blob: 48ca6b7a67dbce19af04724e72e9435d0098849f [file] [log] [blame]
/* Copyright (c) 2010-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define DEBUG
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/uaccess.h>
#include <linux/workqueue.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/termios.h>
#include <linux/debugfs.h>
#include <linux/moduleparam.h>
#include <mach/sdio_al.h>
#include <mach/sdio_cmux.h>
#include "modem_notifier.h"
#define MAX_WRITE_RETRY 5
#define MAGIC_NO_V1 0x33FC
static int msm_sdio_cmux_debug_mask;
module_param_named(debug_mask, msm_sdio_cmux_debug_mask,
int, S_IRUGO | S_IWUSR | S_IWGRP);
enum cmd_type {
DATA = 0,
OPEN,
CLOSE,
STATUS,
NUM_CMDS
};
#define DSR_POS 0x1
#define CTS_POS 0x2
#define RI_POS 0x4
#define CD_POS 0x8
struct sdio_cmux_ch {
int lc_id;
struct mutex lc_lock;
wait_queue_head_t open_wait_queue;
int is_remote_open;
int is_local_open;
int is_channel_reset;
char local_status;
char remote_status;
struct mutex tx_lock;
struct list_head tx_list;
void *priv;
struct mutex rx_cb_lock;
void (*receive_cb)(void *, int, void *);
void (*write_done)(void *, int, void *);
void (*status_callback)(int, void *);
} logical_ch[SDIO_CMUX_NUM_CHANNELS];
struct sdio_cmux_hdr {
uint16_t magic_no;
uint8_t status; /* This field is reserved for commands other
* than STATUS */
uint8_t cmd;
uint8_t pad_bytes;
uint8_t lc_id;
uint16_t pkt_len;
};
struct sdio_cmux_pkt {
struct sdio_cmux_hdr *hdr;
void *data;
};
struct sdio_cmux_list_elem {
struct list_head list;
struct sdio_cmux_pkt cmux_pkt;
};
#define logical_ch_is_local_open(x) \
(logical_ch[(x)].is_local_open)
#define logical_ch_is_remote_open(x) \
(logical_ch[(x)].is_remote_open)
static void sdio_cdemux_fn(struct work_struct *work);
static DECLARE_WORK(sdio_cdemux_work, sdio_cdemux_fn);
static struct workqueue_struct *sdio_cdemux_wq;
static DEFINE_MUTEX(write_lock);
static uint32_t bytes_to_write;
static DEFINE_MUTEX(temp_rx_lock);
static LIST_HEAD(temp_rx_list);
static void sdio_cmux_fn(struct work_struct *work);
static DECLARE_WORK(sdio_cmux_work, sdio_cmux_fn);
static struct workqueue_struct *sdio_cmux_wq;
static struct sdio_channel *sdio_qmi_chl;
static uint32_t sdio_cmux_inited;
static uint32_t abort_tx;
static DEFINE_MUTEX(modem_reset_lock);
static DEFINE_MUTEX(probe_lock);
enum {
MSM_SDIO_CMUX_DEBUG = 1U << 0,
MSM_SDIO_CMUX_DUMP_BUFFER = 1U << 1,
};
static struct platform_device sdio_ctl_dev = {
.name = "SDIO_CTL",
.id = -1,
};
#if defined(DEBUG)
#define D_DUMP_BUFFER(prestr, cnt, buf) \
do { \
if (msm_sdio_cmux_debug_mask & MSM_SDIO_CMUX_DUMP_BUFFER) { \
int i; \
pr_debug("%s", prestr); \
for (i = 0; i < cnt; i++) \
pr_info("%.2x", buf[i]); \
pr_debug("\n"); \
} \
} while (0)
#define D(x...) \
do { \
if (msm_sdio_cmux_debug_mask & MSM_SDIO_CMUX_DEBUG) \
pr_debug(x); \
} while (0)
#else
#define D_DUMP_BUFFER(prestr, cnt, buf) do {} while (0)
#define D(x...) do {} while (0)
#endif
static int sdio_cmux_ch_alloc(int id)
{
if (id < 0 || id >= SDIO_CMUX_NUM_CHANNELS) {
pr_err("%s: Invalid lc_id - %d\n", __func__, id);
return -EINVAL;
}
logical_ch[id].lc_id = id;
mutex_init(&logical_ch[id].lc_lock);
init_waitqueue_head(&logical_ch[id].open_wait_queue);
logical_ch[id].is_remote_open = 0;
logical_ch[id].is_local_open = 0;
logical_ch[id].is_channel_reset = 0;
INIT_LIST_HEAD(&logical_ch[id].tx_list);
mutex_init(&logical_ch[id].tx_lock);
logical_ch[id].priv = NULL;
mutex_init(&logical_ch[id].rx_cb_lock);
logical_ch[id].receive_cb = NULL;
logical_ch[id].write_done = NULL;
return 0;
}
static int sdio_cmux_ch_clear_and_signal(int id)
{
struct sdio_cmux_list_elem *list_elem;
if (id < 0 || id >= SDIO_CMUX_NUM_CHANNELS) {
pr_err("%s: Invalid lc_id - %d\n", __func__, id);
return -EINVAL;
}
mutex_lock(&logical_ch[id].lc_lock);
logical_ch[id].is_remote_open = 0;
mutex_lock(&logical_ch[id].tx_lock);
while (!list_empty(&logical_ch[id].tx_list)) {
list_elem = list_first_entry(&logical_ch[id].tx_list,
struct sdio_cmux_list_elem,
list);
list_del(&list_elem->list);
kfree(list_elem->cmux_pkt.hdr);
kfree(list_elem);
}
mutex_unlock(&logical_ch[id].tx_lock);
mutex_lock(&logical_ch[id].rx_cb_lock);
if (logical_ch[id].receive_cb)
logical_ch[id].receive_cb(NULL, 0, logical_ch[id].priv);
mutex_unlock(&logical_ch[id].rx_cb_lock);
if (logical_ch[id].write_done)
logical_ch[id].write_done(NULL, 0, logical_ch[id].priv);
mutex_unlock(&logical_ch[id].lc_lock);
wake_up(&logical_ch[id].open_wait_queue);
return 0;
}
static int sdio_cmux_write_cmd(const int id, enum cmd_type type)
{
int write_size = 0;
void *write_data = NULL;
struct sdio_cmux_list_elem *list_elem;
if (id < 0 || id >= SDIO_CMUX_NUM_CHANNELS) {
pr_err("%s: Invalid lc_id - %d\n", __func__, id);
return -EINVAL;
}
if (type < 0 || type > NUM_CMDS) {
pr_err("%s: Invalid cmd - %d\n", __func__, type);
return -EINVAL;
}
write_size = sizeof(struct sdio_cmux_hdr);
list_elem = kmalloc(sizeof(struct sdio_cmux_list_elem), GFP_KERNEL);
if (!list_elem) {
pr_err("%s: list_elem alloc failed\n", __func__);
return -ENOMEM;
}
write_data = kmalloc(write_size, GFP_KERNEL);
if (!write_data) {
pr_err("%s: write_data alloc failed\n", __func__);
kfree(list_elem);
return -ENOMEM;
}
list_elem->cmux_pkt.hdr = (struct sdio_cmux_hdr *)write_data;
list_elem->cmux_pkt.data = NULL;
list_elem->cmux_pkt.hdr->lc_id = (uint8_t)id;
list_elem->cmux_pkt.hdr->pkt_len = (uint16_t)0;
list_elem->cmux_pkt.hdr->cmd = (uint8_t)type;
list_elem->cmux_pkt.hdr->status = (uint8_t)0;
if (type == STATUS)
list_elem->cmux_pkt.hdr->status = logical_ch[id].local_status;
list_elem->cmux_pkt.hdr->pad_bytes = (uint8_t)0;
list_elem->cmux_pkt.hdr->magic_no = (uint16_t)MAGIC_NO_V1;
mutex_lock(&logical_ch[id].tx_lock);
list_add_tail(&list_elem->list, &logical_ch[id].tx_list);
mutex_unlock(&logical_ch[id].tx_lock);
mutex_lock(&write_lock);
bytes_to_write += write_size;
mutex_unlock(&write_lock);
queue_work(sdio_cmux_wq, &sdio_cmux_work);
return 0;
}
int sdio_cmux_open(const int id,
void (*receive_cb)(void *, int, void *),
void (*write_done)(void *, int, void *),
void (*status_callback)(int, void *),
void *priv)
{
int r;
struct sdio_cmux_list_elem *list_elem, *list_elem_tmp;
if (!sdio_cmux_inited)
return -ENODEV;
if (id < 0 || id >= SDIO_CMUX_NUM_CHANNELS) {
pr_err("%s: Invalid id - %d\n", __func__, id);
return -EINVAL;
}
r = wait_event_timeout(logical_ch[id].open_wait_queue,
logical_ch[id].is_remote_open, (1 * HZ));
if (r < 0) {
pr_err("ERROR %s: wait_event_timeout() failed for"
" ch%d with rc %d\n", __func__, id, r);
return r;
}
if (r == 0) {
pr_err("ERROR %s: Wait Timed Out for ch%d\n", __func__, id);
return -ETIMEDOUT;
}
mutex_lock(&logical_ch[id].lc_lock);
if (!logical_ch[id].is_remote_open) {
pr_err("%s: Remote ch%d not opened\n", __func__, id);
mutex_unlock(&logical_ch[id].lc_lock);
return -EINVAL;
}
if (logical_ch[id].is_local_open) {
mutex_unlock(&logical_ch[id].lc_lock);
return 0;
}
logical_ch[id].is_local_open = 1;
logical_ch[id].priv = priv;
logical_ch[id].write_done = write_done;
logical_ch[id].status_callback = status_callback;
mutex_lock(&logical_ch[id].rx_cb_lock);
logical_ch[id].receive_cb = receive_cb;
if (logical_ch[id].receive_cb) {
mutex_lock(&temp_rx_lock);
list_for_each_entry_safe(list_elem, list_elem_tmp,
&temp_rx_list, list) {
if ((int)list_elem->cmux_pkt.hdr->lc_id == id) {
logical_ch[id].receive_cb(
list_elem->cmux_pkt.data,
(int)list_elem->cmux_pkt.hdr->pkt_len,
logical_ch[id].priv);
list_del(&list_elem->list);
kfree(list_elem->cmux_pkt.hdr);
kfree(list_elem);
}
}
mutex_unlock(&temp_rx_lock);
}
mutex_unlock(&logical_ch[id].rx_cb_lock);
mutex_unlock(&logical_ch[id].lc_lock);
sdio_cmux_write_cmd(id, OPEN);
return 0;
}
EXPORT_SYMBOL(sdio_cmux_open);
int sdio_cmux_close(int id)
{
struct sdio_cmux_ch *ch;
if (!sdio_cmux_inited)
return -ENODEV;
if (id < 0 || id >= SDIO_CMUX_NUM_CHANNELS) {
pr_err("%s: Invalid channel close\n", __func__);
return -EINVAL;
}
ch = &logical_ch[id];
mutex_lock(&ch->lc_lock);
mutex_lock(&logical_ch[id].rx_cb_lock);
ch->receive_cb = NULL;
mutex_unlock(&logical_ch[id].rx_cb_lock);
mutex_lock(&ch->tx_lock);
ch->write_done = NULL;
mutex_unlock(&ch->tx_lock);
ch->is_local_open = 0;
ch->priv = NULL;
mutex_unlock(&ch->lc_lock);
sdio_cmux_write_cmd(ch->lc_id, CLOSE);
return 0;
}
EXPORT_SYMBOL(sdio_cmux_close);
int sdio_cmux_write_avail(int id)
{
int write_avail;
mutex_lock(&logical_ch[id].lc_lock);
if (logical_ch[id].is_channel_reset) {
mutex_unlock(&logical_ch[id].lc_lock);
return -ENETRESET;
}
mutex_unlock(&logical_ch[id].lc_lock);
write_avail = sdio_write_avail(sdio_qmi_chl);
return write_avail - bytes_to_write;
}
EXPORT_SYMBOL(sdio_cmux_write_avail);
int sdio_cmux_write(int id, void *data, int len)
{
struct sdio_cmux_list_elem *list_elem;
uint32_t write_size;
void *write_data = NULL;
struct sdio_cmux_ch *ch;
int ret;
if (!sdio_cmux_inited)
return -ENODEV;
if (id < 0 || id >= SDIO_CMUX_NUM_CHANNELS) {
pr_err("%s: Invalid channel id %d\n", __func__, id);
return -ENODEV;
}
ch = &logical_ch[id];
if (len <= 0) {
pr_err("%s: Invalid len %d bytes to write\n",
__func__, len);
return -EINVAL;
}
write_size = sizeof(struct sdio_cmux_hdr) + len;
list_elem = kmalloc(sizeof(struct sdio_cmux_list_elem), GFP_KERNEL);
if (!list_elem) {
pr_err("%s: list_elem alloc failed\n", __func__);
return -ENOMEM;
}
write_data = kmalloc(write_size, GFP_KERNEL);
if (!write_data) {
pr_err("%s: write_data alloc failed\n", __func__);
kfree(list_elem);
return -ENOMEM;
}
list_elem->cmux_pkt.hdr = (struct sdio_cmux_hdr *)write_data;
list_elem->cmux_pkt.data = (void *)((char *)write_data +
sizeof(struct sdio_cmux_hdr));
memcpy(list_elem->cmux_pkt.data, data, len);
list_elem->cmux_pkt.hdr->lc_id = (uint8_t)ch->lc_id;
list_elem->cmux_pkt.hdr->pkt_len = (uint16_t)len;
list_elem->cmux_pkt.hdr->cmd = (uint8_t)DATA;
list_elem->cmux_pkt.hdr->status = (uint8_t)0;
list_elem->cmux_pkt.hdr->pad_bytes = (uint8_t)0;
list_elem->cmux_pkt.hdr->magic_no = (uint16_t)MAGIC_NO_V1;
mutex_lock(&ch->lc_lock);
if (!ch->is_remote_open || !ch->is_local_open) {
pr_err("%s: Local ch%d sending data before sending/receiving"
" OPEN command\n", __func__, ch->lc_id);
if (ch->is_channel_reset)
ret = -ENETRESET;
else
ret = -ENODEV;
mutex_unlock(&ch->lc_lock);
kfree(write_data);
kfree(list_elem);
return ret;
}
mutex_lock(&ch->tx_lock);
list_add_tail(&list_elem->list, &ch->tx_list);
mutex_unlock(&ch->tx_lock);
mutex_unlock(&ch->lc_lock);
mutex_lock(&write_lock);
bytes_to_write += write_size;
mutex_unlock(&write_lock);
queue_work(sdio_cmux_wq, &sdio_cmux_work);
return len;
}
EXPORT_SYMBOL(sdio_cmux_write);
int is_remote_open(int id)
{
if (id < 0 || id >= SDIO_CMUX_NUM_CHANNELS)
return -ENODEV;
return logical_ch_is_remote_open(id);
}
EXPORT_SYMBOL(is_remote_open);
int sdio_cmux_is_channel_reset(int id)
{
int ret;
if (id < 0 || id >= SDIO_CMUX_NUM_CHANNELS)
return -ENODEV;
mutex_lock(&logical_ch[id].lc_lock);
ret = logical_ch[id].is_channel_reset;
mutex_unlock(&logical_ch[id].lc_lock);
return ret;
}
EXPORT_SYMBOL(sdio_cmux_is_channel_reset);
int sdio_cmux_tiocmget(int id)
{
int ret = (logical_ch[id].remote_status & DSR_POS ? TIOCM_DSR : 0) |
(logical_ch[id].remote_status & CTS_POS ? TIOCM_CTS : 0) |
(logical_ch[id].remote_status & CD_POS ? TIOCM_CD : 0) |
(logical_ch[id].remote_status & RI_POS ? TIOCM_RI : 0) |
(logical_ch[id].local_status & CTS_POS ? TIOCM_RTS : 0) |
(logical_ch[id].local_status & DSR_POS ? TIOCM_DTR : 0);
return ret;
}
EXPORT_SYMBOL(sdio_cmux_tiocmget);
int sdio_cmux_tiocmset(int id, unsigned int set, unsigned int clear)
{
if (set & TIOCM_DTR)
logical_ch[id].local_status |= DSR_POS;
if (set & TIOCM_RTS)
logical_ch[id].local_status |= CTS_POS;
if (clear & TIOCM_DTR)
logical_ch[id].local_status &= ~DSR_POS;
if (clear & TIOCM_RTS)
logical_ch[id].local_status &= ~CTS_POS;
sdio_cmux_write_cmd(id, STATUS);
return 0;
}
EXPORT_SYMBOL(sdio_cmux_tiocmset);
static int copy_packet(void *pkt, int size)
{
struct sdio_cmux_list_elem *list_elem = NULL;
void *temp_pkt = NULL;
list_elem = kmalloc(sizeof(struct sdio_cmux_list_elem), GFP_KERNEL);
if (!list_elem) {
pr_err("%s: list_elem alloc failed\n", __func__);
return -ENOMEM;
}
temp_pkt = kmalloc(size, GFP_KERNEL);
if (!temp_pkt) {
pr_err("%s: temp_pkt alloc failed\n", __func__);
kfree(list_elem);
return -ENOMEM;
}
memcpy(temp_pkt, pkt, size);
list_elem->cmux_pkt.hdr = temp_pkt;
list_elem->cmux_pkt.data = (void *)((char *)temp_pkt +
sizeof(struct sdio_cmux_hdr));
mutex_lock(&temp_rx_lock);
list_add_tail(&list_elem->list, &temp_rx_list);
mutex_unlock(&temp_rx_lock);
return 0;
}
static int process_cmux_pkt(void *pkt, int size)
{
struct sdio_cmux_hdr *mux_hdr;
uint32_t id, data_size;
void *data;
char *dump_buf = (char *)pkt;
D_DUMP_BUFFER("process_cmux_pkt:", size, dump_buf);
mux_hdr = (struct sdio_cmux_hdr *)pkt;
switch (mux_hdr->cmd) {
case OPEN:
id = (uint32_t)(mux_hdr->lc_id);
D("%s: Received OPEN command for ch%d\n", __func__, id);
mutex_lock(&logical_ch[id].lc_lock);
logical_ch[id].is_remote_open = 1;
if (logical_ch[id].is_channel_reset) {
sdio_cmux_write_cmd(id, OPEN);
logical_ch[id].is_channel_reset = 0;
}
mutex_unlock(&logical_ch[id].lc_lock);
wake_up(&logical_ch[id].open_wait_queue);
break;
case CLOSE:
id = (uint32_t)(mux_hdr->lc_id);
D("%s: Received CLOSE command for ch%d\n", __func__, id);
sdio_cmux_ch_clear_and_signal(id);
break;
case DATA:
id = (uint32_t)(mux_hdr->lc_id);
D("%s: Received DATA for ch%d\n", __func__, id);
/*Channel is not locally open & if single packet received
then drop it*/
mutex_lock(&logical_ch[id].lc_lock);
if (!logical_ch[id].is_remote_open) {
mutex_unlock(&logical_ch[id].lc_lock);
pr_err("%s: Remote Ch%d sent data before sending/"
"receiving OPEN command\n", __func__, id);
return -ENODEV;
}
data = (void *)((char *)pkt + sizeof(struct sdio_cmux_hdr));
data_size = (int)(((struct sdio_cmux_hdr *)pkt)->pkt_len);
mutex_unlock(&logical_ch[id].lc_lock);
/*
* The lc_lock is released before the call to receive_cb
* to avoid a dead lock where in the receive_cb would call a
* function that tries to acquire a rx_lock which is already
* acquired by a Thread that is waiting on lc_lock.
*/
mutex_lock(&logical_ch[id].rx_cb_lock);
if (logical_ch[id].receive_cb)
logical_ch[id].receive_cb(data, data_size,
logical_ch[id].priv);
else
copy_packet(pkt, size);
mutex_unlock(&logical_ch[id].rx_cb_lock);
break;
case STATUS:
id = (uint32_t)(mux_hdr->lc_id);
D("%s: Received STATUS command for ch%d\n", __func__, id);
if (logical_ch[id].remote_status != mux_hdr->status) {
mutex_lock(&logical_ch[id].lc_lock);
logical_ch[id].remote_status = mux_hdr->status;
mutex_unlock(&logical_ch[id].lc_lock);
if (logical_ch[id].status_callback)
logical_ch[id].status_callback(
sdio_cmux_tiocmget(id),
logical_ch[id].priv);
}
break;
}
return 0;
}
static void parse_cmux_data(void *data, int size)
{
int data_parsed = 0, pkt_size;
char *temp_ptr;
D("Entered %s\n", __func__);
temp_ptr = (char *)data;
while (data_parsed < size) {
pkt_size = sizeof(struct sdio_cmux_hdr) +
(int)(((struct sdio_cmux_hdr *)temp_ptr)->pkt_len);
D("Parsed %d bytes, Current Pkt Size %d bytes,"
" Total size %d bytes\n", data_parsed, pkt_size, size);
process_cmux_pkt((void *)temp_ptr, pkt_size);
data_parsed += pkt_size;
temp_ptr += pkt_size;
}
kfree(data);
}
static void sdio_cdemux_fn(struct work_struct *work)
{
int r = 0, read_avail = 0;
void *cmux_data;
while (1) {
read_avail = sdio_read_avail(sdio_qmi_chl);
if (read_avail < 0) {
pr_err("%s: sdio_read_avail failed with rc %d\n",
__func__, read_avail);
return;
}
if (read_avail == 0) {
D("%s: Nothing to read\n", __func__);
return;
}
D("%s: kmalloc %d bytes\n", __func__, read_avail);
cmux_data = kmalloc(read_avail, GFP_KERNEL);
if (!cmux_data) {
pr_err("%s: kmalloc Failed\n", __func__);
return;
}
D("%s: sdio_read %d bytes\n", __func__, read_avail);
r = sdio_read(sdio_qmi_chl, cmux_data, read_avail);
if (r < 0) {
pr_err("%s: sdio_read failed with rc %d\n",
__func__, r);
kfree(cmux_data);
return;
}
parse_cmux_data(cmux_data, read_avail);
}
return;
}
static void sdio_cmux_fn(struct work_struct *work)
{
int i, r = 0;
void *write_data;
uint32_t write_size, write_avail, write_retry = 0;
int bytes_written;
struct sdio_cmux_list_elem *list_elem = NULL;
struct sdio_cmux_ch *ch;
for (i = 0; i < SDIO_CMUX_NUM_CHANNELS; ++i) {
ch = &logical_ch[i];
bytes_written = 0;
mutex_lock(&ch->tx_lock);
while (!list_empty(&ch->tx_list)) {
list_elem = list_first_entry(&ch->tx_list,
struct sdio_cmux_list_elem,
list);
list_del(&list_elem->list);
mutex_unlock(&ch->tx_lock);
write_data = (void *)list_elem->cmux_pkt.hdr;
write_size = sizeof(struct sdio_cmux_hdr) +
(uint32_t)list_elem->cmux_pkt.hdr->pkt_len;
mutex_lock(&modem_reset_lock);
while (!(abort_tx) &&
((write_avail = sdio_write_avail(sdio_qmi_chl))
< write_size)) {
mutex_unlock(&modem_reset_lock);
pr_err("%s: sdio_write_avail %d bytes, "
"write size %d bytes. Waiting...\n",
__func__, write_avail, write_size);
msleep(250);
mutex_lock(&modem_reset_lock);
}
while (!(abort_tx) &&
((r = sdio_write(sdio_qmi_chl,
write_data, write_size)) < 0)
&& (r != -ENODEV)
&& (write_retry++ < MAX_WRITE_RETRY)) {
mutex_unlock(&modem_reset_lock);
pr_err("%s: sdio_write failed with rc %d."
"Retrying...", __func__, r);
msleep(250);
mutex_lock(&modem_reset_lock);
}
if (!r && !abort_tx) {
D("%s: sdio_write_completed %dbytes\n",
__func__, write_size);
bytes_written += write_size;
} else if (r == -ENODEV) {
pr_err("%s: aborting_tx because sdio_write"
" returned %d\n", __func__, r);
r = 0;
abort_tx = 1;
}
mutex_unlock(&modem_reset_lock);
kfree(list_elem->cmux_pkt.hdr);
kfree(list_elem);
mutex_lock(&write_lock);
bytes_to_write -= write_size;
mutex_unlock(&write_lock);
mutex_lock(&ch->tx_lock);
}
if (ch->write_done)
ch->write_done(NULL, bytes_written, ch->priv);
mutex_unlock(&ch->tx_lock);
}
return;
}
static void sdio_qmi_chl_notify(void *priv, unsigned event)
{
if (event == SDIO_EVENT_DATA_READ_AVAIL) {
D("%s: Received SDIO_EVENT_DATA_READ_AVAIL\n", __func__);
queue_work(sdio_cdemux_wq, &sdio_cdemux_work);
}
}
#ifdef CONFIG_DEBUG_FS
static int debug_tbl(char *buf, int max)
{
int i = 0;
int j;
for (j = 0; j < SDIO_CMUX_NUM_CHANNELS; ++j) {
i += scnprintf(buf + i, max - i,
"ch%02d local open=%s remote open=%s\n",
j, logical_ch_is_local_open(j) ? "Y" : "N",
logical_ch_is_remote_open(j) ? "Y" : "N");
}
return i;
}
#define DEBUG_BUFMAX 4096
static char debug_buffer[DEBUG_BUFMAX];
static ssize_t debug_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
int (*fill)(char *buf, int max) = file->private_data;
int bsize = fill(debug_buffer, DEBUG_BUFMAX);
return simple_read_from_buffer(buf, count, ppos, debug_buffer, bsize);
}
static int debug_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static const struct file_operations debug_ops = {
.read = debug_read,
.open = debug_open,
};
static void debug_create(const char *name, mode_t mode,
struct dentry *dent,
int (*fill)(char *buf, int max))
{
debugfs_create_file(name, mode, dent, fill, &debug_ops);
}
#endif
static int sdio_cmux_probe(struct platform_device *pdev)
{
int i, r;
mutex_lock(&probe_lock);
D("%s Begins\n", __func__);
if (sdio_cmux_inited) {
mutex_lock(&modem_reset_lock);
r = sdio_open("SDIO_QMI", &sdio_qmi_chl, NULL,
sdio_qmi_chl_notify);
if (r < 0) {
mutex_unlock(&modem_reset_lock);
pr_err("%s: sdio_open() failed\n", __func__);
goto error0;
}
abort_tx = 0;
mutex_unlock(&modem_reset_lock);
mutex_unlock(&probe_lock);
return 0;
}
for (i = 0; i < SDIO_CMUX_NUM_CHANNELS; ++i)
sdio_cmux_ch_alloc(i);
INIT_LIST_HEAD(&temp_rx_list);
sdio_cmux_wq = create_singlethread_workqueue("sdio_cmux");
if (IS_ERR(sdio_cmux_wq)) {
pr_err("%s: create_singlethread_workqueue() ENOMEM\n",
__func__);
r = -ENOMEM;
goto error0;
}
sdio_cdemux_wq = create_singlethread_workqueue("sdio_cdemux");
if (IS_ERR(sdio_cdemux_wq)) {
pr_err("%s: create_singlethread_workqueue() ENOMEM\n",
__func__);
r = -ENOMEM;
goto error1;
}
r = sdio_open("SDIO_QMI", &sdio_qmi_chl, NULL, sdio_qmi_chl_notify);
if (r < 0) {
pr_err("%s: sdio_open() failed\n", __func__);
goto error2;
}
platform_device_register(&sdio_ctl_dev);
sdio_cmux_inited = 1;
D("SDIO Control MUX Driver Initialized.\n");
mutex_unlock(&probe_lock);
return 0;
error2:
destroy_workqueue(sdio_cdemux_wq);
error1:
destroy_workqueue(sdio_cmux_wq);
error0:
mutex_unlock(&probe_lock);
return r;
}
static int sdio_cmux_remove(struct platform_device *pdev)
{
int i;
mutex_lock(&modem_reset_lock);
abort_tx = 1;
for (i = 0; i < SDIO_CMUX_NUM_CHANNELS; ++i) {
mutex_lock(&logical_ch[i].lc_lock);
logical_ch[i].is_channel_reset = 1;
mutex_unlock(&logical_ch[i].lc_lock);
sdio_cmux_ch_clear_and_signal(i);
}
sdio_qmi_chl = NULL;
mutex_unlock(&modem_reset_lock);
return 0;
}
static struct platform_driver sdio_cmux_driver = {
.probe = sdio_cmux_probe,
.remove = sdio_cmux_remove,
.driver = {
.name = "SDIO_QMI",
.owner = THIS_MODULE,
},
};
static int __init sdio_cmux_init(void)
{
#ifdef CONFIG_DEBUG_FS
struct dentry *dent;
dent = debugfs_create_dir("sdio_cmux", 0);
if (!IS_ERR(dent))
debug_create("tbl", 0444, dent, debug_tbl);
#endif
msm_sdio_cmux_debug_mask = 0;
return platform_driver_register(&sdio_cmux_driver);
}
module_init(sdio_cmux_init);
MODULE_DESCRIPTION("MSM SDIO Control MUX");
MODULE_LICENSE("GPL v2");