blob: 62e179b5383558a1c1e83d31f29f44eee3c7915c [file] [log] [blame]
/* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* MSM PCIe controller driver.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/of_gpio.h>
#include <linux/clk/msm-clk.h>
#include <asm/mach/pci.h>
#include <mach/gpiomux.h>
#include <mach/hardware.h>
#include <mach/msm_iomap.h>
#include <linux/msm-bus.h>
#include <linux/msm-bus-board.h>
#include "pcie.h"
/* Root Complex Port vendor/device IDs */
#define PCIE_VENDOR_ID_RCP 0x17cb
#ifdef CONFIG_ARCH_MDM9630
#define PCIE_DEVICE_ID_RCP 0x300
#else
#define PCIE_DEVICE_ID_RCP 0x0101
#endif
#define PCIE20_PARF_SYS_CTRL 0x00
#define PCIE20_PARF_PM_CTRL 0x20
#define PCIE20_PARF_PM_STTS 0x24
#define PCIE20_PARF_PCS_DEEMPH 0x34
#define PCIE20_PARF_PCS_SWING 0x38
#define PCIE20_PARF_PHY_CTRL 0x40
#define PCIE20_PARF_PHY_REFCLK 0x4C
#define PCIE20_PARF_CONFIG_BITS 0x50
#define PCIE20_PARF_DBI_BASE_ADDR 0x168
#define PCIE20_PARF_AXI_MSTR_WR_ADDR_HALT 0x178
#define PCIE20_PARF_Q2A_FLUSH 0x1AC
#define PCIE20_ELBI_VERSION 0x00
#define PCIE20_ELBI_SYS_CTRL 0x04
#define PCIE20_ELBI_SYS_STTS 0x08
#define PCIE20_CAP 0x70
#define PCIE20_CAP_LINKCTRLSTATUS (PCIE20_CAP + 0x10)
#define PCIE20_COMMAND_STATUS 0x04
#define PCIE20_HEADER_TYPE 0x0C
#define PCIE20_BUSNUMBERS 0x18
#define PCIE20_MEMORY_BASE_LIMIT 0x20
#define PCIE20_L1SUB_CONTROL1 0x158
#define PCIE20_EP_L1SUB_CTL1_OFFSET 0x30
#define PCIE20_DEVICE_CONTROL2_STATUS2 0x98
#define PCIE20_ACK_F_ASPM_CTRL_REG 0x70C
#define PCIE20_ACK_N_FTS 0xff00
#define PCIE20_PLR_IATU_VIEWPORT 0x900
#define PCIE20_PLR_IATU_CTRL1 0x904
#define PCIE20_PLR_IATU_CTRL2 0x908
#define PCIE20_PLR_IATU_LBAR 0x90C
#define PCIE20_PLR_IATU_UBAR 0x910
#define PCIE20_PLR_IATU_LAR 0x914
#define PCIE20_PLR_IATU_LTAR 0x918
#define PCIE20_PLR_IATU_UTAR 0x91c
#define PCIE20_CTRL1_TYPE_CFG0 0x04
#define PCIE20_CTRL1_TYPE_CFG1 0x05
#define RD 0
#define WR 1
/* Timing Delays */
#define PERST_PROPAGATION_DELAY_US_MIN 1000
#define PERST_PROPAGATION_DELAY_US_MAX 1005
#define REFCLK_STABILIZATION_DELAY_US_MIN 1000
#define REFCLK_STABILIZATION_DELAY_US_MAX 1500
#define LINK_RETRY_TIMEOUT_US_MIN 20000
#define LINK_RETRY_TIMEOUT_US_MAX 25000
#define LINK_UP_TIMEOUT_US_MIN 5000
#define LINK_UP_TIMEOUT_US_MAX 5100
#define LINK_UP_CHECK_MAX_COUNT 20
#define PHY_STABILIZATION_DELAY_US_MIN 995
#define PHY_STABILIZATION_DELAY_US_MAX 1005
#define REQ_EXIT_L1_DELAY_US 1
#define PHY_READY_TIMEOUT_COUNT 10
#define XMLH_LINK_UP 0x400
#define MAX_LINK_RETRIES 5
#define MAX_BUS_NUM 3
#define MAX_PROP_SIZE 32
#define MAX_RC_NAME_LEN 15
/* Config Space Offsets */
#define BDF_OFFSET(bus, devfn) \
((bus << 24) | (devfn << 16))
/* debug mask sys interface */
static int msm_pcie_debug_mask;
module_param_named(debug_mask, msm_pcie_debug_mask,
int, S_IRUGO | S_IWUSR | S_IWGRP);
/* Table to track info of PCIe devices */
static struct msm_pcie_device_info
msm_pcie_dev_tbl[MAX_RC_NUM * MAX_DEVICE_NUM];
/**
* PCIe driver state
*/
struct pcie_drv_sta {
u32 rc_num;
u32 rc_expected;
u32 current_rc;
bool vreg_on;
struct mutex drv_lock;
} pcie_drv;
/* msm pcie device data */
static struct msm_pcie_dev_t msm_pcie_dev[MAX_RC_NUM];
/* regulators */
static struct msm_pcie_vreg_info_t msm_pcie_vreg_info[MSM_PCIE_MAX_VREG] = {
{NULL, "vreg-3.3", 0, 0, 0, false},
{NULL, "vreg-1.8", 1800000, 1800000, 1000, true},
{NULL, "vreg-0.9", 1000000, 1000000, 24000, true}
};
/* GPIOs */
static struct msm_pcie_gpio_info_t msm_pcie_gpio_info[MSM_PCIE_MAX_GPIO] = {
{"perst-gpio", 0, 1, 0, 0},
{"wake-gpio", 0, 0, 0, 0},
{"clkreq-gpio", 0, 0, 0, 0}
};
/* clocks */
static struct msm_pcie_clk_info_t
msm_pcie_clk_info[MAX_RC_NUM][MSM_PCIE_MAX_CLK] = {
{
{NULL, "pcie_0_ref_clk_src", 0, false},
{NULL, "pcie_0_aux_clk", 1010000, true},
{NULL, "pcie_0_cfg_ahb_clk", 0, true},
{NULL, "pcie_0_mstr_axi_clk", 0, true},
{NULL, "pcie_0_slv_axi_clk", 0, true},
{NULL, "pcie_0_ldo", 0, true}
},
{
{NULL, "pcie_1_ref_clk_src", 0, false},
{NULL, "pcie_1_aux_clk", 1010000, true},
{NULL, "pcie_1_cfg_ahb_clk", 0, true},
{NULL, "pcie_1_mstr_axi_clk", 0, true},
{NULL, "pcie_1_slv_axi_clk", 0, true},
{NULL, "pcie_1_ldo", 0, true}
}
};
/* Pipe Clocks */
static struct msm_pcie_clk_info_t
msm_pcie_pipe_clk_info[MAX_RC_NUM][MSM_PCIE_MAX_PIPE_CLK] = {
{
{NULL, "pcie_0_pipe_clk", 125000000, true},
},
{
{NULL, "pcie_1_pipe_clk", 125000000, true},
}
};
/* resources */
static const struct msm_pcie_res_info_t msm_pcie_res_info[MSM_PCIE_MAX_RES] = {
{"parf", 0, 0},
{"phy", 0, 0},
{"dm_core", 0, 0},
{"elbi", 0, 0},
{"conf", 0, 0},
{"io", 0, 0},
{"bars", 0, 0}
};
/* irqs */
static const struct msm_pcie_irq_info_t msm_pcie_irq_info[MSM_PCIE_MAX_IRQ] = {
{"int_msi", 0},
{"int_a", 0},
{"int_b", 0},
{"int_c", 0},
{"int_d", 0},
{"int_pls_pme", 0},
{"int_pme_legacy", 0},
{"int_pls_err", 0},
{"int_aer_legacy", 0},
{"int_pls_link_up", 0},
{"int_pls_link_down", 0},
{"int_bridge_flush_n", 0},
{"int_wake", 0}
};
int msm_pcie_get_debug_mask(void)
{
return msm_pcie_debug_mask;
}
bool msm_pcie_confirm_linkup(struct msm_pcie_dev_t *dev,
bool check_sw_stts,
bool check_ep)
{
u32 val;
if (check_sw_stts && (dev->link_status != MSM_PCIE_LINK_ENABLED)) {
PCIE_DBG(dev, "PCIe: The link of RC %d is not enabled.\n",
dev->rc_idx);
return false;
}
if (!(readl_relaxed(dev->dm_core + 0x80) & BIT(29))) {
PCIE_DBG(dev, "PCIe: The link of RC %d is not up.\n",
dev->rc_idx);
return false;
}
val = readl_relaxed(dev->dm_core);
PCIE_DBG(dev, "PCIe: device ID and vender ID of RC %d are 0x%x.\n",
dev->rc_idx, val);
if (val == PCIE_LINK_DOWN) {
PCIE_ERR(dev,
"PCIe: The link of RC %d is not really up; device ID and vender ID of RC %d are 0x%x.\n",
dev->rc_idx, dev->rc_idx, val);
return false;
}
if (check_ep) {
val = readl_relaxed(dev->conf);
PCIE_DBG(dev,
"PCIe: device ID and vender ID of EP of RC %d are 0x%x.\n",
dev->rc_idx, val);
if (val == PCIE_LINK_DOWN) {
PCIE_ERR(dev,
"PCIe: The link of RC %d is not really up; device ID and vender ID of EP of RC %d are 0x%x.\n",
dev->rc_idx, dev->rc_idx, val);
return false;
}
}
return true;
}
void msm_pcie_cfg_recover(struct msm_pcie_dev_t *dev, bool rc)
{
int i, j;
u32 val = 0;
u32 *shadow;
void *cfg = dev->conf;
for (i = 0; i < MAX_DEVICE_NUM; i++) {
if (!rc && !dev->pcidev_table[i].bdf)
break;
if (rc) {
cfg = dev->dm_core;
shadow = dev->rc_shadow;
} else {
shadow = dev->ep_shadow[i];
PCIE_DBG3(dev,
"PCIe Device: %02x:%02x.%01x\n",
dev->pcidev_table[i].bdf >> 24,
dev->pcidev_table[i].bdf >> 19 & 0x1f,
dev->pcidev_table[i].bdf >> 16 & 0x07);
}
for (j = PCIE_CONF_SPACE_DW - 1; j >= 0; j--) {
val = shadow[j];
if (val != PCIE_CLEAR) {
PCIE_DBG3(dev,
"PCIe: before recovery:cfg 0x%x:0x%x\n",
j * 4, readl_relaxed(cfg + j * 4));
PCIE_DBG3(dev,
"PCIe: shadow_dw[%d]:cfg 0x%x:0x%x\n",
j, j * 4, val);
writel_relaxed(val, cfg + j * 4);
wmb(); /* ensure reg is recovered */
PCIE_DBG3(dev,
"PCIe: after recovery:cfg 0x%x:0x%x\n\n",
j * 4, readl_relaxed(cfg + j * 4));
}
}
readl_relaxed(dev->elbi);
if (rc)
break;
cfg += SZ_4K;
}
}
static void msm_pcie_write_mask(void __iomem *addr,
uint32_t clear_mask, uint32_t set_mask)
{
uint32_t val;
val = (readl_relaxed(addr) & ~clear_mask) | set_mask;
writel_relaxed(val, addr);
wmb(); /* ensure data is written to hardware register */
}
static int msm_pcie_is_link_up(struct msm_pcie_dev_t *dev)
{
return readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS) & BIT(29);
}
static void msm_pcie_iatu_config(struct msm_pcie_dev_t *dev, int nr, u8 type,
unsigned long host_addr, u32 host_end,
unsigned long target_addr)
{
void __iomem *pcie20 = dev->dm_core;
if (dev->shadow_en) {
writel_relaxed(nr, dev->rc_shadow +
PCIE20_PLR_IATU_VIEWPORT / 4);
writel_relaxed(type, dev->rc_shadow +
PCIE20_PLR_IATU_CTRL1 / 4);
writel_relaxed(lower_32_bits(host_addr), dev->rc_shadow +
PCIE20_PLR_IATU_LBAR / 4);
writel_relaxed(upper_32_bits(host_addr), dev->rc_shadow +
PCIE20_PLR_IATU_UBAR / 4);
writel_relaxed(host_end, dev->rc_shadow +
PCIE20_PLR_IATU_LAR / 4);
writel_relaxed(lower_32_bits(target_addr), dev->rc_shadow +
PCIE20_PLR_IATU_LTAR / 4);
writel_relaxed(upper_32_bits(target_addr), dev->rc_shadow +
PCIE20_PLR_IATU_UTAR / 4);
writel_relaxed(BIT(31), dev->rc_shadow +
PCIE20_PLR_IATU_CTRL2 / 4);
}
/* select region */
writel_relaxed(nr, pcie20 + PCIE20_PLR_IATU_VIEWPORT);
/* ensure that hardware locks it */
wmb();
/* switch off region before changing it */
writel_relaxed(0, pcie20 + PCIE20_PLR_IATU_CTRL2);
/* and wait till it propagates to the hardware */
wmb();
writel_relaxed(type, pcie20 + PCIE20_PLR_IATU_CTRL1);
writel_relaxed(lower_32_bits(host_addr),
pcie20 + PCIE20_PLR_IATU_LBAR);
writel_relaxed(upper_32_bits(host_addr),
pcie20 + PCIE20_PLR_IATU_UBAR);
writel_relaxed(host_end, pcie20 + PCIE20_PLR_IATU_LAR);
writel_relaxed(lower_32_bits(target_addr),
pcie20 + PCIE20_PLR_IATU_LTAR);
writel_relaxed(upper_32_bits(target_addr),
pcie20 + PCIE20_PLR_IATU_UTAR);
/* ensure the setting is ready before enable iATU */
wmb();
writel_relaxed(BIT(31), pcie20 + PCIE20_PLR_IATU_CTRL2);
/* ensure that changes propagated to the hardware */
wmb();
if (dev->enumerated) {
PCIE_DBG2(dev, "IATU for Endpoint %02x:%02x.%01x\n",
dev->pcidev_table[nr].bdf >> 24,
dev->pcidev_table[nr].bdf >> 19 & 0x1f,
dev->pcidev_table[nr].bdf >> 16 & 0x07);
PCIE_DBG2(dev, "PCIE20_PLR_IATU_VIEWPORT:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_VIEWPORT));
PCIE_DBG2(dev, "PCIE20_PLR_IATU_CTRL1:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_CTRL1));
PCIE_DBG2(dev, "PCIE20_PLR_IATU_LBAR:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_LBAR));
PCIE_DBG2(dev, "PCIE20_PLR_IATU_UBAR:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_UBAR));
PCIE_DBG2(dev, "PCIE20_PLR_IATU_LAR:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_LAR));
PCIE_DBG2(dev, "PCIE20_PLR_IATU_LTAR:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_LTAR));
PCIE_DBG2(dev, "PCIE20_PLR_IATU_UTAR:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_UTAR));
PCIE_DBG2(dev, "PCIE20_PLR_IATU_CTRL2:0x%x\n\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_CTRL2));
}
}
static void msm_pcie_cfg_bdf(struct msm_pcie_dev_t *dev, u8 bus, u8 devfn)
{
struct resource *axi_conf = dev->res[MSM_PCIE_RES_CONF].resource;
u32 bdf = BDF_OFFSET(bus, devfn);
u8 type = bus == 1 ? PCIE20_CTRL1_TYPE_CFG0 : PCIE20_CTRL1_TYPE_CFG1;
if (dev->current_bdf == bdf)
return;
msm_pcie_iatu_config(dev, 0, type,
axi_conf->start,
axi_conf->start + SZ_4K - 1,
bdf);
dev->current_bdf = bdf;
}
static inline void msm_pcie_save_shadow(struct msm_pcie_dev_t *dev,
u32 word_offset, u32 wr_val,
u32 bdf, bool rc)
{
int i, j;
u32 max_dev = MAX_RC_NUM * MAX_DEVICE_NUM;
if (rc) {
dev->rc_shadow[word_offset / 4] = wr_val;
} else {
for (i = 0; i < MAX_DEVICE_NUM; i++) {
if (!dev->pcidev_table[i].bdf) {
for (j = 0; j < max_dev; j++)
if (!msm_pcie_dev_tbl[j].bdf) {
msm_pcie_dev_tbl[j].bdf = bdf;
break;
}
dev->pcidev_table[i].bdf = bdf;
}
if (dev->pcidev_table[i].bdf == bdf) {
dev->ep_shadow[i][word_offset / 4] = wr_val;
break;
}
}
}
}
static inline int msm_pcie_oper_conf(struct pci_bus *bus, u32 devfn, int oper,
int where, int size, u32 *val)
{
uint32_t word_offset, byte_offset, mask;
uint32_t rd_val, wr_val;
struct msm_pcie_dev_t *dev;
void __iomem *config_base;
bool rc = false;
u32 rc_idx;
int rv = 0;
u32 bdf = BDF_OFFSET(bus->number, devfn);
int i;
dev = ((struct msm_pcie_dev_t *)
(((struct pci_sys_data *)bus->sysdata)->private_data));
if (!dev) {
pr_err("PCIe: No device found for this bus.\n");
*val = ~0;
rv = PCIBIOS_DEVICE_NOT_FOUND;
goto out;
}
rc_idx = dev->rc_idx;
rc = (bus->number == 0);
spin_lock_irqsave(&dev->cfg_lock, dev->irqsave_flags);
if (rc && (devfn != 0)) {
PCIE_DBG3(dev, "RC%d invalid %s - bus %d devfn %d\n", rc_idx,
(oper == RD) ? "rd" : "wr", bus->number, devfn);
*val = ~0;
rv = PCIBIOS_DEVICE_NOT_FOUND;
goto unlock;
}
if (dev->link_status != MSM_PCIE_LINK_ENABLED) {
PCIE_DBG3(dev,
"Access to RC%d %d:0x%02x + 0x%04x[%d] is denied because link is down\n",
rc_idx, bus->number, devfn, where, size);
*val = ~0;
rv = PCIBIOS_DEVICE_NOT_FOUND;
goto unlock;
}
/* check if the link is up for endpoint */
if (!rc && !msm_pcie_is_link_up(dev)) {
PCIE_ERR(dev,
"PCIe: RC%d %s fail, link down - bus %d devfn %d\n",
rc_idx, (oper == RD) ? "rd" : "wr",
bus->number, devfn);
*val = ~0;
rv = PCIBIOS_DEVICE_NOT_FOUND;
goto unlock;
}
if (!rc && !dev->enumerated)
msm_pcie_cfg_bdf(dev, bus->number, devfn);
word_offset = where & ~0x3;
byte_offset = where & 0x3;
mask = (~0 >> (8 * (4 - size))) << (8 * byte_offset);
if (rc || !dev->enumerated) {
config_base = rc ? dev->dm_core : dev->conf;
} else {
for (i = 0; i < MAX_DEVICE_NUM; i++) {
if (dev->pcidev_table[i].bdf == bdf) {
config_base = dev->pcidev_table[i].conf_base;
break;
}
}
if (i == MAX_DEVICE_NUM) {
*val = ~0;
rv = PCIBIOS_DEVICE_NOT_FOUND;
goto unlock;
}
}
rd_val = readl_relaxed(config_base + word_offset);
if (oper == RD) {
*val = ((rd_val & mask) >> (8 * byte_offset));
PCIE_DBG3(dev,
"RC%d %d:0x%02x + 0x%04x[%d] -> 0x%08x; rd 0x%08x\n",
rc_idx, bus->number, devfn, where, size, *val, rd_val);
} else {
wr_val = (rd_val & ~mask) |
((*val << (8 * byte_offset)) & mask);
writel_relaxed(wr_val, config_base + word_offset);
wmb(); /* ensure config data is written to hardware register */
readl_relaxed(dev->elbi);
if (rd_val == PCIE_LINK_DOWN)
PCIE_ERR(dev,
"Read of RC%d %d:0x%02x + 0x%04x[%d] is all FFs\n",
rc_idx, bus->number, devfn, where, size);
else if (dev->shadow_en)
msm_pcie_save_shadow(dev, word_offset, wr_val, bdf, rc);
PCIE_DBG3(dev,
"RC%d %d:0x%02x + 0x%04x[%d] <- 0x%08x; rd 0x%08x val 0x%08x\n",
rc_idx, bus->number, devfn, where, size,
wr_val, rd_val, *val);
}
unlock:
spin_unlock_irqrestore(&dev->cfg_lock, dev->irqsave_flags);
out:
return rv;
}
static int msm_pcie_rd_conf(struct pci_bus *bus, u32 devfn, int where,
int size, u32 *val)
{
int ret = msm_pcie_oper_conf(bus, devfn, RD, where, size, val);
if ((bus->number == 0) && (where == PCI_CLASS_REVISION)) {
*val = (*val & 0xff) | (PCI_CLASS_BRIDGE_PCI << 16);
pr_debug("change class for RC:0x%x\n", *val);
}
return ret;
}
static int msm_pcie_wr_conf(struct pci_bus *bus, u32 devfn,
int where, int size, u32 val)
{
return msm_pcie_oper_conf(bus, devfn, WR, where, size, &val);
}
static struct pci_ops msm_pcie_ops = {
.read = msm_pcie_rd_conf,
.write = msm_pcie_wr_conf,
};
static int msm_pcie_gpio_init(struct msm_pcie_dev_t *dev)
{
int rc, i;
struct msm_pcie_gpio_info_t *info;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
for (i = 0; i < dev->gpio_n; i++) {
info = &dev->gpio[i];
if (!info->num)
continue;
rc = gpio_request(info->num, info->name);
if (rc) {
PCIE_ERR(dev, "PCIe: RC%d can't get gpio %s; %d\n",
dev->rc_idx, info->name, rc);
break;
}
if (info->out)
rc = gpio_direction_output(info->num, info->init);
else
rc = gpio_direction_input(info->num);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d can't set direction for GPIO %s:%d\n",
dev->rc_idx, info->name, rc);
gpio_free(info->num);
break;
}
}
if (rc)
while (i--)
gpio_free(dev->gpio[i].num);
return rc;
}
static void msm_pcie_gpio_deinit(struct msm_pcie_dev_t *dev)
{
int i;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
for (i = 0; i < dev->gpio_n; i++)
gpio_free(dev->gpio[i].num);
}
int msm_pcie_vreg_init(struct msm_pcie_dev_t *dev)
{
int i, rc = 0;
struct regulator *vreg;
struct msm_pcie_vreg_info_t *info;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
for (i = 0; i < MSM_PCIE_MAX_VREG; i++) {
info = &dev->vreg[i];
vreg = info->hdl;
if (!vreg)
continue;
PCIE_DBG2(dev, "RC%d Vreg %s is being enabled\n",
dev->rc_idx, info->name);
if (info->max_v) {
rc = regulator_set_voltage(vreg,
info->min_v, info->max_v);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d can't set voltage for %s: %d\n",
dev->rc_idx, info->name, rc);
break;
}
}
if (info->opt_mode) {
rc = regulator_set_optimum_mode(vreg, info->opt_mode);
if (rc < 0) {
PCIE_ERR(dev,
"PCIe: RC%d can't set mode for %s: %d\n",
dev->rc_idx, info->name, rc);
break;
}
}
rc = regulator_enable(vreg);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d can't enable regulator %s: %d\n",
dev->rc_idx, info->name, rc);
break;
}
}
if (rc)
while (i--) {
struct regulator *hdl = dev->vreg[i].hdl;
if (hdl)
regulator_disable(hdl);
}
return rc;
}
static void msm_pcie_vreg_deinit(struct msm_pcie_dev_t *dev)
{
int i;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
for (i = MSM_PCIE_MAX_VREG - 1; i >= 0; i--) {
if (dev->vreg[i].hdl) {
PCIE_DBG(dev, "Vreg %s is being disabled\n",
dev->vreg[i].name);
regulator_disable(dev->vreg[i].hdl);
}
}
}
static int msm_pcie_clk_init(struct msm_pcie_dev_t *dev)
{
int i, rc = 0;
struct msm_pcie_clk_info_t *info;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
rc = regulator_enable(dev->gdsc);
if (rc) {
PCIE_ERR(dev, "PCIe: fail to enable GDSC for RC%d (%s)\n",
dev->rc_idx, dev->pdev->name);
return rc;
}
if (dev->bus_client) {
rc = msm_bus_scale_client_update_request(dev->bus_client, 1);
if (rc) {
PCIE_ERR(dev,
"PCIe: fail to set bus bandwidth for RC%d:%d.\n",
dev->rc_idx, rc);
return rc;
} else {
PCIE_DBG2(dev,
"PCIe: set bus bandwidth for RC%d.\n",
dev->rc_idx);
}
}
for (i = 0; i < MSM_PCIE_MAX_CLK; i++) {
info = &dev->clk[i];
if (!info->hdl)
continue;
if (info->freq) {
rc = clk_set_rate(info->hdl, info->freq);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d can't set rate for clk %s: %d.\n",
dev->rc_idx, info->name, rc);
break;
} else {
PCIE_DBG2(dev,
"PCIe: RC%d set rate for clk %s.\n",
dev->rc_idx, info->name);
}
}
rc = clk_prepare_enable(info->hdl);
if (rc)
PCIE_ERR(dev, "PCIe: RC%d failed to enable clk %s\n",
dev->rc_idx, info->name);
else
PCIE_DBG2(dev, "enable clk %s for RC%d.\n",
info->name, dev->rc_idx);
}
if (rc) {
PCIE_DBG(dev, "RC%d disable clocks for error handling.\n",
dev->rc_idx);
while (i--) {
struct clk *hdl = dev->clk[i].hdl;
if (hdl)
clk_disable_unprepare(hdl);
}
regulator_disable(dev->gdsc);
}
return rc;
}
static void msm_pcie_clk_deinit(struct msm_pcie_dev_t *dev)
{
int i;
int rc;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
for (i = 0; i < MSM_PCIE_MAX_CLK; i++)
if (dev->clk[i].hdl)
clk_disable_unprepare(dev->clk[i].hdl);
if (dev->bus_client) {
rc = msm_bus_scale_client_update_request(dev->bus_client, 0);
if (rc)
PCIE_ERR(dev,
"PCIe: fail to relinquish bus bandwidth for RC%d:%d.\n",
dev->rc_idx, rc);
else
PCIE_DBG(dev,
"PCIe: relinquish bus bandwidth for RC%d.\n",
dev->rc_idx);
}
regulator_disable(dev->gdsc);
}
static int msm_pcie_pipe_clk_init(struct msm_pcie_dev_t *dev)
{
int i, rc = 0;
struct msm_pcie_clk_info_t *info;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
for (i = 0; i < MSM_PCIE_MAX_PIPE_CLK; i++) {
info = &dev->pipeclk[i];
if (!info->hdl)
continue;
clk_reset(info->hdl, CLK_RESET_DEASSERT);
if (info->freq) {
rc = clk_set_rate(info->hdl, info->freq);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d can't set rate for clk %s: %d.\n",
dev->rc_idx, info->name, rc);
break;
} else {
PCIE_DBG2(dev,
"PCIe: RC%d set rate for clk %s: %d.\n",
dev->rc_idx, info->name, rc);
}
}
rc = clk_prepare_enable(info->hdl);
if (rc)
PCIE_ERR(dev, "PCIe: RC%d failed to enable clk %s.\n",
dev->rc_idx, info->name);
else
PCIE_DBG2(dev, "RC%d enabled pipe clk %s.\n",
dev->rc_idx, info->name);
}
if (rc) {
PCIE_DBG(dev, "RC%d disable pipe clocks for error handling.\n",
dev->rc_idx);
while (i--)
if (dev->pipeclk[i].hdl)
clk_disable_unprepare(dev->pipeclk[i].hdl);
}
return rc;
}
static void msm_pcie_pipe_clk_deinit(struct msm_pcie_dev_t *dev)
{
int i;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
for (i = 0; i < MSM_PCIE_MAX_PIPE_CLK; i++)
if (dev->pipeclk[i].hdl)
clk_disable_unprepare(
dev->pipeclk[i].hdl);
}
static void msm_pcie_iatu_config_all_ep(struct msm_pcie_dev_t *dev)
{
int i;
u8 type;
struct msm_pcie_device_info *dev_table = dev->pcidev_table;
for (i = 0; i < MAX_DEVICE_NUM; i++) {
if (!dev_table[i].bdf)
break;
type = dev_table[i].bdf >> 24 == 0x1 ?
PCIE20_CTRL1_TYPE_CFG0 : PCIE20_CTRL1_TYPE_CFG1;
msm_pcie_iatu_config(dev, i, type, dev_table[i].phy_address,
dev_table[i].phy_address + SZ_4K - 1,
dev_table[i].bdf);
}
}
static void msm_pcie_config_controller(struct msm_pcie_dev_t *dev)
{
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
/*
* program and enable address translation region 0 (device config
* address space); region type config;
* axi config address range to device config address range
*/
if (dev->enumerated) {
msm_pcie_iatu_config_all_ep(dev);
} else {
dev->current_bdf = 0; /* to force IATU re-config */
msm_pcie_cfg_bdf(dev, 1, 0);
}
/* configure N_FTS */
PCIE_DBG2(dev, "Original PCIE20_ACK_F_ASPM_CTRL_REG:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_ACK_F_ASPM_CTRL_REG));
if (!dev->n_fts)
msm_pcie_write_mask(dev->dm_core + PCIE20_ACK_F_ASPM_CTRL_REG,
0, BIT(15));
else
msm_pcie_write_mask(dev->dm_core + PCIE20_ACK_F_ASPM_CTRL_REG,
PCIE20_ACK_N_FTS,
dev->n_fts << 8);
readl_relaxed(dev->elbi);
if (dev->shadow_en)
dev->rc_shadow[PCIE20_ACK_F_ASPM_CTRL_REG / 4] =
readl_relaxed(dev->dm_core +
PCIE20_ACK_F_ASPM_CTRL_REG);
PCIE_DBG2(dev, "Updated PCIE20_ACK_F_ASPM_CTRL_REG:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_ACK_F_ASPM_CTRL_REG));
}
static void msm_pcie_config_l1ss(struct msm_pcie_dev_t *dev)
{
u32 offset = 0;
if (!dev->rc_idx)
offset = PCIE20_EP_L1SUB_CTL1_OFFSET;
/* Enable the AUX Clock and the Core Clk to be synchronous for L1SS*/
if (!dev->aux_clk_sync)
msm_pcie_write_mask(dev->parf +
PCIE20_PARF_SYS_CTRL, BIT(3), 0);
/* Enable L1SS on RC */
msm_pcie_write_mask(dev->dm_core + PCIE20_CAP_LINKCTRLSTATUS, 0,
BIT(1)|BIT(0));
msm_pcie_write_mask(dev->dm_core + PCIE20_L1SUB_CONTROL1, 0,
BIT(3)|BIT(2)|BIT(1)|BIT(0));
msm_pcie_write_mask(dev->dm_core + PCIE20_DEVICE_CONTROL2_STATUS2, 0,
BIT(10));
readl_relaxed(dev->elbi);
if (dev->shadow_en) {
dev->rc_shadow[PCIE20_CAP_LINKCTRLSTATUS / 4] =
readl_relaxed(dev->dm_core + PCIE20_CAP_LINKCTRLSTATUS);
dev->rc_shadow[PCIE20_L1SUB_CONTROL1 / 4] =
readl_relaxed(dev->dm_core + PCIE20_L1SUB_CONTROL1);
dev->rc_shadow[PCIE20_DEVICE_CONTROL2_STATUS2 / 4] =
readl_relaxed(dev->dm_core +
PCIE20_DEVICE_CONTROL2_STATUS2);
}
PCIE_DBG2(dev, "RC's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_CAP_LINKCTRLSTATUS));
PCIE_DBG2(dev, "RC's L1SUB_CONTROL1:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_L1SUB_CONTROL1));
PCIE_DBG2(dev, "RC's DEVICE_CONTROL2_STATUS2:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_DEVICE_CONTROL2_STATUS2));
/* Enable L1SS on EP */
msm_pcie_write_mask(dev->conf + PCIE20_CAP_LINKCTRLSTATUS, 0,
BIT(1)|BIT(0));
msm_pcie_write_mask(dev->conf + PCIE20_L1SUB_CONTROL1 +
offset, 0,
BIT(3)|BIT(2)|BIT(1)|BIT(0));
msm_pcie_write_mask(dev->conf + PCIE20_DEVICE_CONTROL2_STATUS2, 0,
BIT(10));
readl_relaxed(dev->elbi);
if (dev->shadow_en) {
dev->ep_shadow[0][PCIE20_CAP_LINKCTRLSTATUS / 4] =
readl_relaxed(dev->conf +
PCIE20_CAP_LINKCTRLSTATUS);
dev->ep_shadow[0][PCIE20_L1SUB_CONTROL1 / 4 + offset / 4] =
readl_relaxed(dev->conf +
PCIE20_L1SUB_CONTROL1 + offset);
dev->ep_shadow[0][PCIE20_DEVICE_CONTROL2_STATUS2 / 4] =
readl_relaxed(dev->conf +
PCIE20_DEVICE_CONTROL2_STATUS2);
}
PCIE_DBG2(dev, "EP's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->conf + PCIE20_CAP_LINKCTRLSTATUS));
PCIE_DBG2(dev, "EP's L1SUB_CONTROL1:0x%x\n",
readl_relaxed(dev->conf + PCIE20_L1SUB_CONTROL1 +
offset));
PCIE_DBG2(dev, "EP's DEVICE_CONTROL2_STATUS2:0x%x\n",
readl_relaxed(dev->conf + PCIE20_DEVICE_CONTROL2_STATUS2));
}
static int msm_pcie_get_resources(struct msm_pcie_dev_t *dev,
struct platform_device *pdev)
{
int i, len, cnt, ret = 0;
struct msm_pcie_vreg_info_t *vreg_info;
struct msm_pcie_gpio_info_t *gpio_info;
struct msm_pcie_clk_info_t *clk_info;
struct resource *res;
struct msm_pcie_res_info_t *res_info;
struct msm_pcie_irq_info_t *irq_info;
char prop_name[MAX_PROP_SIZE];
const __be32 *prop;
u32 *clkfreq = NULL;
cnt = of_property_count_strings((&pdev->dev)->of_node,
"clock-names");
if (cnt > 0) {
clkfreq = kzalloc(cnt * sizeof(*clkfreq),
GFP_KERNEL);
if (!clkfreq) {
PCIE_ERR(dev, "PCIe: memory alloc failed for RC%d\n",
dev->rc_idx);
return -ENOMEM;
}
ret = of_property_read_u32_array(
(&pdev->dev)->of_node,
"max-clock-frequency-hz", clkfreq, cnt);
if (ret) {
PCIE_ERR(dev,
"PCIe: invalid max-clock-frequency-hz property for RC%d:%d\n",
dev->rc_idx, ret);
goto out;
}
}
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
for (i = 0; i < MSM_PCIE_MAX_VREG; i++) {
vreg_info = &dev->vreg[i];
vreg_info->hdl =
devm_regulator_get(&pdev->dev, vreg_info->name);
if (PTR_ERR(vreg_info->hdl) == -EPROBE_DEFER) {
PCIE_DBG(dev, "EPROBE_DEFER for VReg:%s\n",
vreg_info->name);
ret = PTR_ERR(vreg_info->hdl);
goto out;
}
if (IS_ERR(vreg_info->hdl)) {
if (vreg_info->required) {
PCIE_DBG(dev, "Vreg %s doesn't exist\n",
vreg_info->name);
ret = PTR_ERR(vreg_info->hdl);
goto out;
} else {
PCIE_DBG(dev,
"Optional Vreg %s doesn't exist\n",
vreg_info->name);
vreg_info->hdl = NULL;
}
} else {
dev->vreg_n++;
snprintf(prop_name, MAX_PROP_SIZE,
"qcom,%s-voltage-level", vreg_info->name);
prop = of_get_property((&pdev->dev)->of_node,
prop_name, &len);
if (!prop || (len != (3 * sizeof(__be32)))) {
PCIE_DBG(dev, "%s %s property\n",
prop ? "invalid format" :
"no", prop_name);
} else {
vreg_info->max_v = be32_to_cpup(&prop[0]);
vreg_info->min_v = be32_to_cpup(&prop[1]);
vreg_info->opt_mode =
be32_to_cpup(&prop[2]);
}
}
}
dev->gdsc = devm_regulator_get(&pdev->dev, "gdsc-vdd");
if (IS_ERR(dev->gdsc)) {
PCIE_ERR(dev, "PCIe: RC%d Failed to get %s GDSC:%ld\n",
dev->rc_idx, dev->pdev->name, PTR_ERR(dev->gdsc));
if (PTR_ERR(dev->gdsc) == -EPROBE_DEFER)
PCIE_DBG(dev, "PCIe: EPROBE_DEFER for %s GDSC\n",
dev->pdev->name);
ret = PTR_ERR(dev->gdsc);
goto out;
}
dev->gpio_n = 0;
for (i = 0; i < MSM_PCIE_MAX_GPIO; i++) {
gpio_info = &dev->gpio[i];
ret = of_get_named_gpio((&pdev->dev)->of_node,
gpio_info->name, 0);
if (ret >= 0) {
gpio_info->num = ret;
ret = 0;
dev->gpio_n++;
PCIE_DBG(dev, "GPIO num for %s is %d\n",
gpio_info->name, gpio_info->num);
} else {
goto out;
}
}
for (i = 0; i < MSM_PCIE_MAX_CLK; i++) {
clk_info = &dev->clk[i];
clk_info->hdl = devm_clk_get(&pdev->dev, clk_info->name);
if (IS_ERR(clk_info->hdl)) {
if (clk_info->required) {
PCIE_DBG(dev, "Clock %s isn't available:%ld\n",
clk_info->name, PTR_ERR(clk_info->hdl));
ret = PTR_ERR(clk_info->hdl);
goto out;
} else {
PCIE_DBG(dev, "Ignoring Clock %s\n",
clk_info->name);
clk_info->hdl = NULL;
}
} else {
if (clkfreq != NULL) {
clk_info->freq = clkfreq[i +
MSM_PCIE_MAX_PIPE_CLK];
PCIE_DBG(dev, "Freq of Clock %s is:%d\n",
clk_info->name, clk_info->freq);
}
}
}
for (i = 0; i < MSM_PCIE_MAX_PIPE_CLK; i++) {
clk_info = &dev->pipeclk[i];
clk_info->hdl = devm_clk_get(&pdev->dev, clk_info->name);
if (IS_ERR(clk_info->hdl)) {
if (clk_info->required) {
PCIE_DBG(dev, "Clock %s isn't available:%ld\n",
clk_info->name, PTR_ERR(clk_info->hdl));
ret = PTR_ERR(clk_info->hdl);
goto out;
} else {
PCIE_DBG(dev, "Ignoring Clock %s\n",
clk_info->name);
clk_info->hdl = NULL;
}
} else {
if (clkfreq != NULL) {
clk_info->freq = clkfreq[i];
PCIE_DBG(dev, "Freq of Clock %s is:%d\n",
clk_info->name, clk_info->freq);
}
}
}
dev->bus_scale_table = msm_bus_cl_get_pdata(pdev);
if (!dev->bus_scale_table) {
PCIE_DBG(dev, "PCIe: No bus scale table for RC%d (%s)\n",
dev->rc_idx, dev->pdev->name);
dev->bus_client = 0;
} else {
dev->bus_client =
msm_bus_scale_register_client(dev->bus_scale_table);
if (!dev->bus_client) {
PCIE_ERR(dev,
"PCIe: Failed to register bus client for RC%d (%s)\n",
dev->rc_idx, dev->pdev->name);
msm_bus_cl_clear_pdata(dev->bus_scale_table);
ret = -ENODEV;
goto out;
}
}
for (i = 0; i < MSM_PCIE_MAX_RES; i++) {
res_info = &dev->res[i];
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
res_info->name);
if (!res) {
PCIE_ERR(dev, "PCIe: RC%d can't get %s resource.\n",
dev->rc_idx, res_info->name);
ret = -ENOMEM;
goto out;
} else
PCIE_DBG(dev, "start addr for %s is %pa.\n",
res_info->name, &res->start);
res_info->base = devm_ioremap(&pdev->dev,
res->start, resource_size(res));
if (!res_info->base) {
PCIE_ERR(dev, "PCIe: RC%d can't remap %s.\n",
dev->rc_idx, res_info->name);
ret = -ENOMEM;
goto out;
}
res_info->resource = res;
}
for (i = 0; i < MSM_PCIE_MAX_IRQ; i++) {
irq_info = &dev->irq[i];
res = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
irq_info->name);
if (!res) {
int j;
for (j = 0; j < MSM_PCIE_MAX_RES; j++) {
iounmap(dev->res[j].base);
dev->res[j].base = NULL;
}
PCIE_ERR(dev, "PCIe: RC%d can't find IRQ # for %s.\n",
dev->rc_idx, irq_info->name);
ret = -ENODEV;
goto out;
} else {
irq_info->num = res->start;
PCIE_DBG(dev, "IRQ # for %s is %d.\n", irq_info->name,
irq_info->num);
}
}
/* All allocations succeeded */
dev->wake_n = dev->irq[MSM_PCIE_INT_WAKE].num;
dev->parf = dev->res[MSM_PCIE_RES_PARF].base;
dev->phy = dev->res[MSM_PCIE_RES_PHY].base;
dev->elbi = dev->res[MSM_PCIE_RES_ELBI].base;
dev->dm_core = dev->res[MSM_PCIE_RES_DM_CORE].base;
dev->conf = dev->res[MSM_PCIE_RES_CONF].base;
dev->bars = dev->res[MSM_PCIE_RES_BARS].base;
dev->dev_mem_res = dev->res[MSM_PCIE_RES_BARS].resource;
dev->dev_io_res = dev->res[MSM_PCIE_RES_IO].resource;
dev->dev_io_res->flags = IORESOURCE_IO;
out:
kfree(clkfreq);
return ret;
}
static void msm_pcie_release_resources(struct msm_pcie_dev_t *dev)
{
dev->parf = NULL;
dev->elbi = NULL;
dev->dm_core = NULL;
dev->conf = NULL;
dev->bars = NULL;
dev->dev_mem_res = NULL;
dev->dev_io_res = NULL;
}
int msm_pcie_enable(struct msm_pcie_dev_t *dev, u32 options)
{
int ret = 0;
uint32_t val;
long int retries = 0;
int link_check_count = 0;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
mutex_lock(&dev->setup_lock);
if (dev->link_status == MSM_PCIE_LINK_ENABLED) {
PCIE_ERR(dev, "PCIe: the link of RC%d is already enabled\n",
dev->rc_idx);
goto out;
}
/* assert PCIe reset link to keep EP in reset */
PCIE_INFO(dev, "PCIe: Assert the reset of endpoint of RC%d.\n",
dev->rc_idx);
gpio_set_value(dev->gpio[MSM_PCIE_GPIO_PERST].num,
dev->gpio[MSM_PCIE_GPIO_PERST].on);
usleep_range(PERST_PROPAGATION_DELAY_US_MIN,
PERST_PROPAGATION_DELAY_US_MAX);
/* enable power */
if (options & PM_VREG) {
ret = msm_pcie_vreg_init(dev);
if (ret)
goto out;
}
/* enable clocks */
if (options & PM_CLK) {
ret = msm_pcie_clk_init(dev);
wmb();
if (ret)
goto clk_fail;
}
/* enable PCIe clocks and resets */
msm_pcie_write_mask(dev->parf + PCIE20_PARF_PHY_CTRL, BIT(0), 0);
/* change DBI base address */
writel_relaxed(0, dev->parf + PCIE20_PARF_DBI_BASE_ADDR);
if (dev->rc_idx)
writel_relaxed(0x361c, dev->parf + PCIE20_PARF_SYS_CTRL);
else
writel_relaxed(0x3656, dev->parf + PCIE20_PARF_SYS_CTRL);
writel_relaxed(0, dev->parf + PCIE20_PARF_Q2A_FLUSH);
if (dev->use_msi) {
PCIE_DBG(dev, "RC%d: enable WR halt.\n", dev->rc_idx);
msm_pcie_write_mask(dev->parf +
PCIE20_PARF_AXI_MSTR_WR_ADDR_HALT, 0, BIT(31));
}
/* init PCIe PHY */
pcie_phy_init(dev);
if (options & PM_PIPE_CLK) {
usleep_range(PHY_STABILIZATION_DELAY_US_MIN,
PHY_STABILIZATION_DELAY_US_MAX);
/* Enable the pipe clock */
ret = msm_pcie_pipe_clk_init(dev);
wmb();
if (ret)
goto link_fail;
}
PCIE_DBG(dev, "RC%d: waiting for phy ready...\n", dev->rc_idx);
do {
if (pcie_phy_is_ready(dev))
break;
retries++;
usleep_range(REFCLK_STABILIZATION_DELAY_US_MIN,
REFCLK_STABILIZATION_DELAY_US_MAX);
} while (retries < PHY_READY_TIMEOUT_COUNT);
PCIE_DBG(dev, "RC%d: number of PHY retries:%ld.\n",
dev->rc_idx, retries);
if (pcie_phy_is_ready(dev))
PCIE_INFO(dev, "PCIe RC%d PHY is ready!\n", dev->rc_idx);
else {
PCIE_ERR(dev, "PCIe PHY RC%d failed to come up!\n",
dev->rc_idx);
ret = -ENODEV;
goto link_fail;
}
if (dev->ep_latency)
msleep(dev->ep_latency);
/* de-assert PCIe reset link to bring EP out of reset */
PCIE_INFO(dev, "PCIe: Release the reset of endpoint of RC%d.\n",
dev->rc_idx);
gpio_set_value(dev->gpio[MSM_PCIE_GPIO_PERST].num,
1 - dev->gpio[MSM_PCIE_GPIO_PERST].on);
usleep_range(PERST_PROPAGATION_DELAY_US_MIN,
PERST_PROPAGATION_DELAY_US_MAX);
/* enable link training */
msm_pcie_write_mask(dev->elbi + PCIE20_ELBI_SYS_CTRL, 0, BIT(0));
PCIE_DBG(dev, "%s", "check if link is up\n");
if (dev->rc_idx == 1) {
PCIE_DBG(dev, "optimized link training for RC%d\n",
dev->rc_idx);
/* Wait for up to 100ms for the link to come up */
do {
usleep_range(LINK_UP_TIMEOUT_US_MIN,
LINK_UP_TIMEOUT_US_MAX);
val = readl_relaxed(dev->elbi + PCIE20_ELBI_SYS_STTS);
} while ((!(val & XMLH_LINK_UP) ||
!msm_pcie_confirm_linkup(dev, false, false))
&& (link_check_count++ < LINK_UP_CHECK_MAX_COUNT));
if ((val & XMLH_LINK_UP) &&
msm_pcie_confirm_linkup(dev, false, false))
PCIE_DBG(dev, "Link is up after %d checkings\n",
link_check_count);
else
PCIE_DBG(dev, "Initial link training failed for RC%d\n",
dev->rc_idx);
} else {
PCIE_DBG(dev, "non-optimized link training for RC%d\n",
dev->rc_idx);
usleep_range(LINK_RETRY_TIMEOUT_US_MIN * 5 ,
LINK_RETRY_TIMEOUT_US_MAX * 5);
val = readl_relaxed(dev->elbi + PCIE20_ELBI_SYS_STTS);
}
retries = 0;
while ((!(val & XMLH_LINK_UP) ||
!msm_pcie_confirm_linkup(dev, false, false))
&& (retries < MAX_LINK_RETRIES)) {
PCIE_ERR(dev, "RC%d:No. %ld:LTSSM_STATE:0x%x\n", dev->rc_idx,
retries + 1, (val >> 0xC) & 0x1f);
gpio_set_value(dev->gpio[MSM_PCIE_GPIO_PERST].num,
dev->gpio[MSM_PCIE_GPIO_PERST].on);
usleep_range(PERST_PROPAGATION_DELAY_US_MIN,
PERST_PROPAGATION_DELAY_US_MAX);
gpio_set_value(dev->gpio[MSM_PCIE_GPIO_PERST].num,
1 - dev->gpio[MSM_PCIE_GPIO_PERST].on);
usleep_range(LINK_RETRY_TIMEOUT_US_MIN,
LINK_RETRY_TIMEOUT_US_MAX);
retries++;
val = readl_relaxed(dev->elbi + PCIE20_ELBI_SYS_STTS);
}
PCIE_DBG(dev, "number of link training retries: %ld\n", retries);
if ((val & XMLH_LINK_UP) &&
msm_pcie_confirm_linkup(dev, false, false)) {
PCIE_INFO(dev, "PCIe RC%d link initialized\n", dev->rc_idx);
} else {
PCIE_INFO(dev, "PCIe: Assert the reset of endpoint of RC%d.\n",
dev->rc_idx);
gpio_set_value(dev->gpio[MSM_PCIE_GPIO_PERST].num,
dev->gpio[MSM_PCIE_GPIO_PERST].on);
PCIE_ERR(dev, "PCIe RC%d link initialization failed\n",
dev->rc_idx);
ret = -1;
goto link_fail;
}
msm_pcie_config_controller(dev);
if (!dev->msi_gicm_addr)
msm_pcie_config_msi_controller(dev);
if (dev->l1ss_supported)
msm_pcie_config_l1ss(dev);
dev->link_status = MSM_PCIE_LINK_ENABLED;
dev->power_on = true;
dev->suspending = false;
goto out;
link_fail:
msm_pcie_clk_deinit(dev);
clk_fail:
msm_pcie_vreg_deinit(dev);
msm_pcie_pipe_clk_deinit(dev);
out:
mutex_unlock(&dev->setup_lock);
return ret;
}
void msm_pcie_disable(struct msm_pcie_dev_t *dev, u32 options)
{
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
mutex_lock(&dev->setup_lock);
if (!dev->power_on) {
PCIE_DBG(dev,
"PCIe: the link of RC%d is already power down.\n",
dev->rc_idx);
mutex_unlock(&dev->setup_lock);
return;
}
dev->link_status = MSM_PCIE_LINK_DISABLED;
dev->power_on = false;
PCIE_INFO(dev, "PCIe: Assert the reset of endpoint of RC%d.\n",
dev->rc_idx);
gpio_set_value(dev->gpio[MSM_PCIE_GPIO_PERST].num,
dev->gpio[MSM_PCIE_GPIO_PERST].on);
if (options & PM_CLK) {
msm_pcie_write_mask(dev->parf + PCIE20_PARF_PHY_CTRL, 0,
BIT(0));
msm_pcie_clk_deinit(dev);
}
if (options & PM_VREG)
msm_pcie_vreg_deinit(dev);
if (options & PM_PIPE_CLK)
msm_pcie_pipe_clk_deinit(dev);
mutex_unlock(&dev->setup_lock);
}
static int msm_pcie_setup(int nr, struct pci_sys_data *sys)
{
struct msm_pcie_dev_t *dev =
(struct msm_pcie_dev_t *)(sys->private_data);
PCIE_DBG(dev, "bus %d\n", nr);
/*
* specify linux PCI framework to allocate device memory (BARs)
* from msm_pcie_dev.dev_mem_res resource.
*/
sys->mem_offset = 0;
sys->io_offset = 0;
pci_add_resource(&sys->resources, dev->dev_io_res);
pci_add_resource(&sys->resources, dev->dev_mem_res);
return 1;
}
static struct pci_bus *msm_pcie_scan_bus(int nr,
struct pci_sys_data *sys)
{
struct pci_bus *bus = NULL;
struct msm_pcie_dev_t *dev =
(struct msm_pcie_dev_t *)(sys->private_data);
PCIE_DBG(dev, "bus %d\n", nr);
bus = pci_scan_root_bus(NULL, sys->busnr, &msm_pcie_ops, sys,
&sys->resources);
return bus;
}
static int msm_pcie_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
{
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev);
int ret = 0;
PCIE_DBG(pcie_dev, "rc %s slot %d pin %d\n", pcie_dev->pdev->name,
slot, pin);
switch (pin) {
case 1:
ret = pcie_dev->irq[MSM_PCIE_INT_A].num;
break;
case 2:
ret = pcie_dev->irq[MSM_PCIE_INT_B].num;
break;
case 3:
ret = pcie_dev->irq[MSM_PCIE_INT_C].num;
break;
case 4:
ret = pcie_dev->irq[MSM_PCIE_INT_D].num;
break;
default:
PCIE_ERR(pcie_dev, "PCIe: RC%d: unsupported pin number.\n",
pcie_dev->rc_idx);
}
return ret;
}
static struct hw_pci msm_pci[MAX_RC_NUM] = {
{
.domain = 0,
.nr_controllers = 1,
.swizzle = pci_common_swizzle,
.setup = msm_pcie_setup,
.scan = msm_pcie_scan_bus,
.map_irq = msm_pcie_map_irq,
},
{
.domain = 1,
.nr_controllers = 1,
.swizzle = pci_common_swizzle,
.setup = msm_pcie_setup,
.scan = msm_pcie_scan_bus,
.map_irq = msm_pcie_map_irq,
},
};
static int msm_pcie_config_device_table(struct device *dev, void *pdev)
{
struct pci_dev *pcidev = to_pci_dev(dev);
struct msm_pcie_dev_t *pcie_dev = (struct msm_pcie_dev_t *) pdev;
struct msm_pcie_device_info *dev_table_t = pcie_dev->pcidev_table;
struct resource *axi_conf = pcie_dev->res[MSM_PCIE_RES_CONF].resource;
int ret = 0;
u32 rc_idx = pcie_dev->rc_idx;
u32 i, index;
u32 bdf = 0;
u8 type;
u32 h_type;
u32 bme;
if (!pcidev) {
PCIE_ERR(pcie_dev,
"PCIe: Did not find PCI device in list for RC%d.\n",
pcie_dev->rc_idx);
return -ENODEV;
} else {
PCIE_DBG(pcie_dev,
"PCI device found: vendor-id:0x%x device-id:0x%x\n",
pcidev->vendor, pcidev->device);
}
if (!pcidev->bus->number)
return ret;
bdf = BDF_OFFSET(pcidev->bus->number, pcidev->devfn);
type = pcidev->bus->number == 1 ?
PCIE20_CTRL1_TYPE_CFG0 : PCIE20_CTRL1_TYPE_CFG1;
for (i = 0; i < (MAX_RC_NUM * MAX_DEVICE_NUM); i++) {
if (msm_pcie_dev_tbl[i].bdf == bdf &&
!msm_pcie_dev_tbl[i].dev) {
for (index = 0; index < MAX_DEVICE_NUM; index++) {
if (dev_table_t[index].bdf == bdf) {
msm_pcie_dev_tbl[i].dev = pcidev;
msm_pcie_dev_tbl[i].domain = rc_idx;
msm_pcie_dev_tbl[i].conf_base =
pcie_dev->conf + index * SZ_4K;
msm_pcie_dev_tbl[i].phy_address =
axi_conf->start + index * SZ_4K;
dev_table_t[index].dev = pcidev;
dev_table_t[index].domain = rc_idx;
dev_table_t[index].conf_base =
pcie_dev->conf + index * SZ_4K;
dev_table_t[index].phy_address =
axi_conf->start + index * SZ_4K;
msm_pcie_iatu_config(pcie_dev, index,
type,
dev_table_t[index].phy_address,
dev_table_t[index].phy_address
+ SZ_4K - 1,
bdf);
h_type = readl_relaxed(
dev_table_t[index].conf_base +
PCIE20_HEADER_TYPE);
bme = readl_relaxed(
dev_table_t[index].conf_base +
PCIE20_COMMAND_STATUS);
if (h_type & (1 << 16)) {
pci_write_config_dword(pcidev,
PCIE20_COMMAND_STATUS,
bme | 0x06);
}
break;
}
}
if (index == MAX_DEVICE_NUM) {
PCIE_ERR(pcie_dev,
"RC%d PCI device table is full.\n",
rc_idx);
ret = index;
} else {
break;
}
} else if (msm_pcie_dev_tbl[i].bdf == bdf &&
pcidev == msm_pcie_dev_tbl[i].dev) {
break;
}
}
if (i == MAX_RC_NUM * MAX_DEVICE_NUM) {
PCIE_ERR(pcie_dev,
"Global PCI device table is full: %d elements.\n",
i);
PCIE_ERR(pcie_dev,
"Bus number is 0x%x\nDevice number is 0x%x\n",
pcidev->bus->number, pcidev->devfn);
ret = i;
}
return ret;
}
int msm_pcie_enumerate(u32 rc_idx)
{
int ret = 0, bus_ret = 0;
struct msm_pcie_dev_t *dev = &msm_pcie_dev[rc_idx];
PCIE_DBG(dev, "Enumerate RC%d\n", rc_idx);
if (!dev->enumerated) {
ret = msm_pcie_enable(dev, PM_ALL);
/* kick start ARM PCI configuration framework */
if (!ret) {
struct pci_dev *pcidev = NULL;
bool found = false;
u32 ids = readl_relaxed(msm_pcie_dev[rc_idx].dm_core);
u32 vendor_id = ids & 0xffff;
u32 device_id = (ids & 0xffff0000) >> 16;
PCIE_DBG(dev, "vendor-id:0x%x device_id:0x%x\n",
vendor_id, device_id);
msm_pci[rc_idx].private_data = (void **)&dev;
pci_common_init(&msm_pci[rc_idx]);
/* This has to happen only once */
dev->enumerated = true;
do {
pcidev = pci_get_device(vendor_id,
device_id, pcidev);
if (pcidev && (&msm_pcie_dev[rc_idx] ==
(struct msm_pcie_dev_t *)
PCIE_BUS_PRIV_DATA(pcidev))) {
msm_pcie_dev[rc_idx].dev = pcidev;
found = true;
PCIE_DBG(&msm_pcie_dev[rc_idx],
"PCI device is found for RC%d\n",
rc_idx);
}
} while (!found && pcidev);
if (!pcidev) {
PCIE_ERR(dev,
"PCIe: Did not find PCI device for RC%d.\n",
dev->rc_idx);
return -ENODEV;
}
bus_ret = bus_for_each_dev(&pci_bus_type, NULL, dev,
&msm_pcie_config_device_table);
if (bus_ret) {
PCIE_ERR(dev,
"PCIe: Failed to set up device table for RC%d\n",
dev->rc_idx);
return -ENODEV;
}
} else {
PCIE_ERR(dev, "PCIe: failed to enable RC%d.\n",
dev->rc_idx);
}
} else {
PCIE_ERR(dev, "PCIe: RC%d has already been enumerated.\n",
dev->rc_idx);
}
return ret;
}
static int msm_pcie_probe(struct platform_device *pdev)
{
int ret = 0;
int rc_idx = -1;
int i, j;
pr_debug("%s\n", __func__);
mutex_lock(&pcie_drv.drv_lock);
ret = of_property_read_u32((&pdev->dev)->of_node,
"qcom,ctrl-amt", &pcie_drv.rc_expected);
if (ret) {
pr_err("PCIe: does not find controller amount.\n");
goto out;
} else {
if (pcie_drv.rc_expected > MAX_RC_NUM) {
pr_debug("Expected number of devices %d\n",
pcie_drv.rc_expected);
pr_debug("Exceeded max supported devices %d\n",
MAX_RC_NUM);
goto out;
}
pr_debug("Target has %d RC(s).\n", pcie_drv.rc_expected);
}
ret = of_property_read_u32((&pdev->dev)->of_node,
"cell-index", &rc_idx);
if (ret) {
pr_debug("Did not find RC index.\n");
goto out;
} else {
if (rc_idx >= MAX_RC_NUM) {
pr_err(
"PCIe: Invalid RC Index %d (max supported = %d)\n",
rc_idx, MAX_RC_NUM);
goto out;
}
pcie_drv.rc_num++;
PCIE_DBG(&msm_pcie_dev[rc_idx], "PCIe: RC index is %d.\n",
rc_idx);
}
msm_pcie_dev[rc_idx].l1ss_supported =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,l1ss-supported");
PCIE_DBG(&msm_pcie_dev[rc_idx], "L1ss is %s supported.\n",
msm_pcie_dev[rc_idx].l1ss_supported ? "" : "not");
msm_pcie_dev[rc_idx].aux_clk_sync =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,aux-clk-sync");
PCIE_DBG(&msm_pcie_dev[rc_idx],
"AUX clock is %s synchronous to Core clock.\n",
msm_pcie_dev[rc_idx].aux_clk_sync ? "" : "not");
msm_pcie_dev[rc_idx].ep_wakeirq =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,ep-wakeirq");
PCIE_DBG(&msm_pcie_dev[rc_idx],
"PCIe: EP of RC%d does %s assert wake when it is up.\n",
rc_idx, msm_pcie_dev[rc_idx].ep_wakeirq ? "" : "not");
msm_pcie_dev[rc_idx].n_fts = 0;
ret = of_property_read_u32((&pdev->dev)->of_node,
"qcom,n-fts",
&msm_pcie_dev[rc_idx].n_fts);
if (ret)
PCIE_DBG(&msm_pcie_dev[rc_idx],
"n-fts does not exist. ret=%d\n", ret);
else
PCIE_DBG(&msm_pcie_dev[rc_idx], "n-fts: 0x%x.\n",
msm_pcie_dev[rc_idx].n_fts);
msm_pcie_dev[rc_idx].ext_ref_clk =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,ext-ref-clk");
PCIE_DBG(&msm_pcie_dev[rc_idx], "ref clk is %s.\n",
msm_pcie_dev[rc_idx].ext_ref_clk ? "external" : "internal");
msm_pcie_dev[rc_idx].ep_latency = 0;
ret = of_property_read_u32((&pdev->dev)->of_node,
"qcom,ep-latency",
&msm_pcie_dev[rc_idx].ep_latency);
if (ret)
PCIE_DBG(&msm_pcie_dev[rc_idx],
"RC%d: ep-latency does not exist.\n",
rc_idx);
else
PCIE_DBG(&msm_pcie_dev[rc_idx], "RC%d: ep-latency: 0x%x.\n",
rc_idx, msm_pcie_dev[rc_idx].ep_latency);
msm_pcie_dev[rc_idx].msi_gicm_addr = 0;
msm_pcie_dev[rc_idx].msi_gicm_base = 0;
ret = of_property_read_u32((&pdev->dev)->of_node,
"qcom,msi-gicm-addr",
&msm_pcie_dev[rc_idx].msi_gicm_addr);
if (ret) {
PCIE_DBG(&msm_pcie_dev[rc_idx], "%s",
"msi-gicm-addr does not exist.\n");
} else {
PCIE_DBG(&msm_pcie_dev[rc_idx], "msi-gicm-addr: 0x%x.\n",
msm_pcie_dev[rc_idx].msi_gicm_addr);
ret = of_property_read_u32((&pdev->dev)->of_node,
"qcom,msi-gicm-base",
&msm_pcie_dev[rc_idx].msi_gicm_base);
if (ret) {
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: msi-gicm-base does not exist.\n",
rc_idx);
goto decrease_rc_num;
} else {
PCIE_DBG(&msm_pcie_dev[rc_idx], "msi-gicm-base: 0x%x\n",
msm_pcie_dev[rc_idx].msi_gicm_base);
}
}
msm_pcie_dev[rc_idx].rc_idx = rc_idx;
msm_pcie_dev[rc_idx].pdev = pdev;
msm_pcie_dev[rc_idx].vreg_n = 0;
msm_pcie_dev[rc_idx].gpio_n = 0;
msm_pcie_dev[rc_idx].parf_deemph = 0;
msm_pcie_dev[rc_idx].parf_swing = 0;
msm_pcie_dev[rc_idx].link_status = MSM_PCIE_LINK_DEINIT;
msm_pcie_dev[rc_idx].user_suspend = false;
msm_pcie_dev[rc_idx].saved_state = NULL;
msm_pcie_dev[rc_idx].enumerated = false;
msm_pcie_dev[rc_idx].linkdown_counter = 0;
msm_pcie_dev[rc_idx].suspending = false;
msm_pcie_dev[rc_idx].wake_counter = 0;
msm_pcie_dev[rc_idx].req_exit_l1_counter = 0;
msm_pcie_dev[rc_idx].power_on = false;
msm_pcie_dev[rc_idx].use_msi = false;
memcpy(msm_pcie_dev[rc_idx].vreg, msm_pcie_vreg_info,
sizeof(msm_pcie_vreg_info));
memcpy(msm_pcie_dev[rc_idx].gpio, msm_pcie_gpio_info,
sizeof(msm_pcie_gpio_info));
memcpy(msm_pcie_dev[rc_idx].clk, msm_pcie_clk_info[rc_idx],
sizeof(msm_pcie_clk_info));
memcpy(msm_pcie_dev[rc_idx].pipeclk, msm_pcie_pipe_clk_info[rc_idx],
sizeof(msm_pcie_pipe_clk_info));
memcpy(msm_pcie_dev[rc_idx].res, msm_pcie_res_info,
sizeof(msm_pcie_res_info));
memcpy(msm_pcie_dev[rc_idx].irq, msm_pcie_irq_info,
sizeof(msm_pcie_irq_info));
msm_pcie_dev[rc_idx].shadow_en = true;
for (i = 0; i < PCIE_CONF_SPACE_DW; i++)
msm_pcie_dev[rc_idx].rc_shadow[i] = PCIE_CLEAR;
for (i = 0; i < MAX_DEVICE_NUM; i++)
for (j = 0; j < PCIE_CONF_SPACE_DW; j++)
msm_pcie_dev[rc_idx].ep_shadow[i][j] = PCIE_CLEAR;
for (i = 0; i < MAX_DEVICE_NUM; i++) {
msm_pcie_dev[rc_idx].pcidev_table[i].bdf = 0;
msm_pcie_dev[rc_idx].pcidev_table[i].dev = NULL;
msm_pcie_dev[rc_idx].pcidev_table[i].domain = rc_idx;
msm_pcie_dev[rc_idx].pcidev_table[i].conf_base = 0;
msm_pcie_dev[rc_idx].pcidev_table[i].phy_address = 0;
}
ret = msm_pcie_get_resources(&msm_pcie_dev[rc_idx],
msm_pcie_dev[rc_idx].pdev);
if (ret)
goto decrease_rc_num;
ret = msm_pcie_gpio_init(&msm_pcie_dev[rc_idx]);
if (ret) {
msm_pcie_release_resources(&msm_pcie_dev[rc_idx]);
goto decrease_rc_num;
}
ret = msm_pcie_irq_init(&msm_pcie_dev[rc_idx]);
if (ret) {
msm_pcie_release_resources(&msm_pcie_dev[rc_idx]);
msm_pcie_gpio_deinit(&msm_pcie_dev[rc_idx]);
goto decrease_rc_num;
}
if (msm_pcie_dev[rc_idx].ep_wakeirq) {
PCIE_DBG(&msm_pcie_dev[rc_idx],
"PCIe: RC%d will be enumerated upon WAKE signal from Endpoint.\n",
rc_idx);
mutex_unlock(&pcie_drv.drv_lock);
return 0;
}
ret = msm_pcie_enumerate(rc_idx);
if (ret)
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d is not enabled during bootup; it will be enumerated upon WAKE signal.\n",
rc_idx);
else
PCIE_ERR(&msm_pcie_dev[rc_idx], "RC%d is enabled in bootup\n",
rc_idx);
PCIE_DBG(&msm_pcie_dev[rc_idx], "PCIE probed %s\n",
dev_name(&(pdev->dev)));
mutex_unlock(&pcie_drv.drv_lock);
return 0;
decrease_rc_num:
pcie_drv.rc_num--;
out:
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: Driver probe failed for RC%d:%d\n",
rc_idx, ret);
mutex_unlock(&pcie_drv.drv_lock);
return ret;
}
static int __exit msm_pcie_remove(struct platform_device *pdev)
{
int ret = 0;
int rc_idx;
pr_debug("PCIe:%s.\n", __func__);
mutex_lock(&pcie_drv.drv_lock);
ret = of_property_read_u32((&pdev->dev)->of_node,
"cell-index", &rc_idx);
if (ret) {
pr_err("%s: Did not find RC index.\n", __func__);
goto out;
} else {
pcie_drv.rc_num--;
pr_debug("%s: RC index is 0x%x.", __func__, rc_idx);
}
msm_pcie_irq_deinit(&msm_pcie_dev[rc_idx]);
msm_pcie_vreg_deinit(&msm_pcie_dev[rc_idx]);
msm_pcie_clk_deinit(&msm_pcie_dev[rc_idx]);
msm_pcie_gpio_deinit(&msm_pcie_dev[rc_idx]);
msm_pcie_release_resources(&msm_pcie_dev[rc_idx]);
out:
mutex_unlock(&pcie_drv.drv_lock);
return ret;
}
static struct of_device_id msm_pcie_match[] = {
{ .compatible = "qcom,msm_pcie",
},
{}
};
static struct platform_driver msm_pcie_driver = {
.probe = msm_pcie_probe,
.remove = msm_pcie_remove,
.driver = {
.name = "msm_pcie",
.owner = THIS_MODULE,
.of_match_table = msm_pcie_match,
},
};
static int __init pcie_init(void)
{
int ret = 0, i;
char rc_name[MAX_RC_NAME_LEN];
pr_debug("pcie:%s.\n", __func__);
pcie_drv.rc_num = 0;
pcie_drv.rc_expected = 0;
mutex_init(&pcie_drv.drv_lock);
for (i = 0; i < MAX_RC_NUM; i++) {
snprintf(rc_name, MAX_RC_NAME_LEN, "pcie%d-short", i);
msm_pcie_dev[i].ipc_log =
ipc_log_context_create(PCIE_LOG_PAGES, rc_name, 0);
if (msm_pcie_dev[i].ipc_log == NULL)
pr_err("%s: unable to create IPC log context for %s\n",
__func__, rc_name);
else
PCIE_DBG(&msm_pcie_dev[i],
"PCIe IPC logging is enable for RC%d\n",
i);
snprintf(rc_name, MAX_RC_NAME_LEN, "pcie%d-long", i);
msm_pcie_dev[i].ipc_log_long =
ipc_log_context_create(PCIE_LOG_PAGES, rc_name, 0);
if (msm_pcie_dev[i].ipc_log_long == NULL)
pr_err("%s: unable to create IPC log context for %s\n",
__func__, rc_name);
else
PCIE_DBG(&msm_pcie_dev[i],
"PCIe IPC logging %s is enable for RC%d\n",
rc_name, i);
spin_lock_init(&msm_pcie_dev[i].cfg_lock);
msm_pcie_dev[i].cfg_access = true;
mutex_init(&msm_pcie_dev[i].setup_lock);
mutex_init(&msm_pcie_dev[i].recovery_lock);
spin_lock_init(&msm_pcie_dev[i].linkdown_lock);
spin_lock_init(&msm_pcie_dev[i].wakeup_lock);
}
for (i = 0; i < MAX_RC_NUM * MAX_DEVICE_NUM; i++) {
msm_pcie_dev_tbl[i].bdf = 0;
msm_pcie_dev_tbl[i].dev = NULL;
msm_pcie_dev_tbl[i].domain = -1;
msm_pcie_dev_tbl[i].conf_base = 0;
msm_pcie_dev_tbl[i].phy_address = 0;
}
ret = platform_driver_register(&msm_pcie_driver);
return ret;
}
static void __exit pcie_exit(void)
{
pr_debug("pcie:%s.\n", __func__);
platform_driver_unregister(&msm_pcie_driver);
}
subsys_initcall_sync(pcie_init);
module_exit(pcie_exit);
/* RC do not represent the right class; set it to PCI_CLASS_BRIDGE_PCI */
static void msm_pcie_fixup_early(struct pci_dev *dev)
{
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev);
PCIE_DBG(pcie_dev, "hdr_type %d\n", dev->hdr_type);
if (dev->hdr_type == 1)
dev->class = (dev->class & 0xff) | (PCI_CLASS_BRIDGE_PCI << 8);
}
DECLARE_PCI_FIXUP_EARLY(PCIE_VENDOR_ID_RCP, PCIE_DEVICE_ID_RCP,
msm_pcie_fixup_early);
/* Suspend the PCIe link */
static int msm_pcie_pm_suspend(struct pci_dev *dev,
void *user, void *data, u32 options)
{
int ret = 0;
u32 val = 0;
int ret_l23;
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev);
pcie_dev->suspending = true;
PCIE_DBG(pcie_dev, "RC%d\n", pcie_dev->rc_idx);
if (!pcie_dev->power_on) {
PCIE_DBG(pcie_dev,
"PCIe: power of RC%d has been turned off.\n",
pcie_dev->rc_idx);
return ret;
}
if (dev && !(options & MSM_PCIE_CONFIG_NO_CFG_RESTORE)
&& msm_pcie_confirm_linkup(pcie_dev, true, true)) {
ret = pci_save_state(dev);
pcie_dev->saved_state = pci_store_saved_state(dev);
}
if (ret) {
PCIE_ERR(pcie_dev, "PCIe: fail to save state of RC%d:%d.\n",
pcie_dev->rc_idx, ret);
pcie_dev->suspending = false;
return ret;
}
spin_lock_irqsave(&pcie_dev->cfg_lock,
pcie_dev->irqsave_flags);
pcie_dev->cfg_access = false;
spin_unlock_irqrestore(&pcie_dev->cfg_lock,
pcie_dev->irqsave_flags);
msm_pcie_write_mask(pcie_dev->elbi + PCIE20_ELBI_SYS_CTRL, 0,
BIT(4));
PCIE_DBG(pcie_dev, "RC%d: PME_TURNOFF_MSG is sent out\n",
pcie_dev->rc_idx);
ret_l23 = readl_poll_timeout((pcie_dev->parf
+ PCIE20_PARF_PM_STTS), val, (val & BIT(6)), 10000, 100000);
/* check L23_Ready */
if (!ret_l23)
PCIE_DBG(pcie_dev, "RC%d: PM_Enter_L23 is received\n",
pcie_dev->rc_idx);
else
PCIE_DBG(pcie_dev, "RC%d: PM_Enter_L23 is NOT received\n",
pcie_dev->rc_idx);
msm_pcie_disable(pcie_dev, PM_PIPE_CLK | PM_CLK | PM_VREG);
return ret;
}
static void msm_pcie_fixup_suspend(struct pci_dev *dev)
{
int ret;
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev);
PCIE_DBG(pcie_dev, "RC%d\n", pcie_dev->rc_idx);
if (pcie_dev->link_status != MSM_PCIE_LINK_ENABLED)
return;
mutex_lock(&pcie_dev->recovery_lock);
ret = msm_pcie_pm_suspend(dev, NULL, NULL, 0);
if (ret)
PCIE_ERR(pcie_dev, "PCIe: RC%d got failure in suspend:%d.\n",
pcie_dev->rc_idx, ret);
mutex_unlock(&pcie_dev->recovery_lock);
}
DECLARE_PCI_FIXUP_SUSPEND(PCIE_VENDOR_ID_RCP, PCIE_DEVICE_ID_RCP,
msm_pcie_fixup_suspend);
/* Resume the PCIe link */
static int msm_pcie_pm_resume(struct pci_dev *dev,
void *user, void *data, u32 options)
{
int ret;
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev);
PCIE_DBG(pcie_dev, "RC%d\n", pcie_dev->rc_idx);
spin_lock_irqsave(&pcie_dev->cfg_lock,
pcie_dev->irqsave_flags);
pcie_dev->cfg_access = true;
spin_unlock_irqrestore(&pcie_dev->cfg_lock,
pcie_dev->irqsave_flags);
ret = msm_pcie_enable(pcie_dev, PM_PIPE_CLK | PM_CLK | PM_VREG);
if (ret) {
PCIE_ERR(pcie_dev,
"PCIe: RC%d fail to enable PCIe link in resume.\n",
pcie_dev->rc_idx);
return ret;
} else {
pcie_dev->suspending = false;
PCIE_DBG(pcie_dev,
"dev->bus->number = %d dev->bus->primary = %d\n",
dev->bus->number, dev->bus->primary);
if (!(options & MSM_PCIE_CONFIG_NO_CFG_RESTORE)) {
pci_load_and_free_saved_state(dev,
&pcie_dev->saved_state);
pci_restore_state(dev);
}
}
return ret;
}
void msm_pcie_fixup_resume(struct pci_dev *dev)
{
int ret;
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev);
PCIE_DBG(pcie_dev, "RC%d\n", pcie_dev->rc_idx);
if ((pcie_dev->link_status != MSM_PCIE_LINK_DISABLED) ||
pcie_dev->user_suspend)
return;
mutex_lock(&pcie_dev->recovery_lock);
ret = msm_pcie_pm_resume(dev, NULL, NULL, 0);
if (ret)
PCIE_ERR(pcie_dev,
"PCIe: RC%d got failure in fixup resume:%d.\n",
pcie_dev->rc_idx, ret);
mutex_unlock(&pcie_dev->recovery_lock);
}
DECLARE_PCI_FIXUP_RESUME(PCIE_VENDOR_ID_RCP, PCIE_DEVICE_ID_RCP,
msm_pcie_fixup_resume);
void msm_pcie_fixup_resume_early(struct pci_dev *dev)
{
int ret;
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev);
PCIE_DBG(pcie_dev, "RC%d\n", pcie_dev->rc_idx);
if ((pcie_dev->link_status != MSM_PCIE_LINK_DISABLED) ||
pcie_dev->user_suspend)
return;
mutex_lock(&pcie_dev->recovery_lock);
ret = msm_pcie_pm_resume(dev, NULL, NULL, 0);
if (ret)
PCIE_ERR(pcie_dev, "PCIe: RC%d got failure in resume:%d.\n",
pcie_dev->rc_idx, ret);
mutex_unlock(&pcie_dev->recovery_lock);
}
DECLARE_PCI_FIXUP_RESUME_EARLY(PCIE_VENDOR_ID_RCP, PCIE_DEVICE_ID_RCP,
msm_pcie_fixup_resume_early);
static void msm_pcie_fixup_final(struct pci_dev *dev)
{
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev);
PCIE_DBG(pcie_dev, "RC%d\n", pcie_dev->rc_idx);
pcie_drv.current_rc++;
}
DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, msm_pcie_fixup_final);
int msm_pcie_pm_control(enum msm_pcie_pm_opt pm_opt, u32 busnr, void *user,
void *data, u32 options)
{
int ret = 0;
struct pci_dev *dev;
u32 rc_idx = 0;
pr_debug("PCIe: pm_opt:%d;busnr:%d;options:%d\n",
pm_opt, busnr, options);
switch (busnr) {
case 1:
if (user) {
struct msm_pcie_dev_t *pcie_dev
= PCIE_BUS_PRIV_DATA(((struct pci_dev *)user));
if (pcie_dev) {
rc_idx = pcie_dev->rc_idx;
PCIE_DBG(pcie_dev,
"PCIe: RC%d: pm_opt:%d;busnr:%d;options:%d\n",
rc_idx, pm_opt, busnr, options);
} else {
pr_err(
"PCIe: did not find RC for pci endpoint device 0x%x.\n",
(u32)user);
ret = -ENODEV;
goto out;
}
}
break;
case 3:
case 4:
return 0;
default:
pr_err("PCIe: unsupported bus numberi:%d.\n", busnr);
ret = PCIBIOS_DEVICE_NOT_FOUND;
goto out;
}
dev = msm_pcie_dev[rc_idx].dev;
switch (pm_opt) {
case MSM_PCIE_SUSPEND:
if (msm_pcie_dev[rc_idx].link_status != MSM_PCIE_LINK_ENABLED)
PCIE_DBG(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: requested to suspend when link is not enabled:%d.\n",
rc_idx, msm_pcie_dev[rc_idx].link_status);
if (!msm_pcie_dev[rc_idx].power_on) {
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: requested to suspend when link is powered down:%d.\n",
rc_idx, msm_pcie_dev[rc_idx].link_status);
break;
}
msm_pcie_dev[rc_idx].user_suspend = true;
mutex_lock(&msm_pcie_dev[rc_idx].recovery_lock);
ret = msm_pcie_pm_suspend(dev, user, data, options);
if (ret) {
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: user failed to suspend the link.\n",
rc_idx);
msm_pcie_dev[rc_idx].user_suspend = false;
}
mutex_unlock(&msm_pcie_dev[rc_idx].recovery_lock);
break;
case MSM_PCIE_RESUME:
PCIE_DBG(&msm_pcie_dev[rc_idx],
"User of RC%d requests to resume the link\n", rc_idx);
if (msm_pcie_dev[rc_idx].link_status !=
MSM_PCIE_LINK_DISABLED) {
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: requested to resume when link is not disabled:%d.\n",
rc_idx, msm_pcie_dev[rc_idx].link_status);
break;
}
mutex_lock(&msm_pcie_dev[rc_idx].recovery_lock);
ret = msm_pcie_pm_resume(dev, user, data, options);
if (ret) {
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: user failed to resume the link.\n",
rc_idx);
} else {
PCIE_DBG(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: user succeeded to resume the link.\n",
rc_idx);
msm_pcie_dev[rc_idx].user_suspend = false;
}
mutex_unlock(&msm_pcie_dev[rc_idx].recovery_lock);
break;
case MSM_PCIE_REQ_EXIT_L1:
msm_pcie_dev[rc_idx].req_exit_l1_counter++;
msm_pcie_write_mask(msm_pcie_dev[rc_idx].parf
+ PCIE20_PARF_PM_CTRL,
0, BIT(1));
udelay(REQ_EXIT_L1_DELAY_US);
msm_pcie_write_mask(msm_pcie_dev[rc_idx].parf
+ PCIE20_PARF_PM_CTRL,
BIT(1), 0);
break;
default:
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: unsupported pm operation:%d.\n",
rc_idx, pm_opt);
ret = -ENODEV;
goto out;
}
out:
return ret;
}
EXPORT_SYMBOL(msm_pcie_pm_control);
int msm_pcie_register_event(struct msm_pcie_register_event *reg)
{
int ret = 0;
struct msm_pcie_dev_t *pcie_dev;
if (!reg) {
pr_err("PCIe: Event registration is NULL\n");
return -ENODEV;
}
if (!reg->user) {
pr_err("PCIe: User of event registration is NULL\n");
return -ENODEV;
}
pcie_dev = PCIE_BUS_PRIV_DATA(((struct pci_dev *)reg->user));
if (pcie_dev) {
pcie_dev->event_reg = reg;
PCIE_DBG(pcie_dev,
"Event 0x%x is registered for RC %d\n", reg->events,
pcie_dev->rc_idx);
} else {
PCIE_ERR(pcie_dev,
"PCIe: did not find RC for pci endpoint device 0x%x.\n",
(u32)reg->user);
ret = -ENODEV;
}
return ret;
}
EXPORT_SYMBOL(msm_pcie_register_event);
int msm_pcie_deregister_event(struct msm_pcie_register_event *reg)
{
int ret = 0;
struct msm_pcie_dev_t *pcie_dev;
if (!reg) {
pr_err("PCIe: Event deregistration is NULL\n");
return -ENODEV;
}
if (!reg->user) {
pr_err("PCIe: User of event deregistration is NULL\n");
return -ENODEV;
}
pcie_dev = PCIE_BUS_PRIV_DATA(((struct pci_dev *)reg->user));
if (pcie_dev) {
pcie_dev->event_reg = NULL;
PCIE_DBG(pcie_dev, "Event is deregistered for RC %d\n",
pcie_dev->rc_idx);
} else {
PCIE_ERR(pcie_dev,
"PCIe: did not find RC for pci endpoint device 0x%x.\n",
(u32)reg->user);
ret = -ENODEV;
}
return ret;
}
EXPORT_SYMBOL(msm_pcie_deregister_event);
int msm_pcie_recover_config(struct pci_dev *dev)
{
int ret = 0;
struct msm_pcie_dev_t *pcie_dev;
if (dev) {
pcie_dev = PCIE_BUS_PRIV_DATA(dev);
PCIE_DBG(pcie_dev,
"Recovery for the link of RC%d\n", pcie_dev->rc_idx);
} else {
pr_err("PCIe: the input pci dev is NULL.\n");
return -ENODEV;
}
if (msm_pcie_confirm_linkup(pcie_dev, true, true)) {
PCIE_DBG(pcie_dev,
"Recover config space of RC%d and its EP\n",
pcie_dev->rc_idx);
pcie_dev->shadow_en = false;
PCIE_DBG(pcie_dev, "Recover RC%d\n", pcie_dev->rc_idx);
msm_pcie_cfg_recover(pcie_dev, true);
PCIE_DBG(pcie_dev, "Recover EP of RC%d\n", pcie_dev->rc_idx);
msm_pcie_cfg_recover(pcie_dev, false);
PCIE_DBG(pcie_dev,
"Refreshing the saved config space in PCI framework for RC%d and its EP\n",
pcie_dev->rc_idx);
pci_save_state(pcie_dev->dev);
pci_save_state(dev);
pcie_dev->shadow_en = true;
PCIE_DBG(pcie_dev, "Turn on shadow for RC%d\n",
pcie_dev->rc_idx);
} else {
PCIE_ERR(pcie_dev,
"PCIe: the link of RC%d is not up yet; can't recover config space.\n",
pcie_dev->rc_idx);
ret = -ENODEV;
}
return ret;
}
EXPORT_SYMBOL(msm_pcie_recover_config);
int msm_pcie_shadow_control(struct pci_dev *dev, bool enable)
{
int ret = 0;
struct msm_pcie_dev_t *pcie_dev;
if (dev) {
pcie_dev = PCIE_BUS_PRIV_DATA(dev);
PCIE_DBG(pcie_dev,
"Recovery for the link of RC%d\n", pcie_dev->rc_idx);
} else {
pr_err("PCIe: the input pci dev is NULL.\n");
return -ENODEV;
}
PCIE_DBG(pcie_dev,
"The shadowing of RC%d is %s enabled currently.\n",
pcie_dev->rc_idx, pcie_dev->shadow_en ? "" : "not");
pcie_dev->shadow_en = enable;
PCIE_DBG(pcie_dev,
"Shadowing of RC%d is turned %s upon user's request.\n",
pcie_dev->rc_idx, enable ? "on" : "off");
return ret;
}
EXPORT_SYMBOL(msm_pcie_shadow_control);
int msm_pcie_access_control(struct pci_dev *dev, bool allow_access)
{
int ret = 0;
struct msm_pcie_dev_t *pcie_dev;
if (dev) {
pcie_dev = PCIE_BUS_PRIV_DATA(dev);
PCIE_DBG(pcie_dev,
"access control for the link of RC%d\n",
pcie_dev->rc_idx);
} else {
pr_err("PCIe: the input pci dev is NULL.\n");
return -ENODEV;
}
mutex_lock(&pcie_dev->recovery_lock);
PCIE_DBG(pcie_dev,
"The config space of RC%d is %savailable currently.\n",
pcie_dev->rc_idx, pcie_dev->cfg_access ? "" : "un");
pcie_dev->cfg_access = allow_access;
PCIE_DBG(pcie_dev,
"The config space of RC%d becomes %savailable upon user's request.\n",
pcie_dev->rc_idx, pcie_dev->cfg_access ? "" : "un");
mutex_unlock(&pcie_dev->recovery_lock);
return ret;
}
EXPORT_SYMBOL(msm_pcie_access_control);