blob: a7aa5e84146ef2c69841d279f554f916fdf47c25 [file] [log] [blame]
/* Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/slab.h>
#include <linux/spmi.h>
#include <linux/string.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/spm-regulator.h>
#include <soc/qcom/spm.h>
#define SPM_REGULATOR_DRIVER_NAME "qcom,spm-regulator"
struct voltage_range {
int min_uV;
int set_point_min_uV;
int max_uV;
int step_uV;
};
enum qpnp_regulator_uniq_type {
QPNP_TYPE_FTS2,
QPNP_TYPE_FTS2p5,
QPNP_TYPE_ULT_HF,
};
enum qpnp_regulator_type {
QPNP_FTS2_TYPE = 0x1C,
QPNP_FTS2p5_TYPE = 0x1C,
QPNP_ULT_HF_TYPE = 0x22,
};
enum qpnp_regulator_subtype {
QPNP_FTS2_SUBTYPE = 0x08,
QPNP_FTS2p5_SUBTYPE = 0x09,
QPNP_ULT_HF_SUBTYPE = 0x0D,
};
static const struct voltage_range fts2_range0 = {0, 350000, 1275000, 5000};
static const struct voltage_range fts2_range1 = {0, 700000, 2040000, 10000};
static const struct voltage_range fts2p5_range0
= { 80000, 350000, 1355000, 5000};
static const struct voltage_range fts2p5_range1
= {160000, 700000, 2200000, 10000};
static const struct voltage_range ult_hf_range0 = {375000, 375000, 1562500,
12500};
static const struct voltage_range ult_hf_range1 = {750000, 750000, 1525000,
25000};
#define QPNP_SMPS_REG_TYPE 0x04
#define QPNP_SMPS_REG_SUBTYPE 0x05
#define QPNP_FTS2_REG_VOLTAGE_RANGE 0x40
#define QPNP_SMPS_REG_VOLTAGE_SETPOINT 0x41
#define QPNP_SMPS_REG_MODE 0x45
#define QPNP_SMPS_REG_STEP_CTRL 0x61
#define QPNP_SMPS_MODE_PWM 0x80
#define QPNP_FTS2_MODE_AUTO 0x40
#define QPNP_FTS2_STEP_CTRL_STEP_MASK 0x18
#define QPNP_FTS2_STEP_CTRL_STEP_SHIFT 3
#define QPNP_SMPS_STEP_CTRL_DELAY_MASK 0x07
#define QPNP_SMPS_STEP_CTRL_DELAY_SHIFT 0
/* Clock rate in kHz of the FTS2 regulator reference clock. */
#define QPNP_FTS2_CLOCK_RATE 19200
/* Time to delay in us to ensure that a mode change has completed. */
#define QPNP_FTS2_MODE_CHANGE_DELAY 50
/* Minimum time in us that it takes to complete a single SPMI write. */
#define QPNP_SPMI_WRITE_MIN_DELAY 8
/* Minimum voltage stepper delay for each step. */
#define QPNP_FTS2_STEP_DELAY 8
#define QPNP_ULT_HF_STEP_DELAY 20
/*
* The ratio QPNP_FTS2_STEP_MARGIN_NUM/QPNP_FTS2_STEP_MARGIN_DEN is use to
* adjust the step rate in order to account for oscillator variance.
*/
#define QPNP_FTS2_STEP_MARGIN_NUM 4
#define QPNP_FTS2_STEP_MARGIN_DEN 5
/* VSET value to decide the range of ULT SMPS */
#define ULT_SMPS_RANGE_SPLIT 0x60
struct spm_vreg {
struct regulator_desc rdesc;
struct regulator_dev *rdev;
struct spmi_device *spmi_dev;
const struct voltage_range *range;
int uV;
int last_set_uV;
unsigned vlevel;
unsigned last_set_vlevel;
bool online;
u16 spmi_base_addr;
u8 init_mode;
int step_rate;
enum qpnp_regulator_uniq_type regulator_type;
u32 cpu_num;
bool bypass_spm;
};
static int qpnp_fts2_set_mode(struct spm_vreg *vreg, u8 mode)
{
int rc;
rc = spmi_ext_register_writel(vreg->spmi_dev->ctrl, vreg->spmi_dev->sid,
vreg->spmi_base_addr + QPNP_SMPS_REG_MODE, &mode, 1);
if (rc)
dev_err(&vreg->spmi_dev->dev, "%s: could not write to mode register, rc=%d\n",
__func__, rc);
return rc;
}
static int _spm_regulator_set_voltage(struct regulator_dev *rdev)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
bool spm_failed = false;
int rc = 0;
u8 reg;
if (vreg->vlevel == vreg->last_set_vlevel)
return 0;
if ((vreg->regulator_type == QPNP_TYPE_FTS2)
&& !(vreg->init_mode & QPNP_SMPS_MODE_PWM)
&& vreg->uV > vreg->last_set_uV) {
/* Switch to PWM mode so that voltage ramping is fast. */
rc = qpnp_fts2_set_mode(vreg, QPNP_SMPS_MODE_PWM);
if (rc)
return rc;
}
if (likely(!vreg->bypass_spm)) {
/* Set voltage control register via SPM. */
rc = msm_spm_set_vdd(vreg->cpu_num, vreg->vlevel);
if (rc) {
pr_debug("%s: msm_spm_set_vdd failed, rc=%d; falling back on SPMI write\n",
vreg->rdesc.name, rc);
spm_failed = true;
}
}
if (unlikely(vreg->bypass_spm || spm_failed)) {
/* Set voltage control register via SPMI. */
reg = vreg->vlevel;
rc = spmi_ext_register_writel(vreg->spmi_dev->ctrl,
vreg->spmi_dev->sid,
vreg->spmi_base_addr + QPNP_SMPS_REG_VOLTAGE_SETPOINT,
&reg, 1);
if (rc) {
pr_err("%s: spmi_ext_register_writel failed, rc=%d\n",
vreg->rdesc.name, rc);
return rc;
}
}
if (vreg->uV > vreg->last_set_uV) {
/* Wait for voltage stepping to complete. */
udelay(DIV_ROUND_UP(vreg->uV - vreg->last_set_uV,
vreg->step_rate));
}
if ((vreg->regulator_type == QPNP_TYPE_FTS2)
&& !(vreg->init_mode & QPNP_SMPS_MODE_PWM)
&& vreg->uV > vreg->last_set_uV) {
/* Wait for mode transition to complete. */
udelay(QPNP_FTS2_MODE_CHANGE_DELAY - QPNP_SPMI_WRITE_MIN_DELAY);
/* Switch to AUTO mode so that power consumption is lowered. */
rc = qpnp_fts2_set_mode(vreg, QPNP_FTS2_MODE_AUTO);
if (rc)
return rc;
}
vreg->last_set_uV = vreg->uV;
vreg->last_set_vlevel = vreg->vlevel;
return rc;
}
static int spm_regulator_set_voltage(struct regulator_dev *rdev, int min_uV,
int max_uV, unsigned *selector)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
const struct voltage_range *range = vreg->range;
int uV = min_uV;
unsigned vlevel;
if (uV < range->set_point_min_uV && max_uV >= range->set_point_min_uV)
uV = range->set_point_min_uV;
if (uV < range->set_point_min_uV || uV > range->max_uV) {
pr_err("%s: request v=[%d, %d] is outside possible v=[%d, %d]\n",
vreg->rdesc.name, min_uV, max_uV,
range->set_point_min_uV, range->max_uV);
return -EINVAL;
}
vlevel = DIV_ROUND_UP(uV - range->min_uV, range->step_uV);
uV = vlevel * range->step_uV + range->min_uV;
if (uV > max_uV) {
pr_err("%s: request v=[%d, %d] cannot be met by any set point\n",
vreg->rdesc.name, min_uV, max_uV);
return -EINVAL;
}
*selector = vlevel -
(vreg->range->set_point_min_uV - vreg->range->min_uV)
/ vreg->range->step_uV;
/* Fix VSET for ULT HF Buck */
if ((vreg->regulator_type == QPNP_TYPE_ULT_HF) &&
(range == &ult_hf_range1)) {
vlevel &= 0x1F;
vlevel |= ULT_SMPS_RANGE_SPLIT;
}
vreg->vlevel = vlevel;
vreg->uV = uV;
if (!vreg->online)
return 0;
return _spm_regulator_set_voltage(rdev);
}
static int spm_regulator_get_voltage(struct regulator_dev *rdev)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
return vreg->uV;
}
static int spm_regulator_list_voltage(struct regulator_dev *rdev,
unsigned selector)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
if (selector >= vreg->rdesc.n_voltages)
return 0;
return selector * vreg->range->step_uV + vreg->range->set_point_min_uV;
}
static int spm_regulator_enable(struct regulator_dev *rdev)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
rc = _spm_regulator_set_voltage(rdev);
if (!rc)
vreg->online = true;
return rc;
}
static int spm_regulator_disable(struct regulator_dev *rdev)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
vreg->online = false;
return 0;
}
static int spm_regulator_is_enabled(struct regulator_dev *rdev)
{
struct spm_vreg *vreg = rdev_get_drvdata(rdev);
return vreg->online;
}
static struct regulator_ops spm_regulator_ops = {
.get_voltage = spm_regulator_get_voltage,
.set_voltage = spm_regulator_set_voltage,
.list_voltage = spm_regulator_list_voltage,
.enable = spm_regulator_enable,
.disable = spm_regulator_disable,
.is_enabled = spm_regulator_is_enabled,
};
static int qpnp_smps_check_type(struct spm_vreg *vreg)
{
int rc;
u8 type[2];
rc = spmi_ext_register_readl(vreg->spmi_dev->ctrl, vreg->spmi_dev->sid,
vreg->spmi_base_addr + QPNP_SMPS_REG_TYPE, type, 2);
if (rc) {
dev_err(&vreg->spmi_dev->dev, "%s: could not read type register, rc=%d\n",
__func__, rc);
return rc;
}
if (type[0] == QPNP_FTS2_TYPE && type[1] == QPNP_FTS2_SUBTYPE) {
vreg->regulator_type = QPNP_TYPE_FTS2;
} else if (type[0] == QPNP_FTS2p5_TYPE
&& type[1] == QPNP_FTS2p5_SUBTYPE) {
vreg->regulator_type = QPNP_TYPE_FTS2p5;
} else if (type[0] == QPNP_ULT_HF_TYPE
&& type[1] == QPNP_ULT_HF_SUBTYPE) {
vreg->regulator_type = QPNP_TYPE_ULT_HF;
} else {
dev_err(&vreg->spmi_dev->dev, "%s: invalid type=0x%02X, subtype=0x%02X register pair\n",
__func__, type[0], type[1]);
return -ENODEV;
};
return rc;
}
static int qpnp_fts_init_range(struct spm_vreg *vreg,
const struct voltage_range *range0, const struct voltage_range *range1)
{
int rc;
u8 reg = 0;
rc = spmi_ext_register_readl(vreg->spmi_dev->ctrl, vreg->spmi_dev->sid,
vreg->spmi_base_addr + QPNP_FTS2_REG_VOLTAGE_RANGE, &reg, 1);
if (rc) {
dev_err(&vreg->spmi_dev->dev, "%s: could not read voltage range register, rc=%d\n",
__func__, rc);
return rc;
}
if (reg == 0x00) {
vreg->range = range0;
} else if (reg == 0x01) {
vreg->range = range1;
} else {
dev_err(&vreg->spmi_dev->dev, "%s: voltage range=%d is invalid\n",
__func__, reg);
rc = -EINVAL;
}
return rc;
}
static int qpnp_ult_hf_init_range(struct spm_vreg *vreg)
{
int rc;
u8 reg = 0;
rc = spmi_ext_register_readl(vreg->spmi_dev->ctrl, vreg->spmi_dev->sid,
vreg->spmi_base_addr + QPNP_SMPS_REG_VOLTAGE_SETPOINT, &reg, 1);
if (rc) {
dev_err(&vreg->spmi_dev->dev, "%s: could not read voltage range register, rc=%d\n",
__func__, rc);
return rc;
}
vreg->range = (reg < ULT_SMPS_RANGE_SPLIT) ? &ult_hf_range0 :
&ult_hf_range1;
return rc;
}
static int qpnp_smps_init_voltage(struct spm_vreg *vreg)
{
int rc;
u8 reg = 0;
rc = spmi_ext_register_readl(vreg->spmi_dev->ctrl, vreg->spmi_dev->sid,
vreg->spmi_base_addr + QPNP_SMPS_REG_VOLTAGE_SETPOINT, &reg, 1);
if (rc) {
dev_err(&vreg->spmi_dev->dev, "%s: could not read voltage setpoint register, rc=%d\n",
__func__, rc);
return rc;
}
vreg->vlevel = reg;
/*
* Calculate ULT HF buck VSET based on range:
* In case of range 0: VSET is a 7 bit value.
* In case of range 1: VSET is a 5 bit value
*
*/
if ((vreg->regulator_type == QPNP_TYPE_ULT_HF) &&
(vreg->range == &ult_hf_range1))
vreg->vlevel &= ~ULT_SMPS_RANGE_SPLIT;
vreg->uV = vreg->vlevel * vreg->range->step_uV + vreg->range->min_uV;
vreg->last_set_uV = vreg->uV;
return rc;
}
static int qpnp_smps_init_mode(struct spm_vreg *vreg)
{
const char *mode_name;
int rc;
rc = of_property_read_string(vreg->spmi_dev->dev.of_node, "qcom,mode",
&mode_name);
if (!rc) {
if (strcmp("pwm", mode_name) == 0) {
vreg->init_mode = QPNP_SMPS_MODE_PWM;
} else if ((strcmp("auto", mode_name) == 0) &&
(vreg->regulator_type == QPNP_TYPE_FTS2
|| vreg->regulator_type == QPNP_TYPE_FTS2p5)) {
vreg->init_mode = QPNP_FTS2_MODE_AUTO;
} else {
dev_err(&vreg->spmi_dev->dev, "%s: unknown regulator mode: %s\n",
__func__, mode_name);
return -EINVAL;
}
rc = spmi_ext_register_writel(vreg->spmi_dev->ctrl,
vreg->spmi_dev->sid,
vreg->spmi_base_addr + QPNP_SMPS_REG_MODE,
&vreg->init_mode, 1);
if (rc)
dev_err(&vreg->spmi_dev->dev, "%s: could not write mode register, rc=%d\n",
__func__, rc);
} else {
rc = spmi_ext_register_readl(vreg->spmi_dev->ctrl,
vreg->spmi_dev->sid,
vreg->spmi_base_addr + QPNP_SMPS_REG_MODE,
&vreg->init_mode, 1);
if (rc)
dev_err(&vreg->spmi_dev->dev, "%s: could not read mode register, rc=%d\n",
__func__, rc);
}
return rc;
}
static int qpnp_smps_init_step_rate(struct spm_vreg *vreg)
{
int rc;
u8 reg = 0;
int step = 0, delay;
rc = spmi_ext_register_readl(vreg->spmi_dev->ctrl, vreg->spmi_dev->sid,
vreg->spmi_base_addr + QPNP_SMPS_REG_STEP_CTRL, &reg, 1);
if (rc) {
dev_err(&vreg->spmi_dev->dev, "%s: could not read stepping control register, rc=%d\n",
__func__, rc);
return rc;
}
/* ULT buck does not support steps */
if (vreg->regulator_type != QPNP_TYPE_ULT_HF)
step = (reg & QPNP_FTS2_STEP_CTRL_STEP_MASK)
>> QPNP_FTS2_STEP_CTRL_STEP_SHIFT;
delay = (reg & QPNP_SMPS_STEP_CTRL_DELAY_MASK)
>> QPNP_SMPS_STEP_CTRL_DELAY_SHIFT;
/* step_rate has units of uV/us. */
vreg->step_rate = QPNP_FTS2_CLOCK_RATE * vreg->range->step_uV
* (1 << step);
if (vreg->regulator_type == QPNP_TYPE_ULT_HF)
vreg->step_rate /= 1000 * (QPNP_ULT_HF_STEP_DELAY << delay);
else
vreg->step_rate /= 1000 * (QPNP_FTS2_STEP_DELAY << delay);
vreg->step_rate = vreg->step_rate * QPNP_FTS2_STEP_MARGIN_NUM
/ QPNP_FTS2_STEP_MARGIN_DEN;
/* Ensure that the stepping rate is greater than 0. */
vreg->step_rate = max(vreg->step_rate, 1);
return rc;
}
static bool spm_regulator_using_range0(struct spm_vreg *vreg)
{
return vreg->range == &fts2_range0 || vreg->range == &fts2p5_range0
|| vreg->range == &ult_hf_range0;
}
static int spm_regulator_probe(struct spmi_device *spmi)
{
struct regulator_config reg_config = {};
struct device_node *node = spmi->dev.of_node;
struct regulator_init_data *init_data;
struct spm_vreg *vreg;
struct resource *res;
bool bypass_spm;
int rc;
if (!node) {
dev_err(&spmi->dev, "%s: device node missing\n", __func__);
return -ENODEV;
}
bypass_spm = of_property_read_bool(node, "qcom,bypass-spm");
if (!bypass_spm) {
rc = msm_spm_probe_done();
if (rc) {
if (rc != -EPROBE_DEFER)
dev_err(&spmi->dev, "%s: spm unavailable, rc=%d\n",
__func__, rc);
return rc;
}
}
vreg = devm_kzalloc(&spmi->dev, sizeof(*vreg), GFP_KERNEL);
if (!vreg) {
pr_err("allocation failed.\n");
return -ENOMEM;
}
vreg->spmi_dev = spmi;
vreg->bypass_spm = bypass_spm;
res = spmi_get_resource(spmi, NULL, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&spmi->dev, "%s: node is missing base address\n",
__func__);
return -EINVAL;
}
vreg->spmi_base_addr = res->start;
rc = qpnp_smps_check_type(vreg);
if (rc)
return rc;
/* Specify CPU 0 as default in order to handle shared regulator case. */
vreg->cpu_num = 0;
of_property_read_u32(vreg->spmi_dev->dev.of_node, "qcom,cpu-num",
&vreg->cpu_num);
/*
* The regulator must be initialized to range 0 or range 1 during
* PMIC power on sequence. Once it is set, it cannot be changed
* dynamically.
*/
if (vreg->regulator_type == QPNP_TYPE_FTS2)
rc = qpnp_fts_init_range(vreg, &fts2_range0, &fts2_range1);
else if (vreg->regulator_type == QPNP_TYPE_FTS2p5)
rc = qpnp_fts_init_range(vreg, &fts2p5_range0, &fts2p5_range1);
else if (vreg->regulator_type == QPNP_TYPE_ULT_HF)
rc = qpnp_ult_hf_init_range(vreg);
if (rc)
return rc;
rc = qpnp_smps_init_voltage(vreg);
if (rc)
return rc;
rc = qpnp_smps_init_mode(vreg);
if (rc)
return rc;
rc = qpnp_smps_init_step_rate(vreg);
if (rc)
return rc;
init_data = of_get_regulator_init_data(&spmi->dev, node);
if (!init_data) {
dev_err(&spmi->dev, "%s: unable to allocate memory\n",
__func__);
return -ENOMEM;
}
init_data->constraints.input_uV = init_data->constraints.max_uV;
init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_STATUS
| REGULATOR_CHANGE_VOLTAGE;
if (!init_data->constraints.name) {
dev_err(&spmi->dev, "%s: node is missing regulator name\n",
__func__);
return -EINVAL;
}
vreg->rdesc.name = init_data->constraints.name;
vreg->rdesc.type = REGULATOR_VOLTAGE;
vreg->rdesc.owner = THIS_MODULE;
vreg->rdesc.ops = &spm_regulator_ops;
vreg->rdesc.n_voltages
= (vreg->range->max_uV - vreg->range->set_point_min_uV)
/ vreg->range->step_uV + 1;
reg_config.dev = &spmi->dev;
reg_config.init_data = init_data;
reg_config.driver_data = vreg;
reg_config.of_node = node;
vreg->rdev = regulator_register(&vreg->rdesc, &reg_config);
if (IS_ERR(vreg->rdev)) {
rc = PTR_ERR(vreg->rdev);
dev_err(&spmi->dev, "%s: regulator_register failed, rc=%d\n",
__func__, rc);
return rc;
}
dev_set_drvdata(&spmi->dev, vreg);
pr_info("name=%s, range=%s, voltage=%d uV, mode=%s, step rate=%d uV/us\n",
vreg->rdesc.name,
spm_regulator_using_range0(vreg) ? "LV" : "MV",
vreg->uV,
vreg->init_mode & QPNP_SMPS_MODE_PWM ? "PWM" :
(vreg->init_mode & QPNP_FTS2_MODE_AUTO ? "AUTO" : "PFM"),
vreg->step_rate);
return rc;
}
static int spm_regulator_remove(struct spmi_device *spmi)
{
struct spm_vreg *vreg = dev_get_drvdata(&spmi->dev);
regulator_unregister(vreg->rdev);
return 0;
}
static struct of_device_id spm_regulator_match_table[] = {
{ .compatible = SPM_REGULATOR_DRIVER_NAME, },
{}
};
static const struct spmi_device_id spm_regulator_id[] = {
{ SPM_REGULATOR_DRIVER_NAME, 0 },
{}
};
MODULE_DEVICE_TABLE(spmi, spm_regulator_id);
static struct spmi_driver spm_regulator_driver = {
.driver = {
.name = SPM_REGULATOR_DRIVER_NAME,
.of_match_table = spm_regulator_match_table,
.owner = THIS_MODULE,
},
.probe = spm_regulator_probe,
.remove = spm_regulator_remove,
.id_table = spm_regulator_id,
};
/**
* spm_regulator_init() - register spmi driver for spm-regulator
*
* This initialization function should be called in systems in which driver
* registration ordering must be controlled precisely.
*
* Returns 0 on success or errno on failure.
*/
int __init spm_regulator_init(void)
{
static bool has_registered;
if (has_registered)
return 0;
else
has_registered = true;
return spmi_driver_register(&spm_regulator_driver);
}
EXPORT_SYMBOL(spm_regulator_init);
static void __exit spm_regulator_exit(void)
{
spmi_driver_unregister(&spm_regulator_driver);
}
arch_initcall(spm_regulator_init);
module_exit(spm_regulator_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("SPM regulator driver");
MODULE_ALIAS("platform:spm-regulator");