc;
}
if (thread->ctrl->soc_revision == MSMCOBALT_SOC_ID) {
rc = cpr4_parse_core_count_temp_voltage_adj(vreg, false);
if (rc) {
cpr3_err(vreg, "unable to parse temperature based voltage adjustments, rc=%d\n",
rc);
return rc;
}
}
cpr3_mmss_print_settings(vreg);
return 0;
}
/**
* cpr4_mmss_parse_temp_adj_properties() - parse temperature based
* adjustment properties from device tree
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr4_mmss_parse_temp_adj_properties(struct cpr3_controller *ctrl)
{
struct device_node *of_node = ctrl->dev->of_node;
int rc, len, temp_point_count;
if (!of_find_property(of_node, "qcom,cpr-temp-point-map", &len))
return 0;
temp_point_count = len / sizeof(u32);
if (temp_point_count <= 0
|| temp_point_count > MSMCOBALT_MMSS_MAX_TEMP_POINTS) {
cpr3_err(ctrl, "invalid number of temperature points %d > %d (max)\n",
temp_point_count, MSMCOBALT_MMSS_MAX_TEMP_POINTS);
return -EINVAL;
}
ctrl->temp_points = devm_kcalloc(ctrl->dev, temp_point_count,
sizeof(*ctrl->temp_points), GFP_KERNEL);
if (!ctrl->temp_points)
return -ENOMEM;
rc = of_property_read_u32_array(of_node, "qcom,cpr-temp-point-map",
ctrl->temp_points, temp_point_count);
if (rc) {
cpr3_err(ctrl, "error reading property qcom,cpr-temp-point-map, rc=%d\n",
rc);
return rc;
}
/*
* If t1, t2, and t3 are the temperature points, then the temperature
* bands are: (-inf, t1], (t1, t2], (t2, t3], and (t3, inf).
*/
ctrl->temp_band_count = temp_point_count + 1;
rc = of_property_read_u32(of_node, "qcom,cpr-initial-temp-band",
&ctrl->initial_temp_band);
if (rc) {
cpr3_err(ctrl, "error reading qcom,cpr-initial-temp-band, rc=%d\n",
rc);
return rc;
}
if (ctrl->initial_temp_band >= ctrl->temp_band_count) {
cpr3_err(ctrl, "Initial temperature band value %d should be in range [0 - %d]\n",
ctrl->initial_temp_band, ctrl->temp_band_count - 1);
return -EINVAL;
}
ctrl->temp_sensor_id_start = MSMCOBALT_MMSS_TEMP_SENSOR_ID_START;
ctrl->temp_sensor_id_end = MSMCOBALT_MMSS_TEMP_SENSOR_ID_END;
ctrl->allow_temp_adj = true;
return rc;
}
/**
* cpr3_mmss_init_controller() - perform MMSS CPR3 controller specific
* initializations
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr3_mmss_init_controller(struct cpr3_controller *ctrl)
{
int rc;
rc = cpr3_parse_common_ctrl_data(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
rc);
return rc;
}
if (ctrl->soc_revision == MSMCOBALT_SOC_ID) {
rc = cpr4_mmss_parse_temp_adj_properties(ctrl);
if (rc)
return rc;
}
ctrl->sensor_count = ctrl->soc_revision == MSMCOBALT_SOC_ID
? MSMCOBALT_MMSS_CPR_SENSOR_COUNT
: MSM8996_MMSS_CPR_SENSOR_COUNT;
/*
* MMSS only has one thread (0) so the zeroed array does not need
* further modification.
*/
ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
sizeof(*ctrl->sensor_owner), GFP_KERNEL);
if (!ctrl->sensor_owner)
return -ENOMEM;
ctrl->cpr_clock_rate = MSM8996_MMSS_CPR_CLOCK_RATE;
ctrl->ctrl_type = ctrl->soc_revision == MSMCOBALT_SOC_ID
? CPR_CTRL_TYPE_CPR4 : CPR_CTRL_TYPE_CPR3;
if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
/*
* Use fixed step quotient if specified otherwise use dynamic
* calculated per RO step quotient
*/
of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-step-quot-fixed",
&ctrl->step_quot_fixed);
ctrl->use_dynamic_step_quot = !ctrl->step_quot_fixed;
}
ctrl->iface_clk = devm_clk_get(ctrl->dev, "iface_clk");
if (IS_ERR(ctrl->iface_clk)) {
rc = PTR_ERR(ctrl->iface_clk);
if (ctrl->soc_revision == MSMCOBALT_SOC_ID) {
/* iface_clk is optional for msmcobalt */
ctrl->iface_clk = NULL;
} else if (rc == -EPROBE_DEFER) {
return rc;
} else {
cpr3_err(ctrl, "unable to request interface clock, rc=%d\n",
rc);
return rc;
}
}
ctrl->bus_clk = devm_clk_get(ctrl->dev, "bus_clk");
if (IS_ERR(ctrl->bus_clk)) {
rc = PTR_ERR(ctrl->bus_clk);
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable request bus clock, rc=%d\n",
rc);
return rc;
}
return 0;
}
static int cpr3_mmss_regulator_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_suspend(ctrl);
}
static int cpr3_mmss_regulator_resume(struct platform_device *pdev)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_resume(ctrl);
}
/* Data corresponds to the SoC revision */
static struct of_device_id cpr_regulator_match_table[] = {
{
.compatible = "qcom,cpr3-msm8996-v1-mmss-regulator",
.data = (void *)(uintptr_t)1,
},
{
.compatible = "qcom,cpr3-msm8996-v2-mmss-regulator",
.data = (void *)(uintptr_t)2,
},
{
.compatible = "qcom,cpr3-msm8996-v3-mmss-regulator",
.data = (void *)(uintptr_t)3,
},
{
.compatible = "qcom,cpr3-msm8996-mmss-regulator",
.data = (void *)(uintptr_t)3,
},
{
.compatible = "qcom,cpr3-msm8996pro-mmss-regulator",
.data = (void *)(uintptr_t)MSM8996PRO_SOC_ID,
},
{
.compatible = "qcom,cpr4-msmcobalt-mmss-regulator",
.data = (void *)(uintptr_t)MSMCOBALT_SOC_ID,
},
{}
};
static int cpr3_mmss_regulator_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct of_device_id *match;
struct cpr3_controller *ctrl;
int rc;
if (!dev->of_node) {
dev_err(dev, "Device tree node is missing\n");
return -EINVAL;
}
ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return -ENOMEM;
ctrl->dev = dev;
/* Set to false later if anything precludes CPR operation. */
ctrl->cpr_allowed_hw = true;
rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
&ctrl->name);
if (rc) {
cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
rc);
return rc;
}
match = of_match_node(cpr_regulator_match_table, dev->of_node);
if (match)
ctrl->soc_revision = (uintptr_t)match->data;
else
cpr3_err(ctrl, "could not find compatible string match\n");
rc = cpr3_map_fuse_base(ctrl, pdev);
if (rc) {
cpr3_err(ctrl, "could not map fuse base address\n");
return rc;
}
rc = cpr3_allocate_threads(ctrl, 0, 0);
if (rc) {
cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
rc);
return rc;
}
if (ctrl->thread_count != 1) {
cpr3_err(ctrl, "expected 1 thread but found %d\n",
ctrl->thread_count);
return -EINVAL;
} else if (ctrl->thread[0].vreg_count != 1) {
cpr3_err(ctrl, "expected 1 regulator but found %d\n",
ctrl->thread[0].vreg_count);
return -EINVAL;
}
rc = cpr3_mmss_init_controller(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
rc);
return rc;
}
rc = cpr3_mmss_init_thread(&ctrl->thread[0]);
if (rc) {
cpr3_err(&ctrl->thread[0].vreg[0], "thread initialization failed, rc=%d\n",
rc);
return rc;
}
rc = cpr3_mem_acc_init(&ctrl->thread[0].vreg[0]);
if (rc) {
cpr3_err(ctrl, "failed to initialize mem-acc configuration, rc=%d\n",
rc);
return rc;
}
rc = cpr3_mmss_init_aging(ctrl);
if (rc) {
cpr3_err(ctrl, "failed to initialize aging configurations, rc=%d\n",
rc);
return rc;
}
platform_set_drvdata(pdev, ctrl);
return cpr3_regulator_register(pdev, ctrl);
}
static int cpr3_mmss_regulator_remove(struct platform_device *pdev)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_unregister(ctrl);
}
static struct platform_driver cpr3_mmss_regulator_driver = {
.driver = {
.name = "qcom,cpr3-mmss-regulator",
.of_match_table = cpr_regulator_match_table,
.owner = THIS_MODULE,
},
.probe = cpr3_mmss_regulator_probe,
.remove = cpr3_mmss_regulator_remove,
.suspend = cpr3_mmss_regulator_suspend,
.resume = cpr3_mmss_regulator_resume,
};
static int cpr_regulator_init(void)
{
return platform_driver_register(&cpr3_mmss_regulator_driver);
}
static void cpr_regulator_exit(void)
{
platform_driver_unregister(&cpr3_mmss_regulator_driver);
}
MODULE_DESCRIPTION("CPR3 MMSS regulator driver");
MODULE_LICENSE("GPL v2");
arch_initcall(cpr_regulator_init);
module_exit(cpr_regulator_exit);