blob: 97791c8b8d7ba066fcff781d7e598615140fefaa [file] [log] [blame]
/* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/msm-bus.h>
#include <linux/platform_device.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/iommu.h>
#include <linux/msm-bus.h>
#include <linux/clk.h>
#include <linux/scatterlist.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/regulator/consumer.h>
#include <linux/notifier.h>
#include <linux/qcom_iommu.h>
#include <linux/sizes.h>
#include <soc/qcom/scm.h>
#include "msm_iommu_hw-v1.h"
#include "msm_iommu_priv.h"
#include "msm_iommu_perfmon.h"
#include "msm_iommu_pagetable.h"
#if defined(CONFIG_IOMMU_LPAE) || defined(CONFIG_IOMMU_AARCH64)
/* bitmap of the page sizes currently supported */
#define MSM_IOMMU_PGSIZES (SZ_4K | SZ_64K | SZ_2M | SZ_32M | SZ_1G)
#define IS_CB_FORMAT_LONG 1
#else
/* bitmap of the page sizes currently supported */
#define MSM_IOMMU_PGSIZES (SZ_4K | SZ_64K | SZ_1M | SZ_16M)
#define IS_CB_FORMAT_LONG 0
#endif
#define IOMMU_USEC_STEP 10
#define IOMMU_USEC_TIMEOUT 500
/* commands for SCM_SVC_SMMU_PROGRAM */
#define SMMU_CHANGE_PAGETABLE_FORMAT 0X01
/* Max ASID width is 8-bit */
#define MAX_ASID 0xff
/*
* msm_iommu_spin_lock protects anything that can race with map
* and unmap. msm_iommu_lock for everything else.
*/
static DEFINE_MUTEX(msm_iommu_lock);
static DEFINE_SPINLOCK(msm_iommu_spin_lock);
struct dump_regs_tbl_entry dump_regs_tbl[MAX_DUMP_REGS];
static int __enable_regulators(struct msm_iommu_drvdata *drvdata)
{
int ret = 0;
if (drvdata->gdsc) {
ret = regulator_enable(drvdata->gdsc);
if (ret)
goto fail;
if (drvdata->alt_gdsc)
ret = regulator_enable(drvdata->alt_gdsc);
if (ret) {
regulator_disable(drvdata->gdsc);
goto fail;
}
}
++drvdata->powered_on;
fail:
return ret;
}
static void __disable_regulators(struct msm_iommu_drvdata *drvdata)
{
if (drvdata->alt_gdsc)
regulator_disable(drvdata->alt_gdsc);
if (drvdata->gdsc)
regulator_disable(drvdata->gdsc);
--drvdata->powered_on;
}
static int apply_bus_vote(struct msm_iommu_drvdata *drvdata, unsigned int vote)
{
int ret = 0;
if (drvdata->bus_client) {
ret = msm_bus_scale_client_update_request(drvdata->bus_client,
vote);
if (ret)
pr_err("%s: Failed to vote for bus: %d\n", __func__,
vote);
}
return ret;
}
static int __enable_clocks(struct msm_iommu_drvdata *drvdata)
{
int ret;
ret = clk_enable(drvdata->pclk);
if (ret)
goto fail;
ret = clk_enable(drvdata->clk);
if (ret)
goto fail1;
ret = clk_enable(drvdata->aclk);
if (ret)
goto fail2;
ret = clk_enable(drvdata->aiclk);
if (ret)
goto fail3;
if (drvdata->clk_reg_virt) {
unsigned int value;
value = readl_relaxed(drvdata->clk_reg_virt);
value &= ~0x1;
writel_relaxed(value, drvdata->clk_reg_virt);
/* Ensure clock is on before continuing */
mb();
}
return 0;
fail3:
clk_disable(drvdata->aclk);
fail2:
clk_disable(drvdata->clk);
fail1:
clk_disable(drvdata->pclk);
fail:
return ret;
}
static void __disable_clocks(struct msm_iommu_drvdata *drvdata)
{
clk_disable(drvdata->aiclk);
clk_disable(drvdata->aclk);
clk_disable(drvdata->clk);
clk_disable(drvdata->pclk);
}
static void _iommu_lock_acquire(unsigned int need_extra_lock)
{
mutex_lock(&msm_iommu_lock);
}
static void _iommu_lock_release(unsigned int need_extra_lock)
{
mutex_unlock(&msm_iommu_lock);
}
struct iommu_access_ops iommu_access_ops_v1 = {
.iommu_power_on = __enable_regulators,
.iommu_power_off = __disable_regulators,
.iommu_bus_vote = apply_bus_vote,
.iommu_clk_on = __enable_clocks,
.iommu_clk_off = __disable_clocks,
.iommu_lock_acquire = _iommu_lock_acquire,
.iommu_lock_release = _iommu_lock_release,
};
static ATOMIC_NOTIFIER_HEAD(msm_iommu_notifier_list);
void msm_iommu_register_notify(struct notifier_block *nb)
{
atomic_notifier_chain_register(&msm_iommu_notifier_list, nb);
}
EXPORT_SYMBOL(msm_iommu_register_notify);
#ifdef CONFIG_MSM_IOMMU_VBIF_CHECK
#define VBIF_XIN_HALT_CTRL0 0x200
#define VBIF_XIN_HALT_CTRL1 0x204
#define VBIF_AXI_HALT_CTRL0 0x208
#define VBIF_AXI_HALT_CTRL1 0x20C
static void __halt_vbif_xin(void __iomem *vbif_base)
{
pr_err("Halting VBIF_XIN\n");
writel_relaxed(0xFFFFFFFF, vbif_base + VBIF_XIN_HALT_CTRL0);
}
static void __dump_vbif_state(void __iomem *base, void __iomem *vbif_base)
{
unsigned int reg_val;
reg_val = readl_relaxed(base + MICRO_MMU_CTRL);
pr_err("Value of SMMU_IMPLDEF_MICRO_MMU_CTRL = 0x%x\n", reg_val);
reg_val = readl_relaxed(vbif_base + VBIF_XIN_HALT_CTRL0);
pr_err("Value of VBIF_XIN_HALT_CTRL0 = 0x%x\n", reg_val);
reg_val = readl_relaxed(vbif_base + VBIF_XIN_HALT_CTRL1);
pr_err("Value of VBIF_XIN_HALT_CTRL1 = 0x%x\n", reg_val);
reg_val = readl_relaxed(vbif_base + VBIF_AXI_HALT_CTRL0);
pr_err("Value of VBIF_AXI_HALT_CTRL0 = 0x%x\n", reg_val);
reg_val = readl_relaxed(vbif_base + VBIF_AXI_HALT_CTRL1);
pr_err("Value of VBIF_AXI_HALT_CTRL1 = 0x%x\n", reg_val);
}
static int __check_vbif_state(struct msm_iommu_drvdata const *drvdata)
{
int ret = 0;
if (drvdata->vbif_base) {
__dump_vbif_state(drvdata->base, drvdata->vbif_base);
__halt_vbif_xin(drvdata->vbif_base);
__dump_vbif_state(drvdata->base, drvdata->vbif_base);
} else {
pr_err("%s: failed to get vbif state\n", __func__);
ret = -ENOMEM;
}
return ret;
}
static void check_halt_state(struct msm_iommu_drvdata const *drvdata)
{
int res;
unsigned int val;
void __iomem *base = drvdata->base;
char const *name = drvdata->name;
pr_err("Timed out waiting for IOMMU halt to complete for %s\n", name);
res = __check_vbif_state(drvdata);
if (res)
BUG();
pr_err("Checking if IOMMU halt completed for %s\n", name);
res = readl_poll_timeout_atomic(
GLB_REG(MICRO_MMU_CTRL, base), val,
(val & MMU_CTRL_IDLE) == MMU_CTRL_IDLE, 10000, 50);
if (res) {
pr_err("Timed out (again) waiting for IOMMU halt to complete for %s\n",
name);
} else {
pr_err("IOMMU halt completed. VBIF FIFO most likely not getting drained by master\n");
}
BUG();
}
static void check_tlb_sync_state(struct msm_iommu_drvdata const *drvdata,
int ctx, struct msm_iommu_priv *priv)
{
int res;
unsigned int val;
void __iomem *base = drvdata->cb_base;
char const *name = drvdata->name;
pr_err("Timed out waiting for TLB SYNC to complete for %s (client: %s)\n",
name, priv->client_name);
atomic_notifier_call_chain(&msm_iommu_notifier_list, TLB_SYNC_TIMEOUT,
(void *) priv->client_name);
res = __check_vbif_state(drvdata);
if (res)
BUG();
pr_err("Checking if TLB sync completed for %s\n", name);
res = readl_poll_timeout_atomic(CTX_REG(CB_TLBSTATUS, base, ctx), val,
(val & CB_TLBSTATUS_SACTIVE) == 0, 10000, 50);
if (res) {
pr_err("Timed out (again) waiting for TLB SYNC to complete for %s\n",
name);
} else {
pr_err("TLB Sync completed. VBIF FIFO most likely not getting drained by master\n");
}
BUG();
}
#else
/*
* For targets without VBIF or for targets with the VBIF check disabled
* we directly just crash to capture the issue
*/
static void check_halt_state(struct msm_iommu_drvdata const *drvdata)
{
BUG();
}
static void check_tlb_sync_state(struct msm_iommu_drvdata const *drvdata,
int ctx, struct msm_iommu_priv *priv)
{
char const *name = drvdata->name;
pr_err("Timed out waiting for TLB SYNC to complete for %s (client: %s)\n",
name, priv->client_name);
atomic_notifier_call_chain(&msm_iommu_notifier_list, TLB_SYNC_TIMEOUT,
(void *) priv->client_name);
BUG();
}
#endif
void iommu_halt(struct msm_iommu_drvdata const *iommu_drvdata)
{
if (iommu_drvdata->halt_enabled) {
unsigned int val;
void __iomem *base = iommu_drvdata->base;
int res;
SET_MICRO_MMU_CTRL_HALT_REQ(base, 1);
res = readl_poll_timeout(GLB_REG(MICRO_MMU_CTRL, base), val,
(val & MMU_CTRL_IDLE) == MMU_CTRL_IDLE,
0, 5000000);
if (res)
check_halt_state(iommu_drvdata);
/* Ensure device is idle before continuing */
mb();
}
}
void iommu_resume(const struct msm_iommu_drvdata *iommu_drvdata)
{
if (iommu_drvdata->halt_enabled) {
/*
* Ensure transactions have completed before releasing
* the halt
*/
mb();
SET_MICRO_MMU_CTRL_HALT_REQ(iommu_drvdata->base, 0);
/*
* Ensure write is complete before continuing to ensure
* we don't turn off clocks while transaction is still
* pending.
*/
mb();
}
}
static inline bool is_domain_dynamic(struct msm_iommu_priv *priv)
{
return (priv->attributes & (1 << DOMAIN_ATTR_DYNAMIC));
}
static void __sync_tlb(struct msm_iommu_drvdata *iommu_drvdata, int ctx,
struct msm_iommu_priv *priv)
{
unsigned int val;
unsigned int res;
void __iomem *base = iommu_drvdata->cb_base;
SET_TLBSYNC(base, ctx, 0);
/* No barrier needed due to read dependency */
res = readl_relaxed_poll_timeout_atomic(
CTX_REG(CB_TLBSTATUS, base, ctx),
val, (val & CB_TLBSTATUS_SACTIVE) == 0,
1, 500000);
if (res)
check_tlb_sync_state(iommu_drvdata, ctx, priv);
}
static int __flush_iotlb(struct iommu_domain *domain)
{
struct msm_iommu_priv *priv = domain->priv;
struct msm_iommu_priv *base_priv;
struct msm_iommu_drvdata *iommu_drvdata;
struct msm_iommu_ctx_drvdata *ctx_drvdata;
int ret = 0;
/*
* Context banks are properly attached to base domain and not dynamic
* domains. So, we must get the base domain and CBs attached to it
* for TLB invalidation.
*/
if (is_domain_dynamic(priv)) {
if (!priv->base)
return 0;
base_priv = priv->base->priv;
} else {
base_priv = priv;
}
list_for_each_entry(ctx_drvdata, &base_priv->list_attached,
attached_elm) {
BUG_ON(!ctx_drvdata->pdev || !ctx_drvdata->pdev->dev.parent);
iommu_drvdata = dev_get_drvdata(ctx_drvdata->pdev->dev.parent);
BUG_ON(!iommu_drvdata);
ret = __enable_clocks(iommu_drvdata);
if (ret)
goto fail;
SET_TLBIASID(iommu_drvdata->cb_base, ctx_drvdata->num,
priv->asid);
__sync_tlb(iommu_drvdata, ctx_drvdata->num, priv);
__disable_clocks(iommu_drvdata);
}
fail:
return ret;
}
static int __flush_iotlb_va(struct iommu_domain *domain, unsigned long va)
{
struct msm_iommu_priv *priv = domain->priv;
struct msm_iommu_priv *base_priv;
struct msm_iommu_drvdata *iommu_drvdata;
struct msm_iommu_ctx_drvdata *ctx_drvdata;
int ret = 0;
if (is_domain_dynamic(priv)) {
if (!priv->base)
return 0;
base_priv = priv->base->priv;
} else {
base_priv = priv;
}
list_for_each_entry(ctx_drvdata, &base_priv->list_attached,
attached_elm) {
BUG_ON(!ctx_drvdata->pdev || !ctx_drvdata->pdev->dev.parent);
iommu_drvdata = dev_get_drvdata(ctx_drvdata->pdev->dev.parent);
BUG_ON(!iommu_drvdata);
ret = __enable_clocks(iommu_drvdata);
if (ret)
goto fail;
SET_TLBIVA(iommu_drvdata->cb_base, ctx_drvdata->num,
priv->asid | (va & CB_TLBIVA_VA));
__sync_tlb(iommu_drvdata, ctx_drvdata->num, priv);
__disable_clocks(iommu_drvdata);
}
fail:
return ret;
}
/*
* May only be called for non-secure iommus
*/
static void __reset_iommu(struct msm_iommu_drvdata *iommu_drvdata)
{
int i, smt_size, res;
unsigned long val;
void __iomem *base = iommu_drvdata->base;
/* SMMU_ACR is an implementation defined register.
* Resetting is not required for some implementation.
*/
if (iommu_drvdata->model != MMU_500)
SET_ACR(base, 0);
SET_CR2(base, 0);
SET_GFAR(base, 0);
SET_GFSRRESTORE(base, 0);
/* Invalidate the entire non-secure TLB */
SET_TLBIALLNSNH(base, 0);
SET_TLBGSYNC(base, 0);
res = readl_poll_timeout(GLB_REG(TLBGSTATUS, base), val,
(val & TLBGSTATUS_GSACTIVE) == 0, 0, 5000000);
if (res)
BUG();
smt_size = GET_IDR0_NUMSMRG(base);
for (i = 0; i < smt_size; i++)
SET_SMR_VALID(base, i, 0);
/* make sure SMR programming is done*/
mb();
}
static void __reset_iommu_secure(struct msm_iommu_drvdata *iommu_drvdata)
{
void __iomem *base = iommu_drvdata->base;
if (iommu_drvdata->model != MMU_500)
SET_NSACR(base, 0);
SET_NSCR2(base, 0);
SET_NSGFAR(base, 0);
SET_NSGFSRRESTORE(base, 0);
/* make sure reset is done */
mb();
}
static void __program_iommu_secure(struct msm_iommu_drvdata *iommu_drvdata)
{
void __iomem *base = iommu_drvdata->base;
if (iommu_drvdata->model == MMU_500) {
SET_NSACR_SMTNMC_BPTLBEN(base, 1);
SET_NSACR_MMUDIS_BPTLBEN(base, 1);
SET_NSACR_S2CR_BPTLBEN(base, 1);
}
SET_NSCR0_SMCFCFG(base, 1);
SET_NSCR0_USFCFG(base, 1);
SET_NSCR0_STALLD(base, 1);
SET_NSCR0_GCFGFIE(base, 1);
SET_NSCR0_GCFGFRE(base, 1);
SET_NSCR0_GFIE(base, 1);
SET_NSCR0_GFRE(base, 1);
SET_NSCR0_CLIENTPD(base, 0);
}
/*
* May only be called for non-secure iommus
*/
static void __program_iommu(struct msm_iommu_drvdata *drvdata)
{
__reset_iommu(drvdata);
if (!msm_iommu_get_scm_call_avail())
__reset_iommu_secure(drvdata);
if (drvdata->model == MMU_500) {
SET_ACR_SMTNMC_BPTLBEN(drvdata->base, 1);
SET_ACR_MMUDIS_BPTLBEN(drvdata->base, 1);
SET_ACR_S2CR_BPTLBEN(drvdata->base, 1);
}
SET_CR0_SMCFCFG(drvdata->base, 1);
SET_CR0_USFCFG(drvdata->base, 1);
SET_CR0_STALLD(drvdata->base, 1);
SET_CR0_GCFGFIE(drvdata->base, 1);
SET_CR0_GCFGFRE(drvdata->base, 1);
SET_CR0_GFIE(drvdata->base, 1);
SET_CR0_GFRE(drvdata->base, 1);
SET_CR0_CLIENTPD(drvdata->base, 0);
if (!msm_iommu_get_scm_call_avail())
__program_iommu_secure(drvdata);
if (drvdata->smmu_local_base)
writel_relaxed(0xFFFFFFFF, drvdata->smmu_local_base +
SMMU_INTR_SEL_NS);
mb(); /* Make sure writes complete before returning */
}
void program_iommu_bfb_settings(void __iomem *base,
const struct msm_iommu_bfb_settings *bfb_settings)
{
unsigned int i;
if (bfb_settings)
for (i = 0; i < bfb_settings->length; i++)
SET_GLOBAL_REG(base, bfb_settings->regs[i],
bfb_settings->data[i]);
mb(); /* Make sure writes complete before returning */
}
static void __reset_context(struct msm_iommu_drvdata *iommu_drvdata, int ctx)
{
void __iomem *base = iommu_drvdata->cb_base;
/* Don't set ACTLR to zero because if context bank is in
* bypass mode (say after iommu_detach), still this ACTLR
* value matters for micro-TLB caching.
*/
if (iommu_drvdata->model != MMU_500)
SET_ACTLR(base, ctx, 0);
SET_FAR(base, ctx, 0);
SET_FSRRESTORE(base, ctx, 0);
SET_NMRR(base, ctx, 0);
SET_PAR(base, ctx, 0);
SET_PRRR(base, ctx, 0);
SET_SCTLR(base, ctx, 0);
SET_TTBCR(base, ctx, 0);
SET_TTBR0(base, ctx, 0);
SET_TTBR1(base, ctx, 0);
/* make sure reset is done */
mb();
}
static void __release_smg(void __iomem *base)
{
int i, smt_size;
smt_size = GET_IDR0_NUMSMRG(base);
/* Invalidate all SMGs */
for (i = 0; i < smt_size; i++)
if (GET_SMR_VALID(base, i))
SET_SMR_VALID(base, i, 0);
}
#if defined(CONFIG_IOMMU_LPAE)
static inline phys_addr_t msm_iommu_get_phy_from_PAR(unsigned long va, u64 par)
{
phys_addr_t phy;
/* Upper 28 bits from PAR, lower 12 from VA */
phy = (par & 0x0000FFFFF000ULL) | (va & 0x000000000FFFULL);
return phy;
}
static void msm_iommu_setup_ctx(void __iomem *base, unsigned int ctx)
{
SET_CB_TTBCR_EAE(base, ctx, 1); /* Extended Address Enable (EAE) */
}
static void msm_iommu_setup_memory_remap(void __iomem *base, unsigned int ctx)
{
SET_CB_MAIR0(base, ctx, msm_iommu_get_mair0());
SET_CB_MAIR1(base, ctx, msm_iommu_get_mair1());
}
static void msm_iommu_setup_pg_l2_redirect(void __iomem *base, unsigned int ctx)
{
/*
* Configure page tables as inner-cacheable and shareable to reduce
* the TLB miss penalty.
*/
SET_CB_TTBCR_SH0(base, ctx, 3); /* Inner shareable */
SET_CB_TTBCR_ORGN0(base, ctx, 1); /* outer cachable*/
SET_CB_TTBCR_IRGN0(base, ctx, 1); /* inner cachable*/
SET_CB_TTBCR_T0SZ(base, ctx, 0); /* 0GB-4GB */
SET_CB_TTBCR_SH1(base, ctx, 3); /* Inner shareable */
SET_CB_TTBCR_ORGN1(base, ctx, 1); /* outer cachable*/
SET_CB_TTBCR_IRGN1(base, ctx, 1); /* inner cachable*/
SET_CB_TTBCR_T1SZ(base, ctx, 0); /* TTBR1 not used */
}
static void __set_cb_format(struct msm_iommu_drvdata *iommu_drvdata,
struct msm_iommu_ctx_drvdata *ctx_drvdata)
{
}
static u64 get_full_ttbr0(struct msm_iommu_priv *priv)
{
return (virt_to_phys(priv->pt.fl_table) |
(priv->asid << CB_TTBR0_ASID_SHIFT));
}
static void msm_iommu_set_ASID(void __iomem *base, unsigned int ctx_num,
unsigned int asid)
{
SET_CB_TTBR0_ASID(base, ctx_num, asid);
}
#elif defined(CONFIG_IOMMU_AARCH64)
static inline phys_addr_t msm_iommu_get_phy_from_PAR(unsigned long va, u64 par)
{
phys_addr_t phy;
/* Upper 48 bits from PAR, lower 12 from VA */
phy = (par & 0xFFFFFFFFF000ULL) | (va & 0x000000000FFFULL);
return phy;
}
static void msm_iommu_setup_ctx(void __iomem *base, unsigned int ctx)
{
/*
* TCR2 presently sets PA size as 32-bits. When entire platform
* gets more physical size, we need to change for SMMU too.
* Change CB_TCR2_PA in that case.
*/
SET_CB_TCR2_SEP(base, ctx, 7); /* bit[48] as sign bit */
}
static void msm_iommu_setup_memory_remap(void __iomem *base, unsigned int ctx)
{
SET_CB_MAIR0(base, ctx, msm_iommu_get_mair0());
SET_CB_MAIR1(base, ctx, msm_iommu_get_mair1());
}
static void msm_iommu_setup_pg_l2_redirect(void __iomem *base, unsigned int ctx)
{
/*
* Configure page tables as inner-cacheable and shareable to reduce
* the TLB miss penalty.
*/
SET_CB_TTBCR_SH0(base, ctx, 3); /* Inner shareable */
SET_CB_TTBCR_ORGN0(base, ctx, 1); /* outer cachable*/
SET_CB_TTBCR_IRGN0(base, ctx, 1); /* inner cachable*/
SET_CB_TTBCR_T0SZ(base, ctx, 16); /* 48-bit VA */
SET_CB_TTBCR_SH1(base, ctx, 3); /* Inner shareable */
SET_CB_TTBCR_ORGN1(base, ctx, 1); /* outer cachable*/
SET_CB_TTBCR_IRGN1(base, ctx, 1); /* inner cachable*/
SET_CB_TTBCR_T1SZ(base, ctx, 63); /*TTBR1 not used */
}
static void __set_cb_format(struct msm_iommu_drvdata *iommu_drvdata,
struct msm_iommu_ctx_drvdata *ctx_drvdata)
{
struct scm_desc desc = {0};
unsigned int ret = 0;
if (iommu_drvdata->sec_id != -1) {
desc.args[0] = iommu_drvdata->sec_id;
desc.args[1] = ctx_drvdata->num;
desc.args[2] = 1; /* Enable */
desc.arginfo = SCM_ARGS(3, SCM_VAL, SCM_VAL, SCM_VAL);
ret = scm_call2(SCM_SIP_FNID(SCM_SVC_SMMU_PROGRAM,
SMMU_CHANGE_PAGETABLE_FORMAT), &desc);
/* At this stage, we cannot afford to fail because we have
* chosen AARCH64 format at compile time and we have nothing
* to fallback on.
*/
if (ret) {
pr_err("Format change failed for CB %d with ret %d\n",
ctx_drvdata->num, ret);
BUG();
}
} else {
/* Set page table format as AARCH64 */
SET_CBA2R_VA64(iommu_drvdata->base, ctx_drvdata->num, 1);
}
}
static u64 get_full_ttbr0(struct msm_iommu_priv *priv)
{
return (virt_to_phys(priv->pt.fl_table) |
(priv->asid << CB_TTBR0_ASID_SHIFT));
}
static void msm_iommu_set_ASID(void __iomem *base, unsigned int ctx_num,
unsigned int asid)
{
SET_CB_TTBR0_ASID(base, ctx_num, asid);
}
#else /* v7S format */
static phys_addr_t msm_iommu_get_phy_from_PAR(unsigned long va, u64 par)
{
phys_addr_t phy;
/* We are dealing with a supersection */
if (par & CB_PAR_SS)
phy = (par & 0x0000FF000000ULL) | (va & 0x000000FFFFFFULL);
else /* Upper 20 bits from PAR, lower 12 from VA */
phy = (par & 0x0000FFFFF000ULL) | (va & 0x000000000FFFULL);
return phy;
}
static void msm_iommu_setup_ctx(void __iomem *base, unsigned int ctx)
{
/* Turn on TEX Remap */
SET_CB_SCTLR_TRE(base, ctx, 1);
}
static void msm_iommu_setup_memory_remap(void __iomem *base, unsigned int ctx)
{
SET_PRRR(base, ctx, msm_iommu_get_prrr());
SET_NMRR(base, ctx, msm_iommu_get_nmrr());
}
static void msm_iommu_setup_pg_l2_redirect(void __iomem *base, unsigned int ctx)
{
/* Configure page tables as inner-cacheable and shareable to reduce
* the TLB miss penalty.
*/
SET_CB_TTBR0_S(base, ctx, 1);
SET_CB_TTBR0_NOS(base, ctx, 1);
SET_CB_TTBR0_IRGN1(base, ctx, 0); /* WB, WA */
SET_CB_TTBR0_IRGN0(base, ctx, 1);
SET_CB_TTBR0_RGN(base, ctx, 1); /* WB, WA */
}
static void __set_cb_format(struct msm_iommu_drvdata *iommu_drvdata,
struct msm_iommu_ctx_drvdata *ctx_drvdata)
{
}
static u64 get_full_ttbr0(struct msm_iommu_priv *priv)
{
return virt_to_phys(priv->pt.fl_table);
}
static void msm_iommu_set_ASID(void __iomem *base, unsigned int ctx_num,
unsigned int asid)
{
SET_CB_CONTEXTIDR_ASID(base, ctx_num, asid);
}
#endif
static void msm_iommu_assign_ASID(const struct msm_iommu_drvdata *iommu_drvdata,
struct msm_iommu_ctx_drvdata *curr_ctx,
struct msm_iommu_priv *priv)
{
void __iomem *cb_base = iommu_drvdata->cb_base;
curr_ctx->asid = curr_ctx->num;
/*
* Domain also keeps the ASID info separately. This is because with
* dynamic domain, each domain will have different ASID but their
* attached CB is the same
*/
priv->asid = curr_ctx->num;
msm_iommu_set_ASID(cb_base, curr_ctx->num, curr_ctx->asid);
}
static int program_m2v_table(struct device *dev, void __iomem *base)
{
struct msm_iommu_ctx_drvdata *ctx_drvdata = dev_get_drvdata(dev);
u32 *sids = ctx_drvdata->sids;
u32 *sid_mask = ctx_drvdata->sid_mask;
unsigned int ctx = ctx_drvdata->num;
int num = 0, i, smt_size;
int len = ctx_drvdata->nsid;
smt_size = GET_IDR0_NUMSMRG(base);
/* Program the M2V tables for this context */
for (i = 0; i < len / sizeof(*sids); i++) {
for (; num < smt_size; num++)
if (GET_SMR_VALID(base, num) == 0)
break;
BUG_ON(num >= smt_size);
SET_SMR_VALID(base, num, 1);
SET_SMR_MASK(base, num, sid_mask[i]);
SET_SMR_ID(base, num, sids[i]);
SET_S2CR_N(base, num, 0);
SET_S2CR_CBNDX(base, num, ctx);
SET_S2CR_MEMATTR(base, num, 0x0A);
/* Set security bit override to be Non-secure */
SET_S2CR_NSCFG(base, num, 3);
}
return 0;
}
static void program_all_m2v_tables(struct msm_iommu_drvdata *iommu_drvdata)
{
device_for_each_child(iommu_drvdata->dev, iommu_drvdata->base,
program_m2v_table);
}
static void __program_context(struct msm_iommu_drvdata *iommu_drvdata,
struct msm_iommu_ctx_drvdata *ctx_drvdata,
struct msm_iommu_priv *priv, bool is_secure,
bool program_m2v)
{
phys_addr_t pn;
void __iomem *base = iommu_drvdata->base;
void __iomem *cb_base = iommu_drvdata->cb_base;
unsigned int ctx = ctx_drvdata->num;
phys_addr_t pgtable = __pa(priv->pt.fl_table);
__reset_context(iommu_drvdata, ctx);
msm_iommu_setup_ctx(cb_base, ctx);
if (priv->pt.redirect)
msm_iommu_setup_pg_l2_redirect(cb_base, ctx);
msm_iommu_setup_memory_remap(cb_base, ctx);
pn = pgtable >> CB_TTBR0_ADDR_SHIFT;
SET_CB_TTBR0_ADDR(cb_base, ctx, pn);
/* Enable context fault interrupt */
SET_CB_SCTLR_CFIE(cb_base, ctx, 1);
/* Enable context fault error report */
if (ctx_drvdata->report_error_on_fault) {
SET_CB_SCTLR_HUPCF(cb_base, ctx, 1);
SET_CB_SCTLR_CFRE(cb_base, ctx, 1);
}
if (iommu_drvdata->model != MMU_500) {
/* Redirect all cacheable requests to L2 slave port. */
SET_CB_ACTLR_BPRCISH(cb_base, ctx, 1);
SET_CB_ACTLR_BPRCOSH(cb_base, ctx, 1);
SET_CB_ACTLR_BPRCNSH(cb_base, ctx, 1);
} else if (iommu_drvdata->model == MMU_500 &&
ctx_drvdata->prefetch_depth) {
SET_CB_ACTLR_PF_WINDOW(cb_base, ctx,
ctx_drvdata->prefetch_depth);
}
/* Enable private ASID namespace */
SET_CB_SCTLR_ASIDPNE(cb_base, ctx, 1);
if (!is_secure) {
if (program_m2v)
program_all_m2v_tables(iommu_drvdata);
SET_CBAR_N(base, ctx, 0);
/* Stage 1 Context with Stage 2 bypass */
SET_CBAR_TYPE(base, ctx, 1);
/* Route page faults to the non-secure interrupt */
SET_CBAR_IRPTNDX(base, ctx, 1);
/* Set VMID to non-secure HLOS */
SET_CBAR_VMID(base, ctx, 3);
/* Bypass is treated as inner-shareable */
SET_CBAR_BPSHCFG(base, ctx, 2);
/* Do not downgrade memory attributes */
SET_CBAR_MEMATTR(base, ctx, 0x0A);
}
__set_cb_format(iommu_drvdata, ctx_drvdata);
msm_iommu_assign_ASID(iommu_drvdata, ctx_drvdata, priv);
/* Ensure that ASID assignment has completed before we use
* ASID for TLB invalidation. Here, mb() is required because
* both these registers are separated by more than 1KB. */
mb();
SET_TLBIASID(iommu_drvdata->cb_base, ctx_drvdata->num,
ctx_drvdata->asid);
__sync_tlb(iommu_drvdata, ctx_drvdata->num, priv);
/* Enable the MMU */
SET_CB_SCTLR_M(cb_base, ctx, 1);
mb(); /* make sure MMU is enabled */
}
#ifdef CONFIG_IOMMU_PGTABLES_L2
#define INITIAL_REDIRECT_VAL 1
#else
#define INITIAL_REDIRECT_VAL 0
#endif
static int msm_iommu_domain_init(struct iommu_domain *domain)
{
struct msm_iommu_priv *priv;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
goto fail_nomem;
priv->pt.redirect = INITIAL_REDIRECT_VAL;
INIT_LIST_HEAD(&priv->list_attached);
if (msm_iommu_pagetable_alloc(&priv->pt))
goto fail_nomem;
domain->priv = priv;
return 0;
fail_nomem:
kfree(priv);
return -ENOMEM;
}
static void msm_iommu_domain_destroy(struct iommu_domain *domain)
{
struct msm_iommu_priv *priv;
unsigned long flags;
mutex_lock(&msm_iommu_lock);
spin_lock_irqsave(&msm_iommu_spin_lock, flags);
priv = domain->priv;
domain->priv = NULL;
if (priv)
msm_iommu_pagetable_free(&priv->pt);
kfree(priv);
spin_unlock_irqrestore(&msm_iommu_spin_lock, flags);
mutex_unlock(&msm_iommu_lock);
}
static int msm_iommu_dynamic_attach(struct iommu_domain *domain,
struct msm_iommu_drvdata *iommu_drvdata,
struct msm_iommu_ctx_drvdata *ctx_drvdata)
{
int ret;
struct msm_iommu_priv *priv;
priv = domain->priv;
/* Check if the domain is already attached or not */
if (priv->asid < MAX_ASID && priv->asid > 0)
return -EBUSY;
ret = idr_alloc_cyclic(&iommu_drvdata->asid_idr, priv,
iommu_drvdata->ncb + 2, MAX_ASID + 1, GFP_KERNEL);
if (ret < 0)
return -ENOSPC;
priv->asid = ret;
priv->base = ctx_drvdata->attached_domain;
/* Once the CB is dynamic, it is always dynamic */
ctx_drvdata->dynamic = true;
return 0;
}
static int msm_iommu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
struct msm_iommu_priv *priv;
struct msm_iommu_drvdata *iommu_drvdata;
struct msm_iommu_ctx_drvdata *ctx_drvdata;
struct msm_iommu_ctx_drvdata *tmp_drvdata;
int ret = 0;
int is_secure;
bool set_m2v = false;
unsigned long flags;
mutex_lock(&msm_iommu_lock);
priv = domain->priv;
if (!priv || !dev) {
ret = -EINVAL;
goto unlock;
}
if (!(priv->client_name))
priv->client_name = dev_name(dev);
iommu_drvdata = dev_get_drvdata(dev->parent);
ctx_drvdata = dev_get_drvdata(dev);
if (!iommu_drvdata || !ctx_drvdata) {
ret = -EINVAL;
goto unlock;
}
if (is_domain_dynamic(priv)) {
ret = msm_iommu_dynamic_attach(domain,
iommu_drvdata, ctx_drvdata);
mutex_unlock(&msm_iommu_lock);
return ret;
}
++ctx_drvdata->attach_count;
if (ctx_drvdata->attach_count > 1)
goto already_attached;
spin_lock_irqsave(&msm_iommu_spin_lock, flags);
if (!list_empty(&ctx_drvdata->attached_elm)) {
ret = -EBUSY;
spin_unlock_irqrestore(&msm_iommu_spin_lock, flags);
goto unlock;
}
list_for_each_entry(tmp_drvdata, &priv->list_attached, attached_elm)
if (tmp_drvdata == ctx_drvdata) {
ret = -EBUSY;
spin_unlock_irqrestore(&msm_iommu_spin_lock, flags);
goto unlock;
}
spin_unlock_irqrestore(&msm_iommu_spin_lock, flags);
is_secure = iommu_drvdata->sec_id != -1;
ret = __enable_regulators(iommu_drvdata);
if (ret)
goto unlock;
ret = apply_bus_vote(iommu_drvdata, 1);
if (ret)
goto unlock;
ret = __enable_clocks(iommu_drvdata);
if (ret) {
__disable_regulators(iommu_drvdata);
goto unlock;
}
/* We can only do this once */
if (!iommu_drvdata->ctx_attach_count) {
if (!is_secure) {
iommu_halt(iommu_drvdata);
__program_iommu(iommu_drvdata);
iommu_resume(iommu_drvdata);
} else {
ret = msm_iommu_sec_program_iommu(
iommu_drvdata, ctx_drvdata);
if (ret) {
__disable_regulators(iommu_drvdata);
__disable_clocks(iommu_drvdata);
goto unlock;
}
}
program_iommu_bfb_settings(iommu_drvdata->base,
iommu_drvdata->bfb_settings);
set_m2v = true;
}
iommu_halt(iommu_drvdata);
__program_context(iommu_drvdata, ctx_drvdata, priv, is_secure, set_m2v);
iommu_resume(iommu_drvdata);
/* Ensure TLB is clear */
if (iommu_drvdata->model != MMU_500) {
SET_TLBIASID(iommu_drvdata->cb_base, ctx_drvdata->num,
ctx_drvdata->asid);
__sync_tlb(iommu_drvdata, ctx_drvdata->num, priv);
}
__disable_clocks(iommu_drvdata);
spin_lock_irqsave(&msm_iommu_spin_lock, flags);
list_add(&(ctx_drvdata->attached_elm), &priv->list_attached);
spin_unlock_irqrestore(&msm_iommu_spin_lock, flags);
ctx_drvdata->attached_domain = domain;
++iommu_drvdata->ctx_attach_count;
already_attached:
mutex_unlock(&msm_iommu_lock);
msm_iommu_attached(dev->parent);
return ret;
unlock:
mutex_unlock(&msm_iommu_lock);
return ret;
}
static void msm_iommu_dynamic_detach(struct iommu_domain *domain,
struct msm_iommu_drvdata *iommu_drvdata,
struct msm_iommu_ctx_drvdata *ctx_drvdata)
{
int ret;
struct msm_iommu_priv *priv;
priv = domain->priv;
if (ctx_drvdata->attach_count > 0) {
ret = __enable_clocks(iommu_drvdata);
if (ret)
return;
SET_TLBIASID(iommu_drvdata->cb_base, ctx_drvdata->num,
priv->asid);
__sync_tlb(iommu_drvdata, ctx_drvdata->num, priv);
__disable_clocks(iommu_drvdata);
}
BUG_ON(priv->asid == -1);
idr_remove(&iommu_drvdata->asid_idr, priv->asid);
priv->asid = (-1);
priv->base = NULL;
}
static void msm_iommu_detach_dev(struct iommu_domain *domain,
struct device *dev)
{
struct msm_iommu_priv *priv;
struct msm_iommu_drvdata *iommu_drvdata;
struct msm_iommu_ctx_drvdata *ctx_drvdata;
int ret;
int is_secure;
unsigned long flags;
if (!dev)
return;
msm_iommu_detached(dev->parent);
mutex_lock(&msm_iommu_lock);
priv = domain->priv;
if (!priv)
goto unlock;
iommu_drvdata = dev_get_drvdata(dev->parent);
ctx_drvdata = dev_get_drvdata(dev);
if (!iommu_drvdata || !ctx_drvdata || !ctx_drvdata->attached_domain)
goto unlock;
if (is_domain_dynamic(priv)) {
msm_iommu_dynamic_detach(domain,
iommu_drvdata, ctx_drvdata);
mutex_unlock(&msm_iommu_lock);
return;
}
--ctx_drvdata->attach_count;
BUG_ON(ctx_drvdata->attach_count < 0);
if (ctx_drvdata->attach_count > 0)
goto unlock;
ret = __enable_clocks(iommu_drvdata);
if (ret)
goto unlock;
is_secure = iommu_drvdata->sec_id != -1;
if (iommu_drvdata->model == MMU_500) {
SET_TLBIASID(iommu_drvdata->cb_base, ctx_drvdata->num,
ctx_drvdata->asid);
__sync_tlb(iommu_drvdata, ctx_drvdata->num, priv);
}
ctx_drvdata->asid = -1;
__reset_context(iommu_drvdata, ctx_drvdata->num);
/*
* Only reset the M2V tables on the very last detach */
if (!is_secure && iommu_drvdata->ctx_attach_count == 1) {
iommu_halt(iommu_drvdata);
__release_smg(iommu_drvdata->base);
iommu_resume(iommu_drvdata);
}
__disable_clocks(iommu_drvdata);
apply_bus_vote(iommu_drvdata, 0);
__disable_regulators(iommu_drvdata);
spin_lock_irqsave(&msm_iommu_spin_lock, flags);
list_del_init(&ctx_drvdata->attached_elm);
spin_unlock_irqrestore(&msm_iommu_spin_lock, flags);
ctx_drvdata->attached_domain = NULL;
BUG_ON(iommu_drvdata->ctx_attach_count == 0);
--iommu_drvdata->ctx_attach_count;
unlock:
mutex_unlock(&msm_iommu_lock);
}
static int msm_iommu_map(struct iommu_domain *domain, unsigned long va,
phys_addr_t pa, size_t len, int prot)
{
struct msm_iommu_priv *priv;
int ret = 0;
unsigned long flags;
spin_lock_irqsave(&msm_iommu_spin_lock, flags);
priv = domain->priv;
if (!priv) {
ret = -EINVAL;
goto fail;
}
ret = msm_iommu_pagetable_map(&priv->pt, va, pa, len, prot);
if (ret)
goto fail;
msm_iommu_flush_pagetable(&priv->pt, va, len);
fail:
spin_unlock_irqrestore(&msm_iommu_spin_lock, flags);
return ret;
}
static size_t msm_iommu_unmap(struct iommu_domain *domain, unsigned long va,
size_t len)
{
struct msm_iommu_priv *priv;
int ret = -ENODEV;
unsigned long flags;
spin_lock_irqsave(&msm_iommu_spin_lock, flags);
priv = domain->priv;
if (!priv)
goto fail;
ret = msm_iommu_pagetable_unmap(&priv->pt, va, len);
if (ret < 0)
goto fail;
msm_iommu_flush_pagetable(&priv->pt, va, len);
if (len <= SZ_4K)
ret = __flush_iotlb_va(domain, va);
else
ret = __flush_iotlb(domain);
msm_iommu_pagetable_free_tables(&priv->pt, va, len);
fail:
spin_unlock_irqrestore(&msm_iommu_spin_lock, flags);
/* the IOMMU API requires us to return how many bytes were unmapped */
len = ret ? 0 : len;
return len;
}
static int msm_iommu_map_range(struct iommu_domain *domain, unsigned long va,
struct scatterlist *sg, size_t len,
int prot)
{
int ret;
struct msm_iommu_priv *priv;
unsigned long flags;
spin_lock_irqsave(&msm_iommu_spin_lock, flags);
priv = domain->priv;
if (!priv) {
ret = -EINVAL;
goto fail;
}
ret = msm_iommu_pagetable_map_range(&priv->pt, va, sg, len, prot);
msm_iommu_flush_pagetable(&priv->pt, va, len);
fail:
spin_unlock_irqrestore(&msm_iommu_spin_lock, flags);
return ret;
}
static int msm_iommu_unmap_range(struct iommu_domain *domain, unsigned long va,
size_t len)
{
struct msm_iommu_priv *priv;
unsigned long flags;
spin_lock_irqsave(&msm_iommu_spin_lock, flags);
priv = domain->priv;
msm_iommu_pagetable_unmap_range(&priv->pt, va, len);
msm_iommu_flush_pagetable(&priv->pt, va, len);
__flush_iotlb(domain);
msm_iommu_pagetable_free_tables(&priv->pt, va, len);
spin_unlock_irqrestore(&msm_iommu_spin_lock, flags);
return 0;
}
static size_t msm_iommu_map_sg(struct iommu_domain *domain, unsigned long va,
struct scatterlist *sg, unsigned int nr_entries,
int prot)
{
int ret, i;
struct scatterlist *tmp;
unsigned long len = 0;
/*
* Longer term work: convert over to generic page table management
* which means we can work on scattergather lists and the whole range
*/
for_each_sg(sg, tmp, nr_entries, i)
len += tmp->length;
ret = msm_iommu_map_range(domain, va, sg, len, prot);
if (ret)
return 0;
else
return len;
}
static phys_addr_t msm_iommu_iova_to_phys(struct iommu_domain *domain,
phys_addr_t va)
{
phys_addr_t ret;
unsigned long flags;
spin_lock_irqsave(&msm_iommu_spin_lock, flags);
ret = msm_iommu_iova_to_phys_soft(domain, va);
spin_unlock_irqrestore(&msm_iommu_spin_lock, flags);
return ret;
}
static phys_addr_t msm_iommu_iova_to_phys_hard(struct iommu_domain *domain,
phys_addr_t va)
{
struct msm_iommu_priv *priv;
struct msm_iommu_drvdata *iommu_drvdata;
struct msm_iommu_ctx_drvdata *ctx_drvdata;
u64 par;
void __iomem *base;
phys_addr_t ret = 0;
int ctx;
int i;
unsigned long flags;
mutex_lock(&msm_iommu_lock);
priv = domain->priv;
if (list_empty(&priv->list_attached))
goto fail;
spin_lock_irqsave(&msm_iommu_spin_lock, flags);
ctx_drvdata = list_entry(priv->list_attached.next,
struct msm_iommu_ctx_drvdata, attached_elm);
spin_unlock_irqrestore(&msm_iommu_spin_lock, flags);
if (is_domain_dynamic(priv) || ctx_drvdata->dynamic)
goto fail;
iommu_drvdata = dev_get_drvdata(ctx_drvdata->pdev->dev.parent);
if (iommu_drvdata->model == MMU_500) {
WARN_ONCE(1,
"ATOS based iova_to_phys is not supported in MMU500\n");
return ret;
}
base = iommu_drvdata->cb_base;
ctx = ctx_drvdata->num;
ret = __enable_clocks(iommu_drvdata);
if (ret) {
ret = 0; /* 0 indicates translation failed */
goto fail;
}
spin_lock_irqsave(&msm_iommu_spin_lock, flags);
SET_ATS1PR(base, ctx, va & CB_ATS1PR_ADDR);
/* make sure ATS1PR is visible */
mb();
for (i = 0; i < IOMMU_USEC_TIMEOUT; i += IOMMU_USEC_STEP) {
if (GET_CB_ATSR_ACTIVE(base, ctx) == 0)
break;
udelay(IOMMU_USEC_STEP);
}
if (i >= IOMMU_USEC_TIMEOUT) {
pr_err("%s: iova to phys timed out on %pa for %s (%s)\n",
__func__, &va, iommu_drvdata->name, ctx_drvdata->name);
ret = 0;
goto fail;
}
par = GET_PAR(base, ctx);
spin_unlock_irqrestore(&msm_iommu_spin_lock, flags);
__disable_clocks(iommu_drvdata);
if (par & CB_PAR_F) {
unsigned int level = (par & CB_PAR_PLVL) >> CB_PAR_PLVL_SHIFT;
pr_err("IOMMU translation fault!\n");
pr_err("name = %s\n", iommu_drvdata->name);
pr_err("context = %s (%d)\n", ctx_drvdata->name,
ctx_drvdata->num);
pr_err("Interesting registers:\n");
pr_err("PAR = %16llx [%s%s%s%s%s%s%s%sPLVL%u %s]\n", par,
(par & CB_PAR_F) ? "F " : "",
(par & CB_PAR_TF) ? "TF " : "",
(par & CB_PAR_AFF) ? "AFF " : "",
(par & CB_PAR_PF) ? "PF " : "",
(par & CB_PAR_EF) ? "EF " : "",
(par & CB_PAR_TLBMCF) ? "TLBMCF " : "",
(par & CB_PAR_TLBLKF) ? "TLBLKF " : "",
(par & CB_PAR_ATOT) ? "ATOT " : "",
level,
(par & CB_PAR_STAGE) ? "S2 " : "S1 ");
ret = 0;
} else {
ret = msm_iommu_get_phy_from_PAR(va, par);
}
fail:
mutex_unlock(&msm_iommu_lock);
return ret;
}
static bool msm_iommu_capable(enum iommu_cap cap)
{
return false;
}
#if defined(CONFIG_IOMMU_LPAE) || defined(CONFIG_IOMMU_AARCH64)
static inline void print_ctx_mem_attr_regs(struct msm_iommu_context_reg regs[])
{
pr_err("MAIR0 = %08x MAIR1 = %08x\n",
regs[DUMP_REG_MAIR0].val, regs[DUMP_REG_MAIR1].val);
}
#else
static inline void print_ctx_mem_attr_regs(struct msm_iommu_context_reg regs[])
{
pr_err("PRRR = %08x NMRR = %08x\n",
regs[DUMP_REG_PRRR].val, regs[DUMP_REG_NMRR].val);
}
#endif
void print_ctx_regs(struct msm_iommu_context_reg regs[])
{
uint32_t fsr = regs[DUMP_REG_FSR].val;
u64 ttbr;
enum dump_reg iter;
pr_err("FAR = %016llx\n",
COMBINE_DUMP_REG(
regs[DUMP_REG_FAR1].val,
regs[DUMP_REG_FAR0].val));
pr_err("PAR = %016llx\n",
COMBINE_DUMP_REG(
regs[DUMP_REG_PAR1].val,
regs[DUMP_REG_PAR0].val));
pr_err("FSR = %08x [%s%s%s%s%s%s%s%s%s]\n", fsr,
(fsr & 0x02) ? "TF " : "",
(fsr & 0x04) ? "AFF " : "",
(fsr & 0x08) ? "PF " : "",
(fsr & 0x10) ? "EF " : "",
(fsr & 0x20) ? "TLBMCF " : "",
(fsr & 0x40) ? "TLBLKF " : "",
(fsr & 0x80) ? "MHF " : "",
(fsr & 0x40000000) ? "SS " : "",
(fsr & 0x80000000) ? "MULTI " : "");
pr_err("FSYNR0 = %08x FSYNR1 = %08x\n",
regs[DUMP_REG_FSYNR0].val, regs[DUMP_REG_FSYNR1].val);
ttbr = COMBINE_DUMP_REG(regs[DUMP_REG_TTBR0_1].val,
regs[DUMP_REG_TTBR0_0].val);
if (regs[DUMP_REG_TTBR0_1].valid)
pr_err("TTBR0 = %016llx\n", ttbr);
else
pr_err("TTBR0 = %016llx (32b)\n", ttbr);
ttbr = COMBINE_DUMP_REG(regs[DUMP_REG_TTBR1_1].val,
regs[DUMP_REG_TTBR1_0].val);
if (regs[DUMP_REG_TTBR1_1].valid)
pr_err("TTBR1 = %016llx\n", ttbr);
else
pr_err("TTBR1 = %016llx (32b)\n", ttbr);
pr_err("SCTLR = %08x ACTLR = %08x\n",
regs[DUMP_REG_SCTLR].val, regs[DUMP_REG_ACTLR].val);
pr_err("CBAR = %08x CBFRSYNRA = %08x\n",
regs[DUMP_REG_CBAR_N].val, regs[DUMP_REG_CBFRSYNRA_N].val);
print_ctx_mem_attr_regs(regs);
for (iter = DUMP_REG_FIRST; iter < MAX_DUMP_REGS; ++iter)
if (!regs[iter].valid)
pr_err("NOTE: Value actually unknown for %s\n",
dump_regs_tbl[iter].name);
}
static void __print_ctx_regs(struct msm_iommu_drvdata *drvdata, int ctx,
unsigned int fsr)
{
void __iomem *base = drvdata->base;
void __iomem *cb_base = drvdata->cb_base;
bool is_secure = drvdata->sec_id != -1;
struct msm_iommu_context_reg regs[MAX_DUMP_REGS];
unsigned int i;
memset(regs, 0, sizeof(regs));
for (i = DUMP_REG_FIRST; i < MAX_DUMP_REGS; ++i) {
struct msm_iommu_context_reg *r = &regs[i];
unsigned long regaddr = dump_regs_tbl[i].reg_offset;
if (is_secure &&
dump_regs_tbl[i].dump_reg_type != DRT_CTX_REG) {
r->valid = 0;
continue;
}
r->valid = 1;
switch (dump_regs_tbl[i].dump_reg_type) {
case DRT_CTX_REG:
r->val = GET_CTX_REG(regaddr, cb_base, ctx);
break;
case DRT_GLOBAL_REG:
r->val = GET_GLOBAL_REG(regaddr, base);
break;
case DRT_GLOBAL_REG_N:
r->val = GET_GLOBAL_REG_N(regaddr, ctx, base);
break;
default:
pr_info("Unknown dump_reg_type...\n");
r->valid = 0;
break;
}
}
print_ctx_regs(regs);
}
static void print_global_regs(void __iomem *base, unsigned int gfsr)
{
pr_err("GFAR = %016llx\n", GET_GFAR(base));
pr_err("GFSR = %08x [%s%s%s%s%s%s%s%s%s%s]\n", gfsr,
(gfsr & 0x01) ? "ICF " : "",
(gfsr & 0x02) ? "USF " : "",
(gfsr & 0x04) ? "SMCF " : "",
(gfsr & 0x08) ? "UCBF " : "",
(gfsr & 0x10) ? "UCIF " : "",
(gfsr & 0x20) ? "CAF " : "",
(gfsr & 0x40) ? "EF " : "",
(gfsr & 0x80) ? "PF " : "",
(gfsr & 0x40000000) ? "SS " : "",
(gfsr & 0x80000000) ? "MULTI " : "");
pr_err("GFSYNR0 = %08x\n", GET_GFSYNR0(base));
pr_err("GFSYNR1 = %08x\n", GET_GFSYNR1(base));
pr_err("GFSYNR2 = %08x\n", GET_GFSYNR2(base));
}
irqreturn_t msm_iommu_global_fault_handler(int irq, void *dev_id)
{
struct platform_device *pdev = dev_id;
struct msm_iommu_drvdata *drvdata;
unsigned int gfsr;
int ret;
mutex_lock(&msm_iommu_lock);
BUG_ON(!pdev);
drvdata = dev_get_drvdata(&pdev->dev);
BUG_ON(!drvdata);
if (!drvdata->powered_on) {
pr_err("Unexpected IOMMU global fault !!\n");
pr_err("name = %s\n", drvdata->name);
pr_err("Power is OFF. Can't read global fault information\n");
ret = IRQ_HANDLED;
goto fail;
}
if (drvdata->sec_id != -1) {
pr_err("NON-secure interrupt from secure %s\n", drvdata->name);
ret = IRQ_HANDLED;
goto fail;
}
ret = __enable_clocks(drvdata);
if (ret) {
ret = IRQ_NONE;
goto fail;
}
gfsr = GET_GFSR(drvdata->base);
if (gfsr) {
pr_err("Unexpected %s global fault !!\n", drvdata->name);
print_global_regs(drvdata->base, gfsr);
SET_GFSR(drvdata->base, gfsr);
ret = IRQ_HANDLED;
} else
ret = IRQ_NONE;
__disable_clocks(drvdata);
fail:
mutex_unlock(&msm_iommu_lock);
return ret;
}
irqreturn_t msm_iommu_fault_handler_v2(int irq, void *dev_id)
{
struct platform_device *pdev = dev_id;
struct msm_iommu_drvdata *drvdata;
struct msm_iommu_ctx_drvdata *ctx_drvdata;
unsigned int fsr;
int ret;
phys_addr_t pagetable_phys;
u64 faulty_iova = 0;
mutex_lock(&msm_iommu_lock);
BUG_ON(!pdev);
drvdata = dev_get_drvdata(pdev->dev.parent);
BUG_ON(!drvdata);
ctx_drvdata = dev_get_drvdata(&pdev->dev);
BUG_ON(!ctx_drvdata);
if (!drvdata->powered_on) {
pr_err("Unexpected IOMMU page fault!\n");
pr_err("name = %s\n", drvdata->name);
pr_err("Power is OFF. Unable to read page fault information\n");
/*
* We cannot determine which context bank caused the issue so
* we just return handled here to ensure IRQ handler code is
* happy
*/
ret = IRQ_HANDLED;
goto fail;
}
ret = __enable_clocks(drvdata);
if (ret) {
ret = IRQ_NONE;
goto fail;
}
fsr = GET_FSR(drvdata->cb_base, ctx_drvdata->num);
if (fsr & 0x1FF) {
if (!ctx_drvdata->attached_domain) {
pr_err("Bad domain in interrupt handler\n");
ret = -ENOSYS;
} else {
faulty_iova =
GET_FAR(drvdata->cb_base, ctx_drvdata->num);
ret = report_iommu_fault(ctx_drvdata->attached_domain,
&ctx_drvdata->pdev->dev,
faulty_iova, 0);
}
if (ret == -ENOSYS) {
pr_err("Unexpected IOMMU page fault!\n");
pr_err("name = %s\n", drvdata->name);
pr_err("context = %s (%d)\n", ctx_drvdata->name,
ctx_drvdata->num);
pr_err("Interesting registers:\n");
__print_ctx_regs(drvdata,
ctx_drvdata->num, fsr);
if (ctx_drvdata->attached_domain) {
pagetable_phys = msm_iommu_iova_to_phys_soft(
ctx_drvdata->attached_domain,
faulty_iova);
pr_err("Page table in DDR shows PA = %x\n",
(unsigned int) pagetable_phys);
}
}
if (ret != -EBUSY)
SET_FSR(drvdata->cb_base, ctx_drvdata->num, fsr);
ret = IRQ_HANDLED;
} else
ret = IRQ_NONE;
__disable_clocks(drvdata);
fail:
mutex_unlock(&msm_iommu_lock);
return ret;
}
#define DUMP_REG_INIT(dump_reg, cb_reg, mbp, drt) \
do { \
dump_regs_tbl[dump_reg].reg_offset = cb_reg; \
dump_regs_tbl[dump_reg].name = #cb_reg; \
dump_regs_tbl[dump_reg].must_be_present = mbp; \
dump_regs_tbl[dump_reg].dump_reg_type = drt; \
} while (0)
static void msm_iommu_build_dump_regs_table(void)
{
DUMP_REG_INIT(DUMP_REG_FAR0, CB_FAR, 1, DRT_CTX_REG);
DUMP_REG_INIT(DUMP_REG_FAR1, CB_FAR + 4, 1, DRT_CTX_REG);
DUMP_REG_INIT(DUMP_REG_PAR0, CB_PAR, 1, DRT_CTX_REG);
DUMP_REG_INIT(DUMP_REG_PAR1, CB_PAR + 4, 1, DRT_CTX_REG);
DUMP_REG_INIT(DUMP_REG_FSR, CB_FSR, 1, DRT_CTX_REG);
DUMP_REG_INIT(DUMP_REG_FSYNR0, CB_FSYNR0, 1, DRT_CTX_REG);
DUMP_REG_INIT(DUMP_REG_FSYNR1, CB_FSYNR1, 1, DRT_CTX_REG);
DUMP_REG_INIT(DUMP_REG_TTBR0_0, CB_TTBR0, 1, DRT_CTX_REG);
DUMP_REG_INIT(DUMP_REG_TTBR0_1, CB_TTBR0 + 4, 0, DRT_CTX_REG);
DUMP_REG_INIT(DUMP_REG_TTBR1_0, CB_TTBR1, 1, DRT_CTX_REG);
DUMP_REG_INIT(DUMP_REG_TTBR1_1, CB_TTBR1 + 4, 0, DRT_CTX_REG);
DUMP_REG_INIT(DUMP_REG_SCTLR, CB_SCTLR, 1, DRT_CTX_REG);
DUMP_REG_INIT(DUMP_REG_ACTLR, CB_ACTLR, 1, DRT_CTX_REG);
DUMP_REG_INIT(DUMP_REG_PRRR, CB_PRRR, 1, DRT_CTX_REG);
DUMP_REG_INIT(DUMP_REG_NMRR, CB_NMRR, 1, DRT_CTX_REG);
DUMP_REG_INIT(DUMP_REG_CBAR_N, CBAR, 1, DRT_GLOBAL_REG_N);
DUMP_REG_INIT(DUMP_REG_CBFRSYNRA_N, CBFRSYNRA, 1, DRT_GLOBAL_REG_N);
}
#ifdef CONFIG_IOMMU_PGTABLES_L2
static void __do_set_redirect(struct iommu_domain *domain, void *data)
{
struct msm_iommu_priv *priv;
int *no_redirect = data;
mutex_lock(&msm_iommu_lock);
priv = domain->priv;
priv->pt.redirect = !(*no_redirect);
mutex_unlock(&msm_iommu_lock);
}
static void __do_get_redirect(struct iommu_domain *domain, void *data)
{
struct msm_iommu_priv *priv;
int *no_redirect = data;
mutex_lock(&msm_iommu_lock);
priv = domain->priv;
*no_redirect = !priv->pt.redirect;
mutex_unlock(&msm_iommu_lock);
}
#else
static void __do_set_redirect(struct iommu_domain *domain, void *data)
{
}
static void __do_get_redirect(struct iommu_domain *domain, void *data)
{
}
#endif
static int msm_iommu_domain_set_attr(struct iommu_domain *domain,
enum iommu_attr attr, void *data)
{
struct msm_iommu_priv *priv = domain->priv;
struct msm_iommu_ctx_drvdata *ctx_drvdata = NULL;
int dynamic;
if (!list_empty(&priv->list_attached)) {
ctx_drvdata = list_first_entry(&priv->list_attached,
struct msm_iommu_ctx_drvdata, attached_elm);
}
switch (attr) {
case DOMAIN_ATTR_COHERENT_HTW_DISABLE:
__do_set_redirect(domain, data);
break;
case DOMAIN_ATTR_PROCID:
priv->procid = *((u32 *)data);
break;
case DOMAIN_ATTR_DYNAMIC:
dynamic = *((int *)data);
if (ctx_drvdata)
return -EBUSY;
if (dynamic)
priv->attributes |= 1 << DOMAIN_ATTR_DYNAMIC;
else
priv->attributes &= ~(1 << DOMAIN_ATTR_DYNAMIC);
break;
case DOMAIN_ATTR_CONTEXT_BANK:
/*
* We don't need to do anything here because CB allocation
* is not dynamic in this driver.
*/
break;
case DOMAIN_ATTR_ATOMIC:
/*
* Map / unmap in legacy driver are by default atomic. So
* we don't need to do anything here.
*/
break;
default:
return -EINVAL;
}
return 0;
}
static int msm_iommu_domain_get_attr(struct iommu_domain *domain,
enum iommu_attr attr, void *data)
{
struct msm_iommu_priv *priv = domain->priv;
struct msm_iommu_ctx_drvdata *ctx_drvdata = NULL;
u64 ttbr0;
u32 ctxidr;
if (!list_empty(&priv->list_attached))
ctx_drvdata = list_first_entry(&priv->list_attached,
struct msm_iommu_ctx_drvdata, attached_elm);
switch (attr) {
case DOMAIN_ATTR_COHERENT_HTW_DISABLE:
__do_get_redirect(domain, data);
break;
case DOMAIN_ATTR_PT_BASE_ADDR:
*((phys_addr_t *)data) = virt_to_phys(priv->pt.fl_table);
break;
case DOMAIN_ATTR_CONTEXT_BANK:
if (!ctx_drvdata)
return -ENODEV;
*((unsigned int *) data) = ctx_drvdata->num;
break;
case DOMAIN_ATTR_TTBR0:
ttbr0 = get_full_ttbr0(priv);
*((u64 *)data) = ttbr0;
break;
case DOMAIN_ATTR_CONTEXTIDR:
if (IS_CB_FORMAT_LONG)
ctxidr = priv->procid;
else
ctxidr = (priv->asid & CB_CONTEXTIDR_ASID_MASK) |
(priv->procid << CB_CONTEXTIDR_PROCID_SHIFT);
*((u32 *)data) = ctxidr;
break;
case DOMAIN_ATTR_PROCID:
*((u32 *)data) = priv->procid;
break;
case DOMAIN_ATTR_DYNAMIC:
*((int *)data) = !!(priv->attributes
& (1 << DOMAIN_ATTR_DYNAMIC));
break;
default:
return -EINVAL;
}
return 0;
}
static int msm_iommu_dma_supported(struct iommu_domain *domain,
struct device *dev, u64 mask)
{
return ((1ULL << 32) - 1) < mask ? 0 : 1;
}
static struct iommu_ops msm_iommu_ops = {
.domain_init = msm_iommu_domain_init,
.domain_destroy = msm_iommu_domain_destroy,
.attach_dev = msm_iommu_attach_dev,
.detach_dev = msm_iommu_detach_dev,
.map = msm_iommu_map,
.unmap = msm_iommu_unmap,
.map_range = msm_iommu_map_range,
.unmap_range = msm_iommu_unmap_range,
.map_sg = msm_iommu_map_sg,
.iova_to_phys = msm_iommu_iova_to_phys,
.iova_to_phys_hard = msm_iommu_iova_to_phys_hard,
.capable = msm_iommu_capable,
.pgsize_bitmap = MSM_IOMMU_PGSIZES,
.domain_set_attr = msm_iommu_domain_set_attr,
.domain_get_attr = msm_iommu_domain_get_attr,
.dma_supported = msm_iommu_dma_supported,
};
static int __init msm_iommu_init(void)
{
int ret;
msm_iommu_pagetable_init();
ret = msm_iommu_bus_register();
if (ret)
return ret;
bus_set_iommu(msm_iommu_non_sec_bus_type, &msm_iommu_ops);
msm_iommu_build_dump_regs_table();
return 0;
}
subsys_initcall(msm_iommu_init);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MSM SMMU v2 Driver");