blob: 06d70b48a74d11f3eb2fef14fe15be7242175c98 [file] [log] [blame]
/* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/iopoll.h>
#include <linux/clk.h>
#include <linux/clk/msm-clk-provider.h>
#include <linux/clk/msm-clk.h>
#include <linux/clk/msm-clock-generic.h>
#include <asm/processor.h>
#include <mach/msm_iomap.h>
#include "clock-mdss-8974.h"
#define REG_R(addr) readl_relaxed(addr)
#define REG_W(data, addr) writel_relaxed(data, addr)
#define DSS_REG_W(base, offset, data) REG_W((data), (base) + (offset))
#define DSS_REG_R(base, offset) REG_R((base) + (offset))
#define GDSC_PHYS 0xFD8C2300
#define GDSC_SIZE 0x8
#define DSI_PHY_PHYS 0xFD922A00
#define DSI_PHY_SIZE 0x000000D4
#define EDP_PHY_PHYS 0xFD923A00
#define EDP_PHY_SIZE 0x000000D4
#define HDMI_PHY_PHYS 0xFD922500
#define HDMI_PHY_SIZE 0x0000007C
#define HDMI_PHY_PLL_PHYS 0xFD922700
#define HDMI_PHY_PLL_SIZE 0x000000D4
/* hdmi phy registers */
#define HDMI_PHY_ANA_CFG0 (0x0000)
#define HDMI_PHY_ANA_CFG1 (0x0004)
#define HDMI_PHY_ANA_CFG2 (0x0008)
#define HDMI_PHY_ANA_CFG3 (0x000C)
#define HDMI_PHY_PD_CTRL0 (0x0010)
#define HDMI_PHY_PD_CTRL1 (0x0014)
#define HDMI_PHY_GLB_CFG (0x0018)
#define HDMI_PHY_DCC_CFG0 (0x001C)
#define HDMI_PHY_DCC_CFG1 (0x0020)
#define HDMI_PHY_TXCAL_CFG0 (0x0024)
#define HDMI_PHY_TXCAL_CFG1 (0x0028)
#define HDMI_PHY_TXCAL_CFG2 (0x002C)
#define HDMI_PHY_TXCAL_CFG3 (0x0030)
#define HDMI_PHY_BIST_CFG0 (0x0034)
#define HDMI_PHY_BIST_CFG1 (0x0038)
#define HDMI_PHY_BIST_PATN0 (0x003C)
#define HDMI_PHY_BIST_PATN1 (0x0040)
#define HDMI_PHY_BIST_PATN2 (0x0044)
#define HDMI_PHY_BIST_PATN3 (0x0048)
#define HDMI_PHY_STATUS (0x005C)
/* hdmi phy unified pll registers */
#define HDMI_UNI_PLL_REFCLK_CFG (0x0000)
#define HDMI_UNI_PLL_POSTDIV1_CFG (0x0004)
#define HDMI_UNI_PLL_CHFPUMP_CFG (0x0008)
#define HDMI_UNI_PLL_VCOLPF_CFG (0x000C)
#define HDMI_UNI_PLL_VREG_CFG (0x0010)
#define HDMI_UNI_PLL_PWRGEN_CFG (0x0014)
#define HDMI_UNI_PLL_GLB_CFG (0x0020)
#define HDMI_UNI_PLL_POSTDIV2_CFG (0x0024)
#define HDMI_UNI_PLL_POSTDIV3_CFG (0x0028)
#define HDMI_UNI_PLL_LPFR_CFG (0x002C)
#define HDMI_UNI_PLL_LPFC1_CFG (0x0030)
#define HDMI_UNI_PLL_LPFC2_CFG (0x0034)
#define HDMI_UNI_PLL_SDM_CFG0 (0x0038)
#define HDMI_UNI_PLL_SDM_CFG1 (0x003C)
#define HDMI_UNI_PLL_SDM_CFG2 (0x0040)
#define HDMI_UNI_PLL_SDM_CFG3 (0x0044)
#define HDMI_UNI_PLL_SDM_CFG4 (0x0048)
#define HDMI_UNI_PLL_SSC_CFG0 (0x004C)
#define HDMI_UNI_PLL_SSC_CFG1 (0x0050)
#define HDMI_UNI_PLL_SSC_CFG2 (0x0054)
#define HDMI_UNI_PLL_SSC_CFG3 (0x0058)
#define HDMI_UNI_PLL_LKDET_CFG0 (0x005C)
#define HDMI_UNI_PLL_LKDET_CFG1 (0x0060)
#define HDMI_UNI_PLL_LKDET_CFG2 (0x0064)
#define HDMI_UNI_PLL_CAL_CFG0 (0x006C)
#define HDMI_UNI_PLL_CAL_CFG1 (0x0070)
#define HDMI_UNI_PLL_CAL_CFG2 (0x0074)
#define HDMI_UNI_PLL_CAL_CFG3 (0x0078)
#define HDMI_UNI_PLL_CAL_CFG4 (0x007C)
#define HDMI_UNI_PLL_CAL_CFG5 (0x0080)
#define HDMI_UNI_PLL_CAL_CFG6 (0x0084)
#define HDMI_UNI_PLL_CAL_CFG7 (0x0088)
#define HDMI_UNI_PLL_CAL_CFG8 (0x008C)
#define HDMI_UNI_PLL_CAL_CFG9 (0x0090)
#define HDMI_UNI_PLL_CAL_CFG10 (0x0094)
#define HDMI_UNI_PLL_CAL_CFG11 (0x0098)
#define HDMI_UNI_PLL_STATUS (0x00C0)
#define DSI_0_PHY_PLL_UNIPHY_PLL_REFCLK_CFG (0x00000000)
#define DSI_0_PHY_PLL_UNIPHY_PLL_POSTDIV1_CFG (0x00000004)
#define DSI_0_PHY_PLL_UNIPHY_PLL_CHGPUMP_CFG (0x00000008)
#define DSI_0_PHY_PLL_UNIPHY_PLL_VCOLPF_CFG (0x0000000C)
#define DSI_0_PHY_PLL_UNIPHY_PLL_VREG_CFG (0x00000010)
#define DSI_0_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG (0x00000014)
#define DSI_0_PHY_PLL_UNIPHY_PLL_DMUX_CFG (0x00000018)
#define DSI_0_PHY_PLL_UNIPHY_PLL_AMUX_CFG (0x0000001C)
#define DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG (0x00000020)
#define DSI_0_PHY_PLL_UNIPHY_PLL_POSTDIV2_CFG (0x00000024)
#define DSI_0_PHY_PLL_UNIPHY_PLL_POSTDIV3_CFG (0x00000028)
#define DSI_0_PHY_PLL_UNIPHY_PLL_LPFR_CFG (0x0000002C)
#define DSI_0_PHY_PLL_UNIPHY_PLL_LPFC1_CFG (0x00000030)
#define DSI_0_PHY_PLL_UNIPHY_PLL_LPFC2_CFG (0x00000034)
#define DSI_0_PHY_PLL_UNIPHY_PLL_SDM_CFG0 (0x00000038)
#define DSI_0_PHY_PLL_UNIPHY_PLL_SDM_CFG1 (0x0000003C)
#define DSI_0_PHY_PLL_UNIPHY_PLL_SDM_CFG2 (0x00000040)
#define DSI_0_PHY_PLL_UNIPHY_PLL_SDM_CFG3 (0x00000044)
#define DSI_0_PHY_PLL_UNIPHY_PLL_SDM_CFG4 (0x00000048)
#define DSI_0_PHY_PLL_UNIPHY_PLL_SSC_CFG0 (0x0000004C)
#define DSI_0_PHY_PLL_UNIPHY_PLL_SSC_CFG1 (0x00000050)
#define DSI_0_PHY_PLL_UNIPHY_PLL_SSC_CFG2 (0x00000054)
#define DSI_0_PHY_PLL_UNIPHY_PLL_SSC_CFG3 (0x00000058)
#define DSI_0_PHY_PLL_UNIPHY_PLL_LKDET_CFG0 (0x0000005C)
#define DSI_0_PHY_PLL_UNIPHY_PLL_LKDET_CFG1 (0x00000060)
#define DSI_0_PHY_PLL_UNIPHY_PLL_LKDET_CFG2 (0x00000064)
#define DSI_0_PHY_PLL_UNIPHY_PLL_TEST_CFG (0x00000068)
#define DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG0 (0x0000006C)
#define DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG1 (0x00000070)
#define DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG2 (0x00000074)
#define DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG3 (0x00000078)
#define DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG4 (0x0000007C)
#define DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG5 (0x00000080)
#define DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG6 (0x00000084)
#define DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG7 (0x00000088)
#define DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG8 (0x0000008C)
#define DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG9 (0x00000090)
#define DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG10 (0x00000094)
#define DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG11 (0x00000098)
#define DSI_0_PHY_PLL_UNIPHY_PLL_EFUSE_CFG (0x0000009C)
#define DSI_0_PHY_PLL_UNIPHY_PLL_STATUS (0x000000C0)
#define PLL_POLL_MAX_READS 10
#define PLL_POLL_TIMEOUT_US 50
#define SEQ_M_MAX_COUNTER 7
static long vco_cached_rate;
static unsigned char *mdss_dsi_base;
static unsigned char *gdsc_base;
static struct clk *mdss_ahb_clk;
static unsigned char *mdss_edp_base;
static void __iomem *hdmi_phy_base;
static void __iomem *hdmi_phy_pll_base;
static unsigned hdmi_pll_on;
static u32 hdmi_phy_addr = HDMI_PHY_PHYS;
static u32 hdmi_phy_pll_addr = HDMI_PHY_PLL_PHYS;
static int mdss_gdsc_enabled(void)
{
if (!gdsc_base)
return 0;
return (readl_relaxed(gdsc_base + 0x4) & BIT(31)) &&
(!(readl_relaxed(gdsc_base) & BIT(0)));
}
/* Auto PLL calibaration */
static int mdss_ahb_clk_enable(int enable)
{
int rc = 0;
/* todo: Ideally, we should enable/disable GDSC whenever we are
* attempting to enable/disable MDSS AHB clock.
* For now, just return error if GDSC is not enabled.
*/
if (!mdss_gdsc_enabled()) {
pr_err("%s: mdss GDSC is not enabled\n", __func__);
return -EPERM;
}
if (enable)
rc = clk_prepare_enable(mdss_ahb_clk);
else
clk_disable_unprepare(mdss_ahb_clk);
return rc;
}
static void hdmi_vco_disable(struct clk *c)
{
u32 rc;
if (!mdss_gdsc_enabled()) {
pr_err("%s: mdss GDSC is not enabled\n", __func__);
return;
}
rc = clk_enable(mdss_ahb_clk);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return;
}
REG_W(0x0, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
udelay(5);
REG_W(0x0, hdmi_phy_base + HDMI_PHY_GLB_CFG);
clk_disable(mdss_ahb_clk);
hdmi_pll_on = 0;
} /* hdmi_vco_disable */
static int hdmi_vco_enable(struct clk *c)
{
u32 status;
u32 rc;
u32 max_reads, timeout_us;
if (!mdss_gdsc_enabled()) {
pr_err("%s: mdss GDSC is not enabled\n", __func__);
return -EPERM;
}
rc = clk_enable(mdss_ahb_clk);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return rc;
}
/* Global Enable */
REG_W(0x81, hdmi_phy_base + HDMI_PHY_GLB_CFG);
/* Power up power gen */
REG_W(0x00, hdmi_phy_base + HDMI_PHY_PD_CTRL0);
udelay(350);
/* PLL Power-Up */
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
udelay(5);
/* Power up PLL LDO */
REG_W(0x03, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
udelay(350);
/* PLL Power-Up */
REG_W(0x0F, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
udelay(350);
/* poll for PLL ready status */
max_reads = 20;
timeout_us = 100;
if (readl_poll_timeout_noirq((hdmi_phy_pll_base + HDMI_UNI_PLL_STATUS),
status, ((status & BIT(0)) == 1), max_reads, timeout_us)) {
pr_err("%s: hdmi phy pll status=%x failed to Lock\n",
__func__, status);
hdmi_vco_disable(c);
clk_disable(mdss_ahb_clk);
return -EINVAL;
}
pr_debug("%s: hdmi phy pll is locked\n", __func__);
udelay(350);
/* poll for PHY ready status */
max_reads = 20;
timeout_us = 100;
if (readl_poll_timeout_noirq((hdmi_phy_base + HDMI_PHY_STATUS),
status, ((status & BIT(0)) == 1), max_reads, timeout_us)) {
pr_err("%s: hdmi phy status=%x failed to Lock\n",
__func__, status);
hdmi_vco_disable(c);
clk_disable(mdss_ahb_clk);
return -EINVAL;
}
pr_debug("%s: hdmi phy is locked\n", __func__);
clk_disable(mdss_ahb_clk);
hdmi_pll_on = 1;
return 0;
} /* hdmi_vco_enable */
static inline struct hdmi_pll_vco_clk *to_hdmi_vco_clk(struct clk *clk)
{
return container_of(clk, struct hdmi_pll_vco_clk, c);
}
static void hdmi_phy_pll_calculator(u32 vco_freq)
{
u32 ref_clk = 19200000;
u32 sdm_mode = 1;
u32 ref_clk_multiplier = sdm_mode == 1 ? 2 : 1;
u32 int_ref_clk_freq = ref_clk * ref_clk_multiplier;
u32 fbclk_pre_div = 1;
u32 ssc_mode = 0;
u32 kvco = 270;
u32 vdd = 95;
u32 ten_power_six = 1000000;
u32 ssc_ds_ppm = ssc_mode ? 5000 : 0;
u32 sdm_res = 16;
u32 ssc_tri_step = 32;
u32 ssc_freq = 2;
u64 ssc_ds = vco_freq * ssc_ds_ppm;
u32 div_in_freq = vco_freq / fbclk_pre_div;
u64 dc_offset = (div_in_freq / int_ref_clk_freq - 1) *
ten_power_six * 10;
u32 ssc_kdiv = (int_ref_clk_freq / ssc_freq) -
ten_power_six;
u64 sdm_freq_seed;
u32 ssc_tri_inc;
u64 fb_div_n;
u32 val;
pr_debug("%s: vco_freq = %u\n", __func__, vco_freq);
do_div(ssc_ds, (u64)ten_power_six);
fb_div_n = (u64)div_in_freq * (u64)ten_power_six * 10;
do_div(fb_div_n, int_ref_clk_freq);
sdm_freq_seed = ((fb_div_n - dc_offset - ten_power_six * 10) *
(1 << sdm_res) * 10) + 5;
do_div(sdm_freq_seed, ((u64)ten_power_six * 100));
ssc_tri_inc = (u32)ssc_ds;
ssc_tri_inc = (ssc_tri_inc / int_ref_clk_freq) * (1 << 16) /
ssc_tri_step;
val = (ref_clk_multiplier == 2 ? 1 : 0) +
((fbclk_pre_div == 2 ? 1 : 0) * 16);
pr_debug("%s: HDMI_UNI_PLL_REFCLK_CFG = 0x%x\n", __func__, val);
REG_W(val, hdmi_phy_pll_base + HDMI_UNI_PLL_REFCLK_CFG);
REG_W(0x02, hdmi_phy_pll_base + HDMI_UNI_PLL_CHFPUMP_CFG);
REG_W(0x19, hdmi_phy_pll_base + HDMI_UNI_PLL_VCOLPF_CFG);
REG_W(0x04, hdmi_phy_pll_base + HDMI_UNI_PLL_VREG_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_PWRGEN_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV3_CFG);
REG_W(0x0E, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFR_CFG);
REG_W(0x20, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC1_CFG);
REG_W(0x0D, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC2_CFG);
do_div(dc_offset, (u64)ten_power_six * 10);
val = sdm_mode == 0 ? 64 + dc_offset : 0;
pr_debug("%s: HDMI_UNI_PLL_SDM_CFG0 = 0x%x\n", __func__, val);
REG_W(val, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG0);
val = 64 + dc_offset;
pr_debug("%s: HDMI_UNI_PLL_SDM_CFG1 = 0x%x\n", __func__, val);
REG_W(val, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG1);
val = sdm_freq_seed & 0xFF;
pr_debug("%s: HDMI_UNI_PLL_SDM_CFG2 = 0x%x\n", __func__, val);
REG_W(val, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG2);
val = (sdm_freq_seed >> 8) & 0xFF;
pr_debug("%s: HDMI_UNI_PLL_SDM_CFG3 = 0x%x\n", __func__, val);
REG_W(val, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG3);
val = (sdm_freq_seed >> 16) & 0xFF;
pr_debug("%s: HDMI_UNI_PLL_SDM_CFG4 = 0x%x\n", __func__, val);
REG_W(val, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG4);
val = (ssc_mode == 0 ? 128 : 0) + (ssc_kdiv / ten_power_six);
pr_debug("%s: HDMI_UNI_PLL_SSC_CFG0 = 0x%x\n", __func__, val);
REG_W(val, hdmi_phy_pll_base + HDMI_UNI_PLL_SSC_CFG0);
val = ssc_tri_inc & 0xFF;
pr_debug("%s: HDMI_UNI_PLL_SSC_CFG1 = 0x%x\n", __func__, val);
REG_W(val, hdmi_phy_pll_base + HDMI_UNI_PLL_SSC_CFG1);
val = (ssc_tri_inc >> 8) & 0xFF;
pr_debug("%s: HDMI_UNI_PLL_SSC_CFG2 = 0x%x\n", __func__, val);
REG_W(val, hdmi_phy_pll_base + HDMI_UNI_PLL_SSC_CFG2);
pr_debug("%s: HDMI_UNI_PLL_SSC_CFG3 = 0x%x\n", __func__, ssc_tri_step);
REG_W(ssc_tri_step, hdmi_phy_pll_base + HDMI_UNI_PLL_SSC_CFG3);
REG_W(0x10, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG0);
REG_W(0x1A, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG1);
REG_W(0x05, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG2);
REG_W(0x0A, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG0);
REG_W(0x04, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG1);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG2);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG3);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG4);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG5);
val = (kvco * vdd * 10000) / 6;
val += 500000;
val /= ten_power_six;
pr_debug("%s: HDMI_UNI_PLL_CAL_CFG6 = 0x%x\n", __func__, val);
REG_W(val & 0xFF, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG6);
val = (kvco * vdd * 10000) / 6;
val -= ten_power_six;
val /= ten_power_six;
val = (val >> 8) & 0xFF;
pr_debug("%s: HDMI_UNI_PLL_CAL_CFG7 = 0x%x\n", __func__, val);
REG_W(val, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG7);
val = (ref_clk * 5) / ten_power_six;
pr_debug("%s: HDMI_UNI_PLL_CAL_CFG8 = 0x%x\n", __func__, val);
REG_W(val, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG8);
val = ((ref_clk * 5) / ten_power_six) >> 8;
pr_debug("%s: HDMI_UNI_PLL_CAL_CFG9 = 0x%x\n", __func__, val);
REG_W(val, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG9);
vco_freq /= ten_power_six;
val = vco_freq & 0xFF;
pr_debug("%s: HDMI_UNI_PLL_CAL_CFG10 = 0x%x\n", __func__, val);
REG_W(val, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG10);
val = vco_freq >> 8;
pr_debug("%s: HDMI_UNI_PLL_CAL_CFG11 = 0x%x\n", __func__, val);
REG_W(val, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG11);
} /* hdmi_phy_pll_calculator */
static int hdmi_vco_set_rate(struct clk *c, unsigned long rate)
{
unsigned int set_power_dwn = 0;
int rc = 0;
struct hdmi_pll_vco_clk *vco = to_hdmi_vco_clk(c);
if (hdmi_pll_on) {
hdmi_vco_disable(c);
set_power_dwn = 1;
}
rc = mdss_ahb_clk_enable(1);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return rc;
}
pr_debug("%s: rate=%ld\n", __func__, rate);
switch (rate) {
case 0:
break;
case 756000000:
/* 640x480p60 */
REG_W(0x81, hdmi_phy_base + HDMI_PHY_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_REFCLK_CFG);
REG_W(0x19, hdmi_phy_pll_base + HDMI_UNI_PLL_VCOLPF_CFG);
REG_W(0x0E, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFR_CFG);
REG_W(0x20, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC1_CFG);
REG_W(0x0D, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG0);
REG_W(0x52, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG1);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG2);
REG_W(0xB0, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG3);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG4);
REG_W(0x10, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG0);
REG_W(0x1A, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG1);
REG_W(0x05, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG2);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV3_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG2);
REG_W(0x60, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG8);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG9);
REG_W(0xF4, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG10);
REG_W(0x02, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG11);
REG_W(0x1F, hdmi_phy_base + HDMI_PHY_PD_CTRL0);
udelay(50);
REG_W(0x0F, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_PD_CTRL1);
REG_W(0x10, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0xDB, hdmi_phy_base + HDMI_PHY_ANA_CFG0);
REG_W(0x43, hdmi_phy_base + HDMI_PHY_ANA_CFG1);
REG_W(0x02, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_ANA_CFG3);
REG_W(0x04, hdmi_phy_pll_base + HDMI_UNI_PLL_VREG_CFG);
REG_W(0xD0, hdmi_phy_base + HDMI_PHY_DCC_CFG0);
REG_W(0x1A, hdmi_phy_base + HDMI_PHY_DCC_CFG1);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG0);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG1);
REG_W(0x02, hdmi_phy_base + HDMI_PHY_TXCAL_CFG2);
REG_W(0x05, hdmi_phy_base + HDMI_PHY_TXCAL_CFG3);
udelay(200);
break;
case 810000000:
/* 576p50/576i50 case */
REG_W(0x81, hdmi_phy_base + HDMI_PHY_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_REFCLK_CFG);
REG_W(0x19, hdmi_phy_pll_base + HDMI_UNI_PLL_VCOLPF_CFG);
REG_W(0X0E, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFR_CFG);
REG_W(0x20, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC1_CFG);
REG_W(0X0D, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG0);
REG_W(0x54, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG1);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG2);
REG_W(0x18, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG3);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG4);
REG_W(0x10, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG0);
REG_W(0X1A, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG1);
REG_W(0x05, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG2);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV3_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG2);
REG_W(0x60, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG8);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG9);
REG_W(0x2a, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG10);
REG_W(0x03, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG11);
REG_W(0X1F, hdmi_phy_base + HDMI_PHY_PD_CTRL0);
udelay(50);
REG_W(0X0F, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_PD_CTRL1);
REG_W(0x10, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0XDB, hdmi_phy_base + HDMI_PHY_ANA_CFG0);
REG_W(0x43, hdmi_phy_base + HDMI_PHY_ANA_CFG1);
REG_W(0x02, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_ANA_CFG3);
REG_W(0x04, hdmi_phy_pll_base + HDMI_UNI_PLL_VREG_CFG);
REG_W(0XD0, hdmi_phy_base + HDMI_PHY_DCC_CFG0);
REG_W(0X1A, hdmi_phy_base + HDMI_PHY_DCC_CFG1);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG0);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG1);
REG_W(0x02, hdmi_phy_base + HDMI_PHY_TXCAL_CFG2);
REG_W(0x05, hdmi_phy_base + HDMI_PHY_TXCAL_CFG3);
udelay(200);
break;
case 810900000:
/* 480p60/480i60 case */
REG_W(0x81, hdmi_phy_base + HDMI_PHY_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_REFCLK_CFG);
REG_W(0x19, hdmi_phy_pll_base + HDMI_UNI_PLL_VCOLPF_CFG);
REG_W(0x0E, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFR_CFG);
REG_W(0x20, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC1_CFG);
REG_W(0x0D, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG0);
REG_W(0x54, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG1);
REG_W(0x66, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG2);
REG_W(0x1D, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG3);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG4);
REG_W(0x10, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG0);
REG_W(0x1A, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG1);
REG_W(0x05, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG2);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV3_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG2);
REG_W(0x60, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG8);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG9);
REG_W(0x2A, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG10);
REG_W(0x03, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG11);
REG_W(0x1F, hdmi_phy_base + HDMI_PHY_PD_CTRL0);
udelay(50);
REG_W(0x0F, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_PD_CTRL1);
REG_W(0x10, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0xDB, hdmi_phy_base + HDMI_PHY_ANA_CFG0);
REG_W(0x43, hdmi_phy_base + HDMI_PHY_ANA_CFG1);
REG_W(0x02, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_ANA_CFG3);
REG_W(0x04, hdmi_phy_pll_base + HDMI_UNI_PLL_VREG_CFG);
REG_W(0xD0, hdmi_phy_base + HDMI_PHY_DCC_CFG0);
REG_W(0x1A, hdmi_phy_base + HDMI_PHY_DCC_CFG1);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG0);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG1);
REG_W(0x02, hdmi_phy_base + HDMI_PHY_TXCAL_CFG2);
REG_W(0x05, hdmi_phy_base + HDMI_PHY_TXCAL_CFG3);
udelay(200);
break;
case 650000000:
REG_W(0x81, hdmi_phy_base + HDMI_PHY_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_REFCLK_CFG);
REG_W(0x19, hdmi_phy_pll_base + HDMI_UNI_PLL_VCOLPF_CFG);
REG_W(0x0E, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFR_CFG);
REG_W(0x20, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC1_CFG);
REG_W(0x0D, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG0);
REG_W(0x4F, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG1);
REG_W(0x55, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG2);
REG_W(0xED, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG3);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG4);
REG_W(0x10, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG0);
REG_W(0x1A, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG1);
REG_W(0x05, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG2);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV3_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG2);
REG_W(0x60, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG8);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG9);
REG_W(0x8A, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG10);
REG_W(0x02, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG11);
REG_W(0x1F, hdmi_phy_base + HDMI_PHY_PD_CTRL0);
udelay(50);
REG_W(0x0F, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_PD_CTRL1);
REG_W(0x10, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0xDB, hdmi_phy_base + HDMI_PHY_ANA_CFG0);
REG_W(0x43, hdmi_phy_base + HDMI_PHY_ANA_CFG1);
REG_W(0x02, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_ANA_CFG3);
REG_W(0x04, hdmi_phy_pll_base + HDMI_UNI_PLL_VREG_CFG);
REG_W(0xD0, hdmi_phy_base + HDMI_PHY_DCC_CFG0);
REG_W(0x1A, hdmi_phy_base + HDMI_PHY_DCC_CFG1);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG0);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG1);
REG_W(0x02, hdmi_phy_base + HDMI_PHY_TXCAL_CFG2);
REG_W(0x05, hdmi_phy_base + HDMI_PHY_TXCAL_CFG3);
udelay(200);
break;
case 742500000:
/*
* 720p60/720p50/1080i60/1080i50
* 1080p24/1080p30/1080p25 case
*/
REG_W(0x81, hdmi_phy_base + HDMI_PHY_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_REFCLK_CFG);
REG_W(0x19, hdmi_phy_pll_base + HDMI_UNI_PLL_VCOLPF_CFG);
REG_W(0x0E, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFR_CFG);
REG_W(0x20, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC1_CFG);
REG_W(0x0D, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG0);
REG_W(0x52, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG1);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG2);
REG_W(0x56, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG3);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG4);
REG_W(0x10, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG0);
REG_W(0x1A, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG1);
REG_W(0x05, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG2);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV3_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG2);
REG_W(0x60, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG8);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG9);
REG_W(0xE6, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG10);
REG_W(0x02, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG11);
REG_W(0x1F, hdmi_phy_base + HDMI_PHY_PD_CTRL0);
udelay(50);
REG_W(0x0F, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_PD_CTRL1);
REG_W(0x10, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0xDB, hdmi_phy_base + HDMI_PHY_ANA_CFG0);
REG_W(0x43, hdmi_phy_base + HDMI_PHY_ANA_CFG1);
REG_W(0x02, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_ANA_CFG3);
REG_W(0x04, hdmi_phy_pll_base + HDMI_UNI_PLL_VREG_CFG);
REG_W(0xD0, hdmi_phy_base + HDMI_PHY_DCC_CFG0);
REG_W(0x1A, hdmi_phy_base + HDMI_PHY_DCC_CFG1);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG0);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG1);
REG_W(0x02, hdmi_phy_base + HDMI_PHY_TXCAL_CFG2);
REG_W(0x05, hdmi_phy_base + HDMI_PHY_TXCAL_CFG3);
udelay(200);
break;
case 1080000000:
REG_W(0x81, hdmi_phy_base + HDMI_PHY_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_REFCLK_CFG);
REG_W(0x19, hdmi_phy_pll_base + HDMI_UNI_PLL_VCOLPF_CFG);
REG_W(0x0E, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFR_CFG);
REG_W(0x20, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC1_CFG);
REG_W(0x0D, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG0);
REG_W(0x5B, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG1);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG2);
REG_W(0x20, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG3);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG4);
REG_W(0x10, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG0);
REG_W(0x1A, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG1);
REG_W(0x05, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG2);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV3_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG2);
REG_W(0x60, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG8);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG9);
REG_W(0x38, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG10);
REG_W(0x04, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG11);
REG_W(0x1F, hdmi_phy_base + HDMI_PHY_PD_CTRL0);
udelay(50);
REG_W(0x0F, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_PD_CTRL1);
REG_W(0x10, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0xDB, hdmi_phy_base + HDMI_PHY_ANA_CFG0);
REG_W(0x43, hdmi_phy_base + HDMI_PHY_ANA_CFG1);
REG_W(0x02, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_ANA_CFG3);
REG_W(0x04, hdmi_phy_pll_base + HDMI_UNI_PLL_VREG_CFG);
REG_W(0xD0, hdmi_phy_base + HDMI_PHY_DCC_CFG0);
REG_W(0x1A, hdmi_phy_base + HDMI_PHY_DCC_CFG1);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG0);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG1);
REG_W(0x02, hdmi_phy_base + HDMI_PHY_TXCAL_CFG2);
REG_W(0x05, hdmi_phy_base + HDMI_PHY_TXCAL_CFG3);
udelay(200);
break;
case 1342500000:
REG_W(0x81, hdmi_phy_base + HDMI_PHY_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_REFCLK_CFG);
REG_W(0x19, hdmi_phy_pll_base + HDMI_UNI_PLL_VCOLPF_CFG);
REG_W(0x0E, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFR_CFG);
REG_W(0x20, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC1_CFG);
REG_W(0x0D, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC2_CFG);
REG_W(0x36, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG0);
REG_W(0x61, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG1);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG2);
REG_W(0xF6, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG3);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG4);
REG_W(0x10, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG0);
REG_W(0x1A, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG1);
REG_W(0x05, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG2);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV3_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG2);
REG_W(0x60, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG8);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG9);
REG_W(0x3E, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG10);
REG_W(0x05, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG11);
REG_W(0x1F, hdmi_phy_base + HDMI_PHY_PD_CTRL0);
udelay(50);
REG_W(0x0F, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_PD_CTRL1);
REG_W(0x10, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0xDB, hdmi_phy_base + HDMI_PHY_ANA_CFG0);
REG_W(0x43, hdmi_phy_base + HDMI_PHY_ANA_CFG1);
REG_W(0x05, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_ANA_CFG3);
REG_W(0x04, hdmi_phy_pll_base + HDMI_UNI_PLL_VREG_CFG);
REG_W(0xD0, hdmi_phy_base + HDMI_PHY_DCC_CFG0);
REG_W(0x1A, hdmi_phy_base + HDMI_PHY_DCC_CFG1);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG0);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG1);
REG_W(0x11, hdmi_phy_base + HDMI_PHY_TXCAL_CFG2);
REG_W(0x05, hdmi_phy_base + HDMI_PHY_TXCAL_CFG3);
udelay(200);
break;
case 1485000000:
REG_W(0x81, hdmi_phy_base + HDMI_PHY_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_REFCLK_CFG);
REG_W(0x19, hdmi_phy_pll_base + HDMI_UNI_PLL_VCOLPF_CFG);
REG_W(0x0E, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFR_CFG);
REG_W(0x20, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC1_CFG);
REG_W(0x0D, hdmi_phy_pll_base + HDMI_UNI_PLL_LPFC2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG0);
REG_W(0x65, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG1);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG2);
REG_W(0xAC, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG3);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_SDM_CFG4);
REG_W(0x10, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG0);
REG_W(0x1A, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG1);
REG_W(0x05, hdmi_phy_pll_base + HDMI_UNI_PLL_LKDET_CFG2);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV2_CFG);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_POSTDIV3_CFG);
REG_W(0x01, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG2);
REG_W(0x60, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG8);
REG_W(0x00, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG9);
REG_W(0xCD, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG10);
REG_W(0x05, hdmi_phy_pll_base + HDMI_UNI_PLL_CAL_CFG11);
REG_W(0x1F, hdmi_phy_base + HDMI_PHY_PD_CTRL0);
udelay(50);
REG_W(0x0F, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_PD_CTRL1);
REG_W(0x10, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0xDB, hdmi_phy_base + HDMI_PHY_ANA_CFG0);
REG_W(0x43, hdmi_phy_base + HDMI_PHY_ANA_CFG1);
REG_W(0x06, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0x03, hdmi_phy_base + HDMI_PHY_ANA_CFG3);
REG_W(0x04, hdmi_phy_pll_base + HDMI_UNI_PLL_VREG_CFG);
REG_W(0xD0, hdmi_phy_base + HDMI_PHY_DCC_CFG0);
REG_W(0x1A, hdmi_phy_base + HDMI_PHY_DCC_CFG1);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG0);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG1);
REG_W(0x02, hdmi_phy_base + HDMI_PHY_TXCAL_CFG2);
REG_W(0x05, hdmi_phy_base + HDMI_PHY_TXCAL_CFG3);
udelay(200);
break;
default:
pr_debug("%s: Use pll settings calculator for rate=%ld\n",
__func__, rate);
REG_W(0x81, hdmi_phy_base + HDMI_PHY_GLB_CFG);
hdmi_phy_pll_calculator(rate);
REG_W(0x1F, hdmi_phy_base + HDMI_PHY_PD_CTRL0);
udelay(50);
REG_W(0x0F, hdmi_phy_pll_base + HDMI_UNI_PLL_GLB_CFG);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_PD_CTRL1);
REG_W(0x10, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0xDB, hdmi_phy_base + HDMI_PHY_ANA_CFG0);
REG_W(0x43, hdmi_phy_base + HDMI_PHY_ANA_CFG1);
if (rate < 825000000) {
REG_W(0x01, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_ANA_CFG3);
} else if (rate >= 825000000 && rate < 1342500000) {
REG_W(0x05, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0x03, hdmi_phy_base + HDMI_PHY_ANA_CFG3);
} else {
REG_W(0x06, hdmi_phy_base + HDMI_PHY_ANA_CFG2);
REG_W(0x03, hdmi_phy_base + HDMI_PHY_ANA_CFG3);
}
REG_W(0x04, hdmi_phy_pll_base + HDMI_UNI_PLL_VREG_CFG);
REG_W(0xD0, hdmi_phy_base + HDMI_PHY_DCC_CFG0);
REG_W(0x1A, hdmi_phy_base + HDMI_PHY_DCC_CFG1);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG0);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG1);
if (rate < 825000000)
REG_W(0x01, hdmi_phy_base + HDMI_PHY_TXCAL_CFG2);
else
REG_W(0x00, hdmi_phy_base + HDMI_PHY_TXCAL_CFG2);
REG_W(0x05, hdmi_phy_base + HDMI_PHY_TXCAL_CFG3);
REG_W(0x62, hdmi_phy_base + HDMI_PHY_BIST_PATN0);
REG_W(0x03, hdmi_phy_base + HDMI_PHY_BIST_PATN1);
REG_W(0x69, hdmi_phy_base + HDMI_PHY_BIST_PATN2);
REG_W(0x02, hdmi_phy_base + HDMI_PHY_BIST_PATN3);
udelay(200);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_BIST_CFG1);
REG_W(0x00, hdmi_phy_base + HDMI_PHY_BIST_CFG0);
}
/* Make sure writes complete before disabling iface clock */
mb();
mdss_ahb_clk_enable(0);
if (set_power_dwn)
hdmi_vco_enable(c);
vco->rate = rate;
vco->rate_set = true;
return 0;
} /* hdmi_pll_set_rate */
int set_byte_mux_sel(struct mux_clk *clk, int sel)
{
pr_debug("%s: byte mux set to %s mode\n", __func__,
sel ? "indirect" : "direct");
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_VREG_CFG,
(sel << 1));
return 0;
}
int get_byte_mux_sel(struct mux_clk *clk)
{
int mux_mode;
if (mdss_ahb_clk_enable(1)) {
pr_debug("%s: Failed to enable mdss ahb clock\n", __func__);
return 0;
}
mux_mode = DSS_REG_R(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_VREG_CFG)
& BIT(1);
pr_debug("%s: byte mux mode = %s", __func__,
mux_mode ? "indirect" : "direct");
mdss_ahb_clk_enable(0);
return !!mux_mode;
}
static inline struct dsi_pll_vco_clk *to_vco_clk(struct clk *clk)
{
return container_of(clk, struct dsi_pll_vco_clk, c);
}
/*
* When the display is turned off, the display registers are wiped out.
* Temporarily use the prepare ops to restore the register values.
*
*/
int div_prepare(struct clk *c)
{
struct div_clk *div = to_div_clk(c);
/* Restore the divider's value */
return div->ops->set_div(div, div->data.div);
}
int mux_prepare(struct clk *c)
{
struct mux_clk *mux = to_mux_clk(c);
int i, rc, sel = 0;
rc = mdss_ahb_clk_enable(1);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return rc;
}
for (i = 0; i < mux->num_parents; i++)
if (mux->parents[i].src == c->parent) {
sel = mux->parents[i].sel;
break;
}
if (i == mux->num_parents) {
rc = -EINVAL;
goto error;
}
/* Restore the mux source select value */
rc = mux->ops->set_mux_sel(mux, sel);
error:
mdss_ahb_clk_enable(0);
return rc;
}
static int fixed_4div_set_div(struct div_clk *clk, int div)
{
int rc = 0;
rc = mdss_ahb_clk_enable(1);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return rc;
}
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_POSTDIV2_CFG,
(div - 1));
mdss_ahb_clk_enable(0);
return 0;
}
static int fixed_4div_get_div(struct div_clk *clk)
{
int div = 0;
if (mdss_ahb_clk_enable(1)) {
pr_debug("%s: Failed to enable mdss ahb clock\n", __func__);
return 1;
}
div = DSS_REG_R(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_POSTDIV2_CFG);
mdss_ahb_clk_enable(0);
return div + 1;
}
static int digital_set_div(struct div_clk *clk, int div)
{
int rc = 0;
rc = mdss_ahb_clk_enable(1);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return rc;
}
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_POSTDIV3_CFG,
(div - 1));
mdss_ahb_clk_enable(0);
return 0;
}
static int digital_get_div(struct div_clk *clk)
{
int div = 0;
if (mdss_ahb_clk_enable(1)) {
pr_debug("%s: Failed to enable mdss ahb clock\n", __func__);
return 1;
}
div = DSS_REG_R(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_POSTDIV3_CFG);
mdss_ahb_clk_enable(0);
return div + 1;
}
static int analog_set_div(struct div_clk *clk, int div)
{
int rc = 0;
rc = mdss_ahb_clk_enable(1);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return rc;
}
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_POSTDIV1_CFG,
div - 1);
mdss_ahb_clk_enable(0);
return 0;
}
static int analog_get_div(struct div_clk *clk)
{
int div = 0;
if (mdss_ahb_clk_enable(1)) {
pr_debug("%s: Failed to enable mdss ahb clock\n", __func__);
return 1;
}
div = DSS_REG_R(mdss_dsi_base,
DSI_0_PHY_PLL_UNIPHY_PLL_POSTDIV1_CFG) + 1;
mdss_ahb_clk_enable(0);
return div;
}
static void dsi_pll_toggle_lock_detect(void)
{
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_LKDET_CFG2,
0x0d);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_LKDET_CFG2,
0x0c);
udelay(1);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_LKDET_CFG2,
0x0d);
}
static int dsi_pll_lock_status(void)
{
u32 status;
int pll_locked = 0;
/* poll for PLL ready status */
if (readl_poll_timeout_noirq((mdss_dsi_base +
DSI_0_PHY_PLL_UNIPHY_PLL_STATUS),
status,
((status & BIT(0)) == 1),
PLL_POLL_MAX_READS, PLL_POLL_TIMEOUT_US)) {
pr_debug("%s: DSI PLL status=%x failed to Lock\n",
__func__, status);
pll_locked = 0;
} else {
pll_locked = 1;
}
return pll_locked;
}
static inline int dsi_pll_toggle_lock_detect_and_check_status(void)
{
dsi_pll_toggle_lock_detect();
return dsi_pll_lock_status();
}
static void dsi_pll_software_reset(void)
{
/*
* Add HW recommended delays after toggling the software
* reset bit off and back on.
*/
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_TEST_CFG, 0x01);
udelay(1);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_TEST_CFG, 0x00);
udelay(1);
}
static int dsi_pll_enable_seq_m(void)
{
int i = 0;
int pll_locked = 0;
dsi_pll_software_reset();
/*
* Add hardware recommended delays between register writes for
* the updates to take effect. These delays are necessary for the
* PLL to successfully lock
*/
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG1, 0x34);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x01);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(600);
pll_locked = dsi_pll_toggle_lock_detect_and_check_status();
for (i = 0; (i < SEQ_M_MAX_COUNTER) && !pll_locked; i++) {
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG,
0x00);
udelay(50);
DSS_REG_W(mdss_dsi_base,
DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(100);
DSS_REG_W(mdss_dsi_base,
DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(600);
pll_locked = dsi_pll_toggle_lock_detect_and_check_status();
}
if (pll_locked)
pr_debug("%s: PLL Locked at attempt #%d\n", __func__, i);
else
pr_debug("%s: PLL failed to lock after %d attempt(s)\n",
__func__, i);
return pll_locked ? 0 : -EINVAL;
}
static int dsi_pll_enable_seq_d(void)
{
int pll_locked = 0;
dsi_pll_software_reset();
/*
* Add hardware recommended delays between register writes for
* the updates to take effect. These delays are necessary for the
* PLL to successfully lock
*/
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG, 0x00);
udelay(50);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x01);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x07);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x07);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(600);
pll_locked = dsi_pll_toggle_lock_detect_and_check_status();
pr_debug("%s: PLL status = %s\n", __func__,
pll_locked ? "Locked" : "Unlocked");
return pll_locked ? 0 : -EINVAL;
}
static int dsi_pll_enable_seq_f1(void)
{
int pll_locked = 0;
dsi_pll_software_reset();
/*
* Add hardware recommended delays between register writes for
* the updates to take effect. These delays are necessary for the
* PLL to successfully lock
*/
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG, 0x00);
udelay(50);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x01);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0d);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(600);
pll_locked = dsi_pll_toggle_lock_detect_and_check_status();
pr_debug("%s: PLL status = %s\n", __func__,
pll_locked ? "Locked" : "Unlocked");
return pll_locked ? 0 : -EINVAL;
}
static int dsi_pll_enable_seq_c(void)
{
int pll_locked = 0;
dsi_pll_software_reset();
/*
* Add hardware recommended delays between register writes for
* the updates to take effect. These delays are necessary for the
* PLL to successfully lock
*/
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG, 0x00);
udelay(50);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x01);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(600);
pll_locked = dsi_pll_toggle_lock_detect_and_check_status();
pr_debug("%s: PLL status = %s\n", __func__,
pll_locked ? "Locked" : "Unlocked");
return pll_locked ? 0 : -EINVAL;
}
static int dsi_pll_enable_seq_e(void)
{
int pll_locked = 0;
dsi_pll_software_reset();
/*
* Add hardware recommended delays between register writes for
* the updates to take effect. These delays are necessary for the
* PLL to successfully lock
*/
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG, 0x00);
udelay(50);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x01);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0d);
udelay(1);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(600);
pll_locked = dsi_pll_toggle_lock_detect_and_check_status();
pr_debug("%s: PLL status = %s\n", __func__,
pll_locked ? "Locked" : "Unlocked");
return pll_locked ? 0 : -EINVAL;
}
static int dsi_pll_enable_seq_8974(void)
{
int i, rc = 0;
u32 status, max_reads, timeout_us;
dsi_pll_software_reset();
/*
* PLL power up sequence.
* Add necessary delays recommeded by hardware.
*/
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x01);
udelay(1);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x05);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x07);
udelay(500);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x0f);
udelay(500);
for (i = 0; i < 2; i++) {
udelay(100);
/* DSI Uniphy lock detect setting */
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_LKDET_CFG2,
0x0c);
udelay(100);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_LKDET_CFG2,
0x0d);
/* poll for PLL ready status */
max_reads = 5;
timeout_us = 100;
if (readl_poll_timeout_noirq((mdss_dsi_base +
DSI_0_PHY_PLL_UNIPHY_PLL_STATUS),
status,
((status & 0x01) == 1),
max_reads, timeout_us)) {
pr_debug("%s: DSI PLL status=%x failed to Lock\n",
__func__, status);
pr_debug("%s:Trying to power UP PLL again\n",
__func__);
} else {
break;
}
dsi_pll_software_reset();
/*
* PLL power up sequence.
* Add necessary delays recommeded by hardware.
*/
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x1);
udelay(1);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x5);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x7);
udelay(250);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x5);
udelay(200);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x7);
udelay(500);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0xf);
udelay(500);
}
if ((status & 0x01) != 1) {
pr_debug("%s: DSI PLL status=%x failed to Lock\n",
__func__, status);
rc = -EINVAL;
goto error;
}
pr_debug("%s: DSI PLL Lock success\n", __func__);
error:
return rc;
}
static int dsi_pll_enable(struct clk *c)
{
int i, rc = 0;
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
if (!mdss_gdsc_enabled()) {
pr_err("%s: mdss GDSC is not enabled\n", __func__);
return -EPERM;
}
rc = clk_enable(mdss_ahb_clk);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return rc;
}
/* Try all enable sequences until one succeeds */
for (i = 0; i < vco->pll_en_seq_cnt; i++) {
rc = vco->pll_enable_seqs[i]();
pr_debug("%s: DSI PLL %s after sequence #%d\n", __func__,
rc ? "unlocked" : "locked", i + 1);
if (!rc)
break;
}
clk_disable(mdss_ahb_clk);
if (rc)
pr_err("%s: DSI PLL failed to lock\n", __func__);
return rc;
}
static void dsi_pll_disable(struct clk *c)
{
int rc = 0;
if (!mdss_gdsc_enabled()) {
pr_warn("%s: mdss GDSC disabled before disabling DSI PLL\n",
__func__);
return;
}
rc = clk_enable(mdss_ahb_clk);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return;
}
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x00);
clk_disable(mdss_ahb_clk);
pr_debug("%s: DSI PLL Disabled\n", __func__);
return;
}
static int vco_set_rate(struct clk *c, unsigned long rate)
{
s64 vco_clk_rate = rate;
s32 rem;
s64 refclk_cfg, frac_n_mode, ref_doubler_en_b;
s64 ref_clk_to_pll, div_fbx1000, frac_n_value;
s64 sdm_cfg0, sdm_cfg1, sdm_cfg2, sdm_cfg3;
s64 gen_vco_clk, cal_cfg10, cal_cfg11;
u32 res;
int i, rc = 0;
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
rc = mdss_ahb_clk_enable(1);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return rc;
}
/* Configure the Loop filter resistance */
for (i = 0; i < vco->lpfr_lut_size; i++)
if (vco_clk_rate <= vco->lpfr_lut[i].vco_rate)
break;
if (i == vco->lpfr_lut_size) {
pr_err("%s: unable to get loop filter resistance. vco=%ld\n",
__func__, rate);
rc = -EINVAL;
goto error;
}
res = vco->lpfr_lut[i].r;
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_LPFR_CFG, res);
/* Loop filter capacitance values : c1 and c2 */
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_LPFC1_CFG, 0x70);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_LPFC2_CFG, 0x15);
div_s64_rem(vco_clk_rate, vco->ref_clk_rate, &rem);
if (rem) {
refclk_cfg = 0x1;
frac_n_mode = 1;
ref_doubler_en_b = 0;
} else {
refclk_cfg = 0x0;
frac_n_mode = 0;
ref_doubler_en_b = 1;
}
pr_debug("%s:refclk_cfg = %lld\n", __func__, refclk_cfg);
ref_clk_to_pll = ((vco->ref_clk_rate * 2 * (refclk_cfg))
+ (ref_doubler_en_b * vco->ref_clk_rate));
div_fbx1000 = div_s64((vco_clk_rate * 1000), ref_clk_to_pll);
div_s64_rem(div_fbx1000, 1000, &rem);
frac_n_value = div_s64((rem * (1 << 16)), 1000);
gen_vco_clk = div_s64(div_fbx1000 * ref_clk_to_pll, 1000);
pr_debug("%s:ref_clk_to_pll = %lld\n", __func__, ref_clk_to_pll);
pr_debug("%s:div_fb = %lld\n", __func__, div_fbx1000);
pr_debug("%s:frac_n_value = %lld\n", __func__, frac_n_value);
pr_debug("%s:Generated VCO Clock: %lld\n", __func__, gen_vco_clk);
rem = 0;
if (frac_n_mode) {
sdm_cfg0 = (0x0 << 5);
sdm_cfg0 |= (0x0 & 0x3f);
sdm_cfg1 = (div_s64(div_fbx1000, 1000) & 0x3f) - 1;
sdm_cfg3 = div_s64_rem(frac_n_value, 256, &rem);
sdm_cfg2 = rem;
} else {
sdm_cfg0 = (0x1 << 5);
sdm_cfg0 |= (div_s64(div_fbx1000, 1000) & 0x3f) - 1;
sdm_cfg1 = (0x0 & 0x3f);
sdm_cfg2 = 0;
sdm_cfg3 = 0;
}
pr_debug("%s: sdm_cfg0=%lld\n", __func__, sdm_cfg0);
pr_debug("%s: sdm_cfg1=%lld\n", __func__, sdm_cfg1);
pr_debug("%s: sdm_cfg2=%lld\n", __func__, sdm_cfg2);
pr_debug("%s: sdm_cfg3=%lld\n", __func__, sdm_cfg3);
cal_cfg11 = div_s64_rem(gen_vco_clk, 256 * 1000000, &rem);
cal_cfg10 = rem / 1000000;
pr_debug("%s: cal_cfg10=%lld, cal_cfg11=%lld\n", __func__,
cal_cfg10, cal_cfg11);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_CHGPUMP_CFG, 0x02);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG3, 0x2b);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG4, 0x66);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_LKDET_CFG2, 0x0d);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_SDM_CFG1,
(u32)(sdm_cfg1 & 0xff));
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_SDM_CFG2,
(u32)(sdm_cfg2 & 0xff));
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_SDM_CFG3,
(u32)(sdm_cfg3 & 0xff));
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_SDM_CFG4, 0x00);
/* Add hardware recommended delay for correct PLL configuration */
udelay(1);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_REFCLK_CFG,
(u32)refclk_cfg);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG, 0x00);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_VCOLPF_CFG, 0x71);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_SDM_CFG0,
(u32)sdm_cfg0);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG0, 0x12);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG6, 0x30);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG7, 0x00);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG8, 0x60);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG9, 0x00);
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG10,
(u32)(cal_cfg10 & 0xff));
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_CAL_CFG11,
(u32)(cal_cfg11 & 0xff));
DSS_REG_W(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_EFUSE_CFG, 0x20);
error:
mdss_ahb_clk_enable(0);
return rc;
}
/* rate is the bit clk rate */
static long vco_round_rate(struct clk *c, unsigned long rate)
{
unsigned long rrate = rate;
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
if (rate < vco->min_rate)
rrate = vco->min_rate;
if (rate > vco->max_rate)
rrate = vco->max_rate;
return rrate;
}
static unsigned long vco_get_rate(struct clk *c)
{
u32 sdm0, doubler, sdm_byp_div;
u64 vco_rate;
u32 sdm_dc_off, sdm_freq_seed, sdm2, sdm3;
struct dsi_pll_vco_clk *vco = to_vco_clk(c);
u64 ref_clk = vco->ref_clk_rate;
/* Check to see if the ref clk doubler is enabled */
doubler = DSS_REG_R(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_REFCLK_CFG)
& BIT(0);
ref_clk += (doubler * vco->ref_clk_rate);
/* see if it is integer mode or sdm mode */
sdm0 = DSS_REG_R(mdss_dsi_base, DSI_0_PHY_PLL_UNIPHY_PLL_SDM_CFG0);
if (sdm0 & BIT(6)) {
/* integer mode */
sdm_byp_div = (DSS_REG_R(mdss_dsi_base,
DSI_0_PHY_PLL_UNIPHY_PLL_SDM_CFG0) & 0x3f) + 1;
vco_rate = ref_clk * sdm_byp_div;
} else {
/* sdm mode */
sdm_dc_off = DSS_REG_R(mdss_dsi_base,
DSI_0_PHY_PLL_UNIPHY_PLL_SDM_CFG1) & 0xFF;
pr_debug("%s: sdm_dc_off = %d\n", __func__, sdm_dc_off);
sdm2 = DSS_REG_R(mdss_dsi_base,
DSI_0_PHY_PLL_UNIPHY_PLL_SDM_CFG2) & 0xFF;
sdm3 = DSS_REG_R(mdss_dsi_base,
DSI_0_PHY_PLL_UNIPHY_PLL_SDM_CFG3) & 0xFF;
sdm_freq_seed = (sdm3 << 8) | sdm2;
pr_debug("%s: sdm_freq_seed = %d\n", __func__, sdm_freq_seed);
vco_rate = (ref_clk * (sdm_dc_off + 1)) +
mult_frac(ref_clk, sdm_freq_seed, BIT(16));
pr_debug("%s: vco rate = %lld", __func__, vco_rate);
}
pr_debug("%s: returning vco rate = %lu\n", __func__,
(unsigned long)vco_rate);
return (unsigned long)vco_rate;
}
static enum handoff vco_handoff(struct clk *c)
{
int rc = 0;
enum handoff ret = HANDOFF_DISABLED_CLK;
rc = mdss_ahb_clk_enable(1);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return ret;
}
if (dsi_pll_lock_status()) {
c->rate = vco_get_rate(c);
ret = HANDOFF_ENABLED_CLK;
}
mdss_ahb_clk_enable(0);
return ret;
}
static int vco_prepare(struct clk *c)
{
int rc = 0;
if ((vco_cached_rate != 0)
&& (vco_cached_rate == c->rate)) {
rc = vco_set_rate(c, vco_cached_rate);
if (rc) {
pr_err("%s: vco_set_rate failed. rc=%d\n",
__func__, rc);
goto error;
}
}
rc = dsi_pll_enable(c);
error:
return rc;
}
static void vco_unprepare(struct clk *c)
{
vco_cached_rate = c->rate;
dsi_pll_disable(c);
}
/* Op structures */
static struct clk_ops clk_ops_dsi_vco = {
.set_rate = vco_set_rate,
.round_rate = vco_round_rate,
.handoff = vco_handoff,
.prepare = vco_prepare,
.unprepare = vco_unprepare,
};
static struct clk_div_ops fixed_2div_ops;
static struct clk_div_ops fixed_4div_ops = {
.set_div = fixed_4div_set_div,
.get_div = fixed_4div_get_div,
};
static struct clk_div_ops analog_postdiv_ops = {
.set_div = analog_set_div,
.get_div = analog_get_div,
};
static struct clk_div_ops digital_postdiv_ops = {
.set_div = digital_set_div,
.get_div = digital_get_div,
};
struct clk_mux_ops byte_mux_ops = {
.set_mux_sel = set_byte_mux_sel,
.get_mux_sel = get_byte_mux_sel,
};
struct clk_ops byte_mux_clk_ops;
static struct clk_ops pixel_clk_src_ops;
static struct clk_ops byte_clk_src_ops;
static struct clk_ops analog_potsdiv_clk_ops;
/* Display clocks */
struct dsi_pll_vco_clk dsi_vco_clk_8226 = {
.ref_clk_rate = 19200000,
.min_rate = 350000000,
.max_rate = 750000000,
.pll_en_seq_cnt = 7,
.pll_enable_seqs[0] = dsi_pll_enable_seq_m,
.pll_enable_seqs[1] = dsi_pll_enable_seq_m,
.pll_enable_seqs[2] = dsi_pll_enable_seq_d,
.pll_enable_seqs[3] = dsi_pll_enable_seq_d,
.pll_enable_seqs[4] = dsi_pll_enable_seq_f1,
.pll_enable_seqs[5] = dsi_pll_enable_seq_c,
.pll_enable_seqs[6] = dsi_pll_enable_seq_e,
.lpfr_lut_size = 10,
.lpfr_lut = (struct lpfr_cfg[]){
{479500000, 8},
{480000000, 11},
{575500000, 8},
{576000000, 12},
{610500000, 8},
{659500000, 9},
{671500000, 10},
{672000000, 14},
{708500000, 10},
{750000000, 11},
},
.c = {
.dbg_name = "dsi_vco_clk",
.ops = &clk_ops_dsi_vco,
CLK_INIT(dsi_vco_clk_8226.c),
},
};
struct div_clk analog_postdiv_clk_8226 = {
.data = {
.max_div = 255,
.min_div = 1,
},
.ops = &analog_postdiv_ops,
.c = {
.parent = &dsi_vco_clk_8226.c,
.dbg_name = "analog_postdiv_clk",
.ops = &analog_potsdiv_clk_ops,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(analog_postdiv_clk_8226.c),
},
};
struct div_clk indirect_path_div2_clk_8226 = {
.ops = &fixed_2div_ops,
.data = {
.div = 2,
.min_div = 2,
.max_div = 2,
},
.c = {
.parent = &analog_postdiv_clk_8226.c,
.dbg_name = "indirect_path_div2_clk",
.ops = &clk_ops_div,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(indirect_path_div2_clk_8226.c),
},
};
struct div_clk pixel_clk_src_8226 = {
.data = {
.max_div = 255,
.min_div = 1,
},
.ops = &digital_postdiv_ops,
.c = {
.parent = &dsi_vco_clk_8226.c,
.dbg_name = "pixel_clk_src",
.ops = &pixel_clk_src_ops,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(pixel_clk_src_8226.c),
},
};
struct mux_clk byte_mux_8226 = {
.num_parents = 2,
.parents = (struct clk_src[]){
{&dsi_vco_clk_8226.c, 0},
{&indirect_path_div2_clk_8226.c, 1},
},
.ops = &byte_mux_ops,
.c = {
.parent = &dsi_vco_clk_8226.c,
.dbg_name = "byte_mux",
.ops = &byte_mux_clk_ops,
CLK_INIT(byte_mux_8226.c),
},
};
struct div_clk byte_clk_src_8226 = {
.ops = &fixed_4div_ops,
.data = {
.min_div = 4,
.max_div = 4,
},
.c = {
.parent = &byte_mux_8226.c,
.dbg_name = "byte_clk_src",
.ops = &byte_clk_src_ops,
CLK_INIT(byte_clk_src_8226.c),
},
};
struct dsi_pll_vco_clk dsi_vco_clk_8084 = {
.ref_clk_rate = 19200000,
.min_rate = 350000000,
.max_rate = 750000000,
.pll_en_seq_cnt = 3,
.pll_enable_seqs[0] = dsi_pll_enable_seq_8974,
.pll_enable_seqs[1] = dsi_pll_enable_seq_8974,
.pll_enable_seqs[2] = dsi_pll_enable_seq_8974,
.lpfr_lut_size = 10,
.lpfr_lut = (struct lpfr_cfg[]){
{479500000, 8},
{480000000, 11},
{575500000, 8},
{576000000, 12},
{610500000, 8},
{659500000, 9},
{671500000, 10},
{672000000, 14},
{708500000, 10},
{750000000, 11},
},
.c = {
.dbg_name = "dsi_vco_clk",
.ops = &clk_ops_dsi_vco,
CLK_INIT(dsi_vco_clk_8084.c),
},
};
struct div_clk analog_postdiv_clk_8084 = {
.data = {
.max_div = 255,
.min_div = 1,
},
.ops = &analog_postdiv_ops,
.c = {
.parent = &dsi_vco_clk_8084.c,
.dbg_name = "analog_postdiv_clk",
.ops = &analog_potsdiv_clk_ops,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(analog_postdiv_clk_8084.c),
},
};
struct div_clk indirect_path_div2_clk_8084 = {
.ops = &fixed_2div_ops,
.data = {
.div = 2,
.min_div = 2,
.max_div = 2,
},
.c = {
.parent = &analog_postdiv_clk_8084.c,
.dbg_name = "indirect_path_div2_clk",
.ops = &clk_ops_div,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(indirect_path_div2_clk_8084.c),
},
};
struct div_clk pixel_clk_src_8084 = {
.data = {
.max_div = 255,
.min_div = 1,
},
.ops = &digital_postdiv_ops,
.c = {
.parent = &dsi_vco_clk_8084.c,
.dbg_name = "pixel_clk_src",
.ops = &pixel_clk_src_ops,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(pixel_clk_src_8084.c),
},
};
struct mux_clk byte_mux_8084 = {
.num_parents = 2,
.parents = (struct clk_src[]){
{&dsi_vco_clk_8084.c, 0},
{&indirect_path_div2_clk_8084.c, 1},
},
.ops = &byte_mux_ops,
.c = {
.parent = &dsi_vco_clk_8084.c,
.dbg_name = "byte_mux",
.ops = &byte_mux_clk_ops,
CLK_INIT(byte_mux_8084.c),
},
};
struct div_clk byte_clk_src_8084 = {
.ops = &fixed_4div_ops,
.data = {
.min_div = 4,
.max_div = 4,
},
.c = {
.parent = &byte_mux_8084.c,
.dbg_name = "byte_clk_src",
.ops = &byte_clk_src_ops,
CLK_INIT(byte_clk_src_8084.c),
},
};
struct dsi_pll_vco_clk dsi_vco_clk_8974 = {
.ref_clk_rate = 19200000,
.min_rate = 350000000,
.max_rate = 750000000,
.pll_en_seq_cnt = 3,
.pll_enable_seqs[0] = dsi_pll_enable_seq_8974,
.pll_enable_seqs[1] = dsi_pll_enable_seq_8974,
.pll_enable_seqs[2] = dsi_pll_enable_seq_8974,
.lpfr_lut_size = 10,
.lpfr_lut = (struct lpfr_cfg[]){
{479500000, 8},
{480000000, 11},
{575500000, 8},
{576000000, 12},
{610500000, 8},
{659500000, 9},
{671500000, 10},
{672000000, 14},
{708500000, 10},
{750000000, 11},
},
.c = {
.dbg_name = "dsi_vco_clk",
.ops = &clk_ops_dsi_vco,
CLK_INIT(dsi_vco_clk_8974.c),
},
};
struct div_clk analog_postdiv_clk_8974 = {
.data = {
.max_div = 255,
.min_div = 1,
},
.ops = &analog_postdiv_ops,
.c = {
.parent = &dsi_vco_clk_8974.c,
.dbg_name = "analog_postdiv_clk",
.ops = &analog_potsdiv_clk_ops,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(analog_postdiv_clk_8974.c),
},
};
struct div_clk indirect_path_div2_clk_8974 = {
.ops = &fixed_2div_ops,
.data = {
.div = 2,
.min_div = 2,
.max_div = 2,
},
.c = {
.parent = &analog_postdiv_clk_8974.c,
.dbg_name = "indirect_path_div2_clk",
.ops = &clk_ops_div,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(indirect_path_div2_clk_8974.c),
},
};
struct div_clk pixel_clk_src_8974 = {
.data = {
.max_div = 255,
.min_div = 1,
},
.ops = &digital_postdiv_ops,
.c = {
.parent = &dsi_vco_clk_8974.c,
.dbg_name = "pixel_clk_src",
.ops = &pixel_clk_src_ops,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(pixel_clk_src_8974.c),
},
};
struct mux_clk byte_mux_8974 = {
.num_parents = 2,
.parents = (struct clk_src[]){
{&dsi_vco_clk_8974.c, 0},
{&indirect_path_div2_clk_8974.c, 1},
},
.ops = &byte_mux_ops,
.c = {
.parent = &dsi_vco_clk_8974.c,
.dbg_name = "byte_mux",
.ops = &byte_mux_clk_ops,
CLK_INIT(byte_mux_8974.c),
},
};
struct div_clk byte_clk_src_8974 = {
.ops = &fixed_4div_ops,
.data = {
.min_div = 4,
.max_div = 4,
},
.c = {
.parent = &byte_mux_8974.c,
.dbg_name = "byte_clk_src",
.ops = &byte_clk_src_ops,
CLK_INIT(byte_clk_src_8974.c),
},
};
static inline struct edp_pll_vco_clk *to_edp_vco_clk(struct clk *clk)
{
return container_of(clk, struct edp_pll_vco_clk, c);
}
static int edp_vco_set_rate(struct clk *c, unsigned long vco_rate)
{
struct edp_pll_vco_clk *vco = to_edp_vco_clk(c);
int rc = 0;
pr_debug("%s: vco_rate=%d\n", __func__, (int)vco_rate);
rc = mdss_ahb_clk_enable(1);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
rc = -EINVAL;
}
if (vco_rate == 810000000) {
DSS_REG_W(mdss_edp_base, 0x0c, 0x18);
/* UNIPHY_PLL_LKDET_CFG2 */
DSS_REG_W(mdss_edp_base, 0x64, 0x0d);
/* UNIPHY_PLL_REFCLK_CFG */
DSS_REG_W(mdss_edp_base, 0x00, 0x00);
/* UNIPHY_PLL_SDM_CFG0 */
DSS_REG_W(mdss_edp_base, 0x38, 0x36);
/* UNIPHY_PLL_SDM_CFG1 */
DSS_REG_W(mdss_edp_base, 0x3c, 0x69);
/* UNIPHY_PLL_SDM_CFG2 */
DSS_REG_W(mdss_edp_base, 0x40, 0xff);
/* UNIPHY_PLL_SDM_CFG3 */
DSS_REG_W(mdss_edp_base, 0x44, 0x2f);
/* UNIPHY_PLL_SDM_CFG4 */
DSS_REG_W(mdss_edp_base, 0x48, 0x00);
/* UNIPHY_PLL_SSC_CFG0 */
DSS_REG_W(mdss_edp_base, 0x4c, 0x80);
/* UNIPHY_PLL_SSC_CFG1 */
DSS_REG_W(mdss_edp_base, 0x50, 0x00);
/* UNIPHY_PLL_SSC_CFG2 */
DSS_REG_W(mdss_edp_base, 0x54, 0x00);
/* UNIPHY_PLL_SSC_CFG3 */
DSS_REG_W(mdss_edp_base, 0x58, 0x00);
/* UNIPHY_PLL_CAL_CFG0 */
DSS_REG_W(mdss_edp_base, 0x6c, 0x12);
/* UNIPHY_PLL_CAL_CFG2 */
DSS_REG_W(mdss_edp_base, 0x74, 0x01);
/* UNIPHY_PLL_CAL_CFG6 */
DSS_REG_W(mdss_edp_base, 0x84, 0x5a);
/* UNIPHY_PLL_CAL_CFG7 */
DSS_REG_W(mdss_edp_base, 0x88, 0x0);
/* UNIPHY_PLL_CAL_CFG8 */
DSS_REG_W(mdss_edp_base, 0x8c, 0x60);
/* UNIPHY_PLL_CAL_CFG9 */
DSS_REG_W(mdss_edp_base, 0x90, 0x0);
/* UNIPHY_PLL_CAL_CFG10 */
DSS_REG_W(mdss_edp_base, 0x94, 0x2a);
/* UNIPHY_PLL_CAL_CFG11 */
DSS_REG_W(mdss_edp_base, 0x98, 0x3);
/* UNIPHY_PLL_LKDET_CFG0 */
DSS_REG_W(mdss_edp_base, 0x5c, 0x10);
/* UNIPHY_PLL_LKDET_CFG1 */
DSS_REG_W(mdss_edp_base, 0x60, 0x1a);
/* UNIPHY_PLL_POSTDIV1_CFG */
DSS_REG_W(mdss_edp_base, 0x04, 0x00);
/* UNIPHY_PLL_POSTDIV3_CFG */
DSS_REG_W(mdss_edp_base, 0x28, 0x00);
} else if (vco_rate == 1350000000) {
/* UNIPHY_PLL_LKDET_CFG2 */
DSS_REG_W(mdss_edp_base, 0x64, 0x0d);
/* UNIPHY_PLL_REFCLK_CFG */
DSS_REG_W(mdss_edp_base, 0x00, 0x01);
/* UNIPHY_PLL_SDM_CFG0 */
DSS_REG_W(mdss_edp_base, 0x38, 0x36);
/* UNIPHY_PLL_SDM_CFG1 */
DSS_REG_W(mdss_edp_base, 0x3c, 0x62);
/* UNIPHY_PLL_SDM_CFG2 */
DSS_REG_W(mdss_edp_base, 0x40, 0x00);
/* UNIPHY_PLL_SDM_CFG3 */
DSS_REG_W(mdss_edp_base, 0x44, 0x28);
/* UNIPHY_PLL_SDM_CFG4 */
DSS_REG_W(mdss_edp_base, 0x48, 0x00);
/* UNIPHY_PLL_SSC_CFG0 */
DSS_REG_W(mdss_edp_base, 0x4c, 0x80);
/* UNIPHY_PLL_SSC_CFG1 */
DSS_REG_W(mdss_edp_base, 0x50, 0x00);
/* UNIPHY_PLL_SSC_CFG2 */
DSS_REG_W(mdss_edp_base, 0x54, 0x00);
/* UNIPHY_PLL_SSC_CFG3 */
DSS_REG_W(mdss_edp_base, 0x58, 0x00);
/* UNIPHY_PLL_CAL_CFG0 */
DSS_REG_W(mdss_edp_base, 0x6c, 0x12);
/* UNIPHY_PLL_CAL_CFG2 */
DSS_REG_W(mdss_edp_base, 0x74, 0x01);
/* UNIPHY_PLL_CAL_CFG6 */
DSS_REG_W(mdss_edp_base, 0x84, 0x5a);
/* UNIPHY_PLL_CAL_CFG7 */
DSS_REG_W(mdss_edp_base, 0x88, 0x0);
/* UNIPHY_PLL_CAL_CFG8 */
DSS_REG_W(mdss_edp_base, 0x8c, 0x60);
/* UNIPHY_PLL_CAL_CFG9 */
DSS_REG_W(mdss_edp_base, 0x90, 0x0);
/* UNIPHY_PLL_CAL_CFG10 */
DSS_REG_W(mdss_edp_base, 0x94, 0x46);
/* UNIPHY_PLL_CAL_CFG11 */
DSS_REG_W(mdss_edp_base, 0x98, 0x5);
/* UNIPHY_PLL_LKDET_CFG0 */
DSS_REG_W(mdss_edp_base, 0x5c, 0x10);
/* UNIPHY_PLL_LKDET_CFG1 */
DSS_REG_W(mdss_edp_base, 0x60, 0x1a);
/* UNIPHY_PLL_POSTDIV1_CFG */
DSS_REG_W(mdss_edp_base, 0x04, 0x00);
/* UNIPHY_PLL_POSTDIV3_CFG */
DSS_REG_W(mdss_edp_base, 0x28, 0x00);
} else {
pr_err("%s: rate=%d is NOT supported\n", __func__,
(int)vco_rate);
vco_rate = 0;
rc = -EINVAL;
}
DSS_REG_W(mdss_edp_base, 0x20, 0x01); /* UNIPHY_PLL_GLB_CFG */
udelay(100);
DSS_REG_W(mdss_edp_base, 0x20, 0x05); /* UNIPHY_PLL_GLB_CFG */
udelay(100);
DSS_REG_W(mdss_edp_base, 0x20, 0x07); /* UNIPHY_PLL_GLB_CFG */
udelay(100);
DSS_REG_W(mdss_edp_base, 0x20, 0x0f); /* UNIPHY_PLL_GLB_CFG */
udelay(100);
mdss_ahb_clk_enable(0);
vco->rate = vco_rate;
return rc;
}
static int edp_pll_ready_poll(void)
{
int cnt;
u32 status;
/* ahb clock should be enabled by caller */
cnt = 100;
while (cnt--) {
udelay(100);
status = DSS_REG_R(mdss_edp_base, 0xc0);
status &= 0x01;
if (status)
break;
}
pr_debug("%s: cnt=%d status=%d\n", __func__, cnt, (int)status);
if (status)
return 1;
return 0;
}
static int edp_vco_enable(struct clk *c)
{
int i, ready;
int rc = 0;
if (!mdss_gdsc_enabled()) {
pr_err("%s: mdss GDSC is not enabled\n", __func__);
return -EPERM;
}
/* called from enable, irq disable. can not call clk_prepare */
rc = clk_enable(mdss_ahb_clk);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return rc;
}
for (i = 0; i < 3; i++) {
ready = edp_pll_ready_poll();
if (ready)
break;
DSS_REG_W(mdss_edp_base, 0x20, 0x01); /* UNIPHY_PLL_GLB_CFG */
udelay(100);
DSS_REG_W(mdss_edp_base, 0x20, 0x05); /* UNIPHY_PLL_GLB_CFG */
udelay(100);
DSS_REG_W(mdss_edp_base, 0x20, 0x07); /* UNIPHY_PLL_GLB_CFG */
udelay(100);
DSS_REG_W(mdss_edp_base, 0x20, 0x0f); /* UNIPHY_PLL_GLB_CFG */
udelay(100);
}
clk_disable(mdss_ahb_clk);
if (ready) {
pr_debug("%s: EDP PLL locked\n", __func__);
return 0;
}
pr_err("%s: EDP PLL failed to lock\n", __func__);
return -EINVAL;
}
static void edp_vco_disable(struct clk *c)
{
int rc = 0;
if (!mdss_gdsc_enabled()) {
pr_err("%s: mdss GDSC is not enabled\n", __func__);
return;
}
/* called from unprepare which is not atomic */
rc = mdss_ahb_clk_enable(1);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return;
}
DSS_REG_W(mdss_edp_base, 0x20, 0x00);
mdss_ahb_clk_enable(0);
pr_debug("%s: EDP PLL Disabled\n", __func__);
return;
}
static unsigned long edp_vco_get_rate(struct clk *c)
{
struct edp_pll_vco_clk *vco = to_edp_vco_clk(c);
u32 pll_status, div2;
int rc;
rc = mdss_ahb_clk_enable(1);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return rc;
}
if (vco->rate == 0) {
pll_status = DSS_REG_R(mdss_edp_base, 0xc0);
if (pll_status & 0x01) {
div2 = DSS_REG_R(mdss_edp_base, 0x24);
if (div2 & 0x01)
vco->rate = 1350000000;
else
vco->rate = 810000000;
}
}
mdss_ahb_clk_enable(0);
pr_debug("%s: rate=%d\n", __func__, (int)vco->rate);
return vco->rate;
}
static long edp_vco_round_rate(struct clk *c, unsigned long rate)
{
struct edp_pll_vco_clk *vco = to_edp_vco_clk(c);
unsigned long rrate = -ENOENT;
unsigned long *lp;
lp = vco->rate_list;
while (*lp) {
rrate = *lp;
if (rate <= rrate)
break;
lp++;
}
pr_debug("%s: rrate=%d\n", __func__, (int)rrate);
return rrate;
}
static int edp_vco_prepare(struct clk *c)
{
struct edp_pll_vco_clk *vco = to_edp_vco_clk(c);
pr_debug("%s: rate=%d\n", __func__, (int)vco->rate);
return edp_vco_set_rate(c, vco->rate);
}
static void edp_vco_unprepare(struct clk *c)
{
struct edp_pll_vco_clk *vco = to_edp_vco_clk(c);
pr_debug("%s: rate=%d\n", __func__, (int)vco->rate);
edp_vco_disable(c);
}
static int edp_pll_lock_status(void)
{
u32 status;
int pll_locked = 0;
int rc;
rc = mdss_ahb_clk_enable(1);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return rc;
}
/* poll for PLL ready status */
if (readl_poll_timeout_noirq((mdss_edp_base + 0xc0),
status, ((status & BIT(0)) == 1),
PLL_POLL_MAX_READS, PLL_POLL_TIMEOUT_US)) {
pr_debug("%s: EDP PLL status=%x failed to Lock\n",
__func__, status);
pll_locked = 0;
} else {
pll_locked = 1;
}
mdss_ahb_clk_enable(0);
return pll_locked;
}
static enum handoff edp_vco_handoff(struct clk *c)
{
enum handoff ret = HANDOFF_DISABLED_CLK;
if (edp_pll_lock_status()) {
c->rate = edp_vco_get_rate(c);
ret = HANDOFF_ENABLED_CLK;
}
pr_debug("%s: done, ret=%d\n", __func__, ret);
return ret;
}
/* edp vco rate */
static unsigned long edp_vco_rate_list[] = {
810000000, 1350000000, 0};
struct clk_ops edp_vco_clk_ops = {
.enable = edp_vco_enable,
.set_rate = edp_vco_set_rate,
.get_rate = edp_vco_get_rate,
.round_rate = edp_vco_round_rate,
.prepare = edp_vco_prepare,
.unprepare = edp_vco_unprepare,
.handoff = edp_vco_handoff,
};
struct edp_pll_vco_clk edp_vco_clk = {
.ref_clk_rate = 19200000,
.rate = 0,
.rate_list = edp_vco_rate_list,
.c = {
.dbg_name = "edp_vco_clk",
.ops = &edp_vco_clk_ops,
CLK_INIT(edp_vco_clk.c),
},
};
static unsigned long edp_mainlink_get_rate(struct clk *c)
{
struct div_clk *mclk = to_div_clk(c);
struct clk *pclk;
unsigned long rate = 0;
pclk = clk_get_parent(c);
if (pclk->ops->get_rate) {
rate = pclk->ops->get_rate(pclk);
rate /= mclk->data.div;
}
pr_debug("%s: rate=%d div=%d\n", __func__, (int)rate, mclk->data.div);
return rate;
}
static struct clk_ops edp_mainlink_clk_src_ops;
static struct clk_div_ops fixed_5div_ops; /* null ops */
struct div_clk edp_mainlink_clk_src = {
.ops = &fixed_5div_ops,
.data = {
.div = 5,
.min_div = 5,
.max_div = 5,
},
.c = {
.parent = &edp_vco_clk.c,
.dbg_name = "edp_mainlink_clk_src",
.ops = &edp_mainlink_clk_src_ops,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(edp_mainlink_clk_src.c),
}
};
static struct clk_ops edp_pixel_clk_ops;
/*
* this rate is from pll to clock controller
* output from pll to CC has two possibilities
* 1: if mainlink rate is 270M, then 675M
* 2: if mainlink rate is 162M, then 810M
*/
static int edp_pixel_set_div(struct div_clk *clk, int div)
{
int rc = 0;
rc = mdss_ahb_clk_enable(1);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return rc;
}
pr_debug("%s: div=%d\n", __func__, div);
DSS_REG_W(mdss_edp_base, 0x24, (div - 1)); /* UNIPHY_PLL_POSTDIV2_CFG */
mdss_ahb_clk_enable(0);
return 0;
}
static int edp_pixel_get_div(struct div_clk *clk)
{
int div = 0;
if (mdss_ahb_clk_enable(1)) {
pr_debug("%s: Failed to enable mdss ahb clock\n", __func__);
return 1;
}
div = DSS_REG_R(mdss_edp_base, 0x24); /* UNIPHY_PLL_POSTDIV2_CFG */
div &= 0x01;
pr_debug("%s: div=%d\n", __func__, div);
mdss_ahb_clk_enable(0);
return div + 1;
}
static struct clk_div_ops edp_pixel_ops = {
.set_div = edp_pixel_set_div,
.get_div = edp_pixel_get_div,
};
struct div_clk edp_pixel_clk_src = {
.data = {
.max_div = 2,
.min_div = 1,
},
.ops = &edp_pixel_ops,
.c = {
.parent = &edp_vco_clk.c,
.dbg_name = "edp_pixel_clk_src",
.ops = &edp_pixel_clk_ops,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(edp_pixel_clk_src.c),
},
};
/* HDMI PLL DIV CLK */
static unsigned long hdmi_vco_get_rate(struct clk *c)
{
unsigned long freq = 0;
if (mdss_ahb_clk_enable(1)) {
pr_err("%s: Failed to enable mdss ahb clock\n", __func__);
return freq;
}
freq = DSS_REG_R(hdmi_phy_pll_base, HDMI_UNI_PLL_CAL_CFG11) << 8 |
DSS_REG_R(hdmi_phy_pll_base, HDMI_UNI_PLL_CAL_CFG10);
switch (freq) {
case 742:
freq = 742500000;
break;
case 810:
if (DSS_REG_R(hdmi_phy_pll_base, HDMI_UNI_PLL_SDM_CFG3) == 0x18)
freq = 810000000;
else
freq = 810900000;
break;
case 1342:
freq = 1342500000;
break;
default:
freq *= 1000000;
}
mdss_ahb_clk_enable(0);
return freq;
}
static long hdmi_vco_round_rate(struct clk *c, unsigned long rate)
{
unsigned long rrate = rate;
struct hdmi_pll_vco_clk *vco = to_hdmi_vco_clk(c);
if (rate < vco->min_rate)
rrate = vco->min_rate;
if (rate > vco->max_rate)
rrate = vco->max_rate;
pr_debug("%s: rrate=%ld\n", __func__, rrate);
return rrate;
}
static int hdmi_vco_prepare(struct clk *c)
{
struct hdmi_pll_vco_clk *vco = to_hdmi_vco_clk(c);
int ret = 0;
pr_debug("%s: rate=%ld\n", __func__, vco->rate);
if (!vco->rate_set && vco->rate)
ret = hdmi_vco_set_rate(c, vco->rate);
if (!ret)
ret = clk_prepare(mdss_ahb_clk);
return ret;
}
static void hdmi_vco_unprepare(struct clk *c)
{
struct hdmi_pll_vco_clk *vco = to_hdmi_vco_clk(c);
vco->rate_set = false;
clk_unprepare(mdss_ahb_clk);
}
static int hdmi_pll_lock_status(void)
{
u32 status;
int pll_locked = 0;
int rc;
rc = mdss_ahb_clk_enable(1);
if (rc) {
pr_err("%s: failed to enable mdss ahb clock. rc=%d\n",
__func__, rc);
return 0;
}
/* poll for PLL ready status */
if (readl_poll_timeout_noirq((hdmi_phy_base + HDMI_PHY_STATUS),
status, ((status & BIT(0)) == 1),
PLL_POLL_MAX_READS, PLL_POLL_TIMEOUT_US)) {
pr_debug("%s: HDMI PLL status=%x failed to Lock\n",
__func__, status);
pll_locked = 0;
} else {
pll_locked = 1;
}
mdss_ahb_clk_enable(0);
return pll_locked;
}
static enum handoff hdmi_vco_handoff(struct clk *c)
{
enum handoff ret = HANDOFF_DISABLED_CLK;
if (hdmi_pll_lock_status()) {
c->rate = hdmi_vco_get_rate(c);
ret = HANDOFF_ENABLED_CLK;
}
pr_debug("%s: done, ret=%d\n", __func__, ret);
return ret;
}
static struct clk_ops hdmi_vco_clk_ops = {
.enable = hdmi_vco_enable,
.set_rate = hdmi_vco_set_rate,
.get_rate = hdmi_vco_get_rate,
.round_rate = hdmi_vco_round_rate,
.prepare = hdmi_vco_prepare,
.unprepare = hdmi_vco_unprepare,
.disable = hdmi_vco_disable,
.handoff = hdmi_vco_handoff,
};
static struct hdmi_pll_vco_clk hdmi_vco_clk = {
.min_rate = 600000000,
.max_rate = 1800000000,
.c = {
.dbg_name = "hdmi_vco_clk",
.ops = &hdmi_vco_clk_ops,
CLK_INIT(hdmi_vco_clk.c),
},
};
struct div_clk hdmipll_div1_clk = {
.data = {
.div = 1,
.min_div = 1,
.max_div = 1,
},
.c = {
.parent = &hdmi_vco_clk.c,
.dbg_name = "hdmipll_div1_clk",
.ops = &clk_ops_div,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(hdmipll_div1_clk.c),
},
};
struct div_clk hdmipll_div2_clk = {
.data = {
.div = 2,
.min_div = 2,
.max_div = 2,
},
.c = {
.parent = &hdmi_vco_clk.c,
.dbg_name = "hdmipll_div2_clk",
.ops = &clk_ops_div,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(hdmipll_div2_clk.c),
},
};
struct div_clk hdmipll_div4_clk = {
.data = {
.div = 4,
.min_div = 4,
.max_div = 4,
},
.c = {
.parent = &hdmi_vco_clk.c,
.dbg_name = "hdmipll_div4_clk",
.ops = &clk_ops_div,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(hdmipll_div4_clk.c),
},
};
struct div_clk hdmipll_div6_clk = {
.data = {
.div = 6,
.min_div = 6,
.max_div = 6,
},
.c = {
.parent = &hdmi_vco_clk.c,
.dbg_name = "hdmipll_div6_clk",
.ops = &clk_ops_div,
.flags = CLKFLAG_NO_RATE_CACHE,
CLK_INIT(hdmipll_div6_clk.c),
},
};
static int hdmipll_set_mux_sel(struct mux_clk *clk, int mux_sel)
{
int rc;
if (!mdss_gdsc_enabled()) {
pr_err("%s: mdss GDSC is not enabled\n", __func__);
return -EPERM;
}
rc = clk_enable(mdss_ahb_clk);
if (rc) {
pr_err("%s: Failed to enable mdss ahb clock\n", __func__);
return rc;
}
pr_debug("%s: mux_sel=%d\n", __func__, mux_sel);
DSS_REG_W(hdmi_phy_pll_base, HDMI_UNI_PLL_POSTDIV1_CFG, mux_sel);
clk_disable(mdss_ahb_clk);
return 0;
}
static int hdmipll_get_mux_sel(struct mux_clk *clk)
{
int mux_sel = 0;
if (mdss_ahb_clk_enable(1)) {
pr_err("%s: Failed to enable mdss ahb clock\n", __func__);
return mux_sel;
}
mux_sel = DSS_REG_R(hdmi_phy_pll_base, HDMI_UNI_PLL_POSTDIV1_CFG);
mux_sel &= 0x03;
pr_debug("%s: mux_sel=%d\n", __func__, mux_sel);
mdss_ahb_clk_enable(0);
return mux_sel;
}
static struct clk_mux_ops hdmipll_mux_ops = {
.set_mux_sel = hdmipll_set_mux_sel,
.get_mux_sel = hdmipll_get_mux_sel,
};
static struct clk_ops hdmi_mux_ops;
static int hdmi_mux_prepare(struct clk *c)
{
int ret = 0;
if (c && c->ops && c->ops->set_rate)
ret = c->ops->set_rate(c, c->rate);
return ret;
}
struct mux_clk hdmipll_mux_clk = {
MUX_SRC_LIST(
{ &hdmipll_div1_clk.c, 0 },
{ &hdmipll_div2_clk.c, 1 },
{ &hdmipll_div4_clk.c, 2 },
{ &hdmipll_div6_clk.c, 3 },
),
.ops = &hdmipll_mux_ops,
.c = {
.parent = &hdmipll_div1_clk.c,
.dbg_name = "hdmipll_mux_clk",
.ops = &hdmi_mux_ops,
CLK_INIT(hdmipll_mux_clk.c),
},
};
struct div_clk hdmipll_clk_src = {
.data = {
.div = 5,
.min_div = 5,
.max_div = 5,
},
.c = {
.parent = &hdmipll_mux_clk.c,
.dbg_name = "hdmipll_clk_src",
.ops = &clk_ops_div,
CLK_INIT(hdmipll_clk_src.c),
},
};
void mdss_clk_update_hdmi_addr(u32 phy_addr, u32 phy_pll_addr)
{
hdmi_phy_addr = phy_addr;
hdmi_phy_pll_addr = phy_pll_addr;
}
void mdss_clk_ctrl_pre_init(struct clk *ahb_clk)
{
BUG_ON(ahb_clk == NULL);
gdsc_base = ioremap(GDSC_PHYS, GDSC_SIZE);
if (!gdsc_base)
pr_err("%s: unable to remap gdsc base", __func__);
mdss_dsi_base = ioremap(DSI_PHY_PHYS, DSI_PHY_SIZE);
if (!mdss_dsi_base)
pr_err("%s: unable to remap dsi base", __func__);
mdss_ahb_clk = ahb_clk;
hdmi_phy_base = ioremap(hdmi_phy_addr, HDMI_PHY_SIZE);
if (!hdmi_phy_base)
pr_err("%s: unable to ioremap hdmi phy base", __func__);
hdmi_phy_pll_base = ioremap(hdmi_phy_pll_addr, HDMI_PHY_PLL_SIZE);
if (!hdmi_phy_pll_base)
pr_err("%s: unable to ioremap hdmi phy pll base", __func__);
mdss_edp_base = ioremap(EDP_PHY_PHYS, EDP_PHY_SIZE);
if (!mdss_edp_base)
pr_err("%s: unable to remap edp base", __func__);
pixel_clk_src_ops = clk_ops_slave_div;
pixel_clk_src_ops.prepare = div_prepare;
byte_clk_src_ops = clk_ops_div;
byte_clk_src_ops.prepare = div_prepare;
analog_potsdiv_clk_ops = clk_ops_div;
analog_potsdiv_clk_ops.prepare = div_prepare;
byte_mux_clk_ops = clk_ops_gen_mux;
byte_mux_clk_ops.prepare = mux_prepare;
edp_mainlink_clk_src_ops = clk_ops_div;
edp_mainlink_clk_src_ops.get_parent = clk_get_parent;
edp_mainlink_clk_src_ops.get_rate = edp_mainlink_get_rate;
edp_pixel_clk_ops = clk_ops_slave_div;
edp_pixel_clk_ops.prepare = div_prepare;
hdmi_mux_ops = clk_ops_gen_mux;
hdmi_mux_ops.prepare = hdmi_mux_prepare;
}