blob: 991d07eab465f960488b8eb5399063db1b922a87 [file] [log] [blame]
/*
* TSIF Driver
*
* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h> /* Needed by all modules */
#include <linux/kernel.h> /* Needed for KERN_INFO */
#include <linux/init.h> /* Needed for the macros */
#include <linux/err.h> /* IS_ERR etc. */
#include <linux/platform_device.h>
#include <linux/ioport.h> /* XXX_mem_region */
#include <linux/debugfs.h>
#include <linux/dma-mapping.h> /* dma_XXX */
#include <linux/delay.h> /* msleep */
#include <linux/io.h> /* ioXXX */
#include <linux/uaccess.h> /* copy_from_user */
#include <linux/clk.h>
#include <linux/wakelock.h>
#include <linux/tsif_api.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h> /* kfree, kzalloc */
#include <linux/gpio.h>
#include <mach/dma.h>
#include <mach/msm_tsif.h>
/*
* TSIF register offsets
*/
#define TSIF_STS_CTL_OFF (0x0)
#define TSIF_TIME_LIMIT_OFF (0x4)
#define TSIF_CLK_REF_OFF (0x8)
#define TSIF_LPBK_FLAGS_OFF (0xc)
#define TSIF_LPBK_DATA_OFF (0x10)
#define TSIF_TEST_CTL_OFF (0x14)
#define TSIF_TEST_MODE_OFF (0x18)
#define TSIF_TEST_RESET_OFF (0x1c)
#define TSIF_TEST_EXPORT_OFF (0x20)
#define TSIF_TEST_CURRENT_OFF (0x24)
#define TSIF_DATA_PORT_OFF (0x100)
/* bits for TSIF_STS_CTL register */
#define TSIF_STS_CTL_EN_IRQ (1 << 28)
#define TSIF_STS_CTL_PACK_AVAIL (1 << 27)
#define TSIF_STS_CTL_1ST_PACKET (1 << 26)
#define TSIF_STS_CTL_OVERFLOW (1 << 25)
#define TSIF_STS_CTL_LOST_SYNC (1 << 24)
#define TSIF_STS_CTL_TIMEOUT (1 << 23)
#define TSIF_STS_CTL_INV_SYNC (1 << 21)
#define TSIF_STS_CTL_INV_NULL (1 << 20)
#define TSIF_STS_CTL_INV_ERROR (1 << 19)
#define TSIF_STS_CTL_INV_ENABLE (1 << 18)
#define TSIF_STS_CTL_INV_DATA (1 << 17)
#define TSIF_STS_CTL_INV_CLOCK (1 << 16)
#define TSIF_STS_CTL_SPARE (1 << 15)
#define TSIF_STS_CTL_EN_NULL (1 << 11)
#define TSIF_STS_CTL_EN_ERROR (1 << 10)
#define TSIF_STS_CTL_LAST_BIT (1 << 9)
#define TSIF_STS_CTL_EN_TIME_LIM (1 << 8)
#define TSIF_STS_CTL_EN_TCR (1 << 7)
#define TSIF_STS_CTL_TEST_MODE (3 << 5)
#define TSIF_STS_CTL_EN_DM (1 << 4)
#define TSIF_STS_CTL_STOP (1 << 3)
#define TSIF_STS_CTL_START (1 << 0)
/*
* Data buffering parameters
*
* Data stored in cyclic buffer;
*
* Data organized in chunks of packets.
* One chunk processed at a time by the data mover
*
*/
#define TSIF_PKTS_IN_CHUNK_DEFAULT (16) /**< packets in one DM chunk */
#define TSIF_CHUNKS_IN_BUF_DEFAULT (8)
#define TSIF_PKTS_IN_CHUNK (tsif_device->pkts_per_chunk)
#define TSIF_CHUNKS_IN_BUF (tsif_device->chunks_per_buf)
#define TSIF_PKTS_IN_BUF (TSIF_PKTS_IN_CHUNK * TSIF_CHUNKS_IN_BUF)
#define TSIF_BUF_SIZE (TSIF_PKTS_IN_BUF * TSIF_PKT_SIZE)
#define TSIF_MAX_ID 1
#define ROW_RESET (MSM_CLK_CTL_BASE + 0x214)
#define GLBL_CLK_ENA (MSM_CLK_CTL_BASE + 0x000)
#define CLK_HALT_STATEB (MSM_CLK_CTL_BASE + 0x104)
#define TSIF_NS_REG (MSM_CLK_CTL_BASE + 0x0b4)
#define TV_NS_REG (MSM_CLK_CTL_BASE + 0x0bc)
/* used to create debugfs entries */
static const struct {
const char *name;
mode_t mode;
int offset;
} debugfs_tsif_regs[] = {
{"sts_ctl", S_IRUGO | S_IWUSR, TSIF_STS_CTL_OFF},
{"time_limit", S_IRUGO | S_IWUSR, TSIF_TIME_LIMIT_OFF},
{"clk_ref", S_IRUGO | S_IWUSR, TSIF_CLK_REF_OFF},
{"lpbk_flags", S_IRUGO | S_IWUSR, TSIF_LPBK_FLAGS_OFF},
{"lpbk_data", S_IRUGO | S_IWUSR, TSIF_LPBK_DATA_OFF},
{"test_ctl", S_IRUGO | S_IWUSR, TSIF_TEST_CTL_OFF},
{"test_mode", S_IRUGO | S_IWUSR, TSIF_TEST_MODE_OFF},
{"test_reset", S_IWUSR, TSIF_TEST_RESET_OFF},
{"test_export", S_IRUGO | S_IWUSR, TSIF_TEST_EXPORT_OFF},
{"test_current", S_IRUGO, TSIF_TEST_CURRENT_OFF},
{"data_port", S_IRUSR, TSIF_DATA_PORT_OFF},
};
/* structures for Data Mover */
struct tsif_dmov_cmd {
dmov_box box;
dma_addr_t box_ptr;
};
struct msm_tsif_device;
struct tsif_xfer {
struct msm_dmov_cmd hdr;
struct msm_tsif_device *tsif_device;
int busy;
int wi; /**< set devices's write index after xfer */
};
struct msm_tsif_device {
struct list_head devlist;
struct platform_device *pdev;
struct resource *memres;
void __iomem *base;
unsigned int irq;
int mode;
u32 time_limit;
int clock_inverse;
int data_inverse;
int sync_inverse;
int enable_inverse;
enum tsif_state state;
struct wake_lock wake_lock;
/* clocks */
struct clk *tsif_clk;
struct clk *tsif_pclk;
struct clk *tsif_ref_clk;
/* debugfs */
struct dentry *dent_tsif;
struct dentry *debugfs_tsif_regs[ARRAY_SIZE(debugfs_tsif_regs)];
struct dentry *debugfs_gpio;
struct dentry *debugfs_action;
struct dentry *debugfs_dma;
struct dentry *debugfs_databuf;
struct debugfs_blob_wrapper blob_wrapper_databuf;
/* DMA related */
int dma;
int crci;
void *data_buffer;
dma_addr_t data_buffer_dma;
u32 pkts_per_chunk;
u32 chunks_per_buf;
int ri;
int wi;
int dmwi; /**< DataMover write index */
struct tsif_dmov_cmd *dmov_cmd[2];
dma_addr_t dmov_cmd_dma[2];
struct tsif_xfer xfer[2];
struct tasklet_struct dma_refill;
struct tasklet_struct clocks_off;
/* statistics */
u32 stat_rx;
u32 stat_overflow;
u32 stat_lost_sync;
u32 stat_timeout;
u32 stat_dmov_err;
u32 stat_soft_drop;
int stat_ifi; /* inter frame interval */
u32 stat0, stat1;
/* client */
void *client_data;
void (*client_notify)(void *client_data);
};
/* ===clocks begin=== */
static void tsif_put_clocks(struct msm_tsif_device *tsif_device)
{
if (tsif_device->tsif_clk) {
clk_put(tsif_device->tsif_clk);
tsif_device->tsif_clk = NULL;
}
if (tsif_device->tsif_pclk) {
clk_put(tsif_device->tsif_pclk);
tsif_device->tsif_pclk = NULL;
}
if (tsif_device->tsif_ref_clk) {
clk_put(tsif_device->tsif_ref_clk);
tsif_device->tsif_ref_clk = NULL;
}
}
static int tsif_get_clocks(struct msm_tsif_device *tsif_device)
{
struct msm_tsif_platform_data *pdata =
tsif_device->pdev->dev.platform_data;
int rc = 0;
if (pdata->tsif_clk) {
tsif_device->tsif_clk = clk_get(&tsif_device->pdev->dev,
pdata->tsif_clk);
if (IS_ERR(tsif_device->tsif_clk)) {
dev_err(&tsif_device->pdev->dev, "failed to get %s\n",
pdata->tsif_clk);
rc = PTR_ERR(tsif_device->tsif_clk);
tsif_device->tsif_clk = NULL;
goto ret;
}
}
if (pdata->tsif_pclk) {
tsif_device->tsif_pclk = clk_get(&tsif_device->pdev->dev,
pdata->tsif_pclk);
if (IS_ERR(tsif_device->tsif_pclk)) {
dev_err(&tsif_device->pdev->dev, "failed to get %s\n",
pdata->tsif_pclk);
rc = PTR_ERR(tsif_device->tsif_pclk);
tsif_device->tsif_pclk = NULL;
goto ret;
}
}
if (pdata->tsif_ref_clk) {
tsif_device->tsif_ref_clk = clk_get(&tsif_device->pdev->dev,
pdata->tsif_ref_clk);
if (IS_ERR(tsif_device->tsif_ref_clk)) {
dev_err(&tsif_device->pdev->dev, "failed to get %s\n",
pdata->tsif_ref_clk);
rc = PTR_ERR(tsif_device->tsif_ref_clk);
tsif_device->tsif_ref_clk = NULL;
goto ret;
}
}
return 0;
ret:
tsif_put_clocks(tsif_device);
return rc;
}
static void tsif_clock(struct msm_tsif_device *tsif_device, int on)
{
if (on) {
if (tsif_device->tsif_clk)
clk_prepare_enable(tsif_device->tsif_clk);
if (tsif_device->tsif_pclk)
clk_prepare_enable(tsif_device->tsif_pclk);
clk_prepare_enable(tsif_device->tsif_ref_clk);
} else {
if (tsif_device->tsif_clk)
clk_disable_unprepare(tsif_device->tsif_clk);
if (tsif_device->tsif_pclk)
clk_disable_unprepare(tsif_device->tsif_pclk);
clk_disable_unprepare(tsif_device->tsif_ref_clk);
}
}
static void tsif_clocks_off(unsigned long data)
{
struct msm_tsif_device *tsif_device = (struct msm_tsif_device *) data;
tsif_clock(tsif_device, 0);
}
/* ===clocks end=== */
/* ===gpio begin=== */
static int tsif_gpios_disable(const struct msm_gpio *table, int size)
{
int rc = 0;
int i;
const struct msm_gpio *g;
for (i = size-1; i >= 0; i--) {
int tmp;
g = table + i;
tmp = gpio_tlmm_config(GPIO_CFG(GPIO_PIN(g->gpio_cfg),
0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
GPIO_CFG_DISABLE);
if (tmp) {
pr_err("gpio_tlmm_config(0x%08x, GPIO_CFG_DISABLE)"
" <%s> failed: %d\n",
g->gpio_cfg, g->label ?: "?", rc);
pr_err("pin %d func %d dir %d pull %d drvstr %d\n",
GPIO_PIN(g->gpio_cfg), GPIO_FUNC(g->gpio_cfg),
GPIO_DIR(g->gpio_cfg), GPIO_PULL(g->gpio_cfg),
GPIO_DRVSTR(g->gpio_cfg));
if (!rc)
rc = tmp;
}
}
return rc;
}
static int tsif_gpios_enable(const struct msm_gpio *table, int size)
{
int rc;
int i;
const struct msm_gpio *g;
for (i = 0; i < size; i++) {
g = table + i;
rc = gpio_tlmm_config(g->gpio_cfg, GPIO_CFG_ENABLE);
if (rc) {
pr_err("gpio_tlmm_config(0x%08x, GPIO_CFG_ENABLE)"
" <%s> failed: %d\n",
g->gpio_cfg, g->label ?: "?", rc);
pr_err("pin %d func %d dir %d pull %d drvstr %d\n",
GPIO_PIN(g->gpio_cfg), GPIO_FUNC(g->gpio_cfg),
GPIO_DIR(g->gpio_cfg), GPIO_PULL(g->gpio_cfg),
GPIO_DRVSTR(g->gpio_cfg));
goto err;
}
}
return 0;
err:
tsif_gpios_disable(table, i);
return rc;
}
static int tsif_gpios_request_enable(const struct msm_gpio *table, int size)
{
int rc;
rc = tsif_gpios_enable(table, size);
return rc;
}
static void tsif_gpios_disable_free(const struct msm_gpio *table, int size)
{
tsif_gpios_disable(table, size);
}
static int tsif_start_gpios(struct msm_tsif_device *tsif_device)
{
struct msm_tsif_platform_data *pdata =
tsif_device->pdev->dev.platform_data;
return tsif_gpios_request_enable(pdata->gpios, pdata->num_gpios);
}
static void tsif_stop_gpios(struct msm_tsif_device *tsif_device)
{
struct msm_tsif_platform_data *pdata =
tsif_device->pdev->dev.platform_data;
tsif_gpios_disable_free(pdata->gpios, pdata->num_gpios);
}
/* ===gpio end=== */
static int tsif_start_hw(struct msm_tsif_device *tsif_device)
{
u32 ctl = TSIF_STS_CTL_EN_IRQ |
TSIF_STS_CTL_EN_TIME_LIM |
TSIF_STS_CTL_EN_TCR |
TSIF_STS_CTL_EN_DM;
if (tsif_device->clock_inverse)
ctl |= TSIF_STS_CTL_INV_CLOCK;
if (tsif_device->data_inverse)
ctl |= TSIF_STS_CTL_INV_DATA;
if (tsif_device->sync_inverse)
ctl |= TSIF_STS_CTL_INV_SYNC;
if (tsif_device->enable_inverse)
ctl |= TSIF_STS_CTL_INV_ENABLE;
dev_info(&tsif_device->pdev->dev, "%s\n", __func__);
switch (tsif_device->mode) {
case 1: /* mode 1 */
ctl |= (0 << 5);
break;
case 2: /* mode 2 */
ctl |= (1 << 5);
break;
case 3: /* manual - control from debugfs */
return 0;
break;
default:
return -EINVAL;
}
iowrite32(ctl, tsif_device->base + TSIF_STS_CTL_OFF);
iowrite32(tsif_device->time_limit,
tsif_device->base + TSIF_TIME_LIMIT_OFF);
wmb();
iowrite32(ctl | TSIF_STS_CTL_START,
tsif_device->base + TSIF_STS_CTL_OFF);
wmb();
ctl = ioread32(tsif_device->base + TSIF_STS_CTL_OFF);
return (ctl & TSIF_STS_CTL_START) ? 0 : -EFAULT;
}
static void tsif_stop_hw(struct msm_tsif_device *tsif_device)
{
iowrite32(TSIF_STS_CTL_STOP, tsif_device->base + TSIF_STS_CTL_OFF);
wmb();
}
/* ===DMA begin=== */
/**
* TSIF DMA theory of operation
*
* Circular memory buffer \a tsif_mem_buffer allocated;
* 4 pointers points to and moved forward on:
* - \a ri index of first ready to read packet.
* Updated by client's call to tsif_reclaim_packets()
* - \a wi points to the next packet to be written by DM.
* Data below is valid and will not be overriden by DMA.
* Moved on DM callback
* - \a dmwi points to the next packet not scheduled yet for DM
* moved when packet scheduled for DM
*
* In addition, DM xfer keep internal \a wi - copy of \a tsif_device->dmwi
* at time immediately after scheduling.
*
* Initially, 2 packets get scheduled for the DM.
*
* Upon packet receive, DM writes packet to the pre-programmed
* location and invoke its callback.
*
* DM callback moves sets wi pointer to \a xfer->wi;
* then it schedules next packet for DM and moves \a dmwi pointer.
*
* Buffer overflow handling
*
* If \a dmwi == \a ri-1, buffer is full and \a dmwi can't be advanced.
* DMA re-scheduled to the same index.
* Callback check and not move \a wi to become equal to \a ri
*
* On \a read request, data between \a ri and \a wi pointers may be read;
* \ri pointer moved accordingly.
*
* It is always granted, on modulo sizeof(tsif_mem_buffer), that
* \a wi is between [\a ri, \a dmwi]
*
* Amount of data available is (wi-ri)*TSIF_PKT_SIZE
*
* Number of scheduled packets for DM: (dmwi-wi)
*/
/**
* tsif_dma_schedule - schedule DMA transfers
*
* @tsif_device: device
*
* Executed from process context on init, or from tasklet when
* re-scheduling upon DMA completion.
* This prevent concurrent execution from several CPU's
*/
static void tsif_dma_schedule(struct msm_tsif_device *tsif_device)
{
int i, dmwi0, dmwi1, found = 0;
/* find free entry */
for (i = 0; i < 2; i++) {
struct tsif_xfer *xfer = &tsif_device->xfer[i];
if (xfer->busy)
continue;
found++;
xfer->busy = 1;
dmwi0 = tsif_device->dmwi;
tsif_device->dmov_cmd[i]->box.dst_row_addr =
tsif_device->data_buffer_dma + TSIF_PKT_SIZE * dmwi0;
/* proposed value for dmwi */
dmwi1 = (dmwi0 + TSIF_PKTS_IN_CHUNK) % TSIF_PKTS_IN_BUF;
/**
* If dmwi going to overlap with ri,
* overflow occurs because data was not read.
* Still get this packet, to not interrupt TSIF
* hardware, but do not advance dmwi.
*
* Upon receive, packet will be dropped.
*/
if (dmwi1 != tsif_device->ri) {
tsif_device->dmwi = dmwi1;
} else {
dev_info(&tsif_device->pdev->dev,
"Overflow detected\n");
}
xfer->wi = tsif_device->dmwi;
#ifdef CONFIG_TSIF_DEBUG
dev_info(&tsif_device->pdev->dev,
"schedule xfer[%d] -> [%2d]{%2d}\n",
i, dmwi0, xfer->wi);
#endif
/* complete all the writes to box */
dma_coherent_pre_ops();
msm_dmov_enqueue_cmd(tsif_device->dma, &xfer->hdr);
}
if (!found)
dev_info(&tsif_device->pdev->dev,
"All xfer entries are busy\n");
}
/**
* tsif_dmov_complete_func - DataMover completion callback
*
* @cmd: original DM command
* @result: DM result
* @err: optional error buffer
*
* Executed in IRQ context (Data Mover's IRQ)
* DataMover's spinlock @msm_dmov_lock held.
*/
static void tsif_dmov_complete_func(struct msm_dmov_cmd *cmd,
unsigned int result,
struct msm_dmov_errdata *err)
{
int i;
u32 data_offset;
struct tsif_xfer *xfer;
struct msm_tsif_device *tsif_device;
int reschedule = 0;
if (!(result & DMOV_RSLT_VALID)) { /* can I trust to @cmd? */
pr_err("Invalid DMOV result: rc=0x%08x, cmd = %p", result, cmd);
return;
}
/* restore original context */
xfer = container_of(cmd, struct tsif_xfer, hdr);
tsif_device = xfer->tsif_device;
i = xfer - tsif_device->xfer;
data_offset = tsif_device->dmov_cmd[i]->box.dst_row_addr -
tsif_device->data_buffer_dma;
/* order reads from the xferred buffer */
dma_coherent_post_ops();
if (result & DMOV_RSLT_DONE) {
int w = data_offset / TSIF_PKT_SIZE;
tsif_device->stat_rx++;
/*
* sowtware overflow when I was scheduled?
*
* @w is where this xfer was actually written to;
* @xfer->wi is where device's @wi will be set;
*
* if these 2 are equal, we are short in space and
* going to overwrite this xfer - this is "soft drop"
*/
if (w == xfer->wi)
tsif_device->stat_soft_drop++;
reschedule = (tsif_device->state == tsif_state_running);
#ifdef CONFIG_TSIF_DEBUG
/* IFI calculation */
/*
* update stat_ifi (inter frame interval)
*
* Calculate time difference between last and 1-st
* packets in chunk
*
* To be removed after tuning
*/
if (TSIF_PKTS_IN_CHUNK > 1) {
void *ptr = tsif_device->data_buffer + data_offset;
u32 *p0 = ptr;
u32 *p1 = ptr + (TSIF_PKTS_IN_CHUNK - 1) *
TSIF_PKT_SIZE;
u32 tts0 = TSIF_STATUS_TTS(tsif_device->stat0 =
tsif_pkt_status(p0));
u32 tts1 = TSIF_STATUS_TTS(tsif_device->stat1 =
tsif_pkt_status(p1));
tsif_device->stat_ifi = (tts1 - tts0) /
(TSIF_PKTS_IN_CHUNK - 1);
}
#endif
} else {
/**
* Error or flush
*
* To recover - re-open TSIF device.
*/
/* mark status "not valid" in data buffer */
int n;
void *ptr = tsif_device->data_buffer + data_offset;
for (n = 0; n < TSIF_PKTS_IN_CHUNK; n++) {
u32 *p = ptr + (n * TSIF_PKT_SIZE);
/* last dword is status + TTS */
p[TSIF_PKT_SIZE / sizeof(*p) - 1] = 0;
}
if (result & DMOV_RSLT_ERROR) {
dev_err(&tsif_device->pdev->dev,
"DMA error (0x%08x)\n", result);
tsif_device->stat_dmov_err++;
/* force device close */
if (tsif_device->state == tsif_state_running) {
tsif_stop_hw(tsif_device);
/*
* This branch is taken only in case of
* severe hardware problem (I don't even know
* what should happen for DMOV_RSLT_ERROR);
* thus I prefer code simplicity over
* performance.
* Clocks are turned off from outside the
* interrupt context.
*/
tasklet_schedule(&tsif_device->clocks_off);
tsif_device->state = tsif_state_flushing;
}
}
if (result & DMOV_RSLT_FLUSH) {
/*
* Flushing normally happens in process of
* @tsif_stop(), when we are waiting for outstanding
* DMA commands to be flushed.
*/
dev_info(&tsif_device->pdev->dev,
"DMA channel flushed (0x%08x)\n", result);
if (tsif_device->state == tsif_state_flushing) {
if ((!tsif_device->xfer[0].busy) &&
(!tsif_device->xfer[1].busy)) {
tsif_device->state = tsif_state_stopped;
}
}
}
if (err)
dev_err(&tsif_device->pdev->dev,
"Flush data: %08x %08x %08x %08x %08x %08x\n",
err->flush[0], err->flush[1], err->flush[2],
err->flush[3], err->flush[4], err->flush[5]);
}
tsif_device->wi = xfer->wi;
xfer->busy = 0;
if (tsif_device->client_notify)
tsif_device->client_notify(tsif_device->client_data);
/*
* Can't schedule next DMA -
* DataMover driver still hold its semaphore,
* deadlock will occur.
*/
if (reschedule)
tasklet_schedule(&tsif_device->dma_refill);
}
/**
* tsif_dma_refill - tasklet function for tsif_device->dma_refill
*
* @data: tsif_device
*
* Reschedule DMA requests
*
* Executed in tasklet
*/
static void tsif_dma_refill(unsigned long data)
{
struct msm_tsif_device *tsif_device = (struct msm_tsif_device *) data;
if (tsif_device->state == tsif_state_running)
tsif_dma_schedule(tsif_device);
}
/**
* tsif_dma_flush - flush DMA channel
*
* @tsif_device:
*
* busy wait till DMA flushed
*/
static void tsif_dma_flush(struct msm_tsif_device *tsif_device)
{
if (tsif_device->xfer[0].busy || tsif_device->xfer[1].busy) {
tsif_device->state = tsif_state_flushing;
while (tsif_device->xfer[0].busy ||
tsif_device->xfer[1].busy) {
msm_dmov_flush(tsif_device->dma, 1);
usleep(10000);
}
}
tsif_device->state = tsif_state_stopped;
if (tsif_device->client_notify)
tsif_device->client_notify(tsif_device->client_data);
}
static void tsif_dma_exit(struct msm_tsif_device *tsif_device)
{
int i;
tsif_device->state = tsif_state_flushing;
tasklet_kill(&tsif_device->dma_refill);
tsif_dma_flush(tsif_device);
for (i = 0; i < 2; i++) {
if (tsif_device->dmov_cmd[i]) {
dma_free_coherent(NULL, sizeof(struct tsif_dmov_cmd),
tsif_device->dmov_cmd[i],
tsif_device->dmov_cmd_dma[i]);
tsif_device->dmov_cmd[i] = NULL;
}
}
if (tsif_device->data_buffer) {
tsif_device->blob_wrapper_databuf.data = NULL;
tsif_device->blob_wrapper_databuf.size = 0;
dma_free_coherent(NULL, TSIF_BUF_SIZE,
tsif_device->data_buffer,
tsif_device->data_buffer_dma);
tsif_device->data_buffer = NULL;
}
}
static int tsif_dma_init(struct msm_tsif_device *tsif_device)
{
int i;
/* TODO: allocate all DMA memory in one buffer */
/* Note: don't pass device,
it require coherent_dma_mask id device definition */
tsif_device->data_buffer = dma_alloc_coherent(NULL, TSIF_BUF_SIZE,
&tsif_device->data_buffer_dma, GFP_KERNEL);
if (!tsif_device->data_buffer)
goto err;
dev_info(&tsif_device->pdev->dev, "data_buffer: %p phys 0x%08x\n",
tsif_device->data_buffer, tsif_device->data_buffer_dma);
tsif_device->blob_wrapper_databuf.data = tsif_device->data_buffer;
tsif_device->blob_wrapper_databuf.size = TSIF_BUF_SIZE;
tsif_device->ri = 0;
tsif_device->wi = 0;
tsif_device->dmwi = 0;
for (i = 0; i < 2; i++) {
dmov_box *box;
struct msm_dmov_cmd *hdr;
tsif_device->dmov_cmd[i] = dma_alloc_coherent(NULL,
sizeof(struct tsif_dmov_cmd),
&tsif_device->dmov_cmd_dma[i], GFP_KERNEL);
if (!tsif_device->dmov_cmd[i])
goto err;
dev_info(&tsif_device->pdev->dev, "dma[%i]: %p phys 0x%08x\n",
i, tsif_device->dmov_cmd[i],
tsif_device->dmov_cmd_dma[i]);
/* dst in 16 LSB, src in 16 MSB */
box = &(tsif_device->dmov_cmd[i]->box);
box->cmd = CMD_MODE_BOX | CMD_LC |
CMD_SRC_CRCI(tsif_device->crci);
box->src_row_addr =
tsif_device->memres->start + TSIF_DATA_PORT_OFF;
box->src_dst_len = (TSIF_PKT_SIZE << 16) | TSIF_PKT_SIZE;
box->num_rows = (TSIF_PKTS_IN_CHUNK << 16) | TSIF_PKTS_IN_CHUNK;
box->row_offset = (0 << 16) | TSIF_PKT_SIZE;
tsif_device->dmov_cmd[i]->box_ptr = CMD_PTR_LP |
DMOV_CMD_ADDR(tsif_device->dmov_cmd_dma[i] +
offsetof(struct tsif_dmov_cmd, box));
tsif_device->xfer[i].tsif_device = tsif_device;
hdr = &tsif_device->xfer[i].hdr;
hdr->cmdptr = DMOV_CMD_ADDR(tsif_device->dmov_cmd_dma[i] +
offsetof(struct tsif_dmov_cmd, box_ptr));
hdr->complete_func = tsif_dmov_complete_func;
}
msm_dmov_flush(tsif_device->dma, 1);
return 0;
err:
dev_err(&tsif_device->pdev->dev, "Failed to allocate DMA buffers\n");
tsif_dma_exit(tsif_device);
return -ENOMEM;
}
/* ===DMA end=== */
/* ===IRQ begin=== */
static irqreturn_t tsif_irq(int irq, void *dev_id)
{
struct msm_tsif_device *tsif_device = dev_id;
u32 sts_ctl = ioread32(tsif_device->base + TSIF_STS_CTL_OFF);
if (!(sts_ctl & (TSIF_STS_CTL_PACK_AVAIL |
TSIF_STS_CTL_OVERFLOW |
TSIF_STS_CTL_LOST_SYNC |
TSIF_STS_CTL_TIMEOUT))) {
dev_warn(&tsif_device->pdev->dev, "Spurious interrupt\n");
return IRQ_NONE;
}
if (sts_ctl & TSIF_STS_CTL_PACK_AVAIL) {
dev_info(&tsif_device->pdev->dev, "TSIF IRQ: PACK_AVAIL\n");
tsif_device->stat_rx++;
}
if (sts_ctl & TSIF_STS_CTL_OVERFLOW) {
dev_info(&tsif_device->pdev->dev, "TSIF IRQ: OVERFLOW\n");
tsif_device->stat_overflow++;
}
if (sts_ctl & TSIF_STS_CTL_LOST_SYNC) {
dev_info(&tsif_device->pdev->dev, "TSIF IRQ: LOST SYNC\n");
tsif_device->stat_lost_sync++;
}
if (sts_ctl & TSIF_STS_CTL_TIMEOUT) {
dev_info(&tsif_device->pdev->dev, "TSIF IRQ: TIMEOUT\n");
tsif_device->stat_timeout++;
}
iowrite32(sts_ctl, tsif_device->base + TSIF_STS_CTL_OFF);
wmb();
return IRQ_HANDLED;
}
/* ===IRQ end=== */
/* ===Device attributes begin=== */
static ssize_t show_stats(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
char *state_string;
switch (tsif_device->state) {
case tsif_state_stopped:
state_string = "stopped";
break;
case tsif_state_running:
state_string = "running";
break;
case tsif_state_flushing:
state_string = "flushing";
break;
default:
state_string = "???";
}
return snprintf(buf, PAGE_SIZE,
"Device %s\n"
"Mode = %d\n"
"Time limit = %d\n"
"State %s\n"
"Client = %p\n"
"Pkt/Buf = %d\n"
"Pkt/chunk = %d\n"
"Clock inv = %d\n"
"Data inv = %d\n"
"Sync inv = %d\n"
"Enable inv = %d\n"
"--statistics--\n"
"Rx chunks = %d\n"
"Overflow = %d\n"
"Lost sync = %d\n"
"Timeout = %d\n"
"DMA error = %d\n"
"Soft drop = %d\n"
"IFI = %d\n"
"(0x%08x - 0x%08x) / %d\n"
"--debug--\n"
"GLBL_CLK_ENA = 0x%08x\n"
"ROW_RESET = 0x%08x\n"
"CLK_HALT_STATEB = 0x%08x\n"
"TV_NS_REG = 0x%08x\n"
"TSIF_NS_REG = 0x%08x\n",
dev_name(dev),
tsif_device->mode,
tsif_device->time_limit,
state_string,
tsif_device->client_data,
TSIF_PKTS_IN_BUF,
TSIF_PKTS_IN_CHUNK,
tsif_device->clock_inverse,
tsif_device->data_inverse,
tsif_device->sync_inverse,
tsif_device->enable_inverse,
tsif_device->stat_rx,
tsif_device->stat_overflow,
tsif_device->stat_lost_sync,
tsif_device->stat_timeout,
tsif_device->stat_dmov_err,
tsif_device->stat_soft_drop,
tsif_device->stat_ifi,
tsif_device->stat1,
tsif_device->stat0,
TSIF_PKTS_IN_CHUNK - 1,
ioread32(GLBL_CLK_ENA),
ioread32(ROW_RESET),
ioread32(CLK_HALT_STATEB),
ioread32(TV_NS_REG),
ioread32(TSIF_NS_REG)
);
}
/**
* set_stats - reset statistics on write
*
* @dev:
* @attr:
* @buf:
* @count:
*/
static ssize_t set_stats(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
tsif_device->stat_rx = 0;
tsif_device->stat_overflow = 0;
tsif_device->stat_lost_sync = 0;
tsif_device->stat_timeout = 0;
tsif_device->stat_dmov_err = 0;
tsif_device->stat_soft_drop = 0;
tsif_device->stat_ifi = 0;
return count;
}
static DEVICE_ATTR(stats, S_IRUGO | S_IWUSR, show_stats, set_stats);
static ssize_t show_mode(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", tsif_device->mode);
}
static ssize_t set_mode(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
int value;
int rc;
if (1 != sscanf(buf, "%d", &value)) {
dev_err(&tsif_device->pdev->dev,
"Failed to parse integer: <%s>\n", buf);
return -EINVAL;
}
rc = tsif_set_mode(tsif_device, value);
if (!rc)
rc = count;
return rc;
}
static DEVICE_ATTR(mode, S_IRUGO | S_IWUSR, show_mode, set_mode);
static ssize_t show_time_limit(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", tsif_device->time_limit);
}
static ssize_t set_time_limit(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
int value;
int rc;
if (1 != sscanf(buf, "%d", &value)) {
dev_err(&tsif_device->pdev->dev,
"Failed to parse integer: <%s>\n", buf);
return -EINVAL;
}
rc = tsif_set_time_limit(tsif_device, value);
if (!rc)
rc = count;
return rc;
}
static DEVICE_ATTR(time_limit, S_IRUGO | S_IWUSR,
show_time_limit, set_time_limit);
static ssize_t show_buf_config(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d * %d\n",
tsif_device->pkts_per_chunk,
tsif_device->chunks_per_buf);
}
static ssize_t set_buf_config(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
u32 p, c;
int rc;
if (2 != sscanf(buf, "%d * %d", &p, &c)) {
dev_err(&tsif_device->pdev->dev,
"Failed to parse integer: <%s>\n", buf);
return -EINVAL;
}
rc = tsif_set_buf_config(tsif_device, p, c);
if (!rc)
rc = count;
return rc;
}
static DEVICE_ATTR(buf_config, S_IRUGO | S_IWUSR,
show_buf_config, set_buf_config);
static ssize_t show_clk_inverse(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", tsif_device->clock_inverse);
}
static ssize_t set_clk_inverse(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
int value;
int rc;
if (1 != sscanf(buf, "%d", &value)) {
dev_err(&tsif_device->pdev->dev,
"Failed to parse integer: <%s>\n", buf);
return -EINVAL;
}
rc = tsif_set_clk_inverse(tsif_device, value);
if (!rc)
rc = count;
return rc;
}
static DEVICE_ATTR(clk_inverse, S_IRUGO | S_IWUSR,
show_clk_inverse, set_clk_inverse);
static ssize_t show_data_inverse(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", tsif_device->data_inverse);
}
static ssize_t set_data_inverse(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
int value;
int rc;
if (1 != sscanf(buf, "%d", &value)) {
dev_err(&tsif_device->pdev->dev,
"Failed to parse integer: <%s>\n", buf);
return -EINVAL;
}
rc = tsif_set_data_inverse(tsif_device, value);
if (!rc)
rc = count;
return rc;
}
static DEVICE_ATTR(data_inverse, S_IRUGO | S_IWUSR,
show_data_inverse, set_data_inverse);
static ssize_t show_sync_inverse(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", tsif_device->sync_inverse);
}
static ssize_t set_sync_inverse(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
int value;
int rc;
if (1 != sscanf(buf, "%d", &value)) {
dev_err(&tsif_device->pdev->dev,
"Failed to parse integer: <%s>\n", buf);
return -EINVAL;
}
rc = tsif_set_sync_inverse(tsif_device, value);
if (!rc)
rc = count;
return rc;
}
static DEVICE_ATTR(sync_inverse, S_IRUGO | S_IWUSR,
show_sync_inverse, set_sync_inverse);
static ssize_t show_enable_inverse(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", tsif_device->enable_inverse);
}
static ssize_t set_enable_inverse(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct msm_tsif_device *tsif_device = dev_get_drvdata(dev);
int value;
int rc;
if (1 != sscanf(buf, "%d", &value)) {
dev_err(&tsif_device->pdev->dev,
"Failed to parse integer: <%s>\n", buf);
return -EINVAL;
}
rc = tsif_set_enable_inverse(tsif_device, value);
if (!rc)
rc = count;
return rc;
}
static DEVICE_ATTR(enable_inverse, S_IRUGO | S_IWUSR,
show_enable_inverse, set_enable_inverse);
static struct attribute *dev_attrs[] = {
&dev_attr_stats.attr,
&dev_attr_mode.attr,
&dev_attr_time_limit.attr,
&dev_attr_buf_config.attr,
&dev_attr_clk_inverse.attr,
&dev_attr_data_inverse.attr,
&dev_attr_sync_inverse.attr,
&dev_attr_enable_inverse.attr,
NULL,
};
static struct attribute_group dev_attr_grp = {
.attrs = dev_attrs,
};
/* ===Device attributes end=== */
/* ===debugfs begin=== */
static int debugfs_iomem_x32_set(void *data, u64 val)
{
iowrite32(val, data);
wmb();
return 0;
}
static int debugfs_iomem_x32_get(void *data, u64 *val)
{
*val = ioread32(data);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_iomem_x32, debugfs_iomem_x32_get,
debugfs_iomem_x32_set, "0x%08llx\n");
struct dentry *debugfs_create_iomem_x32(const char *name, mode_t mode,
struct dentry *parent, u32 *value)
{
return debugfs_create_file(name, mode, parent, value, &fops_iomem_x32);
}
static int action_open(struct msm_tsif_device *tsif_device)
{
int rc = -EINVAL;
int result;
struct msm_tsif_platform_data *pdata =
tsif_device->pdev->dev.platform_data;
dev_info(&tsif_device->pdev->dev, "%s\n", __func__);
if (tsif_device->state != tsif_state_stopped)
return -EAGAIN;
rc = tsif_dma_init(tsif_device);
if (rc) {
dev_err(&tsif_device->pdev->dev, "failed to init DMA\n");
return rc;
}
tsif_device->state = tsif_state_running;
/*
* DMA should be scheduled prior to TSIF hardware initialization,
* otherwise "bus error" will be reported by Data Mover
*/
enable_irq(tsif_device->irq);
tsif_clock(tsif_device, 1);
tsif_dma_schedule(tsif_device);
/*
* init the device if required
*/
if (pdata->init)
pdata->init(pdata);
rc = tsif_start_hw(tsif_device);
if (rc) {
dev_err(&tsif_device->pdev->dev, "Unable to start HW\n");
tsif_dma_exit(tsif_device);
tsif_clock(tsif_device, 0);
disable_irq(tsif_device->irq);
return rc;
}
/* make sure the GPIO's are set up */
rc = tsif_start_gpios(tsif_device);
if (rc) {
dev_err(&tsif_device->pdev->dev, "failed to start GPIOs\n");
tsif_stop_hw(tsif_device);
tsif_dma_exit(tsif_device);
tsif_clock(tsif_device, 0);
disable_irq(tsif_device->irq);
return rc;
}
result = pm_runtime_get(&tsif_device->pdev->dev);
if (result < 0) {
dev_err(&tsif_device->pdev->dev,
"Runtime PM: Unable to wake up the device, rc = %d\n",
result);
tsif_stop_gpios(tsif_device);
tsif_stop_hw(tsif_device);
tsif_dma_exit(tsif_device);
tsif_clock(tsif_device, 0);
disable_irq(tsif_device->irq);
return result;
}
wake_lock(&tsif_device->wake_lock);
return 0;
}
static int action_close(struct msm_tsif_device *tsif_device)
{
dev_info(&tsif_device->pdev->dev, "%s, state %d\n", __func__,
(int)tsif_device->state);
/* turn off the GPIO's to prevent new data from entering */
tsif_stop_gpios(tsif_device);
/* we unfortunately must sleep here to give the ADM time to
* complete any outstanding reads after the GPIO's are turned
* off. There is no indication from the ADM hardware that
* there are any outstanding reads on the bus, and if we
* stop the TSIF too quickly, it can cause a bus error.
*/
msleep(250);
/* now we can stop the core */
tsif_stop_hw(tsif_device);
tsif_dma_exit(tsif_device);
tsif_clock(tsif_device, 0);
disable_irq(tsif_device->irq);
pm_runtime_put(&tsif_device->pdev->dev);
wake_unlock(&tsif_device->wake_lock);
return 0;
}
static struct {
int (*func)(struct msm_tsif_device *);
const char *name;
} actions[] = {
{ action_open, "open"},
{ action_close, "close"},
};
static ssize_t tsif_debugfs_action_write(struct file *filp,
const char __user *userbuf,
size_t count, loff_t *f_pos)
{
int i;
struct msm_tsif_device *tsif_device = filp->private_data;
char s[40];
int len = min(sizeof(s) - 1, count);
if (copy_from_user(s, userbuf, len))
return -EFAULT;
s[len] = '\0';
dev_info(&tsif_device->pdev->dev, "%s:%s\n", __func__, s);
for (i = 0; i < ARRAY_SIZE(actions); i++) {
if (!strncmp(s, actions[i].name,
min(count, strlen(actions[i].name)))) {
int rc = actions[i].func(tsif_device);
if (!rc)
rc = count;
return rc;
}
}
return -EINVAL;
}
static int tsif_debugfs_generic_open(struct inode *inode, struct file *filp)
{
filp->private_data = inode->i_private;
return 0;
}
static const struct file_operations fops_debugfs_action = {
.open = tsif_debugfs_generic_open,
.write = tsif_debugfs_action_write,
};
static ssize_t tsif_debugfs_dma_read(struct file *filp, char __user *userbuf,
size_t count, loff_t *f_pos)
{
static char bufa[200];
static char *buf = bufa;
int sz = sizeof(bufa);
struct msm_tsif_device *tsif_device = filp->private_data;
int len = 0;
if (tsif_device) {
int i;
len += snprintf(buf + len, sz - len,
"ri %3d | wi %3d | dmwi %3d |",
tsif_device->ri, tsif_device->wi,
tsif_device->dmwi);
for (i = 0; i < 2; i++) {
struct tsif_xfer *xfer = &tsif_device->xfer[i];
if (xfer->busy) {
u32 dst =
tsif_device->dmov_cmd[i]->box.dst_row_addr;
u32 base = tsif_device->data_buffer_dma;
int w = (dst - base) / TSIF_PKT_SIZE;
len += snprintf(buf + len, sz - len,
" [%3d]{%3d}",
w, xfer->wi);
} else {
len += snprintf(buf + len, sz - len,
" ---idle---");
}
}
len += snprintf(buf + len, sz - len, "\n");
} else {
len += snprintf(buf + len, sz - len, "No TSIF device???\n");
}
return simple_read_from_buffer(userbuf, count, f_pos, buf, len);
}
static const struct file_operations fops_debugfs_dma = {
.open = tsif_debugfs_generic_open,
.read = tsif_debugfs_dma_read,
};
static ssize_t tsif_debugfs_gpios_read(struct file *filp, char __user *userbuf,
size_t count, loff_t *f_pos)
{
static char bufa[300];
static char *buf = bufa;
int sz = sizeof(bufa);
struct msm_tsif_device *tsif_device = filp->private_data;
int len = 0;
if (tsif_device) {
struct msm_tsif_platform_data *pdata =
tsif_device->pdev->dev.platform_data;
int i;
for (i = 0; i < pdata->num_gpios; i++) {
if (pdata->gpios[i].gpio_cfg) {
int x = !!gpio_get_value(GPIO_PIN(
pdata->gpios[i].gpio_cfg));
len += snprintf(buf + len, sz - len,
"%15s: %d\n",
pdata->gpios[i].label, x);
}
}
} else {
len += snprintf(buf + len, sz - len, "No TSIF device???\n");
}
return simple_read_from_buffer(userbuf, count, f_pos, buf, len);
}
static const struct file_operations fops_debugfs_gpios = {
.open = tsif_debugfs_generic_open,
.read = tsif_debugfs_gpios_read,
};
static void tsif_debugfs_init(struct msm_tsif_device *tsif_device)
{
tsif_device->dent_tsif = debugfs_create_dir(
dev_name(&tsif_device->pdev->dev), NULL);
if (tsif_device->dent_tsif) {
int i;
void __iomem *base = tsif_device->base;
for (i = 0; i < ARRAY_SIZE(debugfs_tsif_regs); i++) {
tsif_device->debugfs_tsif_regs[i] =
debugfs_create_iomem_x32(
debugfs_tsif_regs[i].name,
debugfs_tsif_regs[i].mode,
tsif_device->dent_tsif,
base + debugfs_tsif_regs[i].offset);
}
tsif_device->debugfs_gpio = debugfs_create_file("gpios",
S_IRUGO,
tsif_device->dent_tsif, tsif_device, &fops_debugfs_gpios);
tsif_device->debugfs_action = debugfs_create_file("action",
S_IWUSR,
tsif_device->dent_tsif, tsif_device, &fops_debugfs_action);
tsif_device->debugfs_dma = debugfs_create_file("dma",
S_IRUGO,
tsif_device->dent_tsif, tsif_device, &fops_debugfs_dma);
tsif_device->debugfs_databuf = debugfs_create_blob("data_buf",
S_IRUGO,
tsif_device->dent_tsif, &tsif_device->blob_wrapper_databuf);
}
}
static void tsif_debugfs_exit(struct msm_tsif_device *tsif_device)
{
if (tsif_device->dent_tsif) {
int i;
debugfs_remove_recursive(tsif_device->dent_tsif);
tsif_device->dent_tsif = NULL;
for (i = 0; i < ARRAY_SIZE(debugfs_tsif_regs); i++)
tsif_device->debugfs_tsif_regs[i] = NULL;
tsif_device->debugfs_gpio = NULL;
tsif_device->debugfs_action = NULL;
tsif_device->debugfs_dma = NULL;
tsif_device->debugfs_databuf = NULL;
}
}
/* ===debugfs end=== */
/* ===module begin=== */
static LIST_HEAD(tsif_devices);
static struct msm_tsif_device *tsif_find_by_id(int id)
{
struct msm_tsif_device *tsif_device;
list_for_each_entry(tsif_device, &tsif_devices, devlist) {
if (tsif_device->pdev->id == id)
return tsif_device;
}
return NULL;
}
static int msm_tsif_probe(struct platform_device *pdev)
{
int rc = -ENODEV;
struct msm_tsif_platform_data *plat = pdev->dev.platform_data;
struct msm_tsif_device *tsif_device;
struct resource *res;
/* check device validity */
/* must have platform data */
if (!plat) {
dev_err(&pdev->dev, "Platform data not available\n");
rc = -EINVAL;
goto out;
}
if ((pdev->id < 0) || (pdev->id > TSIF_MAX_ID)) {
dev_err(&pdev->dev, "Invalid device ID %d\n", pdev->id);
rc = -EINVAL;
goto out;
}
/* OK, we will use this device */
tsif_device = kzalloc(sizeof(struct msm_tsif_device), GFP_KERNEL);
if (!tsif_device) {
dev_err(&pdev->dev, "Failed to allocate memory for device\n");
rc = -ENOMEM;
goto out;
}
/* cross links */
tsif_device->pdev = pdev;
platform_set_drvdata(pdev, tsif_device);
tsif_device->mode = 1;
tsif_device->clock_inverse = 0;
tsif_device->data_inverse = 0;
tsif_device->sync_inverse = 0;
tsif_device->enable_inverse = 0;
tsif_device->pkts_per_chunk = TSIF_PKTS_IN_CHUNK_DEFAULT;
tsif_device->chunks_per_buf = TSIF_CHUNKS_IN_BUF_DEFAULT;
tasklet_init(&tsif_device->dma_refill, tsif_dma_refill,
(unsigned long)tsif_device);
tasklet_init(&tsif_device->clocks_off, tsif_clocks_off,
(unsigned long)tsif_device);
if (tsif_get_clocks(tsif_device))
goto err_clocks;
/* map I/O memory */
tsif_device->memres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!tsif_device->memres) {
dev_err(&pdev->dev, "Missing MEM resource\n");
rc = -ENXIO;
goto err_rgn;
}
res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
if (!res) {
dev_err(&pdev->dev, "Missing DMA resource\n");
rc = -ENXIO;
goto err_rgn;
}
tsif_device->dma = res->start;
tsif_device->crci = res->end;
tsif_device->base = ioremap(tsif_device->memres->start,
resource_size(tsif_device->memres));
if (!tsif_device->base) {
dev_err(&pdev->dev, "ioremap failed\n");
goto err_ioremap;
}
dev_info(&pdev->dev, "remapped phys 0x%08x => virt %p\n",
tsif_device->memres->start, tsif_device->base);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
tsif_debugfs_init(tsif_device);
rc = platform_get_irq(pdev, 0);
if (rc > 0) {
tsif_device->irq = rc;
rc = request_irq(tsif_device->irq, tsif_irq, IRQF_SHARED,
dev_name(&pdev->dev), tsif_device);
disable_irq(tsif_device->irq);
}
if (rc) {
dev_err(&pdev->dev, "failed to request IRQ %d : %d\n",
tsif_device->irq, rc);
goto err_irq;
}
rc = sysfs_create_group(&pdev->dev.kobj, &dev_attr_grp);
if (rc) {
dev_err(&pdev->dev, "failed to create dev. attrs : %d\n", rc);
goto err_attrs;
}
wake_lock_init(&tsif_device->wake_lock, WAKE_LOCK_SUSPEND,
dev_name(&pdev->dev));
dev_info(&pdev->dev, "Configured irq %d memory 0x%08x DMA %d CRCI %d\n",
tsif_device->irq, tsif_device->memres->start,
tsif_device->dma, tsif_device->crci);
list_add(&tsif_device->devlist, &tsif_devices);
return 0;
/* error path */
sysfs_remove_group(&pdev->dev.kobj, &dev_attr_grp);
err_attrs:
free_irq(tsif_device->irq, tsif_device);
err_irq:
tsif_debugfs_exit(tsif_device);
iounmap(tsif_device->base);
err_ioremap:
err_rgn:
tsif_put_clocks(tsif_device);
err_clocks:
kfree(tsif_device);
out:
return rc;
}
static int msm_tsif_remove(struct platform_device *pdev)
{
struct msm_tsif_device *tsif_device = platform_get_drvdata(pdev);
dev_info(&pdev->dev, "Unload\n");
list_del(&tsif_device->devlist);
wake_lock_destroy(&tsif_device->wake_lock);
sysfs_remove_group(&pdev->dev.kobj, &dev_attr_grp);
free_irq(tsif_device->irq, tsif_device);
tsif_debugfs_exit(tsif_device);
tsif_dma_exit(tsif_device);
tsif_stop_gpios(tsif_device);
iounmap(tsif_device->base);
tsif_put_clocks(tsif_device);
pm_runtime_put(&pdev->dev);
pm_runtime_disable(&pdev->dev);
kfree(tsif_device);
return 0;
}
static int tsif_runtime_suspend(struct device *dev)
{
dev_dbg(dev, "pm_runtime: suspending...\n");
return 0;
}
static int tsif_runtime_resume(struct device *dev)
{
dev_dbg(dev, "pm_runtime: resuming...\n");
return 0;
}
static const struct dev_pm_ops tsif_dev_pm_ops = {
.runtime_suspend = tsif_runtime_suspend,
.runtime_resume = tsif_runtime_resume,
};
static struct platform_driver msm_tsif_driver = {
.probe = msm_tsif_probe,
.remove = __exit_p(msm_tsif_remove),
.driver = {
.name = "msm_tsif",
.pm = &tsif_dev_pm_ops,
},
};
static int __init mod_init(void)
{
int rc = platform_driver_register(&msm_tsif_driver);
if (rc)
pr_err("TSIF: platform_driver_register failed: %d\n", rc);
return rc;
}
static void __exit mod_exit(void)
{
platform_driver_unregister(&msm_tsif_driver);
}
/* ===module end=== */
/* public API */
int tsif_get_active(void)
{
struct msm_tsif_device *tsif_device;
list_for_each_entry(tsif_device, &tsif_devices, devlist) {
return tsif_device->pdev->id;
}
return -ENODEV;
}
EXPORT_SYMBOL(tsif_get_active);
void *tsif_attach(int id, void (*notify)(void *client_data), void *data)
{
struct msm_tsif_device *tsif_device = tsif_find_by_id(id);
if (!tsif_device)
return ERR_PTR(-ENODEV);
if (tsif_device->client_notify || tsif_device->client_data)
return ERR_PTR(-EBUSY);
tsif_device->client_notify = notify;
tsif_device->client_data = data;
/* prevent from unloading */
get_device(&tsif_device->pdev->dev);
return tsif_device;
}
EXPORT_SYMBOL(tsif_attach);
void tsif_detach(void *cookie)
{
struct msm_tsif_device *tsif_device = cookie;
tsif_device->client_notify = NULL;
tsif_device->client_data = NULL;
put_device(&tsif_device->pdev->dev);
}
EXPORT_SYMBOL(tsif_detach);
void tsif_get_info(void *cookie, void **pdata, int *psize)
{
struct msm_tsif_device *tsif_device = cookie;
if (pdata)
*pdata = tsif_device->data_buffer;
if (psize)
*psize = TSIF_PKTS_IN_BUF;
}
EXPORT_SYMBOL(tsif_get_info);
int tsif_set_mode(void *cookie, int mode)
{
struct msm_tsif_device *tsif_device = cookie;
if (tsif_device->state != tsif_state_stopped) {
dev_err(&tsif_device->pdev->dev,
"Can't change mode while device is active\n");
return -EBUSY;
}
switch (mode) {
case 1:
case 2:
case 3:
tsif_device->mode = mode;
break;
default:
dev_err(&tsif_device->pdev->dev, "Invalid mode: %d\n", mode);
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(tsif_set_mode);
int tsif_set_time_limit(void *cookie, u32 value)
{
struct msm_tsif_device *tsif_device = cookie;
if (tsif_device->state != tsif_state_stopped) {
dev_err(&tsif_device->pdev->dev,
"Can't change time limit while device is active\n");
return -EBUSY;
}
if (value != (value & 0xFFFFFF)) {
dev_err(&tsif_device->pdev->dev,
"Invalid time limit (should be 24 bit): %#x\n", value);
return -EINVAL;
}
tsif_device->time_limit = value;
return 0;
}
EXPORT_SYMBOL(tsif_set_time_limit);
int tsif_set_buf_config(void *cookie, u32 pkts_in_chunk, u32 chunks_in_buf)
{
struct msm_tsif_device *tsif_device = cookie;
if (tsif_device->data_buffer) {
dev_err(&tsif_device->pdev->dev,
"Data buffer already allocated: %p\n",
tsif_device->data_buffer);
return -EBUSY;
}
/* check for crazy user */
if (pkts_in_chunk * chunks_in_buf > 10240) {
dev_err(&tsif_device->pdev->dev,
"Buffer requested is too large: %d * %d\n",
pkts_in_chunk,
chunks_in_buf);
return -EINVAL;
}
/* parameters are OK, execute */
tsif_device->pkts_per_chunk = pkts_in_chunk;
tsif_device->chunks_per_buf = chunks_in_buf;
return 0;
}
EXPORT_SYMBOL(tsif_set_buf_config);
int tsif_set_clk_inverse(void *cookie, int value)
{
struct msm_tsif_device *tsif_device = cookie;
if (tsif_device->state != tsif_state_stopped) {
dev_err(&tsif_device->pdev->dev,
"Can't change clock inverse while device is active\n");
return -EBUSY;
}
if ((value != 0) && (value != 1)) {
dev_err(&tsif_device->pdev->dev,
"Invalid parameter, either 0 or 1: %#x\n", value);
return -EINVAL;
}
tsif_device->clock_inverse = value;
return 0;
}
EXPORT_SYMBOL(tsif_set_clk_inverse);
int tsif_set_data_inverse(void *cookie, int value)
{
struct msm_tsif_device *tsif_device = cookie;
if (tsif_device->state != tsif_state_stopped) {
dev_err(&tsif_device->pdev->dev,
"Can't change data inverse while device is active\n");
return -EBUSY;
}
if ((value != 0) && (value != 1)) {
dev_err(&tsif_device->pdev->dev,
"Invalid parameter, either 0 or 1: %#x\n", value);
return -EINVAL;
}
tsif_device->data_inverse = value;
return 0;
}
EXPORT_SYMBOL(tsif_set_data_inverse);
int tsif_set_sync_inverse(void *cookie, int value)
{
struct msm_tsif_device *tsif_device = cookie;
if (tsif_device->state != tsif_state_stopped) {
dev_err(&tsif_device->pdev->dev,
"Can't change sync inverse while device is active\n");
return -EBUSY;
}
if ((value != 0) && (value != 1)) {
dev_err(&tsif_device->pdev->dev,
"Invalid parameter, either 0 or 1: %#x\n", value);
return -EINVAL;
}
tsif_device->sync_inverse = value;
return 0;
}
EXPORT_SYMBOL(tsif_set_sync_inverse);
int tsif_set_enable_inverse(void *cookie, int value)
{
struct msm_tsif_device *tsif_device = cookie;
if (tsif_device->state != tsif_state_stopped) {
dev_err(&tsif_device->pdev->dev,
"Can't change enable inverse while device is active\n");
return -EBUSY;
}
if ((value != 0) && (value != 1)) {
dev_err(&tsif_device->pdev->dev,
"Invalid parameter, either 0 or 1: %#x\n", value);
return -EINVAL;
}
tsif_device->enable_inverse = value;
return 0;
}
EXPORT_SYMBOL(tsif_set_enable_inverse);
void tsif_get_state(void *cookie, int *ri, int *wi, enum tsif_state *state)
{
struct msm_tsif_device *tsif_device = cookie;
if (ri)
*ri = tsif_device->ri;
if (wi)
*wi = tsif_device->wi;
if (state)
*state = tsif_device->state;
}
EXPORT_SYMBOL(tsif_get_state);
int tsif_start(void *cookie)
{
struct msm_tsif_device *tsif_device = cookie;
return action_open(tsif_device);
}
EXPORT_SYMBOL(tsif_start);
void tsif_stop(void *cookie)
{
struct msm_tsif_device *tsif_device = cookie;
action_close(tsif_device);
}
EXPORT_SYMBOL(tsif_stop);
int tsif_get_ref_clk_counter(void *cookie, u32 *tcr_counter)
{
struct msm_tsif_device *tsif_device = cookie;
if (!tsif_device || !tcr_counter)
return -EINVAL;
if (tsif_device->state == tsif_state_running)
*tcr_counter = ioread32(tsif_device->base + TSIF_CLK_REF_OFF);
else
*tcr_counter = 0;
return 0;
}
EXPORT_SYMBOL(tsif_get_ref_clk_counter);
void tsif_reclaim_packets(void *cookie, int read_index)
{
struct msm_tsif_device *tsif_device = cookie;
tsif_device->ri = read_index;
}
EXPORT_SYMBOL(tsif_reclaim_packets);
module_init(mod_init);
module_exit(mod_exit);
MODULE_DESCRIPTION("TSIF (Transport Stream Interface)"
" Driver for the MSM chipset");
MODULE_LICENSE("GPL v2");