blob: c4b0e90ae1ec6a6d733372142de6ffa1153fa79d [file] [log] [blame]
/* Copyright (c) 2011-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/wakelock.h>
#include <linux/sysfs.h>
#include <linux/stat.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/of_coresight.h>
#include <linux/coresight.h>
#include <asm/sections.h>
#include <soc/qcom/socinfo.h>
#include <soc/qcom/memory_dump.h>
#include "coresight-priv.h"
#define etm_writel_mm(drvdata, val, off) \
__raw_writel((val), drvdata->base + off)
#define etm_readl_mm(drvdata, off) \
__raw_readl(drvdata->base + off)
#define etm_writel(drvdata, val, off) \
({ \
if (cpu_is_krait_v3()) \
etm_writel_cp14(val, off); \
else \
etm_writel_mm(drvdata, val, off); \
})
#define etm_readl(drvdata, off) \
({ \
uint32_t val; \
if (cpu_is_krait_v3()) \
val = etm_readl_cp14(off); \
else \
val = etm_readl_mm(drvdata, off); \
val; \
})
#define ETM_LOCK(drvdata) \
do { \
/* recommended by spec to ensure ETM writes are committed prior
* to resuming execution
*/ \
mb(); \
isb(); \
etm_writel_mm(drvdata, 0x0, CORESIGHT_LAR); \
} while (0)
#define ETM_UNLOCK(drvdata) \
do { \
etm_writel_mm(drvdata, CORESIGHT_UNLOCK, CORESIGHT_LAR); \
/* ensure unlock and any pending writes are committed prior to
* programming ETM registers
*/ \
mb(); \
isb(); \
} while (0)
/*
* Device registers:
* 0x000 - 0x2FC: Trace registers
* 0x300 - 0x314: Management registers
* 0x318 - 0xEFC: Trace registers
*
* Coresight registers
* 0xF00 - 0xF9C: Management registers
* 0xFA0 - 0xFA4: Management registers in PFTv1.0
* Trace registers in PFTv1.1
* 0xFA8 - 0xFFC: Management registers
*/
/* Trace registers (0x000-0x2FC) */
#define ETMCR (0x000)
#define ETMCCR (0x004)
#define ETMTRIGGER (0x008)
#define ETMASSICCTLR (0x00C)
#define ETMSR (0x010)
#define ETMSCR (0x014)
#define ETMTSSCR (0x018)
#define ETMTECR2 (0x01C)
#define ETMTEEVR (0x020)
#define ETMTECR1 (0x024)
#define ETMFFLR (0x02C)
#define ETMVDEVR (0x030)
#define ETMVDCR1 (0x034)
#define ETMVDCR3 (0x03C)
#define ETMACVRn(n) (0x040 + (n * 4))
#define ETMACTRn(n) (0x080 + (n * 4))
#define ETMDCVRn(n) (0x0C0 + (n * 8))
#define ETMDCMRn(n) (0x100 + (n * 8))
#define ETMCNTRLDVRn(n) (0x140 + (n * 4))
#define ETMCNTENRn(n) (0x150 + (n * 4))
#define ETMCNTRLDEVRn(n) (0x160 + (n * 4))
#define ETMCNTVRn(n) (0x170 + (n * 4))
#define ETMSQ12EVR (0x180)
#define ETMSQ21EVR (0x184)
#define ETMSQ23EVR (0x188)
#define ETMSQ31EVR (0x18C)
#define ETMSQ32EVR (0x190)
#define ETMSQ13EVR (0x194)
#define ETMSQR (0x19C)
#define ETMEXTOUTEVRn(n) (0x1A0 + (n * 4))
#define ETMCIDCVRn(n) (0x1B0 + (n * 4))
#define ETMCIDCMR (0x1BC)
#define ETMIMPSPEC0 (0x1C0)
#define ETMIMPSPEC1 (0x1C4)
#define ETMIMPSPEC2 (0x1C8)
#define ETMIMPSPEC3 (0x1CC)
#define ETMIMPSPEC4 (0x1D0)
#define ETMIMPSPEC5 (0x1D4)
#define ETMIMPSPEC6 (0x1D8)
#define ETMIMPSPEC7 (0x1DC)
#define ETMSYNCFR (0x1E0)
#define ETMIDR (0x1E4)
#define ETMCCER (0x1E8)
#define ETMEXTINSELR (0x1EC)
#define ETMTESSEICR (0x1F0)
#define ETMEIBCR (0x1F4)
#define ETMTSEVR (0x1F8)
#define ETMAUXCR (0x1FC)
#define ETMTRACEIDR (0x200)
#define ETMIDR2 (0x208)
#define ETMVMIDCVR (0x240)
/* Management registers (0x300-0x314) */
#define ETMOSLAR (0x300)
#define ETMOSLSR (0x304)
#define ETMOSSRR (0x308)
#define ETMPDCR (0x310)
#define ETMPDSR (0x314)
#define ETM_MAX_ADDR_CMP (16)
#define ETM_MAX_DATA_CMP (8)
#define ETM_MAX_CNTR (4)
#define ETM_MAX_CTXID_CMP (3)
#define ETM_MAX_EXT_INP (4)
#define ETM_MAX_EXT_OUTP (4)
#define ETM_MODE_EXCLUDE BIT(0)
#define ETM_MODE_CYCACC BIT(1)
#define ETM_MODE_STALL BIT(2)
#define ETM_MODE_TIMESTAMP BIT(3)
#define ETM_MODE_CTXID BIT(4)
#define ETM_MODE_DATA_TRACE_VAL BIT(5)
#define ETM_MODE_DATA_TRACE_ADDR BIT(6)
#define ETM_MODE_ALL (0x7F)
#define ETM_DATACMP_ENABLE (0x2)
#define ETM_EVENT_MASK (0x1FFFF)
#define ETM_SYNC_MASK (0xFFF)
#define ETM_ALL_MASK (0xFFFFFFFF)
#define ETM_SEQ_STATE_MAX_VAL (0x2)
#define ETM_REG_DUMP_VER_OFF (4)
#define ETM_REG_DUMP_VER (1)
#define CPMR_ETMCLKEN (8)
enum etm_addr_type {
ETM_ADDR_TYPE_NONE,
ETM_ADDR_TYPE_SINGLE,
ETM_ADDR_TYPE_RANGE,
ETM_ADDR_TYPE_START,
ETM_ADDR_TYPE_STOP,
};
#ifdef CONFIG_CORESIGHT_ETM_DEFAULT_RESET
static int boot_reset = 1;
#else
static int boot_reset;
#endif
module_param_named(
boot_reset, boot_reset, int, S_IRUGO
);
#ifdef CONFIG_CORESIGHT_ETM_DEFAULT_ENABLE
static int boot_enable = 1;
#else
static int boot_enable;
#endif
module_param_named(
boot_enable, boot_enable, int, S_IRUGO
);
#ifdef CONFIG_CORESIGHT_ETM_PCSAVE_DEFAULT_ENABLE
static int boot_pcsave_enable = 1;
#else
static int boot_pcsave_enable;
#endif
module_param_named(
boot_pcsave_enable, boot_pcsave_enable, int, S_IRUGO
);
struct etm_drvdata {
void __iomem *base;
uint32_t reg_size;
struct device *dev;
struct coresight_device *csdev;
struct clk *clk;
spinlock_t spinlock;
struct mutex mutex;
struct wakeup_source ws;
int cpu;
uint8_t arch;
bool enable;
bool sticky_enable;
bool boot_enable;
bool os_unlock;
bool init;
uint8_t nr_addr_cmp;
uint8_t nr_cntr;
uint8_t nr_ext_inp;
uint8_t nr_ext_out;
uint8_t nr_ctxid_cmp;
uint8_t nr_data_cmp;
uint8_t reset;
uint32_t mode;
uint32_t ctrl;
uint32_t trigger_event;
uint32_t startstop_ctrl;
uint32_t enable_event;
uint32_t enable_ctrl1;
uint32_t enable_ctrl2;
uint32_t fifofull_level;
uint8_t addr_idx;
uint32_t addr_val[ETM_MAX_ADDR_CMP];
uint32_t addr_acctype[ETM_MAX_ADDR_CMP];
uint32_t addr_type[ETM_MAX_ADDR_CMP];
bool data_trace_support;
uint32_t data_val[ETM_MAX_ADDR_CMP];
uint32_t data_mask[ETM_MAX_ADDR_CMP];
uint32_t viewdata_event;
uint32_t viewdata_ctrl1;
uint32_t viewdata_ctrl3;
uint8_t cntr_idx;
uint32_t cntr_rld_val[ETM_MAX_CNTR];
uint32_t cntr_event[ETM_MAX_CNTR];
uint32_t cntr_rld_event[ETM_MAX_CNTR];
uint32_t cntr_val[ETM_MAX_CNTR];
uint32_t seq_12_event;
uint32_t seq_21_event;
uint32_t seq_23_event;
uint32_t seq_31_event;
uint32_t seq_32_event;
uint32_t seq_13_event;
uint32_t seq_curr_state;
uint8_t ctxid_idx;
uint32_t ctxid_val[ETM_MAX_CTXID_CMP];
uint32_t ctxid_mask;
uint32_t sync_freq;
uint32_t timestamp_event;
bool pcsave_impl;
bool pcsave_enable;
bool pcsave_sticky_enable;
bool pcsave_boot_enable;
bool round_robin;
struct msm_dump_data reg_data;
};
static int count;
static struct etm_drvdata *etmdrvdata[NR_CPUS];
static struct notifier_block etm_cpu_notifier;
static bool etm_os_lock_present(struct etm_drvdata *drvdata)
{
uint32_t etmoslsr;
etmoslsr = etm_readl(drvdata, ETMOSLSR);
if (!BVAL(etmoslsr, 0) && !BVAL(etmoslsr, 3))
return false;
return true;
}
/*
* Unlock OS lock to allow memory mapped access on Krait and in general
* so that ETMSR[1] can be polled while clearing the ETMCR[10] prog bit
* since ETMSR[1] is set when prog bit is set or OS lock is set.
*/
static void etm_os_unlock(void *info)
{
struct etm_drvdata *drvdata = (struct etm_drvdata *) info;
/*
* Memory mapped writes to clear os lock are not supported on Krait v1,
* v2 and OS lock must be unlocked before any memory mapped access,
* otherwise memory mapped reads/writes will be invalid.
*/
if (cpu_is_krait()) {
etm_writel_cp14(0x0, ETMOSLAR);
/* ensure os lock is unlocked before we return */
isb();
} else {
ETM_UNLOCK(drvdata);
if (etm_os_lock_present(drvdata)) {
etm_writel(drvdata, 0x0, ETMOSLAR);
/* ensure os lock is unlocked before we return */
mb();
}
ETM_LOCK(drvdata);
}
}
/*
* ETM clock is derived from the processor clock and gets enabled on a
* logical OR of below items on Krait (v2 onwards):
* 1.CPMR[ETMCLKEN] is 1
* 2.ETMCR[PD] is 0
* 3.ETMPDCR[PU] is 1
* 4.Reset is asserted (core or debug)
* 5.APB memory mapped requests (eg. EDAP access)
*
* 1., 2. and 3. above are permanent enables whereas 4. and 5. are temporary
* enables
*
* We rely on 5. to be able to access ETMCR/ETMPDCR and then use 2./3. above
* for ETM clock vote in the driver and the save-restore code uses 1. above
* for its vote
*/
static void etm_set_pwrdwn(struct etm_drvdata *drvdata)
{
uint32_t etmcr;
/* ensure pending cp14 accesses complete before setting pwrdwn */
mb();
isb();
etmcr = etm_readl(drvdata, ETMCR);
etmcr |= BIT(0);
etm_writel(drvdata, etmcr, ETMCR);
}
static void etm_clr_pwrdwn(struct etm_drvdata *drvdata)
{
uint32_t etmcr;
etmcr = etm_readl(drvdata, ETMCR);
etmcr &= ~BIT(0);
etm_writel(drvdata, etmcr, ETMCR);
/* ensure pwrup completes before subsequent cp14 accesses */
mb();
isb();
}
static void etm_set_pwrup(struct etm_drvdata *drvdata)
{
uint32_t cpmr;
uint32_t etmpdcr;
/* For Krait, use cp15 CPMR_ETMCLKEN instead of ETMPDCR since ETMPDCR
* is not supported for this purpose on Krait v4.
*/
if (cpu_is_krait()) {
asm volatile("mrc p15, 7, %0, c15, c0, 5" : "=r" (cpmr));
cpmr |= CPMR_ETMCLKEN;
asm volatile("mcr p15, 7, %0, c15, c0, 5" : : "r" (cpmr));
} else {
etmpdcr = etm_readl_mm(drvdata, ETMPDCR);
etmpdcr |= BIT(3);
etm_writel_mm(drvdata, etmpdcr, ETMPDCR);
}
/* ensure pwrup completes before subsequent cp14 accesses */
mb();
isb();
}
static void etm_clr_pwrup(struct etm_drvdata *drvdata)
{
uint32_t cpmr;
uint32_t etmpdcr;
/* ensure pending cp14 accesses complete before clearing pwrup */
mb();
isb();
/* For Krait, use cp15 CPMR_ETMCLKEN instead of ETMPDCR since ETMPDCR
* is not supported for this purpose on Krait v4.
*/
if (cpu_is_krait()) {
asm volatile("mrc p15, 7, %0, c15, c0, 5" : "=r" (cpmr));
cpmr &= ~CPMR_ETMCLKEN;
asm volatile("mcr p15, 7, %0, c15, c0, 5" : : "r" (cpmr));
} else {
etmpdcr = etm_readl_mm(drvdata, ETMPDCR);
etmpdcr &= ~BIT(3);
etm_writel_mm(drvdata, etmpdcr, ETMPDCR);
}
}
static void etm_set_prog(struct etm_drvdata *drvdata)
{
uint32_t etmcr;
int count;
etmcr = etm_readl(drvdata, ETMCR);
etmcr |= BIT(10);
etm_writel(drvdata, etmcr, ETMCR);
/* recommended by spec for cp14 accesses to ensure etmcr write is
* complete before polling etmsr
*/
isb();
for (count = TIMEOUT_US; BVAL(etm_readl(drvdata, ETMSR), 1) != 1
&& count > 0; count--)
udelay(1);
WARN(count == 0, "timeout while setting prog bit, ETMSR: %#x\n",
etm_readl(drvdata, ETMSR));
}
static void etm_clr_prog(struct etm_drvdata *drvdata)
{
uint32_t etmcr;
int count;
etmcr = etm_readl(drvdata, ETMCR);
etmcr &= ~BIT(10);
etm_writel(drvdata, etmcr, ETMCR);
/* recommended by spec for cp14 accesses to ensure etmcr write is
* complete before polling etmsr
*/
isb();
for (count = TIMEOUT_US; BVAL(etm_readl(drvdata, ETMSR), 1) != 0
&& count > 0; count--)
udelay(1);
WARN(count == 0, "timeout while clearing prog bit, ETMSR: %#x\n",
etm_readl(drvdata, ETMSR));
}
static void etm_enable_pcsave(void *info)
{
struct etm_drvdata *drvdata = info;
ETM_UNLOCK(drvdata);
/*
* ETMPDCR is only accessible via memory mapped interface and so use
* it first to enable power/clock to allow subsequent cp14 accesses.
*/
etm_set_pwrup(drvdata);
etm_clr_pwrdwn(drvdata);
etm_clr_pwrup(drvdata);
ETM_LOCK(drvdata);
}
static void etm_disable_pcsave(void *info)
{
struct etm_drvdata *drvdata = info;
ETM_UNLOCK(drvdata);
if (!drvdata->enable)
etm_set_pwrdwn(drvdata);
ETM_LOCK(drvdata);
}
static bool etm_version_gte(uint8_t arch, uint8_t base_arch)
{
if (arch >= base_arch && ((arch & PFT_ARCH_MAJOR) != PFT_ARCH_MAJOR))
return true;
else
return false;
}
static void etm_reset_data(struct etm_drvdata *drvdata)
{
int i;
spin_lock(&drvdata->spinlock);
drvdata->mode = ETM_MODE_EXCLUDE;
drvdata->ctrl = 0x0;
if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_0))
drvdata->ctrl |= BIT(11);
if (cpu_is_krait_v1()) {
drvdata->mode |= ETM_MODE_CYCACC;
drvdata->ctrl |= BIT(12);
}
drvdata->trigger_event = 0x406F;
drvdata->startstop_ctrl = 0x0;
if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_2))
drvdata->enable_ctrl2 = 0x0;
drvdata->enable_event = 0x6F;
drvdata->enable_ctrl1 = 0x1000000;
drvdata->fifofull_level = 0x28;
if (drvdata->data_trace_support == true) {
drvdata->mode |= (ETM_MODE_DATA_TRACE_VAL |
ETM_MODE_DATA_TRACE_ADDR);
drvdata->ctrl |= BIT(2) | BIT(3);
drvdata->viewdata_event = 0x6F;
drvdata->viewdata_ctrl1 = 0x0;
drvdata->viewdata_ctrl3 = 0x10000;
}
drvdata->addr_idx = 0x0;
for (i = 0; i < drvdata->nr_addr_cmp; i++) {
drvdata->addr_val[i] = 0x0;
drvdata->addr_acctype[i] = 0x0;
drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE;
}
for (i = 0; i < drvdata->nr_data_cmp; i++) {
drvdata->data_val[i] = 0;
drvdata->data_mask[i] = ~(0);
}
drvdata->cntr_idx = 0x0;
for (i = 0; i < drvdata->nr_cntr; i++) {
drvdata->cntr_rld_val[i] = 0x0;
drvdata->cntr_event[i] = 0x406F;
drvdata->cntr_rld_event[i] = 0x406F;
drvdata->cntr_val[i] = 0x0;
}
drvdata->seq_12_event = 0x406F;
drvdata->seq_21_event = 0x406F;
drvdata->seq_23_event = 0x406F;
drvdata->seq_31_event = 0x406F;
drvdata->seq_32_event = 0x406F;
drvdata->seq_13_event = 0x406F;
drvdata->seq_curr_state = 0x0;
drvdata->ctxid_idx = 0x0;
for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
drvdata->ctxid_val[i] = 0x0;
drvdata->ctxid_mask = 0x0;
/* Bits[7:0] of ETMSYNCFR are reserved on Krait pass3 onwards */
if (cpu_is_krait() && !cpu_is_krait_v1() && !cpu_is_krait_v2())
drvdata->sync_freq = 0x100;
else
drvdata->sync_freq = 0x80;
drvdata->timestamp_event = 0x406F;
spin_unlock(&drvdata->spinlock);
}
static void __etm_enable(void *info)
{
int i;
uint32_t etmcr;
struct etm_drvdata *drvdata = info;
ETM_UNLOCK(drvdata);
/*
* Vote for ETM power/clock enable. ETMPDCR is only accessible via
* memory mapped interface and so use it first to enable power/clock
* to allow subsequent cp14 accesses.
*/
etm_set_pwrup(drvdata);
/*
* Clear power down bit since when this bit is set writes to
* certain registers might be ignored. This is also a pre-requisite
* for trace enable.
*/
etm_clr_pwrdwn(drvdata);
etm_clr_pwrup(drvdata);
etm_set_prog(drvdata);
etmcr = etm_readl(drvdata, ETMCR);
etmcr &= (BIT(10) | BIT(0));
etm_writel(drvdata, drvdata->ctrl | etmcr, ETMCR);
etm_writel(drvdata, drvdata->trigger_event, ETMTRIGGER);
etm_writel(drvdata, drvdata->startstop_ctrl, ETMTSSCR);
if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_2))
etm_writel(drvdata, drvdata->enable_ctrl2, ETMTECR2);
etm_writel(drvdata, drvdata->enable_event, ETMTEEVR);
etm_writel(drvdata, drvdata->enable_ctrl1, ETMTECR1);
etm_writel(drvdata, drvdata->fifofull_level, ETMFFLR);
if (drvdata->data_trace_support == true) {
etm_writel(drvdata, drvdata->viewdata_event, ETMVDEVR);
etm_writel(drvdata, drvdata->viewdata_ctrl1, ETMVDCR1);
etm_writel(drvdata, drvdata->viewdata_ctrl3, ETMVDCR3);
}
for (i = 0; i < drvdata->nr_addr_cmp; i++) {
etm_writel(drvdata, drvdata->addr_val[i], ETMACVRn(i));
etm_writel(drvdata, drvdata->addr_acctype[i], ETMACTRn(i));
}
for (i = 0; i < drvdata->nr_data_cmp; i++) {
etm_writel(drvdata, drvdata->data_val[i], ETMDCVRn(i));
etm_writel(drvdata, drvdata->data_mask[i], ETMDCMRn(i));
}
for (i = 0; i < drvdata->nr_cntr; i++) {
etm_writel(drvdata, drvdata->cntr_rld_val[i], ETMCNTRLDVRn(i));
etm_writel(drvdata, drvdata->cntr_event[i], ETMCNTENRn(i));
etm_writel(drvdata, drvdata->cntr_rld_event[i],
ETMCNTRLDEVRn(i));
etm_writel(drvdata, drvdata->cntr_val[i], ETMCNTVRn(i));
}
etm_writel(drvdata, drvdata->seq_12_event, ETMSQ12EVR);
etm_writel(drvdata, drvdata->seq_21_event, ETMSQ21EVR);
etm_writel(drvdata, drvdata->seq_23_event, ETMSQ23EVR);
etm_writel(drvdata, drvdata->seq_31_event, ETMSQ31EVR);
etm_writel(drvdata, drvdata->seq_32_event, ETMSQ32EVR);
etm_writel(drvdata, drvdata->seq_13_event, ETMSQ13EVR);
etm_writel(drvdata, drvdata->seq_curr_state, ETMSQR);
for (i = 0; i < drvdata->nr_ext_out; i++)
etm_writel(drvdata, 0x0000406F, ETMEXTOUTEVRn(i));
for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
etm_writel(drvdata, drvdata->ctxid_val[i], ETMCIDCVRn(i));
etm_writel(drvdata, drvdata->ctxid_mask, ETMCIDCMR);
etm_writel(drvdata, drvdata->sync_freq, ETMSYNCFR);
etm_writel(drvdata, 0x00000000, ETMEXTINSELR);
etm_writel(drvdata, drvdata->timestamp_event, ETMTSEVR);
etm_writel(drvdata, 0x00000000, ETMAUXCR);
etm_writel(drvdata, drvdata->cpu + 1, ETMTRACEIDR);
etm_writel(drvdata, 0x00000000, ETMVMIDCVR);
etm_clr_prog(drvdata);
ETM_LOCK(drvdata);
dev_dbg(drvdata->dev, "cpu: %d enable smp call done\n", drvdata->cpu);
}
static int etm_enable(struct coresight_device *csdev)
{
struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
int ret;
pm_stay_awake(drvdata->dev);
ret = clk_prepare_enable(drvdata->clk);
if (ret)
goto err_clk;
spin_lock(&drvdata->spinlock);
/*
* Executing __etm_enable on the cpu whose ETM is being enabled
* ensures that register writes occur when cpu is powered.
*/
ret = smp_call_function_single(drvdata->cpu, __etm_enable, drvdata, 1);
if (ret)
goto err;
drvdata->enable = true;
drvdata->sticky_enable = true;
spin_unlock(&drvdata->spinlock);
pm_relax(drvdata->dev);
dev_info(drvdata->dev, "ETM tracing enabled\n");
return 0;
err:
spin_unlock(&drvdata->spinlock);
clk_disable_unprepare(drvdata->clk);
err_clk:
pm_relax(drvdata->dev);
return ret;
}
static void __etm_disable(void *info)
{
struct etm_drvdata *drvdata = info;
ETM_UNLOCK(drvdata);
etm_set_prog(drvdata);
/* program trace enable to low by using always false event */
etm_writel(drvdata, 0x6F | BIT(14), ETMTEEVR);
if (!drvdata->pcsave_enable)
etm_set_pwrdwn(drvdata);
ETM_LOCK(drvdata);
dev_dbg(drvdata->dev, "cpu: %d disable smp call done\n", drvdata->cpu);
}
static void etm_disable(struct coresight_device *csdev)
{
struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
pm_stay_awake(drvdata->dev);
/*
* Taking hotplug lock here protects from clocks getting disabled
* with tracing being left on (crash scenario) if user disable occurs
* after cpu online mask indicates the cpu is offline but before the
* DYING hotplug callback is serviced by the ETM driver.
*/
get_online_cpus();
spin_lock(&drvdata->spinlock);
/*
* Executing __etm_disable on the cpu whose ETM is being disabled
* ensures that register writes occur when cpu is powered.
*/
smp_call_function_single(drvdata->cpu, __etm_disable, drvdata, 1);
drvdata->enable = false;
spin_unlock(&drvdata->spinlock);
put_online_cpus();
clk_disable_unprepare(drvdata->clk);
pm_relax(drvdata->dev);
dev_info(drvdata->dev, "ETM tracing disabled\n");
}
static const struct coresight_ops_source etm_source_ops = {
.enable = etm_enable,
.disable = etm_disable,
};
static const struct coresight_ops etm_cs_ops = {
.source_ops = &etm_source_ops,
};
static ssize_t etm_show_nr_addr_cmp(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->nr_addr_cmp;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR(nr_addr_cmp, S_IRUGO, etm_show_nr_addr_cmp, NULL);
static ssize_t etm_show_nr_cntr(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->nr_cntr;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR(nr_cntr, S_IRUGO, etm_show_nr_cntr, NULL);
static ssize_t etm_show_nr_ctxid_cmp(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->nr_ctxid_cmp;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR(nr_ctxid_cmp, S_IRUGO, etm_show_nr_ctxid_cmp, NULL);
static ssize_t etm_show_reset(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->reset;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
/* Reset to trace everything i.e. exclude nothing. */
static ssize_t etm_store_reset(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (val)
etm_reset_data(drvdata);
return size;
}
static DEVICE_ATTR(reset, S_IRUGO | S_IWUSR, etm_show_reset, etm_store_reset);
static ssize_t etm_show_mode(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->mode;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_mode(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
drvdata->mode = val & ETM_MODE_ALL;
if (drvdata->mode & ETM_MODE_EXCLUDE)
drvdata->enable_ctrl1 |= BIT(24);
else
drvdata->enable_ctrl1 &= ~BIT(24);
if (drvdata->mode & ETM_MODE_CYCACC)
drvdata->ctrl |= BIT(12);
else
drvdata->ctrl &= ~BIT(12);
if (drvdata->mode & ETM_MODE_STALL)
drvdata->ctrl |= BIT(7);
else
drvdata->ctrl &= ~BIT(7);
if (drvdata->mode & ETM_MODE_TIMESTAMP)
drvdata->ctrl |= BIT(28);
else
drvdata->ctrl &= ~BIT(28);
if (drvdata->mode & ETM_MODE_CTXID)
drvdata->ctrl |= (BIT(14) | BIT(15));
else
drvdata->ctrl &= ~(BIT(14) | BIT(15));
if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_0)) {
if (drvdata->mode & ETM_MODE_DATA_TRACE_VAL)
drvdata->ctrl |= BIT(2);
else
drvdata->ctrl &= ~(BIT(2));
if (drvdata->mode & ETM_MODE_DATA_TRACE_ADDR)
drvdata->ctrl |= (BIT(3));
else
drvdata->ctrl &= ~(BIT(3));
}
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(mode, S_IRUGO | S_IWUSR, etm_show_mode, etm_store_mode);
static ssize_t etm_show_trigger_event(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->trigger_event;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_trigger_event(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
drvdata->trigger_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR(trigger_event, S_IRUGO | S_IWUSR, etm_show_trigger_event,
etm_store_trigger_event);
static ssize_t etm_show_enable_event(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->enable_event;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_enable_event(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
drvdata->enable_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR(enable_event, S_IRUGO | S_IWUSR, etm_show_enable_event,
etm_store_enable_event);
static ssize_t etm_show_fifofull_level(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->fifofull_level;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_fifofull_level(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
drvdata->fifofull_level = val;
return size;
}
static DEVICE_ATTR(fifofull_level, S_IRUGO | S_IWUSR, etm_show_fifofull_level,
etm_store_fifofull_level);
static ssize_t etm_show_addr_idx(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->addr_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_addr_idx(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (val >= drvdata->nr_addr_cmp)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->addr_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_idx, S_IRUGO | S_IWUSR, etm_show_addr_idx,
etm_store_addr_idx);
static ssize_t etm_show_addr_single(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_addr_single(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_SINGLE;
if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_2))
drvdata->enable_ctrl2 |= (1 << idx);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_single, S_IRUGO | S_IWUSR, etm_show_addr_single,
etm_store_addr_single);
static ssize_t etm_show_addr_range(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val1, val2;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
(drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val1 = drvdata->addr_val[idx];
val2 = drvdata->addr_val[idx + 1];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx %#lx\n", val1, val2);
}
static ssize_t etm_store_addr_range(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val1, val2;
uint8_t idx;
if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
return -EINVAL;
/* lower address comparator cannot have a higher address value */
if (val1 > val2)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
(drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = val1;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_RANGE;
drvdata->addr_val[idx + 1] = val2;
drvdata->addr_type[idx + 1] = ETM_ADDR_TYPE_RANGE;
drvdata->enable_ctrl1 |= (1 << (idx/2));
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_range, S_IRUGO | S_IWUSR, etm_show_addr_range,
etm_store_addr_range);
static ssize_t etm_show_addr_start(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_addr_start(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_START;
drvdata->startstop_ctrl |= (1 << idx);
drvdata->enable_ctrl1 |= BIT(25);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_start, S_IRUGO | S_IWUSR, etm_show_addr_start,
etm_store_addr_start);
static ssize_t etm_show_addr_stop(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_addr_stop(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_STOP;
drvdata->startstop_ctrl |= (1 << (idx + 16));
drvdata->enable_ctrl1 |= BIT(25);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_stop, S_IRUGO | S_IWUSR, etm_show_addr_stop,
etm_store_addr_stop);
static ssize_t etm_show_addr_acctype(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
spin_lock(&drvdata->spinlock);
val = drvdata->addr_acctype[drvdata->addr_idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_addr_acctype(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
drvdata->addr_acctype[drvdata->addr_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(addr_acctype, S_IRUGO | S_IWUSR, etm_show_addr_acctype,
etm_store_addr_acctype);
static ssize_t etm_show_data_val(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
idx = idx >> 1;
if (idx >= drvdata->nr_data_cmp) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = drvdata->data_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_data_val(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
uint8_t idx, data_idx;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
/* Adjust index to use the correct data comparator */
data_idx = idx >> 1;
/* Only idx = 0, 2, 4, 6... are valid */
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (data_idx >= drvdata->nr_data_cmp) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!BVAL(drvdata->addr_acctype[idx], ETM_DATACMP_ENABLE)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE) {
if (!BVAL(drvdata->addr_acctype[idx + 1], ETM_DATACMP_ENABLE)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
}
drvdata->data_val[data_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(data_val, S_IRUGO | S_IWUSR, etm_show_data_val,
etm_store_data_val);
static ssize_t etm_show_data_mask(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long mask;
uint8_t idx;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
idx = idx >> 1;
if (idx >= drvdata->nr_data_cmp) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
mask = drvdata->data_mask[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", mask);
}
static ssize_t etm_store_data_mask(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long mask;
uint8_t idx, data_idx;
if (sscanf(buf, "%lx", &mask) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
/* Adjust index to use the correct data comparator */
data_idx = idx >> 1;
/* Only idx = 0, 2, 4, 6... are valid */
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (data_idx >= drvdata->nr_data_cmp) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!BVAL(drvdata->addr_acctype[idx], ETM_DATACMP_ENABLE)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE) {
if (!BVAL(drvdata->addr_acctype[idx + 1], ETM_DATACMP_ENABLE)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
}
drvdata->data_mask[data_idx] = mask;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(data_mask, S_IRUGO | S_IWUSR, etm_show_data_mask,
etm_store_data_mask);
static ssize_t etm_show_cntr_idx(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->addr_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_cntr_idx(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (val >= drvdata->nr_cntr)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->cntr_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(cntr_idx, S_IRUGO | S_IWUSR, etm_show_cntr_idx,
etm_store_cntr_idx);
static ssize_t etm_show_cntr_rld_val(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
spin_lock(&drvdata->spinlock);
val = drvdata->cntr_rld_val[drvdata->cntr_idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_cntr_rld_val(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
drvdata->cntr_rld_val[drvdata->cntr_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(cntr_rld_val, S_IRUGO | S_IWUSR, etm_show_cntr_rld_val,
etm_store_cntr_rld_val);
static ssize_t etm_show_cntr_event(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
spin_lock(&drvdata->spinlock);
val = drvdata->cntr_event[drvdata->cntr_idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_cntr_event(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
drvdata->cntr_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(cntr_event, S_IRUGO | S_IWUSR, etm_show_cntr_event,
etm_store_cntr_event);
static ssize_t etm_show_cntr_rld_event(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
spin_lock(&drvdata->spinlock);
val = drvdata->cntr_rld_event[drvdata->cntr_idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_cntr_rld_event(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
drvdata->cntr_rld_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(cntr_rld_event, S_IRUGO | S_IWUSR, etm_show_cntr_rld_event,
etm_store_cntr_rld_event);
static ssize_t etm_show_cntr_val(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
spin_lock(&drvdata->spinlock);
val = drvdata->cntr_val[drvdata->cntr_idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_cntr_val(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
drvdata->cntr_val[drvdata->cntr_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(cntr_val, S_IRUGO | S_IWUSR, etm_show_cntr_val,
etm_store_cntr_val);
static ssize_t etm_show_seq_12_event(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->seq_12_event;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_seq_12_event(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
drvdata->seq_12_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR(seq_12_event, S_IRUGO | S_IWUSR, etm_show_seq_12_event,
etm_store_seq_12_event);
static ssize_t etm_show_seq_21_event(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->seq_21_event;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_seq_21_event(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
drvdata->seq_21_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR(seq_21_event, S_IRUGO | S_IWUSR, etm_show_seq_21_event,
etm_store_seq_21_event);
static ssize_t etm_show_seq_23_event(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->seq_23_event;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_seq_23_event(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
drvdata->seq_23_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR(seq_23_event, S_IRUGO | S_IWUSR, etm_show_seq_23_event,
etm_store_seq_23_event);
static ssize_t etm_show_seq_31_event(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->seq_31_event;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_seq_31_event(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
drvdata->seq_31_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR(seq_31_event, S_IRUGO | S_IWUSR, etm_show_seq_31_event,
etm_store_seq_31_event);
static ssize_t etm_show_seq_32_event(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->seq_32_event;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_seq_32_event(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
drvdata->seq_32_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR(seq_32_event, S_IRUGO | S_IWUSR, etm_show_seq_32_event,
etm_store_seq_32_event);
static ssize_t etm_show_seq_13_event(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->seq_13_event;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_seq_13_event(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
drvdata->seq_13_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR(seq_13_event, S_IRUGO | S_IWUSR, etm_show_seq_13_event,
etm_store_seq_13_event);
static ssize_t etm_show_seq_curr_state(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->seq_curr_state;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_seq_curr_state(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (val > ETM_SEQ_STATE_MAX_VAL)
return -EINVAL;
drvdata->seq_curr_state = val;
return size;
}
static DEVICE_ATTR(seq_curr_state, S_IRUGO | S_IWUSR, etm_show_seq_curr_state,
etm_store_seq_curr_state);
static ssize_t etm_show_ctxid_idx(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->ctxid_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_ctxid_idx(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
if (val >= drvdata->nr_ctxid_cmp)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->ctxid_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(ctxid_idx, S_IRUGO | S_IWUSR, etm_show_ctxid_idx,
etm_store_ctxid_idx);
static ssize_t etm_show_ctxid_val(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
spin_lock(&drvdata->spinlock);
val = drvdata->ctxid_val[drvdata->ctxid_idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_ctxid_val(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
drvdata->ctxid_val[drvdata->ctxid_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR(ctxid_val, S_IRUGO | S_IWUSR, etm_show_ctxid_val,
etm_store_ctxid_val);
static ssize_t etm_show_ctxid_mask(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->ctxid_mask;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_ctxid_mask(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
drvdata->ctxid_mask = val;
return size;
}
static DEVICE_ATTR(ctxid_mask, S_IRUGO | S_IWUSR, etm_show_ctxid_mask,
etm_store_ctxid_mask);
static ssize_t etm_show_sync_freq(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->sync_freq;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_sync_freq(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
drvdata->sync_freq = val & ETM_SYNC_MASK;
return size;
}
static DEVICE_ATTR(sync_freq, S_IRUGO | S_IWUSR, etm_show_sync_freq,
etm_store_sync_freq);
static ssize_t etm_show_timestamp_event(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val = drvdata->timestamp_event;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t etm_store_timestamp_event(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
drvdata->timestamp_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR(timestamp_event, S_IRUGO | S_IWUSR, etm_show_timestamp_event,
etm_store_timestamp_event);
static ssize_t etm_show_pcsave(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
val = drvdata->pcsave_enable;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static int __etm_store_pcsave(struct etm_drvdata *drvdata, unsigned long val)
{
int ret = 0;
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
if (val) {
if (drvdata->pcsave_enable)
goto out;
ret = smp_call_function_single(drvdata->cpu, etm_enable_pcsave,
drvdata, 1);
if (ret)
goto out;
drvdata->pcsave_enable = true;
drvdata->pcsave_sticky_enable = true;
dev_info(drvdata->dev, "PC save enabled\n");
} else {
if (!drvdata->pcsave_enable)
goto out;
ret = smp_call_function_single(drvdata->cpu, etm_disable_pcsave,
drvdata, 1);
if (ret)
goto out;
drvdata->pcsave_enable = false;
dev_info(drvdata->dev, "PC save disabled\n");
}
out:
spin_unlock(&drvdata->spinlock);
clk_disable_unprepare(drvdata->clk);
return ret;
}
static ssize_t etm_store_pcsave(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
unsigned long val;
int ret;
if (sscanf(buf, "%lx", &val) != 1)
return -EINVAL;
ret = __etm_store_pcsave(drvdata, val);
if (ret)
return ret;
return size;
}
static DEVICE_ATTR(pcsave, S_IRUGO | S_IWUSR, etm_show_pcsave,
etm_store_pcsave);
static ssize_t etm_show_cpu(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
int cpu;
cpu = drvdata->cpu;
if (cpu < 0)
return -EINVAL;
return scnprintf(buf, PAGE_SIZE, "%#x\n", cpu);
}
static DEVICE_ATTR(cpu, S_IRUGO, etm_show_cpu, NULL);
static struct attribute *etm_attrs[] = {
&dev_attr_nr_addr_cmp.attr,
&dev_attr_nr_cntr.attr,
&dev_attr_nr_ctxid_cmp.attr,
&dev_attr_reset.attr,
&dev_attr_mode.attr,
&dev_attr_trigger_event.attr,
&dev_attr_enable_event.attr,
&dev_attr_fifofull_level.attr,
&dev_attr_addr_idx.attr,
&dev_attr_addr_single.attr,
&dev_attr_addr_range.attr,
&dev_attr_addr_start.attr,
&dev_attr_addr_stop.attr,
&dev_attr_addr_acctype.attr,
&dev_attr_data_val.attr,
&dev_attr_data_mask.attr,
&dev_attr_cntr_idx.attr,
&dev_attr_cntr_rld_val.attr,
&dev_attr_cntr_event.attr,
&dev_attr_cntr_rld_event.attr,
&dev_attr_cntr_val.attr,
&dev_attr_seq_12_event.attr,
&dev_attr_seq_21_event.attr,
&dev_attr_seq_23_event.attr,
&dev_attr_seq_31_event.attr,
&dev_attr_seq_32_event.attr,
&dev_attr_seq_13_event.attr,
&dev_attr_seq_curr_state.attr,
&dev_attr_ctxid_idx.attr,
&dev_attr_ctxid_val.attr,
&dev_attr_ctxid_mask.attr,
&dev_attr_sync_freq.attr,
&dev_attr_timestamp_event.attr,
&dev_attr_cpu.attr,
NULL,
};
static struct attribute_group etm_attr_grp = {
.attrs = etm_attrs,
};
static const struct attribute_group *etm_attr_grps[] = {
&etm_attr_grp,
NULL,
};
int coresight_etm_get_funnel_port(int cpu)
{
struct coresight_platform_data *pdata;
if (!etmdrvdata[cpu])
return -ENODEV;
pdata = etmdrvdata[cpu]->dev->platform_data;
return pdata->child_ports[0];
}
EXPORT_SYMBOL(coresight_etm_get_funnel_port);
static bool etm_arch_supported(uint8_t arch)
{
switch (arch) {
case PFT_ARCH_V1_1:
break;
case ETM_ARCH_V3_5:
break;
default:
return false;
}
return true;
}
static void etm_init_arch_data(void *info)
{
uint32_t etmidr;
uint32_t etmccr;
uint32_t etmcr;
struct etm_drvdata *drvdata = info;
ETM_UNLOCK(drvdata);
/*
* Vote for ETM power/clock enable. ETMPDCR is only accessible via
* memory mapped interface and so use it first to enable power/clock
* to allow subsequent cp14 accesses.
*/
etm_set_pwrup(drvdata);
/*
* Clear power down bit since when this bit is set writes to
* certain registers might be ignored.
*/
etm_clr_pwrdwn(drvdata);
etm_clr_pwrup(drvdata);
/* Set prog bit. It will be set from reset but this is included to
* ensure it is set
*/
etm_set_prog(drvdata);
/* find all capabilities */
etmidr = etm_readl(drvdata, ETMIDR);
drvdata->arch = BMVAL(etmidr, 4, 11);
etmccr = etm_readl(drvdata, ETMCCR);
drvdata->nr_addr_cmp = BMVAL(etmccr, 0, 3) * 2;
if (drvdata->nr_addr_cmp > ETM_MAX_ADDR_CMP) {
dev_err(drvdata->dev,
"nr_addr_cmp out of bounds %u\n", drvdata->nr_addr_cmp);
drvdata->nr_addr_cmp = ETM_MAX_ADDR_CMP;
}
drvdata->nr_cntr = BMVAL(etmccr, 13, 15);
if (drvdata->nr_cntr > ETM_MAX_CNTR) {
dev_err(drvdata->dev,
"nr_cntr out of bounds %u\n", drvdata->nr_cntr);
drvdata->nr_cntr = ETM_MAX_CNTR;
}
drvdata->nr_ext_inp = BMVAL(etmccr, 17, 19);
if (drvdata->nr_ext_inp > ETM_MAX_EXT_INP) {
dev_err(drvdata->dev,
"nr_ext_inp out of bounds %u\n", drvdata->nr_ext_inp);
drvdata->nr_ext_inp = ETM_MAX_EXT_INP;
}
drvdata->nr_ext_out = BMVAL(etmccr, 20, 22);
if (drvdata->nr_ext_out > ETM_MAX_EXT_OUTP) {
dev_err(drvdata->dev,
"nr_ext_out out of bounds %u\n", drvdata->nr_ext_out);
drvdata->nr_ext_out = ETM_MAX_EXT_OUTP;
}
drvdata->nr_ctxid_cmp = BMVAL(etmccr, 24, 25);
if (drvdata->nr_ctxid_cmp > ETM_MAX_CTXID_CMP) {
dev_err(drvdata->dev,
"nr_ctxid_cmp out of bounds %u\n",
drvdata->nr_ctxid_cmp);
drvdata->nr_ctxid_cmp = ETM_MAX_CTXID_CMP;
}
drvdata->nr_data_cmp = BMVAL(etmccr, 4, 7);
if (drvdata->nr_data_cmp > ETM_MAX_DATA_CMP) {
dev_err(drvdata->dev,
"nr_data_cmp out of bounds %u\n", drvdata->nr_data_cmp);
drvdata->nr_data_cmp = ETM_MAX_DATA_CMP;
}
if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_0)) {
etmcr = etm_readl(drvdata, ETMCR);
etmcr |= (BIT(2) | BIT(3));
etm_writel(drvdata, etmcr, ETMCR);
etmcr = etm_readl(drvdata, ETMCR);
if (BVAL(etmcr, 2) || BVAL(etmcr, 3))
drvdata->data_trace_support = true;
else
drvdata->data_trace_support = false;
} else
drvdata->data_trace_support = false;
etm_set_pwrdwn(drvdata);
ETM_LOCK(drvdata);
}
static void etm_init_default_data(struct etm_drvdata *drvdata)
{
int i;
drvdata->trigger_event = 0x406F;
drvdata->enable_event = 0x6F;
drvdata->enable_ctrl1 = 0x1;
drvdata->fifofull_level = 0x28;
if (drvdata->nr_addr_cmp >= 2) {
drvdata->addr_val[0] = (uint32_t) _stext;
drvdata->addr_val[1] = (uint32_t) _etext;
drvdata->addr_type[0] = ETM_ADDR_TYPE_RANGE;
drvdata->addr_type[1] = ETM_ADDR_TYPE_RANGE;
if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_0)) {
drvdata->addr_acctype[0] = 0x19;
drvdata->addr_acctype[1] = 0x19;
}
}
for (i = 0; i < drvdata->nr_cntr; i++) {
drvdata->cntr_event[i] = 0x406F;
drvdata->cntr_rld_event[i] = 0x406F;
}
drvdata->seq_12_event = 0x406F;
drvdata->seq_21_event = 0x406F;
drvdata->seq_23_event = 0x406F;
drvdata->seq_31_event = 0x406F;
drvdata->seq_32_event = 0x406F;
drvdata->seq_13_event = 0x406F;
/* Bits[7:0] of ETMSYNCFR are reserved on Krait pass3 onwards */
if (cpu_is_krait() && !cpu_is_krait_v1() && !cpu_is_krait_v2())
drvdata->sync_freq = 0x100;
else
drvdata->sync_freq = 0x80;
drvdata->timestamp_event = 0x406F;
/* Overrides for Krait pass1 */
if (cpu_is_krait_v1()) {
/* Krait pass1 doesn't support include filtering and non-cycle
* accurate tracing
*/
drvdata->mode = (ETM_MODE_EXCLUDE | ETM_MODE_CYCACC);
drvdata->ctrl = 0x1000;
drvdata->enable_ctrl1 = 0x1000000;
for (i = 0; i < drvdata->nr_addr_cmp; i++) {
drvdata->addr_val[i] = 0x0;
drvdata->addr_acctype[i] = 0x0;
drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE;
}
}
if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_0))
drvdata->ctrl |= BIT(11);
if (etm_version_gte(drvdata->arch, ETM_ARCH_V1_2))
drvdata->enable_ctrl2 = 0x0;
if (drvdata->data_trace_support == true) {
drvdata->mode |= (ETM_MODE_DATA_TRACE_VAL |
ETM_MODE_DATA_TRACE_ADDR);
drvdata->ctrl |= BIT(2) | BIT(3);
drvdata->viewdata_ctrl1 = 0x0;
drvdata->viewdata_ctrl3 = 0x10000;
drvdata->viewdata_event = 0x6F;
}
for (i = 0; i < drvdata->nr_data_cmp; i++) {
drvdata->data_val[i] = 0;
drvdata->data_mask[i] = ~(0);
}
}
static int etm_late_init(struct etm_drvdata *drvdata)
{
void *baddr;
struct msm_client_dump dump;
struct msm_dump_entry dump_entry;
struct coresight_desc *desc;
struct device *dev = drvdata->dev;
int ret;
if (etm_arch_supported(drvdata->arch) == false)
return -EINVAL;
etm_init_default_data(drvdata);
if (MSM_DUMP_MAJOR(msm_dump_table_version()) == 1) {
baddr = devm_kzalloc(dev, PAGE_SIZE + drvdata->reg_size,
GFP_KERNEL);
if (baddr) {
dump.id = MSM_ETM0_REG + drvdata->cpu;
dump.start_addr = virt_to_phys(baddr);
dump.end_addr = dump.start_addr + PAGE_SIZE +
drvdata->reg_size;
ret = msm_dump_tbl_register(&dump);
if (ret) {
devm_kfree(dev, baddr);
dev_err(dev, "ETM REG dump setup failed\n");
}
} else {
dev_err(dev, "ETM REG dump space allocation failed\n");
}
} else {
baddr = devm_kzalloc(dev, drvdata->reg_size, GFP_KERNEL);
if (baddr) {
drvdata->reg_data.addr = virt_to_phys(baddr);
drvdata->reg_data.len = drvdata->reg_size;
dump_entry.id = MSM_DUMP_DATA_ETM_REG + drvdata->cpu;
dump_entry.addr = virt_to_phys(&drvdata->reg_data);
ret = msm_dump_data_register(MSM_DUMP_TABLE_APPS,
&dump_entry);
if (ret) {
devm_kfree(dev, baddr);
dev_err(dev, "ETM REG dump setup failed\n");
}
} else {
dev_err(dev, "ETM REG dump space allocation failed\n");
}
}
desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL);
if (!desc) {
ret = -ENOMEM;
goto err0;
}
desc->type = CORESIGHT_DEV_TYPE_SOURCE;
desc->subtype.source_subtype = CORESIGHT_DEV_SUBTYPE_SOURCE_PROC;
desc->ops = &etm_cs_ops;
desc->pdata = drvdata->dev->platform_data;
desc->dev = drvdata->dev;
desc->groups = etm_attr_grps;
desc->owner = THIS_MODULE;
drvdata->csdev = coresight_register(desc);
if (IS_ERR(drvdata->csdev)) {
ret = PTR_ERR(drvdata->csdev);
goto err1;
}
if (drvdata->pcsave_impl) {
ret = device_create_file(&drvdata->csdev->dev,
&dev_attr_pcsave);
if (ret)
dev_err(dev, "ETM pcsave dev node creation failed\n");
}
dev_info(dev, "ETM initialized\n");
if (boot_reset)
etm_reset_data(drvdata);
if (boot_enable) {
coresight_enable(drvdata->csdev);
drvdata->boot_enable = true;
}
if (drvdata->pcsave_impl && boot_pcsave_enable) {
__etm_store_pcsave(drvdata, 1);
drvdata->pcsave_boot_enable = true;
}
return 0;
err1:
devm_kfree(dev, desc);
err0:
devm_kfree(dev, baddr);
return ret;
}
static int etm_cpu_callback(struct notifier_block *nfb, unsigned long action,
void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
static bool clk_disable[NR_CPUS];
int ret;
struct platform_device *pdev;
if (!etmdrvdata[cpu])
goto out;
switch (action & (~CPU_TASKS_FROZEN)) {
case CPU_UP_PREPARE:
if (!etmdrvdata[cpu]->os_unlock) {
ret = clk_prepare_enable(etmdrvdata[cpu]->clk);
if (ret) {
dev_err(etmdrvdata[cpu]->dev,
"ETM clk enable during hotplug failed"
"for cpu: %d, ret: %d\n", cpu, ret);
goto err0;
}
clk_disable[cpu] = true;
}
break;
case CPU_STARTING:
spin_lock(&etmdrvdata[cpu]->spinlock);
if (!etmdrvdata[cpu]->os_unlock) {
etm_os_unlock(etmdrvdata[cpu]);
etmdrvdata[cpu]->os_unlock = true;
etm_init_arch_data(etmdrvdata[cpu]);
}
if (etmdrvdata[cpu]->enable && etmdrvdata[cpu]->round_robin)
__etm_enable(etmdrvdata[cpu]);
spin_unlock(&etmdrvdata[cpu]->spinlock);
break;
case CPU_ONLINE:
mutex_lock(&etmdrvdata[cpu]->mutex);
if (!etmdrvdata[cpu]->init) {
ret = etm_late_init(etmdrvdata[cpu]);
if (ret) {
dev_err(etmdrvdata[cpu]->dev,
"ETM init failed. Cpu: %d, ret: %d\n",
cpu, ret);
mutex_unlock(&etmdrvdata[cpu]->mutex);
goto err1;
}
etmdrvdata[cpu]->init = true;
}
mutex_unlock(&etmdrvdata[cpu]->mutex);
if (clk_disable[cpu]) {
clk_disable_unprepare(etmdrvdata[cpu]->clk);
clk_disable[cpu] = false;
}
if (etmdrvdata[cpu]->boot_enable &&
!etmdrvdata[cpu]->sticky_enable)
coresight_enable(etmdrvdata[cpu]->csdev);
if (etmdrvdata[cpu]->pcsave_boot_enable &&
!etmdrvdata[cpu]->pcsave_sticky_enable)
__etm_store_pcsave(etmdrvdata[cpu], 1);
break;
case CPU_UP_CANCELED:
if (clk_disable[cpu]) {
clk_disable_unprepare(etmdrvdata[cpu]->clk);
clk_disable[cpu] = false;
}
break;
case CPU_DYING:
spin_lock(&etmdrvdata[cpu]->spinlock);
if (etmdrvdata[cpu]->enable && etmdrvdata[cpu]->round_robin)
__etm_disable(etmdrvdata[cpu]);
spin_unlock(&etmdrvdata[cpu]->spinlock);
break;
}
out:
return NOTIFY_OK;
err1:
if (--count == 0)
unregister_hotcpu_notifier(&etm_cpu_notifier);
if (clk_disable[cpu]) {
clk_disable_unprepare(etmdrvdata[cpu]->clk);
clk_disable[cpu] = false;
}
devm_clk_put(etmdrvdata[cpu]->dev, etmdrvdata[cpu]->clk);
wakeup_source_trash(&etmdrvdata[cpu]->ws);
devm_iounmap(etmdrvdata[cpu]->dev, etmdrvdata[cpu]->base);
pdev = to_platform_device(etmdrvdata[cpu]->dev);
platform_set_drvdata(pdev, NULL);
devm_kfree(etmdrvdata[cpu]->dev, etmdrvdata[cpu]);
etmdrvdata[cpu] = NULL;
err0:
return notifier_from_errno(ret);
}
static struct notifier_block etm_cpu_notifier = {
.notifier_call = etm_cpu_callback,
};
static int etm_probe(struct platform_device *pdev)
{
int ret, cpu;
struct device *dev = &pdev->dev;
struct coresight_platform_data *pdata;
struct etm_drvdata *drvdata;
struct resource *res;
struct device_node *cpu_node;
if (coresight_fuse_access_disabled() ||
coresight_fuse_apps_access_disabled())
return -EPERM;
if (pdev->dev.of_node) {
pdata = of_get_coresight_platform_data(dev, pdev->dev.of_node);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
pdev->dev.platform_data = pdata;
}
drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
drvdata->dev = &pdev->dev;
platform_set_drvdata(pdev, drvdata);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "etm-base");
if (!res)
return -ENODEV;
drvdata->reg_size = resource_size(res);
drvdata->base = devm_ioremap(dev, res->start, resource_size(res));
if (!drvdata->base)
return -ENOMEM;
spin_lock_init(&drvdata->spinlock);
mutex_init(&drvdata->mutex);
wakeup_source_init(&drvdata->ws, "coresight-etm");
if (pdev->dev.of_node)
drvdata->pcsave_impl = of_property_read_bool(pdev->dev.of_node,
"qcom,pc-save");
drvdata->cpu = -1;
cpu_node = of_parse_phandle(pdev->dev.of_node, "coresight-etm-cpu", 0);
if (!cpu_node) {
dev_err(drvdata->dev, "ETM cpu handle not specified\n");
ret = -ENODEV;
goto err0;
}
for_each_possible_cpu(cpu) {
if (cpu_node == of_get_cpu_node(cpu, NULL)) {
drvdata->cpu = cpu;
break;
}
}
if (drvdata->cpu == -1) {
dev_err(drvdata->dev, "invalid ETM cpu handle\n");
ret = -EINVAL;
goto err0;
}
if (count++ == 0)
register_hotcpu_notifier(&etm_cpu_notifier);
drvdata->clk = devm_clk_get(dev, "core_clk");
if (IS_ERR(drvdata->clk)) {
ret = PTR_ERR(drvdata->clk);
goto err0;
}
ret = clk_set_rate(drvdata->clk, CORESIGHT_CLK_RATE_TRACE);
if (ret)
goto err0;
ret = clk_prepare_enable(drvdata->clk);
if (ret)
goto err0;
get_online_cpus();
/*
* This is safe wrt CPU_UP_PREPARE and CPU_STARTING hotplug callbacks
* on the non-boot CPUs that may enable the clock and perform
* etm_os_unlock since they occur before the cpu online mask is updated
* for the cpu which is checked by this smp call.
*/
if (!smp_call_function_single(drvdata->cpu, etm_os_unlock, drvdata,
1)) {
drvdata->os_unlock = true;
ret = smp_call_function_single(drvdata->cpu, etm_init_arch_data,
drvdata, 1);
if (ret) {
put_online_cpus();
clk_disable_unprepare(drvdata->clk);
goto err1;
}
}
etmdrvdata[drvdata->cpu] = drvdata;
put_online_cpus();
clk_disable_unprepare(drvdata->clk);
mutex_lock(&drvdata->mutex);
if (drvdata->os_unlock && !drvdata->init) {
ret = etm_late_init(drvdata);
if (ret) {
mutex_unlock(&drvdata->mutex);
goto err1;
}
drvdata->init = true;
}
mutex_unlock(&drvdata->mutex);
return 0;
err1:
if (--count == 0)
unregister_hotcpu_notifier(&etm_cpu_notifier);
err0:
wakeup_source_trash(&drvdata->ws);
return ret;
}
static int etm_remove(struct platform_device *pdev)
{
struct etm_drvdata *drvdata = platform_get_drvdata(pdev);
if (drvdata) {
device_remove_file(&drvdata->csdev->dev, &dev_attr_pcsave);
coresight_unregister(drvdata->csdev);
if (--count == 0)
unregister_hotcpu_notifier(&etm_cpu_notifier);
wakeup_source_trash(&drvdata->ws);
}
return 0;
}
static struct of_device_id etm_match[] = {
{.compatible = "arm,coresight-etm"},
{}
};
static struct platform_driver etm_driver = {
.probe = etm_probe,
.remove = etm_remove,
.driver = {
.name = "coresight-etm",
.owner = THIS_MODULE,
.of_match_table = etm_match,
},
};
int __init etm_init(void)
{
return platform_driver_register(&etm_driver);
}
module_init(etm_init);
void __exit etm_exit(void)
{
platform_driver_unregister(&etm_driver);
}
module_exit(etm_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CoreSight Program Flow Trace driver");