blob: c83b4998b5914681da30addb95d9e45adc81f008 [file] [log] [blame]
#ifndef __ASM_SPINLOCK_H
#define __ASM_SPINLOCK_H
#if __LINUX_ARM_ARCH__ < 6
#error SMP not supported on pre-ARMv6 CPUs
#endif
#include <asm/processor.h>
extern int msm_krait_need_wfe_fixup;
/*
* sev and wfe are ARMv6K extensions. Uniprocessor ARMv6 may not have the K
* extensions, so when running on UP, we have to patch these instructions away.
*/
#define ALT_SMP(smp, up) \
"9998: " smp "\n" \
" .pushsection \".alt.smp.init\", \"a\"\n" \
" .long 9998b\n" \
" " up "\n" \
" .popsection\n"
#ifdef CONFIG_THUMB2_KERNEL
#define SEV ALT_SMP("sev.w", "nop.w")
/*
* Both instructions given to the ALT_SMP macro need to be the same size, to
* allow the SMP_ON_UP fixups to function correctly. Hence the explicit encoding
* specifications.
*/
#define WFE() ALT_SMP( \
"wfe.w", \
"nop.w" \
)
#else
#define SEV ALT_SMP("sev", "nop")
#define WFE() ALT_SMP("wfe", "nop")
#endif
/*
* The fixup involves disabling FIQs during execution of the WFE instruction.
* This could potentially lead to deadlock if a thread is trying to acquire a
* spinlock which is being released from an FIQ. This should not be a problem
* because FIQs are handled by the secure environment and do not directly
* manipulate spinlocks.
*/
#ifdef CONFIG_MSM_KRAIT_WFE_FIXUP
#define WFE_SAFE(fixup, tmp) \
" mrs " tmp ", cpsr\n" \
" cmp " fixup ", #0\n" \
" wfeeq\n" \
" beq 10f\n" \
" cpsid f\n" \
" mrc p15, 7, " fixup ", c15, c0, 5\n" \
" bic " fixup ", " fixup ", #0x10000\n" \
" mcr p15, 7, " fixup ", c15, c0, 5\n" \
" isb\n" \
" wfe\n" \
" orr " fixup ", " fixup ", #0x10000\n" \
" mcr p15, 7, " fixup ", c15, c0, 5\n" \
" isb\n" \
"10: msr cpsr_cf, " tmp "\n"
#else
#define WFE_SAFE(fixup, tmp) " wfe\n"
#endif
static inline void dsb_sev(void)
{
#if __LINUX_ARM_ARCH__ >= 7
__asm__ __volatile__ (
"dsb\n"
SEV
);
#else
__asm__ __volatile__ (
"mcr p15, 0, %0, c7, c10, 4\n"
SEV
: : "r" (0)
);
#endif
}
/*
* ARMv6 ticket-based spin-locking.
*
* A memory barrier is required after we get a lock, and before we
* release it, because V6 CPUs are assumed to have weakly ordered
* memory.
*/
#define arch_spin_unlock_wait(lock) \
do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
static inline void arch_spin_lock(arch_spinlock_t *lock)
{
unsigned long tmp, flags = 0;
u32 newval;
arch_spinlock_t lockval;
__asm__ __volatile__(
"1: ldrex %0, [%3]\n"
" add %1, %0, %4\n"
" strex %2, %1, [%3]\n"
" teq %2, #0\n"
" bne 1b"
: "=&r" (lockval), "=&r" (newval), "=&r" (tmp)
: "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
: "cc");
while (lockval.tickets.next != lockval.tickets.owner) {
if (msm_krait_need_wfe_fixup) {
local_save_flags(flags);
local_fiq_disable();
__asm__ __volatile__(
"mrc p15, 7, %0, c15, c0, 5\n"
: "=r" (tmp)
:
: "cc");
tmp &= ~(0x10000);
__asm__ __volatile__(
"mcr p15, 7, %0, c15, c0, 5\n"
:
: "r" (tmp)
: "cc");
isb();
}
wfe();
if (msm_krait_need_wfe_fixup) {
tmp |= 0x10000;
__asm__ __volatile__(
"mcr p15, 7, %0, c15, c0, 5\n"
:
: "r" (tmp)
: "cc");
isb();
local_irq_restore(flags);
}
lockval.tickets.owner = ACCESS_ONCE(lock->tickets.owner);
}
smp_mb();
}
static inline int arch_spin_trylock(arch_spinlock_t *lock)
{
unsigned long contended, res;
u32 slock;
do {
__asm__ __volatile__(
" ldrex %0, [%3]\n"
" mov %2, #0\n"
" subs %1, %0, %0, ror #16\n"
" addeq %0, %0, %4\n"
" strexeq %2, %0, [%3]"
: "=&r" (slock), "=&r" (contended), "=&r" (res)
: "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
: "cc");
} while (res);
if (!contended) {
smp_mb();
return 1;
} else {
return 0;
}
}
static inline void arch_spin_unlock(arch_spinlock_t *lock)
{
smp_mb();
lock->tickets.owner++;
dsb_sev();
}
static inline int arch_spin_is_locked(arch_spinlock_t *lock)
{
struct __raw_tickets tickets = ACCESS_ONCE(lock->tickets);
return tickets.owner != tickets.next;
}
static inline int arch_spin_is_contended(arch_spinlock_t *lock)
{
struct __raw_tickets tickets = ACCESS_ONCE(lock->tickets);
return (tickets.next - tickets.owner) > 1;
}
#define arch_spin_is_contended arch_spin_is_contended
/*
* RWLOCKS
*
*
* Write locks are easy - we just set bit 31. When unlocking, we can
* just write zero since the lock is exclusively held.
*/
static inline void arch_write_lock(arch_rwlock_t *rw)
{
unsigned long tmp, fixup = msm_krait_need_wfe_fixup;
__asm__ __volatile__(
"1: ldrex %0, [%2]\n"
" teq %0, #0\n"
" beq 2f\n"
WFE_SAFE("%1", "%0")
"2:\n"
" strexeq %0, %3, [%2]\n"
" teq %0, #0\n"
" bne 1b"
: "=&r" (tmp), "+r" (fixup)
: "r" (&rw->lock), "r" (0x80000000)
: "cc");
smp_mb();
}
static inline int arch_write_trylock(arch_rwlock_t *rw)
{
unsigned long contended, res;
do {
__asm__ __volatile__(
" ldrex %0, [%2]\n"
" mov %1, #0\n"
" teq %0, #0\n"
" strexeq %1, %3, [%2]"
: "=&r" (contended), "=&r" (res)
: "r" (&rw->lock), "r" (0x80000000)
: "cc");
} while (res);
if (!contended) {
smp_mb();
return 1;
} else {
return 0;
}
}
static inline void arch_write_unlock(arch_rwlock_t *rw)
{
smp_mb();
__asm__ __volatile__(
"str %1, [%0]\n"
:
: "r" (&rw->lock), "r" (0)
: "cc");
dsb_sev();
}
/* write_can_lock - would write_trylock() succeed? */
#define arch_write_can_lock(x) ((x)->lock == 0)
/*
* Read locks are a bit more hairy:
* - Exclusively load the lock value.
* - Increment it.
* - Store new lock value if positive, and we still own this location.
* If the value is negative, we've already failed.
* - If we failed to store the value, we want a negative result.
* - If we failed, try again.
* Unlocking is similarly hairy. We may have multiple read locks
* currently active. However, we know we won't have any write
* locks.
*/
static inline void arch_read_lock(arch_rwlock_t *rw)
{
unsigned long tmp, tmp2, fixup = msm_krait_need_wfe_fixup;
__asm__ __volatile__(
"1: ldrex %0, [%3]\n"
" adds %0, %0, #1\n"
" strexpl %1, %0, [%3]\n"
" bpl 2f\n"
WFE_SAFE("%2", "%0")
"2:\n"
" rsbpls %0, %1, #0\n"
" bmi 1b"
: "=&r" (tmp), "=&r" (tmp2), "+r" (fixup)
: "r" (&rw->lock)
: "cc");
smp_mb();
}
static inline void arch_read_unlock(arch_rwlock_t *rw)
{
unsigned long tmp, tmp2;
smp_mb();
__asm__ __volatile__(
"1: ldrex %0, [%2]\n"
" sub %0, %0, #1\n"
" strex %1, %0, [%2]\n"
" teq %1, #0\n"
" bne 1b"
: "=&r" (tmp), "=&r" (tmp2)
: "r" (&rw->lock)
: "cc");
if (tmp == 0)
dsb_sev();
}
static inline int arch_read_trylock(arch_rwlock_t *rw)
{
unsigned long contended, res;
do {
__asm__ __volatile__(
" ldrex %0, [%2]\n"
" mov %1, #0\n"
" adds %0, %0, #1\n"
" strexpl %1, %0, [%2]"
: "=&r" (contended), "=&r" (res)
: "r" (&rw->lock)
: "cc");
} while (res);
/* If the lock is negative, then it is already held for write. */
if (contended < 0x80000000) {
smp_mb();
return 1;
} else {
return 0;
}
}
/* read_can_lock - would read_trylock() succeed? */
#define arch_read_can_lock(x) ((x)->lock < 0x80000000)
#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
#define arch_spin_relax(lock) cpu_relax()
#define arch_read_relax(lock) cpu_relax()
#define arch_write_relax(lock) cpu_relax()
#endif /* __ASM_SPINLOCK_H */