blob: 46a6f0ad08b1af44ce7ae8fcc7d1382c1a5fe240 [file] [log] [blame]
/* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/scatterlist.h>
#include <asm/cacheflush.h>
#include <linux/qcom_iommu.h>
#include "msm_iommu_priv.h"
#include <trace/events/kmem.h>
#include "msm_iommu_pagetable.h"
#define NUM_FL_PTE 4096
#define NUM_SL_PTE 256
#define GUARD_PTE 2
#define NUM_TEX_CLASS 8
/* First-level page table bits */
#define FL_BASE_MASK 0xFFFFFC00
#define FL_TYPE_TABLE (1 << 0)
#define FL_TYPE_SECT (2 << 0)
#define FL_SUPERSECTION (1 << 18)
#define FL_AP0 (1 << 10)
#define FL_AP1 (1 << 11)
#define FL_AP2 (1 << 15)
#define FL_SHARED (1 << 16)
#define FL_BUFFERABLE (1 << 2)
#define FL_CACHEABLE (1 << 3)
#define FL_TEX0 (1 << 12)
#define FL_OFFSET(va) (((va) & 0xFFF00000) >> 20)
#define FL_NG (1 << 17)
/* Second-level page table bits */
#define SL_BASE_MASK_LARGE 0xFFFF0000
#define SL_BASE_MASK_SMALL 0xFFFFF000
#define SL_TYPE_LARGE (1 << 0)
#define SL_TYPE_SMALL (2 << 0)
#define SL_AP0 (1 << 4)
#define SL_AP1 (2 << 4)
#define SL_AP2 (1 << 9)
#define SL_SHARED (1 << 10)
#define SL_BUFFERABLE (1 << 2)
#define SL_CACHEABLE (1 << 3)
#define SL_TEX0 (1 << 6)
#define SL_OFFSET(va) (((va) & 0xFF000) >> 12)
#define SL_NG (1 << 11)
/* Memory type and cache policy attributes */
#define MT_SO 0
#define MT_DEV 1
#define MT_IOMMU_NORMAL 2
#define CP_NONCACHED 0
#define CP_WB_WA 1
#define CP_WT 2
#define CP_WB_NWA 3
/* Sharability attributes of MSM IOMMU mappings */
#define MSM_IOMMU_ATTR_NON_SH 0x0
#define MSM_IOMMU_ATTR_SH 0x4
/* Cacheability attributes of MSM IOMMU mappings */
#define MSM_IOMMU_ATTR_NONCACHED 0x0
#define MSM_IOMMU_ATTR_CACHED_WB_WA 0x1
#define MSM_IOMMU_ATTR_CACHED_WB_NWA 0x2
#define MSM_IOMMU_ATTR_CACHED_WT 0x3
static int msm_iommu_tex_class[4];
/* TEX Remap Registers */
#define NMRR_ICP(nmrr, n) (((nmrr) & (3 << ((n) * 2))) >> ((n) * 2))
#define NMRR_OCP(nmrr, n) (((nmrr) & (3 << ((n) * 2 + 16))) >> ((n) * 2 + 16))
#define PRRR_NOS(prrr, n) ((prrr) & (1 << ((n) + 24)) ? 1 : 0)
#define PRRR_MT(prrr, n) ((((prrr) & (3 << ((n) * 2))) >> ((n) * 2)))
static inline void clean_pte(u32 *start, u32 *end, int redirect)
{
if (!redirect)
dmac_flush_range(start, end);
}
int msm_iommu_pagetable_alloc(struct msm_iommu_pt *pt)
{
pt->fl_table = (u32 *)__get_free_pages(GFP_KERNEL,
get_order(SZ_16K));
if (!pt->fl_table)
return -ENOMEM;
pt->fl_table_shadow = (u32 *)__get_free_pages(GFP_KERNEL,
get_order(SZ_16K));
if (!pt->fl_table_shadow) {
free_pages((unsigned long)pt->fl_table, get_order(SZ_16K));
return -ENOMEM;
}
memset(pt->fl_table, 0, SZ_16K);
memset(pt->fl_table_shadow, 0, SZ_16K);
clean_pte(pt->fl_table, pt->fl_table + NUM_FL_PTE, pt->redirect);
return 0;
}
void msm_iommu_pagetable_free(struct msm_iommu_pt *pt)
{
u32 *fl_table;
u32 *fl_table_shadow;
int i;
fl_table = pt->fl_table;
fl_table_shadow = pt->fl_table_shadow;
for (i = 0; i < NUM_FL_PTE; i++)
if ((fl_table[i] & 0x03) == FL_TYPE_TABLE)
free_page((unsigned long) __va(((fl_table[i]) &
FL_BASE_MASK)));
free_pages((unsigned long)fl_table, get_order(SZ_16K));
pt->fl_table = 0;
free_pages((unsigned long)fl_table_shadow, get_order(SZ_16K));
pt->fl_table_shadow = 0;
}
void msm_iommu_pagetable_free_tables(struct msm_iommu_pt *pt, unsigned long va,
size_t len)
{
/*
* Adding 2 for worst case. We could be spanning 3 second level pages
* if we unmapped just over 1MB.
*/
u32 n_entries = len / SZ_1M + 2;
u32 fl_offset = FL_OFFSET(va);
u32 i;
for (i = 0; i < n_entries && fl_offset < NUM_FL_PTE; ++i) {
u32 *fl_pte_shadow = pt->fl_table_shadow + fl_offset;
void *sl_table_va = __va(((*fl_pte_shadow) & ~0x1FF));
u32 sl_table = *fl_pte_shadow;
if (sl_table && !(sl_table & 0x1FF)) {
free_pages((unsigned long) sl_table_va,
get_order(SZ_4K));
*fl_pte_shadow = 0;
}
++fl_offset;
}
}
static int __get_pgprot(int prot, int len)
{
unsigned int pgprot;
int tex;
if (!(prot & (IOMMU_READ | IOMMU_WRITE))) {
prot |= IOMMU_READ | IOMMU_WRITE;
WARN_ONCE(1, "No attributes in iommu mapping; assuming RW\n");
}
if ((prot & IOMMU_WRITE) && !(prot & IOMMU_READ)) {
prot |= IOMMU_READ;
WARN_ONCE(1, "Write-only unsupported; falling back to RW\n");
}
if (prot & IOMMU_CACHE)
tex = (pgprot_val(PAGE_KERNEL) >> 2) & 0x07;
else if (prot & IOMMU_DEVICE)
tex = 0;
else
tex = msm_iommu_tex_class[MSM_IOMMU_ATTR_NONCACHED];
if (tex < 0 || tex > NUM_TEX_CLASS - 1)
return 0;
if (len == SZ_16M || len == SZ_1M) {
pgprot = FL_SHARED;
pgprot |= tex & 0x01 ? FL_BUFFERABLE : 0;
pgprot |= tex & 0x02 ? FL_CACHEABLE : 0;
pgprot |= tex & 0x04 ? FL_TEX0 : 0;
pgprot |= prot & IOMMU_PRIV ? FL_AP0 :
(FL_AP0 | FL_AP1);
pgprot |= prot & IOMMU_WRITE ? 0 : FL_AP2;
} else {
pgprot = SL_SHARED;
pgprot |= tex & 0x01 ? SL_BUFFERABLE : 0;
pgprot |= tex & 0x02 ? SL_CACHEABLE : 0;
pgprot |= tex & 0x04 ? SL_TEX0 : 0;
pgprot |= prot & IOMMU_PRIV ? SL_AP0 :
(SL_AP0 | SL_AP1);
pgprot |= prot & IOMMU_WRITE ? 0 : SL_AP2;
}
return pgprot;
}
static u32 *make_second_level(struct msm_iommu_pt *pt, u32 *fl_pte,
u32 *fl_pte_shadow)
{
u32 *sl;
sl = (u32 *) __get_free_pages(GFP_ATOMIC,
get_order(SZ_4K));
if (!sl) {
pr_debug("Could not allocate second level table\n");
goto fail;
}
memset(sl, 0, SZ_4K);
clean_pte(sl, sl + NUM_SL_PTE + GUARD_PTE, pt->redirect);
*fl_pte = ((((int)__pa(sl)) & FL_BASE_MASK) | FL_TYPE_TABLE);
*fl_pte_shadow = *fl_pte & ~0x1FF;
clean_pte(fl_pte, fl_pte + 1, pt->redirect);
fail:
return sl;
}
static int sl_4k(u32 *sl_pte, phys_addr_t pa, unsigned int pgprot)
{
int ret = 0;
if (*sl_pte) {
ret = -EBUSY;
goto fail;
}
*sl_pte = (pa & SL_BASE_MASK_SMALL) | SL_NG | SL_SHARED
| SL_TYPE_SMALL | pgprot;
fail:
return ret;
}
static int sl_64k(u32 *sl_pte, phys_addr_t pa, unsigned int pgprot)
{
int ret = 0;
int i;
for (i = 0; i < 16; i++)
if (*(sl_pte+i)) {
ret = -EBUSY;
goto fail;
}
for (i = 0; i < 16; i++)
*(sl_pte+i) = (pa & SL_BASE_MASK_LARGE) | SL_NG
| SL_SHARED | SL_TYPE_LARGE | pgprot;
fail:
return ret;
}
static inline int fl_1m(u32 *fl_pte, phys_addr_t pa, int pgprot)
{
if (*fl_pte)
return -EBUSY;
*fl_pte = (pa & 0xFFF00000) | FL_NG | FL_TYPE_SECT | FL_SHARED
| pgprot;
return 0;
}
static inline int fl_16m(u32 *fl_pte, phys_addr_t pa, int pgprot)
{
int i;
int ret = 0;
for (i = 0; i < 16; i++)
if (*(fl_pte+i)) {
ret = -EBUSY;
goto fail;
}
for (i = 0; i < 16; i++)
*(fl_pte+i) = (pa & 0xFF000000) | FL_SUPERSECTION
| FL_TYPE_SECT | FL_SHARED | FL_NG | pgprot;
fail:
return ret;
}
static phys_addr_t __get_phys_sg(void *cookie)
{
struct scatterlist *sg = cookie;
struct page *page = sg_page(sg);
BUG_ON(page == NULL);
return sg_phys(sg);
}
static unsigned long __get_length_sg(void *cookie, unsigned int total)
{
struct scatterlist *sg = cookie;
return sg->length;
}
static int __get_next_sg(void *old, void **new)
{
struct scatterlist *sg = old;
*new = sg_next(sg);
return 0;
}
static phys_addr_t __get_phys_bare(void *cookie)
{
return (phys_addr_t)cookie;
}
static unsigned long __get_length_bare(void *cookie, unsigned int total)
{
return total;
}
static int __get_next_bare(void *old, void **new)
{
/* Put something here in hopes of catching errors... */
*new = (void *)-1;
return -EINVAL;
}
struct msm_iommu_map_ops {
phys_addr_t (*get_phys)(void *cookie);
unsigned long (*get_length)(void *cookie, unsigned int total);
int (*get_next)(void *old, void **new);
};
static struct msm_iommu_map_ops regular_ops = {
.get_phys = __get_phys_bare,
.get_length = __get_length_bare,
.get_next = __get_next_bare,
};
static struct msm_iommu_map_ops sg_ops = {
.get_phys = __get_phys_sg,
.get_length = __get_length_sg,
.get_next = __get_next_sg,
};
/*
* For debugging we may want to force mappings to be 4K only
*/
#ifdef CONFIG_IOMMU_FORCE_4K_MAPPINGS
static inline int is_fully_aligned(unsigned int va, phys_addr_t pa, size_t len,
int align)
{
if (align == SZ_4K) {
return IS_ALIGNED(va, align) && IS_ALIGNED(pa, align)
&& (len >= align);
} else {
return 0;
}
}
#else
static inline int is_fully_aligned(unsigned int va, phys_addr_t pa, size_t len,
int align)
{
return IS_ALIGNED(va, align) && IS_ALIGNED(pa, align)
&& (len >= align);
}
#endif
static int __msm_iommu_pagetable_map_range(struct msm_iommu_pt *pt,
unsigned long va, void *cookie,
struct msm_iommu_map_ops *ops,
size_t len, int prot)
{
phys_addr_t pa;
unsigned int start_va = va;
unsigned int offset = 0;
u32 *fl_pte;
u32 *fl_pte_shadow;
u32 fl_offset;
u32 *sl_table = NULL;
u32 sl_offset, sl_start;
unsigned int chunk_size, chunk_offset = 0;
int ret = 0;
unsigned int pgprot4k, pgprot64k, pgprot1m, pgprot16m;
BUG_ON(len & (SZ_4K - 1));
pgprot4k = __get_pgprot(prot, SZ_4K);
pgprot64k = __get_pgprot(prot, SZ_64K);
pgprot1m = __get_pgprot(prot, SZ_1M);
pgprot16m = __get_pgprot(prot, SZ_16M);
if (!pgprot4k || !pgprot64k || !pgprot1m || !pgprot16m) {
ret = -EINVAL;
goto fail;
}
fl_offset = FL_OFFSET(va); /* Upper 12 bits */
fl_pte = pt->fl_table + fl_offset; /* int pointers, 4 bytes */
fl_pte_shadow = pt->fl_table_shadow + fl_offset;
pa = ops->get_phys(cookie);
while (offset < len) {
chunk_size = SZ_4K;
if (is_fully_aligned(va, pa,
ops->get_length(cookie, len) - chunk_offset,
SZ_16M))
chunk_size = SZ_16M;
else if (is_fully_aligned(va, pa,
ops->get_length(cookie, len) - chunk_offset,
SZ_1M))
chunk_size = SZ_1M;
/* 64k or 4k determined later */
trace_iommu_map_range(va, pa, ops->get_length(cookie, len),
chunk_size);
/* for 1M and 16M, only first level entries are required */
if (chunk_size >= SZ_1M) {
if (chunk_size == SZ_16M) {
ret = fl_16m(fl_pte, pa, pgprot16m);
if (ret)
goto fail;
clean_pte(fl_pte, fl_pte + 16, pt->redirect);
fl_pte += 16;
fl_pte_shadow += 16;
} else if (chunk_size == SZ_1M) {
ret = fl_1m(fl_pte, pa, pgprot1m);
if (ret)
goto fail;
clean_pte(fl_pte, fl_pte + 1, pt->redirect);
fl_pte++;
fl_pte_shadow++;
}
offset += chunk_size;
chunk_offset += chunk_size;
va += chunk_size;
pa += chunk_size;
if (chunk_offset >= ops->get_length(cookie, len) &&
offset < len) {
chunk_offset = 0;
if (ops->get_next(cookie, &cookie))
break;
pa = ops->get_phys(cookie);
}
continue;
}
/* for 4K or 64K, make sure there is a second level table */
if (*fl_pte == 0) {
if (!make_second_level(pt, fl_pte, fl_pte_shadow)) {
ret = -ENOMEM;
goto fail;
}
}
if (!(*fl_pte & FL_TYPE_TABLE)) {
ret = -EBUSY;
goto fail;
}
sl_table = __va(((*fl_pte) & FL_BASE_MASK));
sl_offset = SL_OFFSET(va);
/* Keep track of initial position so we
* don't clean more than we have to
*/
sl_start = sl_offset;
/* Build the 2nd level page table */
while (offset < len && sl_offset < NUM_SL_PTE) {
/* Map a large 64K page if the chunk is large enough and
* the pa and va are aligned
*/
if (is_fully_aligned(va, pa,
ops->get_length(cookie, len) - chunk_offset,
SZ_64K))
chunk_size = SZ_64K;
else
chunk_size = SZ_4K;
trace_iommu_map_range(va, pa,
ops->get_length(cookie, len), chunk_size);
if (chunk_size == SZ_4K) {
ret = sl_4k(&sl_table[sl_offset], pa, pgprot4k);
if (ret)
goto fail;
sl_offset++;
/* Increment map count */
(*fl_pte_shadow)++;
} else {
BUG_ON(sl_offset + 16 > NUM_SL_PTE);
ret = sl_64k(&sl_table[sl_offset], pa,
pgprot64k);
if (ret)
goto fail;
sl_offset += 16;
/* Increment map count */
*fl_pte_shadow += 16;
}
offset += chunk_size;
chunk_offset += chunk_size;
va += chunk_size;
pa += chunk_size;
if (chunk_offset >= ops->get_length(cookie, len) &&
offset < len) {
chunk_offset = 0;
if (ops->get_next(cookie, &cookie))
break;
pa = ops->get_phys(cookie);
}
}
clean_pte(sl_table + sl_start, sl_table + sl_offset,
pt->redirect);
fl_pte++;
fl_pte_shadow++;
sl_offset = 0;
}
fail:
if (ret && offset > 0)
msm_iommu_pagetable_unmap_range(pt, start_va, offset);
return ret;
}
void msm_iommu_pagetable_unmap_range(struct msm_iommu_pt *pt, unsigned long va,
size_t len)
{
unsigned int offset = 0;
u32 *fl_pte;
u32 *fl_pte_shadow;
u32 fl_offset;
u32 *sl_table;
u32 sl_start, sl_end;
u32 *temp;
int used;
BUG_ON(len & (SZ_4K - 1));
fl_offset = FL_OFFSET(va); /* Upper 12 bits */
fl_pte = pt->fl_table + fl_offset; /* int pointers, 4 bytes */
fl_pte_shadow = pt->fl_table_shadow + fl_offset;
while (offset < len) {
if (*fl_pte & FL_TYPE_TABLE) {
unsigned int n_entries;
sl_start = SL_OFFSET(va);
sl_table = __va(((*fl_pte) & FL_BASE_MASK));
sl_end = ((len - offset) / SZ_4K) + sl_start;
if (sl_end > NUM_SL_PTE)
sl_end = NUM_SL_PTE;
n_entries = sl_end - sl_start;
for (temp = sl_table + sl_start;
temp < sl_table + sl_end; temp++)
BUG_ON(!*temp);
memset(sl_table + sl_start, 0, n_entries * 4);
clean_pte(sl_table + sl_start, sl_table + sl_end,
pt->redirect);
offset += n_entries * SZ_4K;
va += n_entries * SZ_4K;
BUG_ON((*fl_pte_shadow & 0x1FF) < n_entries);
/* Decrement map count */
*fl_pte_shadow -= n_entries;
used = *fl_pte_shadow & 0x1FF;
if (!used) {
*fl_pte = 0;
clean_pte(fl_pte, fl_pte + 1, pt->redirect);
}
sl_start = 0;
} else {
*fl_pte = 0;
*fl_pte_shadow = 0;
clean_pte(fl_pte, fl_pte + 1, pt->redirect);
va += SZ_1M;
offset += SZ_1M;
sl_start = 0;
}
fl_pte++;
fl_pte_shadow++;
}
}
int msm_iommu_pagetable_map_range(struct msm_iommu_pt *pt, unsigned long va,
struct scatterlist *sg, size_t len, int prot)
{
return __msm_iommu_pagetable_map_range(pt, va, sg, &sg_ops, len, prot);
}
size_t msm_iommu_pagetable_unmap(struct msm_iommu_pt *pt, unsigned long va,
size_t len)
{
msm_iommu_pagetable_unmap_range(pt, va, len);
return len;
}
int msm_iommu_pagetable_map(struct msm_iommu_pt *pt, unsigned long va,
phys_addr_t pa, size_t len, int prot)
{
int ret;
ret = __msm_iommu_pagetable_map_range(pt, va, (void *)pa, &regular_ops,
len, prot);
return ret;
}
void msm_iommu_flush_pagetable(struct msm_iommu_pt *pt, unsigned long va,
size_t len)
{
/* Consolidated flush of page tables has not been implemented for
* v7S because this driver anyway takes care of combining flush
* for last level PTEs
*/
}
phys_addr_t msm_iommu_iova_to_phys_soft(struct iommu_domain *domain,
dma_addr_t va)
{
struct msm_iommu_priv *priv = domain->priv;
struct msm_iommu_pt *pt = &priv->pt;
u32 *fl_pte;
u32 fl_offset;
u32 *sl_table = NULL;
u32 sl_offset;
u32 *sl_pte;
if (!pt->fl_table) {
pr_err("Page table doesn't exist\n");
return 0;
}
fl_offset = FL_OFFSET(va);
fl_pte = pt->fl_table + fl_offset;
if (*fl_pte & FL_TYPE_TABLE) {
sl_table = __va(((*fl_pte) & FL_BASE_MASK));
sl_offset = SL_OFFSET(va);
sl_pte = sl_table + sl_offset;
/* 64 KB section */
if (*sl_pte & SL_TYPE_LARGE)
return (*sl_pte & 0xFFFF0000) | (va & ~0xFFFF0000);
/* 4 KB section */
if (*sl_pte & SL_TYPE_SMALL)
return (*sl_pte & 0xFFFFF000) | (va & ~0xFFFFF000);
} else {
/* 16 MB section */
if (*fl_pte & FL_SUPERSECTION)
return (*fl_pte & 0xFF000000) | (va & ~0xFF000000);
/* 1 MB section */
if (*fl_pte & FL_TYPE_SECT)
return (*fl_pte & 0xFFF00000) | (va & ~0xFFF00000);
}
return 0;
}
static int __init get_tex_class(int icp, int ocp, int mt, int nos)
{
int i = 0;
unsigned int prrr;
unsigned int nmrr;
int c_icp, c_ocp, c_mt, c_nos;
prrr = msm_iommu_get_prrr();
nmrr = msm_iommu_get_nmrr();
for (i = 0; i < NUM_TEX_CLASS; i++) {
c_nos = PRRR_NOS(prrr, i);
c_mt = PRRR_MT(prrr, i);
c_icp = NMRR_ICP(nmrr, i);
c_ocp = NMRR_OCP(nmrr, i);
if (icp == c_icp && ocp == c_ocp && c_mt == mt && c_nos == nos)
return i;
}
return -ENODEV;
}
static void __init setup_iommu_tex_classes(void)
{
msm_iommu_tex_class[MSM_IOMMU_ATTR_NONCACHED] =
get_tex_class(CP_NONCACHED, CP_NONCACHED,
MT_IOMMU_NORMAL, 1);
msm_iommu_tex_class[MSM_IOMMU_ATTR_CACHED_WB_WA] =
get_tex_class(CP_WB_WA, CP_WB_WA, MT_IOMMU_NORMAL, 1);
msm_iommu_tex_class[MSM_IOMMU_ATTR_CACHED_WB_NWA] =
get_tex_class(CP_WB_NWA, CP_WB_NWA, MT_IOMMU_NORMAL, 1);
msm_iommu_tex_class[MSM_IOMMU_ATTR_CACHED_WT] =
get_tex_class(CP_WT, CP_WT, MT_IOMMU_NORMAL, 1);
}
void __init msm_iommu_pagetable_init(void)
{
setup_iommu_tex_classes();
}