blob: aecb7851d09faa9afdb5fcae38aa011056428b21 [file] [log] [blame]
/* Qualcomm Crypto Engine driver.
*
* Copyright (c) 2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "QCE50: %s: " fmt, __func__
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/crypto.h>
#include <linux/qcedev.h>
#include <linux/bitops.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
#include <mach/dma.h>
#include <mach/clk.h>
#include <mach/socinfo.h>
#include "qce.h"
#include "qce50.h"
#include "qcryptohw_50.h"
#define CRYPTO_CONFIG_RESET 0xE001F
static DEFINE_MUTEX(bam_register_cnt);
struct bam_registration_info {
uint32_t handle;
uint32_t cnt;
};
static struct bam_registration_info bam_registry;
/*
* CE HW device structure.
* Each engine has an instance of the structure.
* Each engine can only handle one crypto operation at one time. It is up to
* the sw above to ensure single threading of operation on an engine.
*/
struct qce_device {
struct device *pdev; /* Handle to platform_device structure */
unsigned char *coh_vmem; /* Allocated coherent virtual memory */
dma_addr_t coh_pmem; /* Allocated coherent physical memory */
int memsize; /* Memory allocated */
void __iomem *iobase; /* Virtual io base of CE HW */
unsigned int phy_iobase; /* Physical io base of CE HW */
struct clk *ce_core_src_clk; /* Handle to CE src clk*/
struct clk *ce_core_clk; /* Handle to CE clk */
struct clk *ce_clk; /* Handle to CE clk */
qce_comp_func_ptr_t qce_cb; /* qce callback function pointer */
int assoc_nents;
int ivsize;
int authsize;
int src_nents;
int dst_nents;
dma_addr_t phy_iv_in;
void *areq;
enum qce_cipher_mode_enum mode;
struct ce_sps_data ce_sps;
};
/* Standard initialization vector for SHA-1, source: FIPS 180-2 */
static uint32_t _std_init_vector_sha1[] = {
0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0
};
/* Standard initialization vector for SHA-256, source: FIPS 180-2 */
static uint32_t _std_init_vector_sha256[] = {
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
static void _byte_stream_to_net_words(uint32_t *iv, unsigned char *b,
unsigned int len)
{
unsigned n;
n = len / sizeof(uint32_t) ;
for (; n > 0; n--) {
*iv = ((*b << 24) & 0xff000000) |
(((*(b+1)) << 16) & 0xff0000) |
(((*(b+2)) << 8) & 0xff00) |
(*(b+3) & 0xff);
b += sizeof(uint32_t);
iv++;
}
n = len % sizeof(uint32_t);
if (n == 3) {
*iv = ((*b << 24) & 0xff000000) |
(((*(b+1)) << 16) & 0xff0000) |
(((*(b+2)) << 8) & 0xff00) ;
} else if (n == 2) {
*iv = ((*b << 24) & 0xff000000) |
(((*(b+1)) << 16) & 0xff0000) ;
} else if (n == 1) {
*iv = ((*b << 24) & 0xff000000) ;
}
}
static void _byte_stream_swap_to_net_words(uint32_t *iv, unsigned char *b,
unsigned int len)
{
unsigned i, j;
unsigned char swap_iv[AES_IV_LENGTH];
memset(swap_iv, 0, AES_IV_LENGTH);
for (i = (AES_IV_LENGTH-len), j = len-1; i < AES_IV_LENGTH; i++, j--)
swap_iv[i] = b[j];
_byte_stream_to_net_words(iv, swap_iv, AES_IV_LENGTH);
}
static int count_sg(struct scatterlist *sg, int nbytes)
{
int i;
for (i = 0; nbytes > 0; i++, sg = sg_next(sg))
nbytes -= sg->length;
return i;
}
static int _probe_ce_engine(struct qce_device *pce_dev)
{
unsigned int rev;
unsigned int maj_rev, min_rev, step_rev;
rev = readl_relaxed(pce_dev->iobase + CRYPTO_VERSION_REG);
mb();
maj_rev = (rev & CRYPTO_CORE_MAJOR_REV_MASK) >> CRYPTO_CORE_MAJOR_REV;
min_rev = (rev & CRYPTO_CORE_MINOR_REV_MASK) >> CRYPTO_CORE_MINOR_REV;
step_rev = (rev & CRYPTO_CORE_STEP_REV_MASK) >> CRYPTO_CORE_STEP_REV;
if ((maj_rev != 0x05) || (min_rev > 0x02) || (step_rev > 0x02)) {
pr_err("Unknown Qualcomm crypto device at 0x%x, rev %d.%d.%d\n",
pce_dev->phy_iobase, maj_rev, min_rev, step_rev);
return -EIO;
};
if ((min_rev > 0) && (step_rev != 0)) {
pr_err("Unknown Qualcomm crypto device at 0x%x, rev %d.%d.%d\n",
pce_dev->phy_iobase, maj_rev, min_rev, step_rev);
return -EIO;
};
pce_dev->ce_sps.minor_version = min_rev;
dev_info(pce_dev->pdev, "Qualcomm Crypto %d.%d.%d device found @0x%x\n",
maj_rev, min_rev, step_rev, pce_dev->phy_iobase);
pce_dev->ce_sps.ce_burst_size = MAX_CE_BAM_BURST_SIZE;
dev_info(pce_dev->pdev,
"IO base, CE = 0x%x\n, "
"Consumer (IN) PIPE %d, "
"Producer (OUT) PIPE %d\n"
"IO base BAM = 0x%x\n"
"BAM IRQ %d\n",
(uint32_t) pce_dev->iobase,
pce_dev->ce_sps.dest_pipe_index,
pce_dev->ce_sps.src_pipe_index,
(uint32_t)pce_dev->ce_sps.bam_iobase,
pce_dev->ce_sps.bam_irq);
return 0;
};
static int _ce_get_hash_cmdlistinfo(struct qce_device *pce_dev,
struct qce_sha_req *sreq,
struct qce_cmdlist_info **cmdplistinfo)
{
struct qce_cmdlistptr_ops *cmdlistptr = &pce_dev->ce_sps.cmdlistptr;
switch (sreq->alg) {
case QCE_HASH_SHA1:
*cmdplistinfo = &cmdlistptr->auth_sha1;
break;
case QCE_HASH_SHA256:
*cmdplistinfo = &cmdlistptr->auth_sha256;
break;
case QCE_HASH_SHA1_HMAC:
*cmdplistinfo = &cmdlistptr->auth_sha1_hmac;
break;
case QCE_HASH_SHA256_HMAC:
*cmdplistinfo = &cmdlistptr->auth_sha256_hmac;
break;
case QCE_HASH_AES_CMAC:
if (sreq->authklen == AES128_KEY_SIZE)
*cmdplistinfo = &cmdlistptr->auth_aes_128_cmac;
else
*cmdplistinfo = &cmdlistptr->auth_aes_256_cmac;
break;
default:
break;
}
return 0;
}
static int _ce_setup_hash(struct qce_device *pce_dev,
struct qce_sha_req *sreq,
struct qce_cmdlist_info *cmdlistinfo)
{
uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)];
uint32_t diglen;
int i;
uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
bool sha1 = false;
struct sps_command_element *pce = NULL;
if ((sreq->alg == QCE_HASH_SHA1_HMAC) ||
(sreq->alg == QCE_HASH_SHA256_HMAC) ||
(sreq->alg == QCE_HASH_AES_CMAC)) {
uint32_t authk_size_in_word = sreq->authklen/sizeof(uint32_t);
_byte_stream_to_net_words(mackey32, sreq->authkey,
sreq->authklen);
/* check for null key. If null, use hw key*/
for (i = 0; i < authk_size_in_word; i++) {
if (mackey32[i] != 0)
break;
}
pce = cmdlistinfo->go_proc;
if (i == authk_size_in_word) {
pce->addr = (uint32_t)(CRYPTO_GOPROC_OEM_KEY_REG +
pce_dev->phy_iobase);
} else {
pce->addr = (uint32_t)(CRYPTO_GOPROC_REG +
pce_dev->phy_iobase);
pce = cmdlistinfo->auth_key;
for (i = 0; i < authk_size_in_word; i++, pce++)
pce->data = mackey32[i];
}
}
if (sreq->alg == QCE_HASH_AES_CMAC)
goto go_proc;
/* if not the last, the size has to be on the block boundary */
if (sreq->last_blk == 0 && (sreq->size % SHA256_BLOCK_SIZE))
return -EIO;
switch (sreq->alg) {
case QCE_HASH_SHA1:
case QCE_HASH_SHA1_HMAC:
diglen = SHA1_DIGEST_SIZE;
sha1 = true;
break;
case QCE_HASH_SHA256:
case QCE_HASH_SHA256_HMAC:
diglen = SHA256_DIGEST_SIZE;
break;
default:
return -EINVAL;
}
/* write 20/32 bytes, 5/8 words into auth_iv for SHA1/SHA256 */
if (sreq->first_blk) {
if (sha1) {
for (i = 0; i < 5; i++)
auth32[i] = _std_init_vector_sha1[i];
} else {
for (i = 0; i < 8; i++)
auth32[i] = _std_init_vector_sha256[i];
}
} else {
_byte_stream_to_net_words(auth32, sreq->digest, diglen);
}
pce = cmdlistinfo->auth_iv;
for (i = 0; i < 5; i++, pce++)
pce->data = auth32[i];
if ((sreq->alg == QCE_HASH_SHA256) ||
(sreq->alg == QCE_HASH_SHA256_HMAC)) {
for (i = 5; i < 8; i++, pce++)
pce->data = auth32[i];
}
/* write auth_bytecnt 0/1, start with 0 */
pce = cmdlistinfo->auth_bytecount;
for (i = 0; i < 2; i++, pce++)
pce->data = sreq->auth_data[i];
/* Set/reset last bit in CFG register */
pce = cmdlistinfo->auth_seg_cfg;
if (sreq->last_blk)
pce->data |= 1 << CRYPTO_LAST;
else
pce->data &= ~(1 << CRYPTO_LAST);
if (sreq->first_blk)
pce->data |= 1 << CRYPTO_FIRST;
else
pce->data &= ~(1 << CRYPTO_FIRST);
go_proc:
/* write auth seg size */
pce = cmdlistinfo->auth_seg_size;
pce->data = sreq->size;
/* write auth seg size start*/
pce = cmdlistinfo->auth_seg_start;
pce->data = 0;
/* write seg size */
pce = cmdlistinfo->seg_size;
pce->data = sreq->size;
return 0;
}
static int _ce_get_cipher_cmdlistinfo(struct qce_device *pce_dev,
struct qce_req *creq,
struct qce_cmdlist_info **cmdlistinfo)
{
struct qce_cmdlistptr_ops *cmdlistptr = &pce_dev->ce_sps.cmdlistptr;
if (creq->alg != CIPHER_ALG_AES) {
switch (creq->alg) {
case CIPHER_ALG_DES:
if (creq->mode == QCE_MODE_ECB)
*cmdlistinfo = &cmdlistptr->cipher_des_ecb;
else
*cmdlistinfo = &cmdlistptr->cipher_des_cbc;
break;
case CIPHER_ALG_3DES:
if (creq->mode == QCE_MODE_ECB)
*cmdlistinfo =
&cmdlistptr->cipher_3des_ecb;
else
*cmdlistinfo =
&cmdlistptr->cipher_3des_cbc;
break;
default:
break;
}
} else {
switch (creq->mode) {
case QCE_MODE_ECB:
if (creq->encklen == AES128_KEY_SIZE)
*cmdlistinfo = &cmdlistptr->cipher_aes_128_ecb;
else
*cmdlistinfo = &cmdlistptr->cipher_aes_256_ecb;
break;
case QCE_MODE_CBC:
case QCE_MODE_CTR:
if (creq->encklen == AES128_KEY_SIZE)
*cmdlistinfo =
&cmdlistptr->cipher_aes_128_cbc_ctr;
else
*cmdlistinfo =
&cmdlistptr->cipher_aes_256_cbc_ctr;
break;
case QCE_MODE_XTS:
if (creq->encklen == AES128_KEY_SIZE)
*cmdlistinfo = &cmdlistptr->cipher_aes_128_xts;
else
*cmdlistinfo = &cmdlistptr->cipher_aes_256_xts;
break;
case QCE_MODE_CCM:
if (creq->encklen == AES128_KEY_SIZE)
*cmdlistinfo = &cmdlistptr->aead_aes_128_ccm;
else
*cmdlistinfo = &cmdlistptr->aead_aes_256_ccm;
break;
default:
break;
}
}
return 0;
}
static int _ce_setup_cipher(struct qce_device *pce_dev, struct qce_req *creq,
uint32_t totallen_in, uint32_t coffset,
struct qce_cmdlist_info *cmdlistinfo)
{
uint32_t enckey32[(MAX_CIPHER_KEY_SIZE * 2)/sizeof(uint32_t)] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = {
0, 0, 0, 0};
uint32_t enck_size_in_word = 0;
uint32_t key_size;
bool use_hw_key = false;
uint32_t encr_cfg = 0;
uint32_t ivsize = creq->ivsize;
int i;
struct sps_command_element *pce = NULL;
if (creq->mode == QCE_MODE_XTS)
key_size = creq->encklen/2;
else
key_size = creq->encklen;
_byte_stream_to_net_words(enckey32, creq->enckey, key_size);
/* check for null key. If null, use hw key*/
enck_size_in_word = key_size/sizeof(uint32_t);
for (i = 0; i < enck_size_in_word; i++) {
if (enckey32[i] != 0)
break;
}
pce = cmdlistinfo->go_proc;
if (i == enck_size_in_word) {
use_hw_key = true;
pce->addr = (uint32_t)(CRYPTO_GOPROC_OEM_KEY_REG +
pce_dev->phy_iobase);
} else {
pce->addr = (uint32_t)(CRYPTO_GOPROC_REG +
pce_dev->phy_iobase);
}
if ((creq->op == QCE_REQ_AEAD) && (creq->mode == QCE_MODE_CCM)) {
uint32_t authklen32 = creq->encklen/sizeof(uint32_t);
uint32_t noncelen32 = MAX_NONCE/sizeof(uint32_t);
uint32_t nonce32[MAX_NONCE/sizeof(uint32_t)] = {0, 0, 0, 0};
uint32_t auth_cfg = 0;
/* write nonce */
_byte_stream_to_net_words(nonce32, creq->nonce, MAX_NONCE);
pce = cmdlistinfo->auth_nonce_info;
for (i = 0; i < noncelen32; i++, pce++)
pce->data = nonce32[i];
/* TBD NEW FEATURE partial AES CCM pkt support set last bit */
auth_cfg |= ((1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST));
if (creq->dir == QCE_ENCRYPT)
auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
else
auth_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
auth_cfg |= ((creq->authsize - 1) << CRYPTO_AUTH_SIZE);
auth_cfg |= (CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE);
if (creq->authklen == AES128_KEY_SIZE)
auth_cfg |= (CRYPTO_AUTH_KEY_SZ_AES128 <<
CRYPTO_AUTH_KEY_SIZE);
else {
if (creq->authklen == AES256_KEY_SIZE)
auth_cfg |= (CRYPTO_AUTH_KEY_SZ_AES256 <<
CRYPTO_AUTH_KEY_SIZE);
}
auth_cfg |= (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG);
auth_cfg |= ((MAX_NONCE/sizeof(uint32_t)) <<
CRYPTO_AUTH_NONCE_NUM_WORDS);
if (use_hw_key == true) {
auth_cfg |= (1 << CRYPTO_USE_HW_KEY_AUTH);
} else {
auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
/* write auth key */
pce = cmdlistinfo->auth_key;
for (i = 0; i < authklen32; i++, pce++)
pce->data = enckey32[i];
}
pce = cmdlistinfo->auth_seg_cfg;
pce->data = auth_cfg;
pce = cmdlistinfo->auth_seg_size;
pce->data = totallen_in;
pce = cmdlistinfo->auth_seg_start;
pce->data = 0;
}
switch (creq->mode) {
case QCE_MODE_ECB:
encr_cfg |= (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
break;
case QCE_MODE_CBC:
encr_cfg |= (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
break;
case QCE_MODE_XTS:
encr_cfg |= (CRYPTO_ENCR_MODE_XTS << CRYPTO_ENCR_MODE);
break;
case QCE_MODE_CCM:
encr_cfg |= (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE);
break;
case QCE_MODE_CTR:
default:
encr_cfg |= (CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE);
break;
}
pce_dev->mode = creq->mode;
switch (creq->alg) {
case CIPHER_ALG_DES:
if (creq->mode != QCE_MODE_ECB) {
_byte_stream_to_net_words(enciv32, creq->iv, ivsize);
pce = cmdlistinfo->encr_cntr_iv;
pce->data = enciv32[0];
pce++;
pce->data = enciv32[1];
}
if (use_hw_key == false) {
pce = cmdlistinfo->encr_key;
pce->data = enckey32[0];
pce++;
pce->data = enckey32[1];
}
break;
case CIPHER_ALG_3DES:
if (creq->mode != QCE_MODE_ECB) {
_byte_stream_to_net_words(enciv32, creq->iv, ivsize);
pce = cmdlistinfo->encr_cntr_iv;
pce->data = enciv32[0];
pce++;
pce->data = enciv32[1];
}
if (use_hw_key == false) {
/* write encr key */
pce = cmdlistinfo->encr_key;
for (i = 0; i < 6; i++, pce++)
pce->data = enckey32[i];
}
break;
case CIPHER_ALG_AES:
default:
if (creq->mode == QCE_MODE_XTS) {
uint32_t xtskey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)]
= {0, 0, 0, 0, 0, 0, 0, 0};
uint32_t xtsklen =
creq->encklen/(2 * sizeof(uint32_t));
_byte_stream_to_net_words(xtskey32, (creq->enckey +
creq->encklen/2), creq->encklen/2);
/* write xts encr key */
pce = cmdlistinfo->encr_xts_key;
for (i = 0; i < xtsklen; i++, pce++)
pce->data = xtskey32[i];
/* write xts du size */
pce = cmdlistinfo->encr_xts_du_size;
pce->data = creq->cryptlen;
}
if (creq->mode != QCE_MODE_ECB) {
if (creq->mode == QCE_MODE_XTS)
_byte_stream_swap_to_net_words(enciv32,
creq->iv, ivsize);
else
_byte_stream_to_net_words(enciv32, creq->iv,
ivsize);
/* write encr cntr iv */
pce = cmdlistinfo->encr_cntr_iv;
for (i = 0; i < 4; i++, pce++)
pce->data = enciv32[i];
if (creq->mode == QCE_MODE_CCM) {
/* write cntr iv for ccm */
pce = cmdlistinfo->encr_ccm_cntr_iv;
for (i = 0; i < 4; i++, pce++)
pce->data = enciv32[i];
/* update cntr_iv[3] by one */
pce = cmdlistinfo->encr_cntr_iv;
pce += 3;
pce->data += 1;
}
}
if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) {
encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 <<
CRYPTO_ENCR_KEY_SZ);
encr_cfg |= CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG;
} else {
if (use_hw_key == false) {
/* write encr key */
pce = cmdlistinfo->encr_key;
for (i = 0; i < enck_size_in_word; i++, pce++)
pce->data = enckey32[i];
switch (key_size) {
case AES128_KEY_SIZE:
encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128
<< CRYPTO_ENCR_KEY_SZ);
break;
case AES256_KEY_SIZE:
default:
encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES256
<< CRYPTO_ENCR_KEY_SZ);
break;
} /* end of switch (creq->encklen) */
}
encr_cfg |= CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG;
} /* else of if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */
break;
} /* end of switch (creq->mode) */
/* write encr seg cfg */
pce = cmdlistinfo->encr_seg_cfg;
if ((creq->alg == CIPHER_ALG_DES) || (creq->alg == CIPHER_ALG_3DES)) {
if (creq->dir == QCE_ENCRYPT)
pce->data |= (1 << CRYPTO_ENCODE);
else
pce->data &= ~(1 << CRYPTO_ENCODE);
encr_cfg = pce->data;
} else {
encr_cfg |=
((creq->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE;
}
if (use_hw_key == true)
encr_cfg |= (CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
else
encr_cfg &= ~(CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
pce->data = encr_cfg;
/* write encr seg size */
pce = cmdlistinfo->encr_seg_size;
if ((creq->mode == QCE_MODE_CCM) && (creq->dir == QCE_DECRYPT))
pce->data = (creq->cryptlen + creq->authsize);
else
pce->data = creq->cryptlen;
/* write encr seg start */
pce = cmdlistinfo->encr_seg_start;
pce->data = (coffset & 0xffff);
/* write seg size */
pce = cmdlistinfo->seg_size;
pce->data = totallen_in;
return 0;
};
static int _aead_complete(struct qce_device *pce_dev)
{
struct aead_request *areq;
unsigned char mac[SHA256_DIGEST_SIZE];
areq = (struct aead_request *) pce_dev->areq;
if (areq->src != areq->dst) {
dma_unmap_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents,
DMA_FROM_DEVICE);
}
dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
DMA_TO_DEVICE);
dma_unmap_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents,
DMA_TO_DEVICE);
/* check MAC */
memcpy(mac, (char *)(&pce_dev->ce_sps.result->auth_iv[0]),
SHA256_DIGEST_SIZE);
if (pce_dev->mode == QCE_MODE_CCM) {
uint32_t result_status;
result_status = pce_dev->ce_sps.result->status;
result_status &= (1 << CRYPTO_MAC_FAILED);
result_status |= (pce_dev->ce_sps.consumer_status |
pce_dev->ce_sps.producer_status);
pce_dev->qce_cb(areq, mac, NULL, result_status);
} else {
uint32_t ivsize = 0;
struct crypto_aead *aead;
unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE];
aead = crypto_aead_reqtfm(areq);
ivsize = crypto_aead_ivsize(aead);
dma_unmap_single(pce_dev->pdev, pce_dev->phy_iv_in,
ivsize, DMA_TO_DEVICE);
memcpy(iv, (char *)(pce_dev->ce_sps.result->encr_cntr_iv),
sizeof(iv));
pce_dev->qce_cb(areq, mac, iv, pce_dev->ce_sps.consumer_status |
pce_dev->ce_sps.producer_status);
}
return 0;
};
static void _sha_complete(struct qce_device *pce_dev)
{
struct ahash_request *areq;
unsigned char digest[SHA256_DIGEST_SIZE];
areq = (struct ahash_request *) pce_dev->areq;
dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
DMA_TO_DEVICE);
memcpy(digest, (char *)(&pce_dev->ce_sps.result->auth_iv[0]),
SHA256_DIGEST_SIZE);
pce_dev->qce_cb(areq, digest,
(char *)pce_dev->ce_sps.result->auth_byte_count,
pce_dev->ce_sps.consumer_status);
};
static int _ablk_cipher_complete(struct qce_device *pce_dev)
{
struct ablkcipher_request *areq;
unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE];
areq = (struct ablkcipher_request *) pce_dev->areq;
if (areq->src != areq->dst) {
dma_unmap_sg(pce_dev->pdev, areq->dst,
pce_dev->dst_nents, DMA_FROM_DEVICE);
}
dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
DMA_TO_DEVICE);
if (pce_dev->mode == QCE_MODE_ECB) {
pce_dev->qce_cb(areq, NULL, NULL,
pce_dev->ce_sps.consumer_status |
pce_dev->ce_sps.producer_status);
} else {
if (pce_dev->ce_sps.minor_version == 0) {
if (pce_dev->mode == QCE_MODE_CBC)
memcpy(iv, (char *)sg_virt(areq->src),
sizeof(iv));
if ((pce_dev->mode == QCE_MODE_CTR) ||
(pce_dev->mode == QCE_MODE_XTS)) {
uint32_t num_blk = 0;
uint32_t cntr_iv = 0;
memcpy(iv, areq->info, sizeof(iv));
if (pce_dev->mode == QCE_MODE_CTR)
num_blk = areq->nbytes/16;
cntr_iv = (u32)(((u32)(*(iv + 14))) << 8) |
(u32)(*(iv + 15));
*(iv + 14) = (char)((cntr_iv + num_blk) >> 8);
*(iv + 15) = (char)((cntr_iv + num_blk) & 0xFF);
}
} else {
memcpy(iv,
(char *)(pce_dev->ce_sps.result->encr_cntr_iv),
sizeof(iv));
}
pce_dev->qce_cb(areq, NULL, iv,
pce_dev->ce_sps.consumer_status |
pce_dev->ce_sps.producer_status);
}
return 0;
};
#ifdef QCE_DEBUG
static void _qce_dump_descr_fifos(struct qce_device *pce_dev)
{
int i, j, ents;
struct sps_iovec *iovec = pce_dev->ce_sps.in_transfer.iovec;
uint32_t cmd_flags = SPS_IOVEC_FLAG_CMD | SPS_IOVEC_FLAG_NWD;
printk(KERN_INFO "==============================================\n");
printk(KERN_INFO "CONSUMER (TX/IN/DEST) PIPE DESCRIPTOR\n");
printk(KERN_INFO "==============================================\n");
for (i = 0; i < pce_dev->ce_sps.in_transfer.iovec_count; i++) {
printk(KERN_INFO " [%d] addr=0x%x size=0x%x flags=0x%x\n", i,
iovec->addr, iovec->size, iovec->flags);
if (iovec->flags & cmd_flags) {
struct sps_command_element *pced;
pced = (struct sps_command_element *)
(GET_VIRT_ADDR(iovec->addr));
ents = iovec->size/(sizeof(struct sps_command_element));
for (j = 0; j < ents; j++) {
printk(KERN_INFO " [%d] [0x%x] 0x%x\n", j,
pced->addr, pced->data);
pced++;
}
}
iovec++;
}
printk(KERN_INFO "==============================================\n");
printk(KERN_INFO "PRODUCER (RX/OUT/SRC) PIPE DESCRIPTOR\n");
printk(KERN_INFO "==============================================\n");
iovec = pce_dev->ce_sps.out_transfer.iovec;
for (i = 0; i < pce_dev->ce_sps.out_transfer.iovec_count; i++) {
printk(KERN_INFO " [%d] addr=0x%x size=0x%x flags=0x%x\n", i,
iovec->addr, iovec->size, iovec->flags);
iovec++;
}
}
#else
static void _qce_dump_descr_fifos(struct qce_device *pce_dev)
{
}
#endif
static void _qce_sps_iovec_count_init(struct qce_device *pce_dev)
{
pce_dev->ce_sps.in_transfer.iovec_count = 0;
pce_dev->ce_sps.out_transfer.iovec_count = 0;
}
static void _qce_set_eot_flag(struct sps_transfer *sps_bam_pipe)
{
struct sps_iovec *iovec = sps_bam_pipe->iovec +
(sps_bam_pipe->iovec_count - 1);
iovec->flags |= SPS_IOVEC_FLAG_EOT;
}
static void _qce_sps_add_data(uint32_t addr, uint32_t len,
struct sps_transfer *sps_bam_pipe)
{
struct sps_iovec *iovec = sps_bam_pipe->iovec +
sps_bam_pipe->iovec_count;
if (len) {
iovec->size = len;
iovec->addr = addr;
iovec->flags = 0;
sps_bam_pipe->iovec_count++;
}
}
static int _qce_sps_add_sg_data(struct qce_device *pce_dev,
struct scatterlist *sg_src, uint32_t nbytes,
struct sps_transfer *sps_bam_pipe)
{
uint32_t addr, data_cnt, len;
struct sps_iovec *iovec = sps_bam_pipe->iovec +
sps_bam_pipe->iovec_count;
while (nbytes > 0) {
len = min(nbytes, sg_dma_len(sg_src));
nbytes -= len;
addr = sg_dma_address(sg_src);
if (pce_dev->ce_sps.minor_version == 0)
len = ALIGN(len, pce_dev->ce_sps.ce_burst_size);
while (len > 0) {
if (len > SPS_MAX_PKT_SIZE) {
data_cnt = SPS_MAX_PKT_SIZE;
iovec->size = data_cnt;
iovec->addr = addr;
iovec->flags = 0;
} else {
data_cnt = len;
iovec->size = data_cnt;
iovec->addr = addr;
iovec->flags = 0;
}
iovec++;
sps_bam_pipe->iovec_count++;
addr += data_cnt;
len -= data_cnt;
}
sg_src++;
}
return 0;
}
static int _qce_sps_add_cmd(struct qce_device *pce_dev, uint32_t flag,
struct qce_cmdlist_info *cmdptr,
struct sps_transfer *sps_bam_pipe)
{
struct sps_iovec *iovec = sps_bam_pipe->iovec +
sps_bam_pipe->iovec_count;
iovec->size = cmdptr->size;
iovec->addr = GET_PHYS_ADDR(cmdptr->cmdlist);
iovec->flags = SPS_IOVEC_FLAG_CMD | SPS_IOVEC_FLAG_NWD | flag;
sps_bam_pipe->iovec_count++;
return 0;
}
static int _qce_sps_transfer(struct qce_device *pce_dev)
{
int rc = 0;
_qce_dump_descr_fifos(pce_dev);
rc = sps_transfer(pce_dev->ce_sps.consumer.pipe,
&pce_dev->ce_sps.in_transfer);
if (rc) {
pr_err("sps_xfr() fail (consumer pipe=0x%x) rc = %d,",
(u32)pce_dev->ce_sps.consumer.pipe, rc);
return rc;
}
rc = sps_transfer(pce_dev->ce_sps.producer.pipe,
&pce_dev->ce_sps.out_transfer);
if (rc) {
pr_err("sps_xfr() fail (producer pipe=0x%x) rc = %d,",
(u32)pce_dev->ce_sps.producer.pipe, rc);
return rc;
}
return rc;
}
/**
* Allocate and Connect a CE peripheral's SPS endpoint
*
* This function allocates endpoint context and
* connect it with memory endpoint by calling
* appropriate SPS driver APIs.
*
* Also registers a SPS callback function with
* SPS driver
*
* This function should only be called once typically
* during driver probe.
*
* @pce_dev - Pointer to qce_device structure
* @ep - Pointer to sps endpoint data structure
* @is_produce - 1 means Producer endpoint
* 0 means Consumer endpoint
*
* @return - 0 if successful else negative value.
*
*/
static int qce_sps_init_ep_conn(struct qce_device *pce_dev,
struct qce_sps_ep_conn_data *ep,
bool is_producer)
{
int rc = 0;
struct sps_pipe *sps_pipe_info;
struct sps_connect *sps_connect_info = &ep->connect;
struct sps_register_event *sps_event = &ep->event;
/* Allocate endpoint context */
sps_pipe_info = sps_alloc_endpoint();
if (!sps_pipe_info) {
pr_err("sps_alloc_endpoint() failed!!! is_producer=%d",
is_producer);
rc = -ENOMEM;
goto out;
}
/* Now save the sps pipe handle */
ep->pipe = sps_pipe_info;
/* Get default connection configuration for an endpoint */
rc = sps_get_config(sps_pipe_info, sps_connect_info);
if (rc) {
pr_err("sps_get_config() fail pipe_handle=0x%x, rc = %d\n",
(u32)sps_pipe_info, rc);
goto get_config_err;
}
/* Modify the default connection configuration */
if (is_producer) {
/*
* For CE producer transfer, source should be
* CE peripheral where as destination should
* be system memory.
*/
sps_connect_info->source = pce_dev->ce_sps.bam_handle;
sps_connect_info->destination = SPS_DEV_HANDLE_MEM;
/* Producer pipe will handle this connection */
sps_connect_info->mode = SPS_MODE_SRC;
sps_connect_info->options =
SPS_O_AUTO_ENABLE | SPS_O_EOT;
} else {
/* For CE consumer transfer, source should be
* system memory where as destination should
* CE peripheral
*/
sps_connect_info->source = SPS_DEV_HANDLE_MEM;
sps_connect_info->destination = pce_dev->ce_sps.bam_handle;
sps_connect_info->mode = SPS_MODE_DEST;
sps_connect_info->options =
SPS_O_AUTO_ENABLE | SPS_O_EOT;
}
/* Producer pipe index */
sps_connect_info->src_pipe_index = pce_dev->ce_sps.src_pipe_index;
/* Consumer pipe index */
sps_connect_info->dest_pipe_index = pce_dev->ce_sps.dest_pipe_index;
sps_connect_info->event_thresh = 0x10;
/*
* Max. no of scatter/gather buffers that can
* be passed by block layer = 32 (NR_SG).
* Each BAM descritor needs 64 bits (8 bytes).
* One BAM descriptor is required per buffer transfer.
* So we would require total 256 (32 * 8) bytes of descriptor FIFO.
* But due to HW limitation we need to allocate atleast one extra
* descriptor memory (256 bytes + 8 bytes). But in order to be
* in power of 2, we are allocating 512 bytes of memory.
*/
sps_connect_info->desc.size = 512;
sps_connect_info->desc.base = dma_alloc_coherent(pce_dev->pdev,
sps_connect_info->desc.size,
&sps_connect_info->desc.phys_base,
GFP_KERNEL);
if (sps_connect_info->desc.base == NULL) {
rc = -ENOMEM;
pr_err("Can not allocate coherent memory for sps data\n");
goto get_config_err;
}
memset(sps_connect_info->desc.base, 0x00, sps_connect_info->desc.size);
/* Establish connection between peripheral and memory endpoint */
rc = sps_connect(sps_pipe_info, sps_connect_info);
if (rc) {
pr_err("sps_connect() fail pipe_handle=0x%x, rc = %d\n",
(u32)sps_pipe_info, rc);
goto sps_connect_err;
}
sps_event->mode = SPS_TRIGGER_CALLBACK;
sps_event->options = SPS_O_EOT;
sps_event->xfer_done = NULL;
sps_event->user = (void *)pce_dev;
pr_debug("success, %s : pipe_handle=0x%x, desc fifo base (phy) = 0x%x\n",
is_producer ? "PRODUCER(RX/OUT)" : "CONSUMER(TX/IN)",
(u32)sps_pipe_info, sps_connect_info->desc.phys_base);
goto out;
sps_connect_err:
dma_free_coherent(pce_dev->pdev,
sps_connect_info->desc.size,
sps_connect_info->desc.base,
sps_connect_info->desc.phys_base);
get_config_err:
sps_free_endpoint(sps_pipe_info);
out:
return rc;
}
/**
* Disconnect and Deallocate a CE peripheral's SPS endpoint
*
* This function disconnect endpoint and deallocates
* endpoint context.
*
* This function should only be called once typically
* during driver remove.
*
* @pce_dev - Pointer to qce_device structure
* @ep - Pointer to sps endpoint data structure
*
*/
static void qce_sps_exit_ep_conn(struct qce_device *pce_dev,
struct qce_sps_ep_conn_data *ep)
{
struct sps_pipe *sps_pipe_info = ep->pipe;
struct sps_connect *sps_connect_info = &ep->connect;
sps_disconnect(sps_pipe_info);
dma_free_coherent(pce_dev->pdev,
sps_connect_info->desc.size,
sps_connect_info->desc.base,
sps_connect_info->desc.phys_base);
sps_free_endpoint(sps_pipe_info);
}
/**
* Initialize SPS HW connected with CE core
*
* This function register BAM HW resources with
* SPS driver and then initialize 2 SPS endpoints
*
* This function should only be called once typically
* during driver probe.
*
* @pce_dev - Pointer to qce_device structure
*
* @return - 0 if successful else negative value.
*
*/
static int qce_sps_init(struct qce_device *pce_dev)
{
int rc = 0;
struct sps_bam_props bam = {0};
bool register_bam = false;
bam.phys_addr = pce_dev->ce_sps.bam_mem;
bam.virt_addr = pce_dev->ce_sps.bam_iobase;
/*
* This event thresold value is only significant for BAM-to-BAM
* transfer. It's ignored for BAM-to-System mode transfer.
*/
bam.event_threshold = 0x10; /* Pipe event threshold */
/*
* This threshold controls when the BAM publish
* the descriptor size on the sideband interface.
* SPS HW will only be used when
* data transfer size > 64 bytes.
*/
bam.summing_threshold = 64;
/* SPS driver wll handle the crypto BAM IRQ */
bam.irq = (u32)pce_dev->ce_sps.bam_irq;
bam.manage = SPS_BAM_MGR_LOCAL;
pr_debug("bam physical base=0x%x\n", (u32)bam.phys_addr);
pr_debug("bam virtual base=0x%x\n", (u32)bam.virt_addr);
mutex_lock(&bam_register_cnt);
if ((bam_registry.handle == 0) && (bam_registry.cnt == 0)) {
/* Register CE Peripheral BAM device to SPS driver */
rc = sps_register_bam_device(&bam, &bam_registry.handle);
if (rc) {
pr_err("sps_register_bam_device() failed! err=%d", rc);
return -EIO;
}
bam_registry.cnt++;
register_bam = true;
} else {
bam_registry.cnt++;
}
mutex_unlock(&bam_register_cnt);
pce_dev->ce_sps.bam_handle = bam_registry.handle;
pr_debug("BAM device registered. bam_handle=0x%x",
pce_dev->ce_sps.bam_handle);
rc = qce_sps_init_ep_conn(pce_dev, &pce_dev->ce_sps.producer, true);
if (rc)
goto sps_connect_producer_err;
rc = qce_sps_init_ep_conn(pce_dev, &pce_dev->ce_sps.consumer, false);
if (rc)
goto sps_connect_consumer_err;
pce_dev->ce_sps.out_transfer.user = pce_dev->ce_sps.producer.pipe;
pce_dev->ce_sps.in_transfer.user = pce_dev->ce_sps.consumer.pipe;
pr_info(" Qualcomm MSM CE-BAM at 0x%016llx irq %d\n",
(unsigned long long)pce_dev->ce_sps.bam_mem,
(unsigned int)pce_dev->ce_sps.bam_irq);
return rc;
sps_connect_consumer_err:
qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_sps.producer);
sps_connect_producer_err:
if (register_bam)
sps_deregister_bam_device(pce_dev->ce_sps.bam_handle);
return rc;
}
/**
* De-initialize SPS HW connected with CE core
*
* This function deinitialize SPS endpoints and then
* deregisters BAM resources from SPS driver.
*
* This function should only be called once typically
* during driver remove.
*
* @pce_dev - Pointer to qce_device structure
*
*/
static void qce_sps_exit(struct qce_device *pce_dev)
{
qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_sps.consumer);
qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_sps.producer);
mutex_lock(&bam_register_cnt);
if ((bam_registry.handle != 0) && (bam_registry.cnt == 1)) {
sps_deregister_bam_device(pce_dev->ce_sps.bam_handle);
bam_registry.cnt = 0;
bam_registry.handle = 0;
}
if ((bam_registry.handle != 0) && (bam_registry.cnt > 1))
bam_registry.cnt--;
mutex_unlock(&bam_register_cnt);
iounmap(pce_dev->ce_sps.bam_iobase);
}
static void _aead_sps_producer_callback(struct sps_event_notify *notify)
{
struct qce_device *pce_dev = (struct qce_device *)
((struct sps_event_notify *)notify)->user;
pce_dev->ce_sps.notify = *notify;
pr_debug("sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n",
notify->event_id,
notify->data.transfer.iovec.addr,
notify->data.transfer.iovec.size,
notify->data.transfer.iovec.flags);
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_COMP;
if (pce_dev->ce_sps.consumer_state == QCE_PIPE_STATE_COMP) {
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_IDLE;
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
/* done */
_aead_complete(pce_dev);
}
};
static void _aead_sps_consumer_callback(struct sps_event_notify *notify)
{
struct qce_device *pce_dev = (struct qce_device *)
((struct sps_event_notify *)notify)->user;
pce_dev->ce_sps.notify = *notify;
pr_debug("sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n",
notify->event_id,
notify->data.transfer.iovec.addr,
notify->data.transfer.iovec.size,
notify->data.transfer.iovec.flags);
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_COMP;
if (pce_dev->ce_sps.producer_state == QCE_PIPE_STATE_COMP) {
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_IDLE;
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
/* done */
_aead_complete(pce_dev);
}
};
static void _sha_sps_producer_callback(struct sps_event_notify *notify)
{
struct qce_device *pce_dev = (struct qce_device *)
((struct sps_event_notify *)notify)->user;
pce_dev->ce_sps.notify = *notify;
pr_debug("sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n",
notify->event_id,
notify->data.transfer.iovec.addr,
notify->data.transfer.iovec.size,
notify->data.transfer.iovec.flags);
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_COMP;
if (pce_dev->ce_sps.consumer_state == QCE_PIPE_STATE_COMP) {
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_IDLE;
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
/* done */
_sha_complete(pce_dev);
}
};
static void _sha_sps_consumer_callback(struct sps_event_notify *notify)
{
struct qce_device *pce_dev = (struct qce_device *)
((struct sps_event_notify *)notify)->user;
pce_dev->ce_sps.notify = *notify;
pr_debug("sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n",
notify->event_id,
notify->data.transfer.iovec.addr,
notify->data.transfer.iovec.size,
notify->data.transfer.iovec.flags);
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_COMP;
if (pce_dev->ce_sps.producer_state == QCE_PIPE_STATE_COMP) {
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_IDLE;
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
/* done */
_sha_complete(pce_dev);
}
};
static void _ablk_cipher_sps_producer_callback(struct sps_event_notify *notify)
{
struct qce_device *pce_dev = (struct qce_device *)
((struct sps_event_notify *)notify)->user;
pce_dev->ce_sps.notify = *notify;
pr_debug("sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n",
notify->event_id,
notify->data.transfer.iovec.addr,
notify->data.transfer.iovec.size,
notify->data.transfer.iovec.flags);
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_COMP;
if (pce_dev->ce_sps.consumer_state == QCE_PIPE_STATE_COMP) {
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_IDLE;
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
/* done */
_ablk_cipher_complete(pce_dev);
}
};
static void _ablk_cipher_sps_consumer_callback(struct sps_event_notify *notify)
{
struct qce_device *pce_dev = (struct qce_device *)
((struct sps_event_notify *)notify)->user;
pce_dev->ce_sps.notify = *notify;
pr_debug("sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n",
notify->event_id,
notify->data.transfer.iovec.addr,
notify->data.transfer.iovec.size,
notify->data.transfer.iovec.flags);
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_COMP;
if (pce_dev->ce_sps.producer_state == QCE_PIPE_STATE_COMP) {
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_IDLE;
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
/* done */
_ablk_cipher_complete(pce_dev);
}
};
static void qce_add_cmd_element(struct qce_device *pdev,
struct sps_command_element **cmd_ptr, u32 addr,
u32 data, struct sps_command_element **populate)
{
(*cmd_ptr)->addr = (uint32_t)(addr + pdev->phy_iobase);
(*cmd_ptr)->data = data;
(*cmd_ptr)->mask = 0xFFFFFFFF;
if (populate != NULL)
*populate = *cmd_ptr;
(*cmd_ptr)++ ;
}
static int _setup_cipher_aes_cmdlistptrs(struct qce_device *pdev,
unsigned char **pvaddr, enum qce_cipher_mode_enum mode,
bool key_128)
{
struct sps_command_element *ce_vaddr =
(struct sps_command_element *)(*pvaddr);
uint32_t ce_vaddr_start = (uint32_t)(*pvaddr);
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
struct qce_cmdlist_info *pcl_info = NULL;
int i = 0;
uint32_t encr_cfg = 0;
uint32_t key_reg = 0;
uint32_t xts_key_reg = 0;
uint32_t iv_reg = 0;
uint32_t crypto_cfg = 0;
uint32_t beats = (pdev->ce_sps.ce_burst_size >> 3) - 1;
uint32_t pipe_pair = pdev->ce_sps.pipe_pair_index;
crypto_cfg = (beats << CRYPTO_REQ_SIZE) |
BIT(CRYPTO_MASK_DOUT_INTR) |
BIT(CRYPTO_MASK_DIN_INTR) |
BIT(CRYPTO_MASK_OP_DONE_INTR) |
(0 << CRYPTO_HIGH_SPD_EN_N) |
(pipe_pair << CRYPTO_PIPE_SET_SELECT);
/*
* Designate chunks of the allocated memory to various
* command list pointers related to AES cipher operations defined
* in ce_cmdlistptrs_ops structure.
*/
switch (mode) {
case QCE_MODE_CBC:
case QCE_MODE_CTR:
if (key_128 == true) {
cmdlistptr->cipher_aes_128_cbc_ctr.cmdlist =
(uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_aes_128_cbc_ctr);
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES128 <<
CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES <<
CRYPTO_ENCR_ALG);
iv_reg = 4;
key_reg = 4;
xts_key_reg = 0;
} else {
cmdlistptr->cipher_aes_256_cbc_ctr.cmdlist =
(uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_aes_256_cbc_ctr);
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES256 <<
CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES <<
CRYPTO_ENCR_ALG);
iv_reg = 4;
key_reg = 8;
xts_key_reg = 0;
}
break;
case QCE_MODE_ECB:
if (key_128 == true) {
cmdlistptr->cipher_aes_128_ecb.cmdlist =
(uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_aes_128_ecb);
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES128 <<
CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES <<
CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_ECB <<
CRYPTO_ENCR_MODE);
iv_reg = 0;
key_reg = 4;
xts_key_reg = 0;
} else {
cmdlistptr->cipher_aes_256_ecb.cmdlist =
(uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_aes_256_ecb);
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES256 <<
CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES <<
CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_ECB <<
CRYPTO_ENCR_MODE);
iv_reg = 0;
key_reg = 8;
xts_key_reg = 0;
}
break;
case QCE_MODE_XTS:
if (key_128 == true) {
cmdlistptr->cipher_aes_128_xts.cmdlist =
(uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_aes_128_xts);
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES128 <<
CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES <<
CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_XTS <<
CRYPTO_ENCR_MODE);
iv_reg = 4;
key_reg = 4;
xts_key_reg = 4;
} else {
cmdlistptr->cipher_aes_256_xts.cmdlist =
(uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_aes_256_xts);
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES256 <<
CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES <<
CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_XTS <<
CRYPTO_ENCR_MODE);
iv_reg = 4;
key_reg = 8;
xts_key_reg = 8;
}
break;
default:
break;
}
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, crypto_cfg,
&pcl_info->crypto_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
&pcl_info->seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
&pcl_info->encr_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
&pcl_info->encr_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
&pcl_info->encr_seg_start);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG,
(uint32_t)0xffffffff, &pcl_info->encr_mask);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
&pcl_info->auth_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
&pcl_info->encr_key);
for (i = 1; i < key_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
0, NULL);
if (xts_key_reg) {
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_XTS_KEY0_REG,
0, &pcl_info->encr_xts_key);
for (i = 1; i < xts_key_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr,
CRYPTO_ENCR_XTS_DU_SIZE_REG, 0, NULL);
}
if (iv_reg) {
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
&pcl_info->encr_cntr_iv);
for (i = 1; i < iv_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
0, NULL);
}
/* Add dummy to align size to burst-size multiple */
if (mode == QCE_MODE_XTS) {
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
0, &pcl_info->auth_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
0, &pcl_info->auth_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG,
0, &pcl_info->auth_seg_size);
}
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
&pcl_info->go_proc);
pcl_info->size = (uint32_t)ce_vaddr - (uint32_t)ce_vaddr_start;
*pvaddr = (unsigned char *) ce_vaddr;
return 0;
}
static int _setup_cipher_des_cmdlistptrs(struct qce_device *pdev,
unsigned char **pvaddr, enum qce_cipher_alg_enum alg,
bool mode_cbc)
{
struct sps_command_element *ce_vaddr =
(struct sps_command_element *)(*pvaddr);
uint32_t ce_vaddr_start = (uint32_t)(*pvaddr);
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
struct qce_cmdlist_info *pcl_info = NULL;
int i = 0;
uint32_t encr_cfg = 0;
uint32_t key_reg = 0;
uint32_t iv_reg = 0;
uint32_t crypto_cfg = 0;
uint32_t beats = (pdev->ce_sps.ce_burst_size >> 3) - 1;
uint32_t pipe_pair = pdev->ce_sps.pipe_pair_index;
crypto_cfg = (beats << CRYPTO_REQ_SIZE) |
BIT(CRYPTO_MASK_DOUT_INTR) |
BIT(CRYPTO_MASK_DIN_INTR) |
BIT(CRYPTO_MASK_OP_DONE_INTR) |
(0 << CRYPTO_HIGH_SPD_EN_N) |
(pipe_pair << CRYPTO_PIPE_SET_SELECT);
/*
* Designate chunks of the allocated memory to various
* command list pointers related to cipher operations defined
* in ce_cmdlistptrs_ops structure.
*/
switch (alg) {
case CIPHER_ALG_DES:
if (mode_cbc) {
cmdlistptr->cipher_des_cbc.cmdlist =
(uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_des_cbc);
encr_cfg = (CRYPTO_ENCR_KEY_SZ_DES <<
CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_DES <<
CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_CBC <<
CRYPTO_ENCR_MODE);
iv_reg = 2;
key_reg = 2;
} else {
cmdlistptr->cipher_des_ecb.cmdlist =
(uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_des_ecb);
encr_cfg = (CRYPTO_ENCR_KEY_SZ_DES <<
CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_DES <<
CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_ECB <<
CRYPTO_ENCR_MODE);
iv_reg = 0;
key_reg = 2;
}
break;
case CIPHER_ALG_3DES:
if (mode_cbc) {
cmdlistptr->cipher_3des_cbc.cmdlist =
(uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_3des_cbc);
encr_cfg = (CRYPTO_ENCR_KEY_SZ_3DES <<
CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_DES <<
CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_CBC <<
CRYPTO_ENCR_MODE);
iv_reg = 2;
key_reg = 6;
} else {
cmdlistptr->cipher_3des_ecb.cmdlist =
(uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->cipher_3des_ecb);
encr_cfg = (CRYPTO_ENCR_KEY_SZ_3DES <<
CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_DES <<
CRYPTO_ENCR_ALG) |
(CRYPTO_ENCR_MODE_ECB <<
CRYPTO_ENCR_MODE);
iv_reg = 0;
key_reg = 6;
}
break;
default:
break;
}
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, crypto_cfg,
&pcl_info->crypto_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
&pcl_info->seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
&pcl_info->encr_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
&pcl_info->encr_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
&pcl_info->encr_seg_start);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
&pcl_info->auth_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
&pcl_info->encr_key);
for (i = 1; i < key_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
0, NULL);
if (iv_reg) {
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
&pcl_info->encr_cntr_iv);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR1_IV1_REG, 0,
NULL);
/* Add 2 dummy to align size to burst-size multiple */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR2_IV2_REG, 0,
NULL);
}
/* Add dummy to align size to burst-size multiple */
if (!mode_cbc) {
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
0, &pcl_info->auth_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
0, &pcl_info->auth_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG,
0, &pcl_info->auth_seg_size);
}
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
&pcl_info->go_proc);
pcl_info->size = (uint32_t)ce_vaddr - (uint32_t)ce_vaddr_start;
*pvaddr = (unsigned char *) ce_vaddr;
return 0;
}
static int _setup_auth_cmdlistptrs(struct qce_device *pdev,
unsigned char **pvaddr, enum qce_hash_alg_enum alg,
bool key_128)
{
struct sps_command_element *ce_vaddr =
(struct sps_command_element *)(*pvaddr);
uint32_t ce_vaddr_start = (uint32_t)(*pvaddr);
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
struct qce_cmdlist_info *pcl_info = NULL;
int i = 0;
uint32_t key_reg = 0;
uint32_t auth_cfg = 0;
uint32_t iv_reg = 0;
uint32_t crypto_cfg = 0;
uint32_t beats = (pdev->ce_sps.ce_burst_size >> 3) - 1;
uint32_t pipe_pair = pdev->ce_sps.pipe_pair_index;
crypto_cfg = (beats << CRYPTO_REQ_SIZE) |
BIT(CRYPTO_MASK_DOUT_INTR) |
BIT(CRYPTO_MASK_DIN_INTR) |
BIT(CRYPTO_MASK_OP_DONE_INTR) |
(0 << CRYPTO_HIGH_SPD_EN_N) |
(pipe_pair << CRYPTO_PIPE_SET_SELECT);
/*
* Designate chunks of the allocated memory to various
* command list pointers related to authentication operations
* defined in ce_cmdlistptrs_ops structure.
*/
switch (alg) {
case QCE_HASH_SHA1:
cmdlistptr->auth_sha1.cmdlist = (uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->auth_sha1);
auth_cfg = (CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
iv_reg = 5;
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
crypto_cfg, &pcl_info->crypto_cfg);
/* 1 dummy write */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
0, NULL);
break;
case QCE_HASH_SHA256:
cmdlistptr->auth_sha256.cmdlist = (uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->auth_sha256);
auth_cfg = (CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
iv_reg = 8;
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
crypto_cfg, &pcl_info->crypto_cfg);
/* 2 dummy writes */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
0, NULL);
break;
case QCE_HASH_SHA1_HMAC:
cmdlistptr->auth_sha1_hmac.cmdlist = (uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->auth_sha1_hmac);
auth_cfg = (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
key_reg = 16;
iv_reg = 5;
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
crypto_cfg, &pcl_info->crypto_cfg);
/* 1 dummy write */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
0, NULL);
break;
case QCE_AEAD_SHA1_HMAC:
cmdlistptr->aead_sha1_hmac.cmdlist = (uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->aead_sha1_hmac);
auth_cfg = (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS) |
(1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST);
key_reg = 16;
iv_reg = 5;
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
crypto_cfg, &pcl_info->crypto_cfg);
/* 2 dummy writes */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
0, NULL);
break;
case QCE_HASH_SHA256_HMAC:
cmdlistptr->auth_sha256_hmac.cmdlist = (uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->auth_sha256_hmac);
auth_cfg = (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
key_reg = 16;
iv_reg = 8;
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
crypto_cfg, &pcl_info->crypto_cfg);
/* 2 dummy writes */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
0, NULL);
break;
case QCE_HASH_AES_CMAC:
if (key_128 == true) {
cmdlistptr->auth_aes_128_cmac.cmdlist =
(uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->auth_aes_128_cmac);
auth_cfg = (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
(CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_SIZE_ENUM_16_BYTES <<
CRYPTO_AUTH_SIZE) |
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_KEY_SZ_AES128 <<
CRYPTO_AUTH_KEY_SIZE) |
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
key_reg = 4;
} else {
cmdlistptr->auth_aes_256_cmac.cmdlist =
(uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->auth_aes_256_cmac);
auth_cfg = (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST)|
(CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_SIZE_ENUM_16_BYTES <<
CRYPTO_AUTH_SIZE) |
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_KEY_SZ_AES256 <<
CRYPTO_AUTH_KEY_SIZE) |
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
key_reg = 8;
}
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
crypto_cfg, &pcl_info->crypto_cfg);
/* 2 dummy writes */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
0, NULL);
break;
default:
break;
}
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
&pcl_info->seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0,
&pcl_info->encr_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
auth_cfg, &pcl_info->auth_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
&pcl_info->auth_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
&pcl_info->auth_seg_start);
if (alg == QCE_HASH_AES_CMAC) {
/* reset auth iv, bytecount and key registers */
for (i = 0; i < 16; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)),
0, NULL);
for (i = 0; i < 16; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)),
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
0, NULL);
} else {
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
&pcl_info->auth_iv);
for (i = 1; i < iv_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
0, &pcl_info->auth_bytecount);
}
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
if (key_reg) {
qce_add_cmd_element(pdev, &ce_vaddr,
CRYPTO_AUTH_KEY0_REG, 0, &pcl_info->auth_key);
for (i = 1; i < key_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)),
0, NULL);
}
if (alg != QCE_AEAD_SHA1_HMAC)
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
&pcl_info->go_proc);
pcl_info->size = (uint32_t)ce_vaddr - (uint32_t)ce_vaddr_start;
*pvaddr = (unsigned char *) ce_vaddr;
return 0;
}
static int _setup_aead_cmdlistptrs(struct qce_device *pdev,
unsigned char **pvaddr, bool key_128)
{
struct sps_command_element *ce_vaddr =
(struct sps_command_element *)(*pvaddr);
uint32_t ce_vaddr_start = (uint32_t)(*pvaddr);
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
struct qce_cmdlist_info *pcl_info = NULL;
int i = 0;
uint32_t encr_cfg = 0;
uint32_t auth_cfg = 0;
uint32_t key_reg = 0;
uint32_t crypto_cfg = 0;
uint32_t beats = (pdev->ce_sps.ce_burst_size >> 3) - 1;
uint32_t pipe_pair = pdev->ce_sps.pipe_pair_index;
crypto_cfg = (beats << CRYPTO_REQ_SIZE) |
BIT(CRYPTO_MASK_DOUT_INTR) |
BIT(CRYPTO_MASK_DIN_INTR) |
BIT(CRYPTO_MASK_OP_DONE_INTR) |
(0 << CRYPTO_HIGH_SPD_EN_N) |
(pipe_pair << CRYPTO_PIPE_SET_SELECT);
/*
* Designate chunks of the allocated memory to various
* command list pointers related to aead operations
* defined in ce_cmdlistptrs_ops structure.
*/
if (key_128 == true) {
cmdlistptr->aead_aes_128_ccm.cmdlist = (uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->aead_aes_128_ccm);
auth_cfg = (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
(CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_KEY_SZ_AES128 << CRYPTO_AUTH_KEY_SIZE);
auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
((CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE));
key_reg = 4;
} else {
cmdlistptr->aead_aes_256_ccm.cmdlist = (uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->aead_aes_256_ccm);
auth_cfg = (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
(CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)|
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
(CRYPTO_AUTH_KEY_SZ_AES256 << CRYPTO_AUTH_KEY_SIZE) |
((MAX_NONCE/sizeof(uint32_t)) <<
CRYPTO_AUTH_NONCE_NUM_WORDS);
auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
((CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE));
key_reg = 8;
}
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
crypto_cfg, &pcl_info->crypto_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
NULL);
/* add 1 dummy */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
&pcl_info->seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG,
encr_cfg, &pcl_info->encr_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
&pcl_info->encr_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
&pcl_info->encr_seg_start);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG,
(uint32_t)0xffffffff, &pcl_info->encr_mask);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
auth_cfg, &pcl_info->auth_seg_cfg);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
&pcl_info->auth_seg_size);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
&pcl_info->auth_seg_start);
/* reset auth iv, bytecount and key registers */
for (i = 0; i < 8; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)),
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG,
0, NULL);
for (i = 0; i < 16; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)),
0, NULL);
/* set auth key */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_KEY0_REG, 0,
&pcl_info->auth_key);
for (i = 1; i < key_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)),
0, NULL);
/* set NONCE info */
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_INFO_NONCE0_REG, 0,
&pcl_info->auth_nonce_info);
for (i = 1; i < 4; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_AUTH_INFO_NONCE0_REG +
i * sizeof(uint32_t)), 0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
&pcl_info->encr_key);
for (i = 1; i < key_reg; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
&pcl_info->encr_cntr_iv);
for (i = 1; i < 4; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_CCM_INT_CNTR0_REG, 0,
&pcl_info->encr_ccm_cntr_iv);
for (i = 1; i < 4; i++)
qce_add_cmd_element(pdev, &ce_vaddr,
(CRYPTO_ENCR_CCM_INT_CNTR0_REG + i * sizeof(uint32_t)),
0, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
&pcl_info->go_proc);
pcl_info->size = (uint32_t)ce_vaddr - (uint32_t)ce_vaddr_start;
*pvaddr = (unsigned char *) ce_vaddr;
return 0;
}
static int _setup_unlock_pipe_cmdlistptrs(struct qce_device *pdev,
unsigned char **pvaddr)
{
struct sps_command_element *ce_vaddr =
(struct sps_command_element *)(*pvaddr);
uint32_t ce_vaddr_start = (uint32_t)(*pvaddr);
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
struct qce_cmdlist_info *pcl_info = NULL;
cmdlistptr->unlock_all_pipes.cmdlist = (uint32_t)ce_vaddr;
pcl_info = &(cmdlistptr->unlock_all_pipes);
/*
* Designate chunks of the allocated memory to command list
* to unlock pipes.
*/
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
CRYPTO_CONFIG_RESET, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
CRYPTO_CONFIG_RESET, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
CRYPTO_CONFIG_RESET, NULL);
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
CRYPTO_CONFIG_RESET, NULL);
pcl_info->size = (uint32_t)ce_vaddr - (uint32_t)ce_vaddr_start;
*pvaddr = (unsigned char *) ce_vaddr;
return 0;
}
static int qce_setup_cmdlistptrs(struct qce_device *pdev,
unsigned char **pvaddr)
{
struct sps_command_element *ce_vaddr =
(struct sps_command_element *)(*pvaddr);
/*
* Designate chunks of the allocated memory to various
* command list pointers related to operations defined
* in ce_cmdlistptrs_ops structure.
*/
ce_vaddr =
(struct sps_command_element *) ALIGN(((unsigned int) ce_vaddr),
16);
*pvaddr = (unsigned char *) ce_vaddr;
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_CBC, true);
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_CTR, true);
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_ECB, true);
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_XTS, true);
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_CBC, false);
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_CTR, false);
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_ECB, false);
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_XTS, false);
_setup_cipher_des_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_DES, true);
_setup_cipher_des_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_DES, false);
_setup_cipher_des_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_3DES, true);
_setup_cipher_des_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_3DES, false);
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_SHA1, false);
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_SHA256, false);
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_SHA1_HMAC, false);
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_SHA256_HMAC, false);
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_AES_CMAC, true);
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_AES_CMAC, false);
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_AEAD_SHA1_HMAC, false);
_setup_aead_cmdlistptrs(pdev, pvaddr, true);
_setup_aead_cmdlistptrs(pdev, pvaddr, false);
_setup_unlock_pipe_cmdlistptrs(pdev, pvaddr);
return 0;
}
static int qce_setup_ce_sps_data(struct qce_device *pce_dev)
{
unsigned char *vaddr;
vaddr = pce_dev->coh_vmem;
vaddr = (unsigned char *) ALIGN(((unsigned int)vaddr), 16);
/* Allow for 256 descriptor (cmd and data) entries per pipe */
pce_dev->ce_sps.in_transfer.iovec = (struct sps_iovec *)vaddr;
pce_dev->ce_sps.in_transfer.iovec_phys =
(uint32_t)GET_PHYS_ADDR(vaddr);
vaddr += MAX_BAM_DESCRIPTORS * 8;
pce_dev->ce_sps.out_transfer.iovec = (struct sps_iovec *)vaddr;
pce_dev->ce_sps.out_transfer.iovec_phys =
(uint32_t)GET_PHYS_ADDR(vaddr);
vaddr += MAX_BAM_DESCRIPTORS * 8;
qce_setup_cmdlistptrs(pce_dev, &vaddr);
pce_dev->ce_sps.result_dump = (uint32_t)vaddr;
pce_dev->ce_sps.result = (struct ce_result_dump_format *)vaddr;
vaddr += 128;
return 0;
}
int qce_aead_sha1_hmac_setup(struct qce_req *creq, struct crypto_aead *aead,
struct qce_cmdlist_info *cmdlistinfo)
{
uint32_t authk_size_in_word = creq->authklen/sizeof(uint32_t);
uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
struct sps_command_element *pce = NULL;
struct aead_request *areq = (struct aead_request *)creq->areq;
int i;
_byte_stream_to_net_words(mackey32, creq->authkey,
creq->authklen);
pce = cmdlistinfo->auth_key;
for (i = 0; i < authk_size_in_word; i++, pce++)
pce->data = mackey32[i];
pce = cmdlistinfo->auth_iv;
for (i = 0; i < 5; i++, pce++)
pce->data = _std_init_vector_sha1[i];
/* write auth seg size */
pce = cmdlistinfo->auth_seg_size;
pce->data = creq->cryptlen + areq->assoclen + crypto_aead_ivsize(aead);
/* write auth seg size start*/
pce = cmdlistinfo->auth_seg_start;
pce->data = 0;
return 0;
}
int qce_aead_req(void *handle, struct qce_req *q_req)
{
struct qce_device *pce_dev = (struct qce_device *) handle;
struct aead_request *areq = (struct aead_request *) q_req->areq;
uint32_t authsize = q_req->authsize;
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
uint32_t ivsize = 0;
uint32_t totallen_in, out_len;
uint32_t hw_pad_out = 0;
int rc = 0;
int ce_burst_size;
struct qce_cmdlist_info *cmdlistinfo = NULL;
struct qce_cmdlist_info *auth_cmdlistinfo = NULL;
if (q_req->mode != QCE_MODE_CCM)
ivsize = crypto_aead_ivsize(aead);
ce_burst_size = pce_dev->ce_sps.ce_burst_size;
if (q_req->dir == QCE_ENCRYPT) {
q_req->cryptlen = areq->cryptlen;
totallen_in = q_req->cryptlen + areq->assoclen + ivsize;
if (q_req->mode == QCE_MODE_CCM) {
out_len = areq->cryptlen + authsize;
hw_pad_out = ALIGN(authsize, ce_burst_size) - authsize;
} else {
out_len = areq->cryptlen;
}
} else {
q_req->cryptlen = areq->cryptlen - authsize;
if (q_req->mode == QCE_MODE_CCM)
totallen_in = areq->cryptlen + areq->assoclen;
else
totallen_in = q_req->cryptlen + areq->assoclen + ivsize;
out_len = q_req->cryptlen;
hw_pad_out = authsize;
}
pce_dev->assoc_nents = count_sg(areq->assoc, areq->assoclen);
pce_dev->src_nents = count_sg(areq->src, areq->cryptlen);
pce_dev->ivsize = q_req->ivsize;
pce_dev->authsize = q_req->authsize;
pce_dev->phy_iv_in = 0;
/* associated data input */
dma_map_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents,
DMA_TO_DEVICE);
/* cipher input */
dma_map_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
DMA_TO_DEVICE);
/* cipher + mac output for encryption */
if (areq->src != areq->dst) {
pce_dev->dst_nents = count_sg(areq->dst, out_len);
dma_map_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents,
DMA_FROM_DEVICE);
} else {
pce_dev->dst_nents = pce_dev->src_nents;
}
_ce_get_cipher_cmdlistinfo(pce_dev, q_req, &cmdlistinfo);
/* set up crypto device */
rc = _ce_setup_cipher(pce_dev, q_req, totallen_in,
areq->assoclen + ivsize, cmdlistinfo);
if (rc < 0)
goto bad;
if (q_req->mode != QCE_MODE_CCM) {
rc = qce_aead_sha1_hmac_setup(q_req, aead, auth_cmdlistinfo);
if (rc < 0)
goto bad;
/* overwrite seg size */
cmdlistinfo->seg_size->data = totallen_in;
/* cipher iv for input */
pce_dev->phy_iv_in = dma_map_single(pce_dev->pdev, q_req->iv,
ivsize, DMA_TO_DEVICE);
}
/* setup for callback, and issue command to bam */
pce_dev->areq = q_req->areq;
pce_dev->qce_cb = q_req->qce_cb;
/* Register callback event for EOT (End of transfer) event. */
pce_dev->ce_sps.producer.event.callback = _aead_sps_producer_callback;
rc = sps_register_event(pce_dev->ce_sps.producer.pipe,
&pce_dev->ce_sps.producer.event);
if (rc) {
pr_err("Producer callback registration failed rc = %d\n", rc);
goto bad;
}
/* Register callback event for EOT (End of transfer) event. */
pce_dev->ce_sps.consumer.event.callback = _aead_sps_consumer_callback;
rc = sps_register_event(pce_dev->ce_sps.consumer.pipe,
&pce_dev->ce_sps.consumer.event);
if (rc) {
pr_err("Consumer callback registration failed rc = %d\n", rc);
goto bad;
}
_qce_sps_iovec_count_init(pce_dev);
_qce_sps_add_cmd(pce_dev, 0, cmdlistinfo,
&pce_dev->ce_sps.in_transfer);
if (pce_dev->ce_sps.minor_version == 0) {
_qce_sps_add_sg_data(pce_dev, areq->src, totallen_in,
&pce_dev->ce_sps.in_transfer);
_qce_set_eot_flag(&pce_dev->ce_sps.in_transfer);
_qce_sps_add_sg_data(pce_dev, areq->dst, out_len +
areq->assoclen + hw_pad_out,
&pce_dev->ce_sps.out_transfer);
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
CRYPTO_RESULT_DUMP_SIZE,
&pce_dev->ce_sps.out_transfer);
} else {
_qce_sps_add_sg_data(pce_dev, areq->assoc, areq->assoclen,
&pce_dev->ce_sps.in_transfer);
_qce_sps_add_data((uint32_t)pce_dev->phy_iv_in, ivsize,
&pce_dev->ce_sps.in_transfer);
_qce_sps_add_sg_data(pce_dev, areq->src, areq->cryptlen,
&pce_dev->ce_sps.in_transfer);
_qce_set_eot_flag(&pce_dev->ce_sps.in_transfer);
/* Pass through to ignore associated (+iv, if applicable) data*/
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.ignore_buffer),
(ivsize + areq->assoclen),
&pce_dev->ce_sps.out_transfer);
_qce_sps_add_sg_data(pce_dev, areq->dst, out_len,
&pce_dev->ce_sps.out_transfer);
/* Pass through to ignore hw_pad (padding of the MAC data) */
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.ignore_buffer),
hw_pad_out, &pce_dev->ce_sps.out_transfer);
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
CRYPTO_RESULT_DUMP_SIZE, &pce_dev->ce_sps.out_transfer);
}
rc = _qce_sps_transfer(pce_dev);
if (rc)
goto bad;
return 0;
bad:
if (pce_dev->assoc_nents) {
dma_unmap_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents,
DMA_TO_DEVICE);
}
if (pce_dev->src_nents) {
dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
DMA_TO_DEVICE);
}
if (areq->src != areq->dst) {
dma_unmap_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents,
DMA_FROM_DEVICE);
}
if (pce_dev->phy_iv_in) {
dma_unmap_single(pce_dev->pdev, pce_dev->phy_iv_in,
ivsize, DMA_TO_DEVICE);
}
return rc;
}
EXPORT_SYMBOL(qce_aead_req);
int qce_ablk_cipher_req(void *handle, struct qce_req *c_req)
{
int rc = 0;
struct qce_device *pce_dev = (struct qce_device *) handle;
struct ablkcipher_request *areq = (struct ablkcipher_request *)
c_req->areq;
struct qce_cmdlist_info *cmdlistinfo = NULL;
pce_dev->src_nents = 0;
pce_dev->dst_nents = 0;
_ce_get_cipher_cmdlistinfo(pce_dev, c_req, &cmdlistinfo);
/* cipher input */
pce_dev->src_nents = count_sg(areq->src, areq->nbytes);
dma_map_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
DMA_TO_DEVICE);
/* cipher output */
if (areq->src != areq->dst) {
pce_dev->dst_nents = count_sg(areq->dst, areq->nbytes);
dma_map_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents,
DMA_FROM_DEVICE);
} else {
pce_dev->dst_nents = pce_dev->src_nents;
}
/* set up crypto device */
rc = _ce_setup_cipher(pce_dev, c_req, areq->nbytes, 0, cmdlistinfo);
if (rc < 0)
goto bad;
/* setup for client callback, and issue command to BAM */
pce_dev->areq = areq;
pce_dev->qce_cb = c_req->qce_cb;
/* Register callback event for EOT (End of transfer) event. */
pce_dev->ce_sps.producer.event.callback =
_ablk_cipher_sps_producer_callback;
rc = sps_register_event(pce_dev->ce_sps.producer.pipe,
&pce_dev->ce_sps.producer.event);
if (rc) {
pr_err("Producer callback registration failed rc = %d\n", rc);
goto bad;
}
/* Register callback event for EOT (End of transfer) event. */
pce_dev->ce_sps.consumer.event.callback =
_ablk_cipher_sps_consumer_callback;
rc = sps_register_event(pce_dev->ce_sps.consumer.pipe,
&pce_dev->ce_sps.consumer.event);
if (rc) {
pr_err("Consumer callback registration failed rc = %d\n", rc);
goto bad;
}
_qce_sps_iovec_count_init(pce_dev);
_qce_sps_add_cmd(pce_dev, 0, cmdlistinfo,
&pce_dev->ce_sps.in_transfer);
_qce_sps_add_sg_data(pce_dev, areq->src, areq->nbytes,
&pce_dev->ce_sps.in_transfer);
_qce_set_eot_flag(&pce_dev->ce_sps.in_transfer);
_qce_sps_add_sg_data(pce_dev, areq->dst, areq->nbytes,
&pce_dev->ce_sps.out_transfer);
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
CRYPTO_RESULT_DUMP_SIZE,
&pce_dev->ce_sps.out_transfer);
rc = _qce_sps_transfer(pce_dev);
if (rc)
goto bad;
return 0;
bad:
if (pce_dev->dst_nents) {
dma_unmap_sg(pce_dev->pdev, areq->dst,
pce_dev->dst_nents, DMA_FROM_DEVICE);
}
if (pce_dev->src_nents) {
dma_unmap_sg(pce_dev->pdev, areq->src,
pce_dev->src_nents,
(areq->src == areq->dst) ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
}
return rc;
}
EXPORT_SYMBOL(qce_ablk_cipher_req);
int qce_process_sha_req(void *handle, struct qce_sha_req *sreq)
{
struct qce_device *pce_dev = (struct qce_device *) handle;
int rc;
struct ahash_request *areq = (struct ahash_request *)sreq->areq;
struct qce_cmdlist_info *cmdlistinfo = NULL;
pce_dev->src_nents = count_sg(sreq->src, sreq->size);
_ce_get_hash_cmdlistinfo(pce_dev, sreq, &cmdlistinfo);
dma_map_sg(pce_dev->pdev, sreq->src, pce_dev->src_nents,
DMA_TO_DEVICE);
rc = _ce_setup_hash(pce_dev, sreq, cmdlistinfo);
if (rc < 0)
goto bad;
pce_dev->areq = areq;
pce_dev->qce_cb = sreq->qce_cb;
/* Register callback event for EOT (End of transfer) event. */
pce_dev->ce_sps.producer.event.callback = _sha_sps_producer_callback;
rc = sps_register_event(pce_dev->ce_sps.producer.pipe,
&pce_dev->ce_sps.producer.event);
if (rc) {
pr_err("Producer callback registration failed rc = %d\n", rc);
goto bad;
}
/* Register callback event for EOT (End of transfer) event. */
pce_dev->ce_sps.consumer.event.callback = _sha_sps_consumer_callback;
rc = sps_register_event(pce_dev->ce_sps.consumer.pipe,
&pce_dev->ce_sps.consumer.event);
if (rc) {
pr_err("Consumer callback registration failed rc = %d\n", rc);
goto bad;
}
_qce_sps_iovec_count_init(pce_dev);
_qce_sps_add_cmd(pce_dev, 0, cmdlistinfo,
&pce_dev->ce_sps.in_transfer);
_qce_sps_add_sg_data(pce_dev, areq->src, areq->nbytes,
&pce_dev->ce_sps.in_transfer);
_qce_set_eot_flag(&pce_dev->ce_sps.in_transfer);
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
CRYPTO_RESULT_DUMP_SIZE,
&pce_dev->ce_sps.out_transfer);
rc = _qce_sps_transfer(pce_dev);
if (rc)
goto bad;
return 0;
bad:
if (pce_dev->src_nents) {
dma_unmap_sg(pce_dev->pdev, sreq->src,
pce_dev->src_nents, DMA_TO_DEVICE);
}
return rc;
}
EXPORT_SYMBOL(qce_process_sha_req);
static int __qce_get_device_tree_data(struct platform_device *pdev,
struct qce_device *pce_dev)
{
struct resource *resource;
int rc = 0;
if (of_property_read_u32((&pdev->dev)->of_node,
"qcom,bam-pipe-pair",
&pce_dev->ce_sps.pipe_pair_index)) {
pr_err("Fail to get bam pipe pair information.\n");
return -EINVAL;
} else {
pr_warn("bam_pipe_pair=0x%x", pce_dev->ce_sps.pipe_pair_index);
}
pce_dev->ce_sps.dest_pipe_index = 2 * pce_dev->ce_sps.pipe_pair_index;
pce_dev->ce_sps.src_pipe_index = pce_dev->ce_sps.dest_pipe_index + 1;
resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"crypto-base");
if (resource) {
pce_dev->phy_iobase = resource->start;
pce_dev->iobase = ioremap_nocache(resource->start,
resource_size(resource));
if (!pce_dev->iobase) {
pr_err("Can not map CRYPTO io memory\n");
return -ENOMEM;
}
} else {
pr_err("CRYPTO HW mem unavailable.\n");
return -ENODEV;
}
pr_warn("ce_phy_reg_base=0x%x ", pce_dev->phy_iobase);
pr_warn("ce_virt_reg_base=0x%x\n", (uint32_t)pce_dev->iobase);
resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"crypto-bam-base");
if (resource) {
pce_dev->ce_sps.bam_mem = resource->start;
pce_dev->ce_sps.bam_iobase = ioremap_nocache(resource->start,
resource_size(resource));
if (!pce_dev->iobase) {
rc = -ENOMEM;
pr_err("Can not map BAM io memory\n");
goto err_getting_bam_info;
}
} else {
pr_err("CRYPTO BAM mem unavailable.\n");
rc = -ENODEV;
goto err_getting_bam_info;
}
pr_warn("ce_bam_phy_reg_base=0x%x ", pce_dev->ce_sps.bam_mem);
pr_warn("ce_bam_virt_reg_base=0x%x\n",
(uint32_t)pce_dev->ce_sps.bam_iobase);
resource = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (resource) {
pce_dev->ce_sps.bam_irq = resource->start;
pr_warn("CRYPTO BAM IRQ = %d.\n", pce_dev->ce_sps.bam_irq);
} else {
pr_err("CRYPTO BAM IRQ unavailable.\n");
goto err_dev;
}
return rc;
err_dev:
if (pce_dev->ce_sps.bam_iobase)
iounmap(pce_dev->ce_sps.bam_iobase);
err_getting_bam_info:
if (pce_dev->iobase)
iounmap(pce_dev->iobase);
return rc;
}
static int __qce_init_clk(struct qce_device *pce_dev)
{
int rc = 0;
struct clk *ce_core_clk;
struct clk *ce_clk;
struct clk *ce_core_src_clk;
/* Get CE3 src core clk. */
ce_core_src_clk = clk_get(pce_dev->pdev, "core_clk_src");
if (!IS_ERR(ce_core_src_clk)) {
pce_dev->ce_core_src_clk = ce_core_src_clk;
/* Set the core src clk @100Mhz */
rc = clk_set_rate(pce_dev->ce_core_src_clk, 100000000);
if (rc) {
clk_put(pce_dev->ce_core_src_clk);
pr_err("Unable to set the core src clk @100Mhz.\n");
goto err_clk;
}
} else {
pr_warn("Unable to get CE core src clk, set to NULL\n");
pce_dev->ce_core_src_clk = NULL;
}
/* Get CE core clk */
ce_core_clk = clk_get(pce_dev->pdev, "core_clk");
if (IS_ERR(ce_core_clk)) {
rc = PTR_ERR(ce_core_clk);
pr_err("Unable to get CE core clk\n");
if (pce_dev->ce_core_src_clk != NULL)
clk_put(pce_dev->ce_core_src_clk);
goto err_clk;
}
pce_dev->ce_core_clk = ce_core_clk;
/* Get CE Interface clk */
ce_clk = clk_get(pce_dev->pdev, "iface_clk");
if (IS_ERR(ce_clk)) {
rc = PTR_ERR(ce_clk);
pr_err("Unable to get CE interface clk\n");
if (pce_dev->ce_core_src_clk != NULL)
clk_put(pce_dev->ce_core_src_clk);
clk_put(pce_dev->ce_core_clk);
goto err_clk;
}
pce_dev->ce_clk = ce_clk;
/* Enable CE core clk */
rc = clk_prepare_enable(pce_dev->ce_core_clk);
if (rc) {
pr_err("Unable to enable/prepare CE core clk\n");
if (pce_dev->ce_core_src_clk != NULL)
clk_put(pce_dev->ce_core_src_clk);
clk_put(pce_dev->ce_core_clk);
clk_put(pce_dev->ce_clk);
goto err_clk;
} else {
/* Enable CE clk */
rc = clk_prepare_enable(pce_dev->ce_clk);
if (rc) {
pr_err("Unable to enable/prepare CE iface clk\n");
clk_disable_unprepare(pce_dev->ce_core_clk);
if (pce_dev->ce_core_src_clk != NULL)
clk_put(pce_dev->ce_core_src_clk);
clk_put(pce_dev->ce_core_clk);
clk_put(pce_dev->ce_clk);
goto err_clk;
}
}
err_clk:
if (rc)
pr_err("Unable to init CE clks, rc = %d\n", rc);
return rc;
}
/* crypto engine open function. */
void *qce_open(struct platform_device *pdev, int *rc)
{
struct qce_device *pce_dev;
pce_dev = kzalloc(sizeof(struct qce_device), GFP_KERNEL);
if (!pce_dev) {
*rc = -ENOMEM;
pr_err("Can not allocate memory: %d\n", *rc);
return NULL;
}
pce_dev->pdev = &pdev->dev;
if (pdev->dev.of_node) {
*rc = __qce_get_device_tree_data(pdev, pce_dev);
if (*rc)
goto err_pce_dev;
} else {
*rc = -EINVAL;
pr_err("Device Node not found.\n");
goto err_pce_dev;
}
pce_dev->memsize = 9 * PAGE_SIZE;
pce_dev->coh_vmem = dma_alloc_coherent(pce_dev->pdev,
pce_dev->memsize, &pce_dev->coh_pmem, GFP_KERNEL);
if (pce_dev->coh_vmem == NULL) {
*rc = -ENOMEM;
pr_err("Can not allocate coherent memory for sps data\n");
goto err_iobase;
}
*rc = __qce_init_clk(pce_dev);
if (*rc)
goto err_mem;
if (_probe_ce_engine(pce_dev)) {
*rc = -ENXIO;
goto err;
}
*rc = 0;
qce_setup_ce_sps_data(pce_dev);
qce_sps_init(pce_dev);
return pce_dev;
err:
clk_disable_unprepare(pce_dev->ce_clk);
clk_disable_unprepare(pce_dev->ce_core_clk);
if (pce_dev->ce_core_src_clk != NULL)
clk_put(pce_dev->ce_core_src_clk);
clk_put(pce_dev->ce_clk);
clk_put(pce_dev->ce_core_clk);
err_mem:
if (pce_dev->coh_vmem)
dma_free_coherent(pce_dev->pdev, pce_dev->memsize,
pce_dev->coh_vmem, pce_dev->coh_pmem);
err_iobase:
if (pce_dev->ce_sps.bam_iobase)
iounmap(pce_dev->ce_sps.bam_iobase);
if (pce_dev->iobase)
iounmap(pce_dev->iobase);
err_pce_dev:
kfree(pce_dev);
return NULL;
}
EXPORT_SYMBOL(qce_open);
/* crypto engine close function. */
int qce_close(void *handle)
{
struct qce_device *pce_dev = (struct qce_device *) handle;
if (handle == NULL)
return -ENODEV;
if (pce_dev->iobase)
iounmap(pce_dev->iobase);
if (pce_dev->coh_vmem)
dma_free_coherent(pce_dev->pdev, pce_dev->memsize,
pce_dev->coh_vmem, pce_dev->coh_pmem);
clk_disable_unprepare(pce_dev->ce_clk);
clk_disable_unprepare(pce_dev->ce_core_clk);
if (pce_dev->ce_core_src_clk != NULL)
clk_put(pce_dev->ce_core_src_clk);
clk_put(pce_dev->ce_clk);
clk_put(pce_dev->ce_core_clk);
qce_sps_exit(pce_dev);
kfree(handle);
return 0;
}
EXPORT_SYMBOL(qce_close);
int qce_hw_support(void *handle, struct ce_hw_support *ce_support)
{
struct qce_device *pce_dev = (struct qce_device *)handle;
if (ce_support == NULL)
return -EINVAL;
ce_support->sha1_hmac_20 = false;
ce_support->sha1_hmac = false;
ce_support->sha256_hmac = false;
ce_support->sha_hmac = true;
ce_support->cmac = true;
ce_support->aes_key_192 = false;
ce_support->aes_xts = true;
ce_support->ota = false;
ce_support->bam = true;
if (pce_dev->ce_sps.minor_version) {
ce_support->aligned_only = false;
ce_support->aes_ccm = true;
} else {
ce_support->aligned_only = true;
ce_support->aes_ccm = false;
}
return 0;
}
EXPORT_SYMBOL(qce_hw_support);
static int __init qce_init(void)
{
bam_registry.handle = 0;
bam_registry.cnt = 0;
return 0;
}
static void __exit qce_exit(void)
{
bam_registry.handle = 0;
bam_registry.cnt = 0;
}
module_init(qce_init);
module_exit(qce_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Crypto Engine driver");