blob: 875ff00097ea2100559ae793fc471ce8b89a3db5 [file] [log] [blame]
/* Copyright (c) 2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/thermal.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/msm_tsens.h>
#include <linux/err.h>
#include <linux/of.h>
#include <mach/msm_iomap.h>
#define TSENS_DRIVER_NAME "msm-tsens"
/* TSENS register info */
#define TSENS_UPPER_LOWER_INTERRUPT_CTRL(n) ((n) + 0x1000)
#define TSENS_INTERRUPT_EN BIT(0)
#define TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR(n) ((n) + 0x1004)
#define TSENS_UPPER_STATUS_CLR BIT(21)
#define TSENS_LOWER_STATUS_CLR BIT(20)
#define TSENS_UPPER_THRESHOLD_MASK 0xffc00
#define TSENS_LOWER_THRESHOLD_MASK 0x3ff
#define TSENS_UPPER_THRESHOLD_SHIFT 10
#define TSENS_S0_STATUS_ADDR(n) ((n) + 0x1030)
#define TSENS_SN_ADDR_OFFSET 0x4
#define TSENS_SN_STATUS_TEMP_MASK 0x3ff
#define TSENS_SN_STATUS_LOWER_STATUS BIT(11)
#define TSENS_SN_STATUS_UPPER_STATUS BIT(12)
#define TSENS_STATUS_ADDR_OFFSET 2
#define TSENS_TRDY_ADDR(n) ((n) + 0x105c)
#define TSENS_TRDY_MASK BIT(0)
#define TSENS_CTRL_ADDR(n) (n)
#define TSENS_SW_RST BIT(1)
#define TSENS_SN_MIN_MAX_STATUS_CTRL(n) ((n) + 4)
#define TSENS_GLOBAL_CONFIG(n) ((n) + 0x34)
#define TSENS_S0_MAIN_CONFIG(n) ((n) + 0x38)
#define TSENS_SN_REMOTE_CONFIG(n) ((n) + 0x3c)
/* TSENS calibration Mask data */
#define TSENS_BASE1_MASK 0xff
#define TSENS0_POINT1_MASK 0x3f00
#define TSENS1_POINT1_MASK 0xfc000
#define TSENS2_POINT1_MASK 0x3f00000
#define TSENS3_POINT1_MASK 0xfc000000
#define TSENS4_POINT1_MASK 0x3f
#define TSENS5_POINT1_MASK 0xfc0
#define TSENS6_POINT1_MASK 0x3f000
#define TSENS7_POINT1_MASK 0xfc0000
#define TSENS8_POINT1_MASK 0x3f000000
#define TSENS9_POINT1_MASK 0x3f
#define TSENS10_POINT1_MASK 0xfc00
#define TSENS_CAL_SEL_0_1 0xc0000000
#define TSENS_CAL_SEL_2 0x40000000
#define TSENS_CAL_SEL_SHIFT 30
#define TSENS_CAL_SEL_SHIFT_2 28
#define TSENS_ONE_POINT_CALIB 0x1
#define TSENS_TWO_POINT_CALIB 0x2
#define TSENS0_POINT1_SHIFT 8
#define TSENS1_POINT1_SHIFT 14
#define TSENS2_POINT1_SHIFT 20
#define TSENS3_POINT1_SHIFT 26
#define TSENS5_POINT1_SHIFT 6
#define TSENS6_POINT1_SHIFT 12
#define TSENS7_POINT1_SHIFT 18
#define TSENS8_POINT1_SHIFT 24
#define TSENS10_POINT1_SHIFT 6
#define TSENS_POINT2_BASE_SHIFT 12
#define TSENS0_POINT2_SHIFT 20
#define TSENS1_POINT2_SHIFT 26
#define TSENS3_POINT2_SHIFT 6
#define TSENS4_POINT2_SHIFT 12
#define TSENS5_POINT2_SHIFT 18
#define TSENS6_POINT2_SHIFT 24
#define TSENS8_POINT2_SHIFT 6
#define TSENS9_POINT2_SHIFT 12
#define TSENS10_POINT2_SHIFT 18
#define TSENS_BASE2_MASK 0xff000
#define TSENS0_POINT2_MASK 0x3f00000
#define TSENS1_POINT2_MASK 0xfc000000
#define TSENS2_POINT2_MASK 0x3f
#define TSENS3_POINT2_MASK 0xfc00
#define TSENS4_POINT2_MASK 0x3f000
#define TSENS5_POINT2_MASK 0xfc0000
#define TSENS6_POINT2_MASK 0x3f000000
#define TSENS7_POINT2_MASK 0x3f
#define TSENS8_POINT2_MASK 0xfc00
#define TSENS9_POINT2_MASK 0x3f000
#define TSENS10_POINT2_MASK 0xfc0000
#define TSENS_BIT_APPEND 0x3
#define TSENS_CAL_DEGC_POINT1 30
#define TSENS_CAL_DEGC_POINT2 120
#define TSENS_SLOPE_FACTOR 1000
/* TSENS register data */
#define TSENS_TRDY_RDY_MIN_TIME 2000
#define TSENS_TRDY_RDY_MAX_TIME 2100
#define TSENS_THRESHOLD_MAX_CODE 0x3ff
#define TSENS_THRESHOLD_MIN_CODE 0x0
#define TSENS_CTRL_INIT_DATA1 0x1cfff9
#define TSENS_GLOBAL_INIT_DATA 0x302f16c
#define TSENS_S0_MAIN_CFG_INIT_DATA 0x1c3
#define TSENS_SN_MIN_MAX_STATUS_CTRL_DATA 0x3ffc00
#define TSENS_SN_REMOTE_CFG_DATA 0x11c3
/* Trips: warm and cool */
enum tsens_trip_type {
TSENS_TRIP_WARM = 0,
TSENS_TRIP_COOL,
TSENS_TRIP_NUM,
};
struct tsens_tm_device_sensor {
struct thermal_zone_device *tz_dev;
enum thermal_device_mode mode;
unsigned int sensor_num;
struct work_struct work;
int offset;
int calib_data_point1;
int calib_data_point2;
uint32_t slope_mul_tsens_factor;
};
struct tsens_tm_device {
struct platform_device *pdev;
bool prev_reading_avail;
int tsens_factor;
uint32_t tsens_num_sensor;
int tsens_irq;
void *tsens_addr;
void *tsens_calib_addr;
int tsens_len;
int calib_len;
struct resource *res_tsens_mem;
struct resource *res_calib_mem;
struct tsens_tm_device_sensor sensor[0];
};
struct tsens_tm_device *tmdev;
static int tsens_tz_code_to_degc(int adc_code, int sensor_num)
{
int degcbeforefactor, degc;
degcbeforefactor = ((adc_code * tmdev->tsens_factor) -
tmdev->sensor[sensor_num].offset)/
tmdev->sensor[sensor_num].slope_mul_tsens_factor;
if (degcbeforefactor == 0)
degc = degcbeforefactor;
else if (degcbeforefactor > 0)
degc = ((degcbeforefactor * tmdev->tsens_factor) +
tmdev->tsens_factor/2)/tmdev->tsens_factor;
else
degc = ((degcbeforefactor * tmdev->tsens_factor) -
tmdev->tsens_factor/2)/tmdev->tsens_factor;
return degc;
}
static int tsens_tz_degc_to_code(int degc, int sensor_num)
{
int code = ((degc * tmdev->sensor[sensor_num].slope_mul_tsens_factor)
+ tmdev->sensor[sensor_num].offset)/tmdev->tsens_factor;
if (code > TSENS_THRESHOLD_MAX_CODE)
code = TSENS_THRESHOLD_MAX_CODE;
else if (code < TSENS_THRESHOLD_MIN_CODE)
code = TSENS_THRESHOLD_MIN_CODE;
return code;
}
static void msm_tsens_get_temp(int sensor_num, unsigned long *temp)
{
unsigned int code, sensor_addr;
if (!tmdev->prev_reading_avail) {
while (!(readl_relaxed(TSENS_TRDY_ADDR(tmdev->tsens_addr))
& TSENS_TRDY_MASK))
usleep_range(TSENS_TRDY_RDY_MIN_TIME,
TSENS_TRDY_RDY_MAX_TIME);
tmdev->prev_reading_avail = true;
}
sensor_addr =
(unsigned int)TSENS_S0_STATUS_ADDR(tmdev->tsens_addr);
code = readl_relaxed(sensor_addr +
(sensor_num << TSENS_STATUS_ADDR_OFFSET));
*temp = tsens_tz_code_to_degc((code & TSENS_SN_STATUS_TEMP_MASK),
sensor_num);
}
static int tsens_tz_get_temp(struct thermal_zone_device *thermal,
unsigned long *temp)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
if (!tm_sensor || tm_sensor->mode != THERMAL_DEVICE_ENABLED || !temp)
return -EINVAL;
msm_tsens_get_temp(tm_sensor->sensor_num, temp);
return 0;
}
int tsens_get_temp(struct tsens_device *device, unsigned long *temp)
{
if (!tmdev)
return -ENODEV;
msm_tsens_get_temp(device->sensor_num, temp);
return 0;
}
EXPORT_SYMBOL(tsens_get_temp);
static int tsens_tz_get_mode(struct thermal_zone_device *thermal,
enum thermal_device_mode *mode)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
if (!tm_sensor || !mode)
return -EINVAL;
*mode = tm_sensor->mode;
return 0;
}
static int tsens_tz_get_trip_type(struct thermal_zone_device *thermal,
int trip, enum thermal_trip_type *type)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
if (!tm_sensor || trip < 0 || !type)
return -EINVAL;
switch (trip) {
case TSENS_TRIP_WARM:
*type = THERMAL_TRIP_CONFIGURABLE_HI;
break;
case TSENS_TRIP_COOL:
*type = THERMAL_TRIP_CONFIGURABLE_LOW;
break;
default:
return -EINVAL;
}
return 0;
}
static int tsens_tz_activate_trip_type(struct thermal_zone_device *thermal,
int trip, enum thermal_trip_activation_mode mode)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg_cntl, code, hi_code, lo_code, mask;
if (!tm_sensor || trip < 0)
return -EINVAL;
lo_code = TSENS_THRESHOLD_MIN_CODE;
hi_code = TSENS_THRESHOLD_MAX_CODE;
reg_cntl = readl_relaxed((TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR
(tmdev->tsens_addr) +
(tm_sensor->sensor_num * 4)));
switch (trip) {
case TSENS_TRIP_WARM:
code = (reg_cntl & TSENS_UPPER_THRESHOLD_MASK)
>> TSENS_UPPER_THRESHOLD_SHIFT;
mask = TSENS_UPPER_STATUS_CLR;
if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
lo_code = (reg_cntl & TSENS_LOWER_THRESHOLD_MASK);
break;
case TSENS_TRIP_COOL:
code = (reg_cntl & TSENS_LOWER_THRESHOLD_MASK);
mask = TSENS_LOWER_STATUS_CLR;
if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
hi_code = (reg_cntl & TSENS_UPPER_THRESHOLD_MASK)
>> TSENS_UPPER_THRESHOLD_SHIFT;
break;
default:
return -EINVAL;
}
if (mode == THERMAL_TRIP_ACTIVATION_DISABLED)
writel_relaxed(reg_cntl | mask,
(TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR
(tmdev->tsens_addr) +
(tm_sensor->sensor_num * 4)));
else {
if (code < lo_code || code > hi_code) {
pr_err("%s with invalid code %x\n", __func__, code);
return -EINVAL;
}
writel_relaxed(reg_cntl & ~mask,
(TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR(tmdev->tsens_addr) +
(tm_sensor->sensor_num * 4)));
}
mb();
return 0;
}
static int tsens_tz_get_trip_temp(struct thermal_zone_device *thermal,
int trip, unsigned long *temp)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg;
if (!tm_sensor || trip < 0 || !temp)
return -EINVAL;
reg = readl_relaxed(TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR
(tmdev->tsens_addr) +
(tm_sensor->sensor_num * TSENS_SN_ADDR_OFFSET));
switch (trip) {
case TSENS_TRIP_WARM:
reg = (reg & TSENS_UPPER_THRESHOLD_MASK) >>
TSENS_UPPER_THRESHOLD_SHIFT;
break;
case TSENS_TRIP_COOL:
reg = (reg & TSENS_LOWER_THRESHOLD_MASK);
break;
default:
return -EINVAL;
}
*temp = tsens_tz_code_to_degc(reg, tm_sensor->sensor_num);
return 0;
}
static int tsens_tz_notify(struct thermal_zone_device *thermal,
int count, enum thermal_trip_type type)
{
/* TSENS driver does not shutdown the device.
All Thermal notification are sent to the
thermal daemon to take appropriate action */
pr_debug("%s debug\n", __func__);
return 1;
}
static int tsens_tz_set_trip_temp(struct thermal_zone_device *thermal,
int trip, long temp)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg_cntl;
int code, hi_code, lo_code, code_err_chk;
code_err_chk = code = tsens_tz_degc_to_code(temp,
tm_sensor->sensor_num);
if (!tm_sensor || trip < 0)
return -EINVAL;
lo_code = TSENS_THRESHOLD_MIN_CODE;
hi_code = TSENS_THRESHOLD_MAX_CODE;
reg_cntl = readl_relaxed(TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR
(tmdev->tsens_addr) +
(tm_sensor->sensor_num * TSENS_SN_ADDR_OFFSET));
switch (trip) {
case TSENS_TRIP_WARM:
code <<= TSENS_UPPER_THRESHOLD_SHIFT;
reg_cntl &= ~TSENS_UPPER_THRESHOLD_MASK;
if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
lo_code = (reg_cntl & TSENS_LOWER_THRESHOLD_MASK);
break;
case TSENS_TRIP_COOL:
reg_cntl &= ~TSENS_LOWER_THRESHOLD_MASK;
if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
hi_code = (reg_cntl & TSENS_UPPER_THRESHOLD_MASK)
>> TSENS_UPPER_THRESHOLD_SHIFT;
break;
default:
return -EINVAL;
}
if (code_err_chk < lo_code || code_err_chk > hi_code)
return -EINVAL;
writel_relaxed(reg_cntl | code, (TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR
(tmdev->tsens_addr) +
(tm_sensor->sensor_num *
TSENS_SN_ADDR_OFFSET)));
mb();
return 0;
}
static struct thermal_zone_device_ops tsens_thermal_zone_ops = {
.get_temp = tsens_tz_get_temp,
.get_mode = tsens_tz_get_mode,
.get_trip_type = tsens_tz_get_trip_type,
.activate_trip_type = tsens_tz_activate_trip_type,
.get_trip_temp = tsens_tz_get_trip_temp,
.set_trip_temp = tsens_tz_set_trip_temp,
.notify = tsens_tz_notify,
};
static void notify_uspace_tsens_fn(struct work_struct *work)
{
struct tsens_tm_device_sensor *tm = container_of(work,
struct tsens_tm_device_sensor, work);
sysfs_notify(&tm->tz_dev->device.kobj,
NULL, "type");
}
static irqreturn_t tsens_isr(int irq, void *data)
{
struct tsens_tm_device *tm = data;
unsigned int i, status, threshold;
unsigned int sensor_status_addr, sensor_status_ctrl_addr;
sensor_status_addr =
(unsigned int)TSENS_S0_STATUS_ADDR(tmdev->tsens_addr);
sensor_status_ctrl_addr =
(unsigned int)TSENS_S0_UPPER_LOWER_STATUS_CTRL_ADDR
(tmdev->tsens_addr);
for (i = 0; i < tmdev->tsens_num_sensor; i++) {
bool upper_thr = false, lower_thr = false;
status = readl_relaxed(sensor_status_addr);
threshold = readl_relaxed(sensor_status_ctrl_addr);
if (status & TSENS_SN_STATUS_UPPER_STATUS) {
writel_relaxed(threshold | TSENS_UPPER_STATUS_CLR,
sensor_status_ctrl_addr);
upper_thr = true;
}
if (status & TSENS_SN_STATUS_LOWER_STATUS) {
writel_relaxed(threshold | TSENS_LOWER_STATUS_CLR,
sensor_status_ctrl_addr);
lower_thr = true;
}
if (upper_thr || lower_thr) {
/* Notify user space */
schedule_work(&tm->sensor[i].work);
pr_debug("sensor:%d trigger temp (%d degC)\n", i,
tsens_tz_code_to_degc((status &
TSENS_SN_STATUS_TEMP_MASK), i));
}
sensor_status_addr += TSENS_SN_ADDR_OFFSET;
sensor_status_ctrl_addr += TSENS_SN_ADDR_OFFSET;
}
mb();
return IRQ_HANDLED;
}
static void tsens_hw_init(void)
{
unsigned int reg_cntl = 0;
unsigned int i;
reg_cntl = readl_relaxed(TSENS_CTRL_ADDR(tmdev->tsens_addr));
writel_relaxed(reg_cntl | TSENS_SW_RST,
TSENS_CTRL_ADDR(tmdev->tsens_addr));
writel_relaxed(TSENS_CTRL_INIT_DATA1,
TSENS_CTRL_ADDR(tmdev->tsens_addr));
writel_relaxed(TSENS_GLOBAL_INIT_DATA,
TSENS_GLOBAL_CONFIG(tmdev->tsens_addr));
writel_relaxed(TSENS_S0_MAIN_CFG_INIT_DATA,
TSENS_S0_MAIN_CONFIG(tmdev->tsens_addr));
for (i = 0; i < tmdev->tsens_num_sensor; i++) {
writel_relaxed(TSENS_SN_MIN_MAX_STATUS_CTRL_DATA,
TSENS_SN_MIN_MAX_STATUS_CTRL(tmdev->tsens_addr)
+ (i * TSENS_SN_ADDR_OFFSET));
writel_relaxed(TSENS_SN_REMOTE_CFG_DATA,
TSENS_SN_REMOTE_CONFIG(tmdev->tsens_addr)
+ (i * TSENS_SN_ADDR_OFFSET));
}
writel_relaxed(TSENS_INTERRUPT_EN,
TSENS_UPPER_LOWER_INTERRUPT_CTRL(tmdev->tsens_addr));
}
static int tsens_calib_sensors(void)
{
int i, tsens_base1_data = 0, tsens0_point1 = 0, tsens1_point1 = 0;
int tsens2_point1 = 0, tsens3_point1 = 0, tsens4_point1 = 0;
int tsens5_point1 = 0, tsens6_point1 = 0, tsens7_point1 = 0;
int tsens8_point1 = 0, tsens9_point1 = 0, tsens10_point1 = 0;
int tsens0_point2 = 0, tsens1_point2 = 0, tsens2_point2 = 0;
int tsens3_point2 = 0, tsens4_point2 = 0, tsens5_point2 = 0;
int tsens6_point2 = 0, tsens7_point2 = 0, tsens8_point2 = 0;
int tsens9_point2 = 0, tsens10_point2 = 0;
int tsens_base2_data = 0, tsens_calibration_mode = 0, temp = 0;
uint32_t calib_data[5];
for (i = 0; i < 5; i++)
calib_data[i] = readl_relaxed(tmdev->tsens_calib_addr
+ (i * TSENS_SN_ADDR_OFFSET));
tsens_calibration_mode = (calib_data[1] & TSENS_CAL_SEL_0_1)
>> TSENS_CAL_SEL_SHIFT;
temp = (calib_data[3] & TSENS_CAL_SEL_2)
>> TSENS_CAL_SEL_SHIFT_2;
tsens_calibration_mode |= temp;
if (tsens_calibration_mode == 0) {
pr_debug("TSENS is calibrationless mode\n");
for (i = 0; i < tmdev->tsens_num_sensor; i++) {
tmdev->sensor[i].calib_data_point2 = 780;
tmdev->sensor[i].calib_data_point1 = 492;
}
goto compute_intercept_slope;
} else if (tsens_calibration_mode == TSENS_ONE_POINT_CALIB ||
TSENS_TWO_POINT_CALIB) {
tsens_base1_data = (calib_data[0] & TSENS_BASE1_MASK);
tsens0_point1 = (calib_data[0] & TSENS0_POINT1_MASK) >>
TSENS0_POINT1_SHIFT;
tsens1_point1 = (calib_data[0] & TSENS1_POINT1_MASK) >>
TSENS1_POINT1_SHIFT;
tsens2_point1 = (calib_data[0] & TSENS2_POINT1_MASK) >>
TSENS2_POINT1_SHIFT;
tsens3_point1 = (calib_data[0] & TSENS3_POINT1_MASK) >>
TSENS3_POINT1_SHIFT;
tsens4_point1 = (calib_data[1] & TSENS4_POINT1_MASK);
tsens5_point1 = (calib_data[1] & TSENS5_POINT1_MASK) >>
TSENS5_POINT1_SHIFT;
tsens6_point1 = (calib_data[1] & TSENS6_POINT1_MASK) >>
TSENS6_POINT1_SHIFT;
tsens7_point1 = (calib_data[1] & TSENS7_POINT1_MASK) >>
TSENS7_POINT1_SHIFT;
tsens8_point1 = (calib_data[1] & TSENS8_POINT1_MASK) >>
TSENS8_POINT1_SHIFT;
tsens9_point1 = (calib_data[2] & TSENS9_POINT1_MASK);
tsens10_point1 = (calib_data[2] & TSENS10_POINT1_MASK) >>
TSENS10_POINT1_SHIFT;
} else if (tsens_calibration_mode == TSENS_TWO_POINT_CALIB) {
tsens_base2_data = (calib_data[2] & TSENS_BASE2_MASK) >>
TSENS_POINT2_BASE_SHIFT;
tsens0_point2 = (calib_data[2] & TSENS0_POINT2_MASK) >>
TSENS0_POINT2_SHIFT;
tsens1_point2 = (calib_data[2] & TSENS1_POINT2_MASK) >>
TSENS1_POINT2_SHIFT;
tsens2_point2 = (calib_data[3] & TSENS2_POINT2_MASK);
tsens3_point2 = (calib_data[3] & TSENS3_POINT2_MASK) >>
TSENS3_POINT2_SHIFT;
tsens4_point2 = (calib_data[3] & TSENS4_POINT2_MASK) >>
TSENS4_POINT2_SHIFT;
tsens5_point2 = (calib_data[3] & TSENS5_POINT2_MASK) >>
TSENS5_POINT2_SHIFT;
tsens6_point2 = (calib_data[3] & TSENS6_POINT2_MASK) >>
TSENS6_POINT2_SHIFT;
tsens7_point2 = (calib_data[4] & TSENS7_POINT2_MASK);
tsens8_point2 = (calib_data[4] & TSENS8_POINT2_MASK) >>
TSENS8_POINT2_SHIFT;
tsens9_point2 = (calib_data[4] & TSENS9_POINT2_MASK) >>
TSENS9_POINT2_SHIFT;
tsens10_point2 = (calib_data[4] & TSENS10_POINT2_MASK) >>
TSENS10_POINT2_SHIFT;
} else {
pr_debug("Calibration mode is unknown: %d\n",
tsens_calibration_mode);
return -ENODEV;
}
if (tsens_calibration_mode == TSENS_ONE_POINT_CALIB ||
TSENS_TWO_POINT_CALIB) {
tmdev->sensor[0].calib_data_point1 =
(((tsens_base1_data + tsens0_point1) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[1].calib_data_point1 =
(((tsens_base1_data + tsens1_point1) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[2].calib_data_point1 =
(((tsens_base1_data + tsens2_point1) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[3].calib_data_point1 =
(((tsens_base1_data + tsens3_point1) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[4].calib_data_point1 =
(((tsens_base1_data + tsens4_point1) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[5].calib_data_point1 =
(((tsens_base1_data + tsens5_point1) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[6].calib_data_point1 =
(((tsens_base1_data + tsens6_point1) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[7].calib_data_point1 =
(((tsens_base1_data + tsens7_point1) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[8].calib_data_point1 =
(((tsens_base1_data + tsens8_point1) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[9].calib_data_point1 =
(((tsens_base1_data + tsens9_point1) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[10].calib_data_point1 =
(((tsens_base1_data + tsens10_point1) << 2) | TSENS_BIT_APPEND);
}
if (tsens_calibration_mode == TSENS_TWO_POINT_CALIB) {
tmdev->sensor[0].calib_data_point2 =
(((tsens_base2_data + tsens0_point2) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[1].calib_data_point2 =
(((tsens_base2_data + tsens1_point2) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[2].calib_data_point2 =
(((tsens_base2_data + tsens2_point2) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[3].calib_data_point2 =
(((tsens_base2_data + tsens3_point2) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[4].calib_data_point2 =
(((tsens_base2_data + tsens4_point2) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[5].calib_data_point2 =
(((tsens_base2_data + tsens5_point2) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[6].calib_data_point2 =
(((tsens_base2_data + tsens6_point2) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[7].calib_data_point2 =
(((tsens_base2_data + tsens7_point2) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[8].calib_data_point2 =
(((tsens_base2_data + tsens8_point2) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[9].calib_data_point2 =
(((tsens_base2_data + tsens9_point2) << 2) | TSENS_BIT_APPEND);
tmdev->sensor[10].calib_data_point2 =
(((tsens_base2_data + tsens10_point2) << 2) | TSENS_BIT_APPEND);
}
compute_intercept_slope:
for (i = 0; i < tmdev->tsens_num_sensor; i++) {
int32_t num = 0, den = 0;
if (tsens_calibration_mode == TSENS_TWO_POINT_CALIB) {
num = TSENS_CAL_DEGC_POINT2 - TSENS_CAL_DEGC_POINT2;
den = tmdev->sensor[i].calib_data_point2 -
tmdev->sensor[i].calib_data_point1;
num *= tmdev->tsens_factor;
tmdev->sensor[i].slope_mul_tsens_factor = num/den;
}
tmdev->sensor[i].offset = (tmdev->sensor[i].calib_data_point1 *
tmdev->tsens_factor) - (TSENS_CAL_DEGC_POINT1 *
tmdev->sensor[i].slope_mul_tsens_factor);
INIT_WORK(&tmdev->sensor[i].work, notify_uspace_tsens_fn);
tmdev->prev_reading_avail = false;
}
return 0;
}
static int get_device_tree_data(struct platform_device *pdev)
{
const struct device_node *of_node = pdev->dev.of_node;
struct resource *res_mem = NULL;
u32 *tsens_slope_data;
u32 rc = 0, i, tsens_num_sensors;
rc = of_property_read_u32(of_node,
"qcom,sensors", &tsens_num_sensors);
if (rc) {
dev_err(&pdev->dev, "missing sensor number\n");
return -ENODEV;
}
tsens_slope_data = devm_kzalloc(&pdev->dev,
tsens_num_sensors, GFP_KERNEL);
if (!tsens_slope_data) {
dev_err(&pdev->dev, "can not allocate slope data\n");
return -ENOMEM;
}
rc = of_property_read_u32_array(of_node,
"qcom,slope", tsens_slope_data, tsens_num_sensors);
if (rc) {
dev_err(&pdev->dev, "invalid or missing property: tsens-slope\n");
return rc;
};
tmdev = devm_kzalloc(&pdev->dev,
sizeof(struct tsens_tm_device) +
tsens_num_sensors *
sizeof(struct tsens_tm_device_sensor),
GFP_KERNEL);
if (tmdev == NULL) {
pr_err("%s: kzalloc() failed.\n", __func__);
return -ENOMEM;
}
for (i = 0; i < tsens_num_sensors; i++)
tmdev->sensor[i].slope_mul_tsens_factor = tsens_slope_data[i];
tmdev->tsens_factor = TSENS_SLOPE_FACTOR;
tmdev->tsens_num_sensor = tsens_num_sensors;
tmdev->tsens_irq = platform_get_irq(pdev, 0);
if (tmdev->tsens_irq < 0) {
pr_err("Invalid get irq\n");
return tmdev->tsens_irq;
}
tmdev->res_tsens_mem = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "tsens_physical");
if (!tmdev->res_tsens_mem) {
pr_err("Could not get tsens physical address resource\n");
rc = -EINVAL;
goto fail_free_irq;
}
tmdev->tsens_len = tmdev->res_tsens_mem->end -
tmdev->res_tsens_mem->start + 1;
res_mem = request_mem_region(tmdev->res_tsens_mem->start,
tmdev->tsens_len, tmdev->res_tsens_mem->name);
if (!res_mem) {
pr_err("Request tsens physical memory region failed\n");
rc = -EINVAL;
goto fail_free_irq;
}
tmdev->tsens_addr = ioremap(res_mem->start, tmdev->tsens_len);
if (!tmdev->tsens_addr) {
pr_err("Failed to IO map TSENS registers.\n");
rc = -EINVAL;
goto fail_unmap_tsens_region;
}
tmdev->res_calib_mem = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "tsens_eeprom_physical");
if (!tmdev->res_calib_mem) {
pr_err("Could not get qfprom physical address resource\n");
rc = -EINVAL;
goto fail_unmap_tsens;
}
tmdev->calib_len = tmdev->res_calib_mem->end -
tmdev->res_calib_mem->start + 1;
res_mem = request_mem_region(tmdev->res_calib_mem->start,
tmdev->calib_len, tmdev->res_calib_mem->name);
if (!res_mem) {
pr_err("Request calibration memory region failed\n");
rc = -EINVAL;
goto fail_unmap_tsens;
}
tmdev->tsens_calib_addr = ioremap(res_mem->start,
tmdev->calib_len);
if (!tmdev->tsens_calib_addr) {
pr_err("Failed to IO map EEPROM registers.\n");
rc = -EINVAL;
goto fail_unmap_calib_region;
}
return 0;
fail_unmap_calib_region:
if (tmdev->res_calib_mem)
release_mem_region(tmdev->res_calib_mem->start,
tmdev->calib_len);
fail_unmap_tsens:
if (tmdev->tsens_addr)
iounmap(tmdev->tsens_addr);
fail_unmap_tsens_region:
if (tmdev->res_tsens_mem)
release_mem_region(tmdev->res_tsens_mem->start,
tmdev->tsens_len);
fail_free_irq:
free_irq(tmdev->tsens_irq, tmdev);
return rc;
}
static int __devinit tsens_tm_probe(struct platform_device *pdev)
{
int rc;
if (tmdev) {
pr_err("TSENS device already in use\n");
return -EBUSY;
}
if (pdev->dev.of_node)
rc = get_device_tree_data(pdev);
else
return -ENODEV;
tmdev->pdev = pdev;
rc = tsens_calib_sensors();
if (rc < 0)
goto fail;
tsens_hw_init();
tmdev->prev_reading_avail = true;
platform_set_drvdata(pdev, tmdev);
return 0;
fail:
if (tmdev->tsens_calib_addr)
iounmap(tmdev->tsens_calib_addr);
if (tmdev->res_calib_mem)
release_mem_region(tmdev->res_calib_mem->start,
tmdev->calib_len);
if (tmdev->tsens_addr)
iounmap(tmdev->tsens_addr);
if (tmdev->res_tsens_mem)
release_mem_region(tmdev->res_tsens_mem->start,
tmdev->tsens_len);
free_irq(tmdev->tsens_irq, tmdev);
kfree(tmdev);
return rc;
}
static int __devinit _tsens_register_thermal(void)
{
struct platform_device *pdev;
int rc, i;
if (!tmdev) {
pr_err("%s: TSENS early init not done\n", __func__);
return -ENODEV;
}
pdev = tmdev->pdev;
for (i = 0; i < tmdev->tsens_num_sensor; i++) {
char name[18];
snprintf(name, sizeof(name), "tsens_tz_sensor%d", i);
tmdev->sensor[i].mode = THERMAL_DEVICE_ENABLED;
tmdev->sensor[i].sensor_num = i;
tmdev->sensor[i].tz_dev = thermal_zone_device_register(name,
TSENS_TRIP_NUM, &tmdev->sensor[i],
&tsens_thermal_zone_ops, 0, 0, 0, 0);
if (IS_ERR(tmdev->sensor[i].tz_dev)) {
pr_err("%s: thermal_zone_device_register() failed.\n",
__func__);
rc = -ENODEV;
goto fail;
}
}
rc = request_irq(tmdev->tsens_irq, tsens_isr,
IRQF_TRIGGER_RISING, "tsens_interrupt", tmdev);
if (rc < 0) {
pr_err("%s: request_irq FAIL: %d\n", __func__, rc);
for (i = 0; i < tmdev->tsens_num_sensor; i++)
thermal_zone_device_unregister(tmdev->sensor[i].tz_dev);
goto fail;
}
platform_set_drvdata(pdev, tmdev);
return 0;
fail:
if (tmdev->tsens_calib_addr)
iounmap(tmdev->tsens_calib_addr);
if (tmdev->res_calib_mem)
release_mem_region(tmdev->res_calib_mem->start,
tmdev->calib_len);
if (tmdev->tsens_addr)
iounmap(tmdev->tsens_addr);
if (tmdev->res_tsens_mem)
release_mem_region(tmdev->res_tsens_mem->start,
tmdev->tsens_len);
kfree(tmdev);
return rc;
}
static int __devexit tsens_tm_remove(struct platform_device *pdev)
{
struct tsens_tm_device *tmdev = platform_get_drvdata(pdev);
int i;
for (i = 0; i < tmdev->tsens_num_sensor; i++)
thermal_zone_device_unregister(tmdev->sensor[i].tz_dev);
if (tmdev->tsens_calib_addr)
iounmap(tmdev->tsens_calib_addr);
if (tmdev->res_calib_mem)
release_mem_region(tmdev->res_calib_mem->start,
tmdev->calib_len);
if (tmdev->tsens_addr)
iounmap(tmdev->tsens_addr);
if (tmdev->res_tsens_mem)
release_mem_region(tmdev->res_tsens_mem->start,
tmdev->tsens_len);
free_irq(tmdev->tsens_irq, tmdev);
platform_set_drvdata(pdev, NULL);
kfree(tmdev);
return 0;
}
static struct of_device_id tsens_match[] = {
{ .compatible = "qcom,msm-tsens",
},
{}
};
static struct platform_driver tsens_tm_driver = {
.probe = tsens_tm_probe,
.remove = tsens_tm_remove,
.driver = {
.name = "msm-tsens",
.owner = THIS_MODULE,
.of_match_table = tsens_match,
},
};
static int __init tsens_tm_init_driver(void)
{
return platform_driver_register(&tsens_tm_driver);
}
arch_initcall(tsens_tm_init_driver);
static int __init tsens_thermal_register(void)
{
return _tsens_register_thermal();
}
module_init(tsens_thermal_register);
static void __exit _tsens_tm_remove(void)
{
platform_driver_unregister(&tsens_tm_driver);
}
module_exit(_tsens_tm_remove);
MODULE_ALIAS("platform:" TSENS_DRIVER_NAME);
MODULE_LICENSE("GPL v2");