| /* | 
 |  * TI EDMA DMA engine driver | 
 |  * | 
 |  * Copyright 2012 Texas Instruments | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation version 2. | 
 |  * | 
 |  * This program is distributed "as is" WITHOUT ANY WARRANTY of any | 
 |  * kind, whether express or implied; without even the implied warranty | 
 |  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  */ | 
 |  | 
 | #include <linux/dmaengine.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/err.h> | 
 | #include <linux/init.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/list.h> | 
 | #include <linux/module.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/of.h> | 
 |  | 
 | #include <linux/platform_data/edma.h> | 
 |  | 
 | #include "dmaengine.h" | 
 | #include "virt-dma.h" | 
 |  | 
 | /* | 
 |  * This will go away when the private EDMA API is folded | 
 |  * into this driver and the platform device(s) are | 
 |  * instantiated in the arch code. We can only get away | 
 |  * with this simplification because DA8XX may not be built | 
 |  * in the same kernel image with other DaVinci parts. This | 
 |  * avoids having to sprinkle dmaengine driver platform devices | 
 |  * and data throughout all the existing board files. | 
 |  */ | 
 | #ifdef CONFIG_ARCH_DAVINCI_DA8XX | 
 | #define EDMA_CTLRS	2 | 
 | #define EDMA_CHANS	32 | 
 | #else | 
 | #define EDMA_CTLRS	1 | 
 | #define EDMA_CHANS	64 | 
 | #endif /* CONFIG_ARCH_DAVINCI_DA8XX */ | 
 |  | 
 | /* | 
 |  * Max of 20 segments per channel to conserve PaRAM slots | 
 |  * Also note that MAX_NR_SG should be atleast the no.of periods | 
 |  * that are required for ASoC, otherwise DMA prep calls will | 
 |  * fail. Today davinci-pcm is the only user of this driver and | 
 |  * requires atleast 17 slots, so we setup the default to 20. | 
 |  */ | 
 | #define MAX_NR_SG		20 | 
 | #define EDMA_MAX_SLOTS		MAX_NR_SG | 
 | #define EDMA_DESCRIPTORS	16 | 
 |  | 
 | struct edma_pset { | 
 | 	u32				len; | 
 | 	dma_addr_t			addr; | 
 | 	struct edmacc_param		param; | 
 | }; | 
 |  | 
 | struct edma_desc { | 
 | 	struct virt_dma_desc		vdesc; | 
 | 	struct list_head		node; | 
 | 	enum dma_transfer_direction	direction; | 
 | 	int				cyclic; | 
 | 	int				absync; | 
 | 	int				pset_nr; | 
 | 	struct edma_chan		*echan; | 
 | 	int				processed; | 
 |  | 
 | 	/* | 
 | 	 * The following 4 elements are used for residue accounting. | 
 | 	 * | 
 | 	 * - processed_stat: the number of SG elements we have traversed | 
 | 	 * so far to cover accounting. This is updated directly to processed | 
 | 	 * during edma_callback and is always <= processed, because processed | 
 | 	 * refers to the number of pending transfer (programmed to EDMA | 
 | 	 * controller), where as processed_stat tracks number of transfers | 
 | 	 * accounted for so far. | 
 | 	 * | 
 | 	 * - residue: The amount of bytes we have left to transfer for this desc | 
 | 	 * | 
 | 	 * - residue_stat: The residue in bytes of data we have covered | 
 | 	 * so far for accounting. This is updated directly to residue | 
 | 	 * during callbacks to keep it current. | 
 | 	 * | 
 | 	 * - sg_len: Tracks the length of the current intermediate transfer, | 
 | 	 * this is required to update the residue during intermediate transfer | 
 | 	 * completion callback. | 
 | 	 */ | 
 | 	int				processed_stat; | 
 | 	u32				sg_len; | 
 | 	u32				residue; | 
 | 	u32				residue_stat; | 
 |  | 
 | 	struct edma_pset		pset[0]; | 
 | }; | 
 |  | 
 | struct edma_cc; | 
 |  | 
 | struct edma_chan { | 
 | 	struct virt_dma_chan		vchan; | 
 | 	struct list_head		node; | 
 | 	struct edma_desc		*edesc; | 
 | 	struct edma_cc			*ecc; | 
 | 	int				ch_num; | 
 | 	bool				alloced; | 
 | 	int				slot[EDMA_MAX_SLOTS]; | 
 | 	int				missed; | 
 | 	struct dma_slave_config		cfg; | 
 | }; | 
 |  | 
 | struct edma_cc { | 
 | 	int				ctlr; | 
 | 	struct dma_device		dma_slave; | 
 | 	struct edma_chan		slave_chans[EDMA_CHANS]; | 
 | 	int				num_slave_chans; | 
 | 	int				dummy_slot; | 
 | }; | 
 |  | 
 | static inline struct edma_cc *to_edma_cc(struct dma_device *d) | 
 | { | 
 | 	return container_of(d, struct edma_cc, dma_slave); | 
 | } | 
 |  | 
 | static inline struct edma_chan *to_edma_chan(struct dma_chan *c) | 
 | { | 
 | 	return container_of(c, struct edma_chan, vchan.chan); | 
 | } | 
 |  | 
 | static inline struct edma_desc | 
 | *to_edma_desc(struct dma_async_tx_descriptor *tx) | 
 | { | 
 | 	return container_of(tx, struct edma_desc, vdesc.tx); | 
 | } | 
 |  | 
 | static void edma_desc_free(struct virt_dma_desc *vdesc) | 
 | { | 
 | 	kfree(container_of(vdesc, struct edma_desc, vdesc)); | 
 | } | 
 |  | 
 | /* Dispatch a queued descriptor to the controller (caller holds lock) */ | 
 | static void edma_execute(struct edma_chan *echan) | 
 | { | 
 | 	struct virt_dma_desc *vdesc; | 
 | 	struct edma_desc *edesc; | 
 | 	struct device *dev = echan->vchan.chan.device->dev; | 
 | 	int i, j, left, nslots; | 
 |  | 
 | 	/* If either we processed all psets or we're still not started */ | 
 | 	if (!echan->edesc || | 
 | 	    echan->edesc->pset_nr == echan->edesc->processed) { | 
 | 		/* Get next vdesc */ | 
 | 		vdesc = vchan_next_desc(&echan->vchan); | 
 | 		if (!vdesc) { | 
 | 			echan->edesc = NULL; | 
 | 			return; | 
 | 		} | 
 | 		list_del(&vdesc->node); | 
 | 		echan->edesc = to_edma_desc(&vdesc->tx); | 
 | 	} | 
 |  | 
 | 	edesc = echan->edesc; | 
 |  | 
 | 	/* Find out how many left */ | 
 | 	left = edesc->pset_nr - edesc->processed; | 
 | 	nslots = min(MAX_NR_SG, left); | 
 | 	edesc->sg_len = 0; | 
 |  | 
 | 	/* Write descriptor PaRAM set(s) */ | 
 | 	for (i = 0; i < nslots; i++) { | 
 | 		j = i + edesc->processed; | 
 | 		edma_write_slot(echan->slot[i], &edesc->pset[j].param); | 
 | 		edesc->sg_len += edesc->pset[j].len; | 
 | 		dev_vdbg(echan->vchan.chan.device->dev, | 
 | 			"\n pset[%d]:\n" | 
 | 			"  chnum\t%d\n" | 
 | 			"  slot\t%d\n" | 
 | 			"  opt\t%08x\n" | 
 | 			"  src\t%08x\n" | 
 | 			"  dst\t%08x\n" | 
 | 			"  abcnt\t%08x\n" | 
 | 			"  ccnt\t%08x\n" | 
 | 			"  bidx\t%08x\n" | 
 | 			"  cidx\t%08x\n" | 
 | 			"  lkrld\t%08x\n", | 
 | 			j, echan->ch_num, echan->slot[i], | 
 | 			edesc->pset[j].param.opt, | 
 | 			edesc->pset[j].param.src, | 
 | 			edesc->pset[j].param.dst, | 
 | 			edesc->pset[j].param.a_b_cnt, | 
 | 			edesc->pset[j].param.ccnt, | 
 | 			edesc->pset[j].param.src_dst_bidx, | 
 | 			edesc->pset[j].param.src_dst_cidx, | 
 | 			edesc->pset[j].param.link_bcntrld); | 
 | 		/* Link to the previous slot if not the last set */ | 
 | 		if (i != (nslots - 1)) | 
 | 			edma_link(echan->slot[i], echan->slot[i+1]); | 
 | 	} | 
 |  | 
 | 	edesc->processed += nslots; | 
 |  | 
 | 	/* | 
 | 	 * If this is either the last set in a set of SG-list transactions | 
 | 	 * then setup a link to the dummy slot, this results in all future | 
 | 	 * events being absorbed and that's OK because we're done | 
 | 	 */ | 
 | 	if (edesc->processed == edesc->pset_nr) { | 
 | 		if (edesc->cyclic) | 
 | 			edma_link(echan->slot[nslots-1], echan->slot[1]); | 
 | 		else | 
 | 			edma_link(echan->slot[nslots-1], | 
 | 				  echan->ecc->dummy_slot); | 
 | 	} | 
 |  | 
 | 	if (edesc->processed <= MAX_NR_SG) { | 
 | 		dev_dbg(dev, "first transfer starting on channel %d\n", | 
 | 			echan->ch_num); | 
 | 		edma_start(echan->ch_num); | 
 | 	} else { | 
 | 		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", | 
 | 			echan->ch_num, edesc->processed); | 
 | 		edma_resume(echan->ch_num); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * This happens due to setup times between intermediate transfers | 
 | 	 * in long SG lists which have to be broken up into transfers of | 
 | 	 * MAX_NR_SG | 
 | 	 */ | 
 | 	if (echan->missed) { | 
 | 		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); | 
 | 		edma_clean_channel(echan->ch_num); | 
 | 		edma_stop(echan->ch_num); | 
 | 		edma_start(echan->ch_num); | 
 | 		edma_trigger_channel(echan->ch_num); | 
 | 		echan->missed = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static int edma_terminate_all(struct edma_chan *echan) | 
 | { | 
 | 	unsigned long flags; | 
 | 	LIST_HEAD(head); | 
 |  | 
 | 	spin_lock_irqsave(&echan->vchan.lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Stop DMA activity: we assume the callback will not be called | 
 | 	 * after edma_dma() returns (even if it does, it will see | 
 | 	 * echan->edesc is NULL and exit.) | 
 | 	 */ | 
 | 	if (echan->edesc) { | 
 | 		int cyclic = echan->edesc->cyclic; | 
 |  | 
 | 		/* | 
 | 		 * free the running request descriptor | 
 | 		 * since it is not in any of the vdesc lists | 
 | 		 */ | 
 | 		edma_desc_free(&echan->edesc->vdesc); | 
 |  | 
 | 		echan->edesc = NULL; | 
 | 		edma_stop(echan->ch_num); | 
 | 		/* Move the cyclic channel back to default queue */ | 
 | 		if (cyclic) | 
 | 			edma_assign_channel_eventq(echan->ch_num, | 
 | 						   EVENTQ_DEFAULT); | 
 | 	} | 
 |  | 
 | 	vchan_get_all_descriptors(&echan->vchan, &head); | 
 | 	spin_unlock_irqrestore(&echan->vchan.lock, flags); | 
 | 	vchan_dma_desc_free_list(&echan->vchan, &head); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int edma_slave_config(struct edma_chan *echan, | 
 | 	struct dma_slave_config *cfg) | 
 | { | 
 | 	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || | 
 | 	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int edma_dma_pause(struct edma_chan *echan) | 
 | { | 
 | 	/* Pause/Resume only allowed with cyclic mode */ | 
 | 	if (!echan->edesc || !echan->edesc->cyclic) | 
 | 		return -EINVAL; | 
 |  | 
 | 	edma_pause(echan->ch_num); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int edma_dma_resume(struct edma_chan *echan) | 
 | { | 
 | 	/* Pause/Resume only allowed with cyclic mode */ | 
 | 	if (!echan->edesc->cyclic) | 
 | 		return -EINVAL; | 
 |  | 
 | 	edma_resume(echan->ch_num); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, | 
 | 			unsigned long arg) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct dma_slave_config *config; | 
 | 	struct edma_chan *echan = to_edma_chan(chan); | 
 |  | 
 | 	switch (cmd) { | 
 | 	case DMA_TERMINATE_ALL: | 
 | 		edma_terminate_all(echan); | 
 | 		break; | 
 | 	case DMA_SLAVE_CONFIG: | 
 | 		config = (struct dma_slave_config *)arg; | 
 | 		ret = edma_slave_config(echan, config); | 
 | 		break; | 
 | 	case DMA_PAUSE: | 
 | 		ret = edma_dma_pause(echan); | 
 | 		break; | 
 |  | 
 | 	case DMA_RESUME: | 
 | 		ret = edma_dma_resume(echan); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		ret = -ENOSYS; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * A PaRAM set configuration abstraction used by other modes | 
 |  * @chan: Channel who's PaRAM set we're configuring | 
 |  * @pset: PaRAM set to initialize and setup. | 
 |  * @src_addr: Source address of the DMA | 
 |  * @dst_addr: Destination address of the DMA | 
 |  * @burst: In units of dev_width, how much to send | 
 |  * @dev_width: How much is the dev_width | 
 |  * @dma_length: Total length of the DMA transfer | 
 |  * @direction: Direction of the transfer | 
 |  */ | 
 | static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, | 
 | 	dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, | 
 | 	enum dma_slave_buswidth dev_width, unsigned int dma_length, | 
 | 	enum dma_transfer_direction direction) | 
 | { | 
 | 	struct edma_chan *echan = to_edma_chan(chan); | 
 | 	struct device *dev = chan->device->dev; | 
 | 	struct edmacc_param *param = &epset->param; | 
 | 	int acnt, bcnt, ccnt, cidx; | 
 | 	int src_bidx, dst_bidx, src_cidx, dst_cidx; | 
 | 	int absync; | 
 |  | 
 | 	acnt = dev_width; | 
 |  | 
 | 	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ | 
 | 	if (!burst) | 
 | 		burst = 1; | 
 | 	/* | 
 | 	 * If the maxburst is equal to the fifo width, use | 
 | 	 * A-synced transfers. This allows for large contiguous | 
 | 	 * buffer transfers using only one PaRAM set. | 
 | 	 */ | 
 | 	if (burst == 1) { | 
 | 		/* | 
 | 		 * For the A-sync case, bcnt and ccnt are the remainder | 
 | 		 * and quotient respectively of the division of: | 
 | 		 * (dma_length / acnt) by (SZ_64K -1). This is so | 
 | 		 * that in case bcnt over flows, we have ccnt to use. | 
 | 		 * Note: In A-sync tranfer only, bcntrld is used, but it | 
 | 		 * only applies for sg_dma_len(sg) >= SZ_64K. | 
 | 		 * In this case, the best way adopted is- bccnt for the | 
 | 		 * first frame will be the remainder below. Then for | 
 | 		 * every successive frame, bcnt will be SZ_64K-1. This | 
 | 		 * is assured as bcntrld = 0xffff in end of function. | 
 | 		 */ | 
 | 		absync = false; | 
 | 		ccnt = dma_length / acnt / (SZ_64K - 1); | 
 | 		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); | 
 | 		/* | 
 | 		 * If bcnt is non-zero, we have a remainder and hence an | 
 | 		 * extra frame to transfer, so increment ccnt. | 
 | 		 */ | 
 | 		if (bcnt) | 
 | 			ccnt++; | 
 | 		else | 
 | 			bcnt = SZ_64K - 1; | 
 | 		cidx = acnt; | 
 | 	} else { | 
 | 		/* | 
 | 		 * If maxburst is greater than the fifo address_width, | 
 | 		 * use AB-synced transfers where A count is the fifo | 
 | 		 * address_width and B count is the maxburst. In this | 
 | 		 * case, we are limited to transfers of C count frames | 
 | 		 * of (address_width * maxburst) where C count is limited | 
 | 		 * to SZ_64K-1. This places an upper bound on the length | 
 | 		 * of an SG segment that can be handled. | 
 | 		 */ | 
 | 		absync = true; | 
 | 		bcnt = burst; | 
 | 		ccnt = dma_length / (acnt * bcnt); | 
 | 		if (ccnt > (SZ_64K - 1)) { | 
 | 			dev_err(dev, "Exceeded max SG segment size\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		cidx = acnt * bcnt; | 
 | 	} | 
 |  | 
 | 	epset->len = dma_length; | 
 |  | 
 | 	if (direction == DMA_MEM_TO_DEV) { | 
 | 		src_bidx = acnt; | 
 | 		src_cidx = cidx; | 
 | 		dst_bidx = 0; | 
 | 		dst_cidx = 0; | 
 | 		epset->addr = src_addr; | 
 | 	} else if (direction == DMA_DEV_TO_MEM)  { | 
 | 		src_bidx = 0; | 
 | 		src_cidx = 0; | 
 | 		dst_bidx = acnt; | 
 | 		dst_cidx = cidx; | 
 | 		epset->addr = dst_addr; | 
 | 	} else if (direction == DMA_MEM_TO_MEM)  { | 
 | 		src_bidx = acnt; | 
 | 		src_cidx = cidx; | 
 | 		dst_bidx = acnt; | 
 | 		dst_cidx = cidx; | 
 | 	} else { | 
 | 		dev_err(dev, "%s: direction not implemented yet\n", __func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); | 
 | 	/* Configure A or AB synchronized transfers */ | 
 | 	if (absync) | 
 | 		param->opt |= SYNCDIM; | 
 |  | 
 | 	param->src = src_addr; | 
 | 	param->dst = dst_addr; | 
 |  | 
 | 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx; | 
 | 	param->src_dst_cidx = (dst_cidx << 16) | src_cidx; | 
 |  | 
 | 	param->a_b_cnt = bcnt << 16 | acnt; | 
 | 	param->ccnt = ccnt; | 
 | 	/* | 
 | 	 * Only time when (bcntrld) auto reload is required is for | 
 | 	 * A-sync case, and in this case, a requirement of reload value | 
 | 	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL | 
 | 	 * and then later will be populated by edma_execute. | 
 | 	 */ | 
 | 	param->link_bcntrld = 0xffffffff; | 
 | 	return absync; | 
 | } | 
 |  | 
 | static struct dma_async_tx_descriptor *edma_prep_slave_sg( | 
 | 	struct dma_chan *chan, struct scatterlist *sgl, | 
 | 	unsigned int sg_len, enum dma_transfer_direction direction, | 
 | 	unsigned long tx_flags, void *context) | 
 | { | 
 | 	struct edma_chan *echan = to_edma_chan(chan); | 
 | 	struct device *dev = chan->device->dev; | 
 | 	struct edma_desc *edesc; | 
 | 	dma_addr_t src_addr = 0, dst_addr = 0; | 
 | 	enum dma_slave_buswidth dev_width; | 
 | 	u32 burst; | 
 | 	struct scatterlist *sg; | 
 | 	int i, nslots, ret; | 
 |  | 
 | 	if (unlikely(!echan || !sgl || !sg_len)) | 
 | 		return NULL; | 
 |  | 
 | 	if (direction == DMA_DEV_TO_MEM) { | 
 | 		src_addr = echan->cfg.src_addr; | 
 | 		dev_width = echan->cfg.src_addr_width; | 
 | 		burst = echan->cfg.src_maxburst; | 
 | 	} else if (direction == DMA_MEM_TO_DEV) { | 
 | 		dst_addr = echan->cfg.dst_addr; | 
 | 		dev_width = echan->cfg.dst_addr_width; | 
 | 		burst = echan->cfg.dst_maxburst; | 
 | 	} else { | 
 | 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { | 
 | 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	edesc = kzalloc(sizeof(*edesc) + sg_len * | 
 | 		sizeof(edesc->pset[0]), GFP_ATOMIC); | 
 | 	if (!edesc) { | 
 | 		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	edesc->pset_nr = sg_len; | 
 | 	edesc->residue = 0; | 
 | 	edesc->direction = direction; | 
 | 	edesc->echan = echan; | 
 |  | 
 | 	/* Allocate a PaRAM slot, if needed */ | 
 | 	nslots = min_t(unsigned, MAX_NR_SG, sg_len); | 
 |  | 
 | 	for (i = 0; i < nslots; i++) { | 
 | 		if (echan->slot[i] < 0) { | 
 | 			echan->slot[i] = | 
 | 				edma_alloc_slot(EDMA_CTLR(echan->ch_num), | 
 | 						EDMA_SLOT_ANY); | 
 | 			if (echan->slot[i] < 0) { | 
 | 				kfree(edesc); | 
 | 				dev_err(dev, "%s: Failed to allocate slot\n", | 
 | 					__func__); | 
 | 				return NULL; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Configure PaRAM sets for each SG */ | 
 | 	for_each_sg(sgl, sg, sg_len, i) { | 
 | 		/* Get address for each SG */ | 
 | 		if (direction == DMA_DEV_TO_MEM) | 
 | 			dst_addr = sg_dma_address(sg); | 
 | 		else | 
 | 			src_addr = sg_dma_address(sg); | 
 |  | 
 | 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr, | 
 | 				       dst_addr, burst, dev_width, | 
 | 				       sg_dma_len(sg), direction); | 
 | 		if (ret < 0) { | 
 | 			kfree(edesc); | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		edesc->absync = ret; | 
 | 		edesc->residue += sg_dma_len(sg); | 
 |  | 
 | 		/* If this is the last in a current SG set of transactions, | 
 | 		   enable interrupts so that next set is processed */ | 
 | 		if (!((i+1) % MAX_NR_SG)) | 
 | 			edesc->pset[i].param.opt |= TCINTEN; | 
 |  | 
 | 		/* If this is the last set, enable completion interrupt flag */ | 
 | 		if (i == sg_len - 1) | 
 | 			edesc->pset[i].param.opt |= TCINTEN; | 
 | 	} | 
 | 	edesc->residue_stat = edesc->residue; | 
 |  | 
 | 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); | 
 | } | 
 |  | 
 | struct dma_async_tx_descriptor *edma_prep_dma_memcpy( | 
 | 	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, | 
 | 	size_t len, unsigned long tx_flags) | 
 | { | 
 | 	int ret; | 
 | 	struct edma_desc *edesc; | 
 | 	struct device *dev = chan->device->dev; | 
 | 	struct edma_chan *echan = to_edma_chan(chan); | 
 |  | 
 | 	if (unlikely(!echan || !len)) | 
 | 		return NULL; | 
 |  | 
 | 	edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC); | 
 | 	if (!edesc) { | 
 | 		dev_dbg(dev, "Failed to allocate a descriptor\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	edesc->pset_nr = 1; | 
 |  | 
 | 	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, | 
 | 			       DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM); | 
 | 	if (ret < 0) | 
 | 		return NULL; | 
 |  | 
 | 	edesc->absync = ret; | 
 |  | 
 | 	/* | 
 | 	 * Enable intermediate transfer chaining to re-trigger channel | 
 | 	 * on completion of every TR, and enable transfer-completion | 
 | 	 * interrupt on completion of the whole transfer. | 
 | 	 */ | 
 | 	edesc->pset[0].param.opt |= ITCCHEN; | 
 | 	edesc->pset[0].param.opt |= TCINTEN; | 
 |  | 
 | 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); | 
 | } | 
 |  | 
 | static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( | 
 | 	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, | 
 | 	size_t period_len, enum dma_transfer_direction direction, | 
 | 	unsigned long tx_flags) | 
 | { | 
 | 	struct edma_chan *echan = to_edma_chan(chan); | 
 | 	struct device *dev = chan->device->dev; | 
 | 	struct edma_desc *edesc; | 
 | 	dma_addr_t src_addr, dst_addr; | 
 | 	enum dma_slave_buswidth dev_width; | 
 | 	u32 burst; | 
 | 	int i, ret, nslots; | 
 |  | 
 | 	if (unlikely(!echan || !buf_len || !period_len)) | 
 | 		return NULL; | 
 |  | 
 | 	if (direction == DMA_DEV_TO_MEM) { | 
 | 		src_addr = echan->cfg.src_addr; | 
 | 		dst_addr = buf_addr; | 
 | 		dev_width = echan->cfg.src_addr_width; | 
 | 		burst = echan->cfg.src_maxburst; | 
 | 	} else if (direction == DMA_MEM_TO_DEV) { | 
 | 		src_addr = buf_addr; | 
 | 		dst_addr = echan->cfg.dst_addr; | 
 | 		dev_width = echan->cfg.dst_addr_width; | 
 | 		burst = echan->cfg.dst_maxburst; | 
 | 	} else { | 
 | 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { | 
 | 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (unlikely(buf_len % period_len)) { | 
 | 		dev_err(dev, "Period should be multiple of Buffer length\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	nslots = (buf_len / period_len) + 1; | 
 |  | 
 | 	/* | 
 | 	 * Cyclic DMA users such as audio cannot tolerate delays introduced | 
 | 	 * by cases where the number of periods is more than the maximum | 
 | 	 * number of SGs the EDMA driver can handle at a time. For DMA types | 
 | 	 * such as Slave SGs, such delays are tolerable and synchronized, | 
 | 	 * but the synchronization is difficult to achieve with Cyclic and | 
 | 	 * cannot be guaranteed, so we error out early. | 
 | 	 */ | 
 | 	if (nslots > MAX_NR_SG) | 
 | 		return NULL; | 
 |  | 
 | 	edesc = kzalloc(sizeof(*edesc) + nslots * | 
 | 		sizeof(edesc->pset[0]), GFP_ATOMIC); | 
 | 	if (!edesc) { | 
 | 		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	edesc->cyclic = 1; | 
 | 	edesc->pset_nr = nslots; | 
 | 	edesc->residue = edesc->residue_stat = buf_len; | 
 | 	edesc->direction = direction; | 
 | 	edesc->echan = echan; | 
 |  | 
 | 	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", | 
 | 		__func__, echan->ch_num, nslots, period_len, buf_len); | 
 |  | 
 | 	for (i = 0; i < nslots; i++) { | 
 | 		/* Allocate a PaRAM slot, if needed */ | 
 | 		if (echan->slot[i] < 0) { | 
 | 			echan->slot[i] = | 
 | 				edma_alloc_slot(EDMA_CTLR(echan->ch_num), | 
 | 						EDMA_SLOT_ANY); | 
 | 			if (echan->slot[i] < 0) { | 
 | 				kfree(edesc); | 
 | 				dev_err(dev, "%s: Failed to allocate slot\n", | 
 | 					__func__); | 
 | 				return NULL; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (i == nslots - 1) { | 
 | 			memcpy(&edesc->pset[i], &edesc->pset[0], | 
 | 			       sizeof(edesc->pset[0])); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr, | 
 | 				       dst_addr, burst, dev_width, period_len, | 
 | 				       direction); | 
 | 		if (ret < 0) { | 
 | 			kfree(edesc); | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		if (direction == DMA_DEV_TO_MEM) | 
 | 			dst_addr += period_len; | 
 | 		else | 
 | 			src_addr += period_len; | 
 |  | 
 | 		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); | 
 | 		dev_vdbg(dev, | 
 | 			"\n pset[%d]:\n" | 
 | 			"  chnum\t%d\n" | 
 | 			"  slot\t%d\n" | 
 | 			"  opt\t%08x\n" | 
 | 			"  src\t%08x\n" | 
 | 			"  dst\t%08x\n" | 
 | 			"  abcnt\t%08x\n" | 
 | 			"  ccnt\t%08x\n" | 
 | 			"  bidx\t%08x\n" | 
 | 			"  cidx\t%08x\n" | 
 | 			"  lkrld\t%08x\n", | 
 | 			i, echan->ch_num, echan->slot[i], | 
 | 			edesc->pset[i].param.opt, | 
 | 			edesc->pset[i].param.src, | 
 | 			edesc->pset[i].param.dst, | 
 | 			edesc->pset[i].param.a_b_cnt, | 
 | 			edesc->pset[i].param.ccnt, | 
 | 			edesc->pset[i].param.src_dst_bidx, | 
 | 			edesc->pset[i].param.src_dst_cidx, | 
 | 			edesc->pset[i].param.link_bcntrld); | 
 |  | 
 | 		edesc->absync = ret; | 
 |  | 
 | 		/* | 
 | 		 * Enable period interrupt only if it is requested | 
 | 		 */ | 
 | 		if (tx_flags & DMA_PREP_INTERRUPT) | 
 | 			edesc->pset[i].param.opt |= TCINTEN; | 
 | 	} | 
 |  | 
 | 	/* Place the cyclic channel to highest priority queue */ | 
 | 	edma_assign_channel_eventq(echan->ch_num, EVENTQ_0); | 
 |  | 
 | 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); | 
 | } | 
 |  | 
 | static void edma_callback(unsigned ch_num, u16 ch_status, void *data) | 
 | { | 
 | 	struct edma_chan *echan = data; | 
 | 	struct device *dev = echan->vchan.chan.device->dev; | 
 | 	struct edma_desc *edesc; | 
 | 	struct edmacc_param p; | 
 |  | 
 | 	edesc = echan->edesc; | 
 |  | 
 | 	/* Pause the channel for non-cyclic */ | 
 | 	if (!edesc || (edesc && !edesc->cyclic)) | 
 | 		edma_pause(echan->ch_num); | 
 |  | 
 | 	switch (ch_status) { | 
 | 	case EDMA_DMA_COMPLETE: | 
 | 		spin_lock(&echan->vchan.lock); | 
 |  | 
 | 		if (edesc) { | 
 | 			if (edesc->cyclic) { | 
 | 				vchan_cyclic_callback(&edesc->vdesc); | 
 | 			} else if (edesc->processed == edesc->pset_nr) { | 
 | 				dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num); | 
 | 				edesc->residue = 0; | 
 | 				edma_stop(echan->ch_num); | 
 | 				vchan_cookie_complete(&edesc->vdesc); | 
 | 				edma_execute(echan); | 
 | 			} else { | 
 | 				dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num); | 
 |  | 
 | 				/* Update statistics for tx_status */ | 
 | 				edesc->residue -= edesc->sg_len; | 
 | 				edesc->residue_stat = edesc->residue; | 
 | 				edesc->processed_stat = edesc->processed; | 
 |  | 
 | 				edma_execute(echan); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		spin_unlock(&echan->vchan.lock); | 
 |  | 
 | 		break; | 
 | 	case EDMA_DMA_CC_ERROR: | 
 | 		spin_lock(&echan->vchan.lock); | 
 |  | 
 | 		edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p); | 
 |  | 
 | 		/* | 
 | 		 * Issue later based on missed flag which will be sure | 
 | 		 * to happen as: | 
 | 		 * (1) we finished transmitting an intermediate slot and | 
 | 		 *     edma_execute is coming up. | 
 | 		 * (2) or we finished current transfer and issue will | 
 | 		 *     call edma_execute. | 
 | 		 * | 
 | 		 * Important note: issuing can be dangerous here and | 
 | 		 * lead to some nasty recursion when we are in a NULL | 
 | 		 * slot. So we avoid doing so and set the missed flag. | 
 | 		 */ | 
 | 		if (p.a_b_cnt == 0 && p.ccnt == 0) { | 
 | 			dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n"); | 
 | 			echan->missed = 1; | 
 | 		} else { | 
 | 			/* | 
 | 			 * The slot is already programmed but the event got | 
 | 			 * missed, so its safe to issue it here. | 
 | 			 */ | 
 | 			dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n"); | 
 | 			edma_clean_channel(echan->ch_num); | 
 | 			edma_stop(echan->ch_num); | 
 | 			edma_start(echan->ch_num); | 
 | 			edma_trigger_channel(echan->ch_num); | 
 | 		} | 
 |  | 
 | 		spin_unlock(&echan->vchan.lock); | 
 |  | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* Alloc channel resources */ | 
 | static int edma_alloc_chan_resources(struct dma_chan *chan) | 
 | { | 
 | 	struct edma_chan *echan = to_edma_chan(chan); | 
 | 	struct device *dev = chan->device->dev; | 
 | 	int ret; | 
 | 	int a_ch_num; | 
 | 	LIST_HEAD(descs); | 
 |  | 
 | 	a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback, | 
 | 					chan, EVENTQ_DEFAULT); | 
 |  | 
 | 	if (a_ch_num < 0) { | 
 | 		ret = -ENODEV; | 
 | 		goto err_no_chan; | 
 | 	} | 
 |  | 
 | 	if (a_ch_num != echan->ch_num) { | 
 | 		dev_err(dev, "failed to allocate requested channel %u:%u\n", | 
 | 			EDMA_CTLR(echan->ch_num), | 
 | 			EDMA_CHAN_SLOT(echan->ch_num)); | 
 | 		ret = -ENODEV; | 
 | 		goto err_wrong_chan; | 
 | 	} | 
 |  | 
 | 	echan->alloced = true; | 
 | 	echan->slot[0] = echan->ch_num; | 
 |  | 
 | 	dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num, | 
 | 		EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num)); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_wrong_chan: | 
 | 	edma_free_channel(a_ch_num); | 
 | err_no_chan: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Free channel resources */ | 
 | static void edma_free_chan_resources(struct dma_chan *chan) | 
 | { | 
 | 	struct edma_chan *echan = to_edma_chan(chan); | 
 | 	struct device *dev = chan->device->dev; | 
 | 	int i; | 
 |  | 
 | 	/* Terminate transfers */ | 
 | 	edma_stop(echan->ch_num); | 
 |  | 
 | 	vchan_free_chan_resources(&echan->vchan); | 
 |  | 
 | 	/* Free EDMA PaRAM slots */ | 
 | 	for (i = 1; i < EDMA_MAX_SLOTS; i++) { | 
 | 		if (echan->slot[i] >= 0) { | 
 | 			edma_free_slot(echan->slot[i]); | 
 | 			echan->slot[i] = -1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Free EDMA channel */ | 
 | 	if (echan->alloced) { | 
 | 		edma_free_channel(echan->ch_num); | 
 | 		echan->alloced = false; | 
 | 	} | 
 |  | 
 | 	dev_dbg(dev, "freeing channel for %u\n", echan->ch_num); | 
 | } | 
 |  | 
 | /* Send pending descriptor to hardware */ | 
 | static void edma_issue_pending(struct dma_chan *chan) | 
 | { | 
 | 	struct edma_chan *echan = to_edma_chan(chan); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&echan->vchan.lock, flags); | 
 | 	if (vchan_issue_pending(&echan->vchan) && !echan->edesc) | 
 | 		edma_execute(echan); | 
 | 	spin_unlock_irqrestore(&echan->vchan.lock, flags); | 
 | } | 
 |  | 
 | static u32 edma_residue(struct edma_desc *edesc) | 
 | { | 
 | 	bool dst = edesc->direction == DMA_DEV_TO_MEM; | 
 | 	struct edma_pset *pset = edesc->pset; | 
 | 	dma_addr_t done, pos; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * We always read the dst/src position from the first RamPar | 
 | 	 * pset. That's the one which is active now. | 
 | 	 */ | 
 | 	pos = edma_get_position(edesc->echan->slot[0], dst); | 
 |  | 
 | 	/* | 
 | 	 * Cyclic is simple. Just subtract pset[0].addr from pos. | 
 | 	 * | 
 | 	 * We never update edesc->residue in the cyclic case, so we | 
 | 	 * can tell the remaining room to the end of the circular | 
 | 	 * buffer. | 
 | 	 */ | 
 | 	if (edesc->cyclic) { | 
 | 		done = pos - pset->addr; | 
 | 		edesc->residue_stat = edesc->residue - done; | 
 | 		return edesc->residue_stat; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For SG operation we catch up with the last processed | 
 | 	 * status. | 
 | 	 */ | 
 | 	pset += edesc->processed_stat; | 
 |  | 
 | 	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { | 
 | 		/* | 
 | 		 * If we are inside this pset address range, we know | 
 | 		 * this is the active one. Get the current delta and | 
 | 		 * stop walking the psets. | 
 | 		 */ | 
 | 		if (pos >= pset->addr && pos < pset->addr + pset->len) | 
 | 			return edesc->residue_stat - (pos - pset->addr); | 
 |  | 
 | 		/* Otherwise mark it done and update residue_stat. */ | 
 | 		edesc->processed_stat++; | 
 | 		edesc->residue_stat -= pset->len; | 
 | 	} | 
 | 	return edesc->residue_stat; | 
 | } | 
 |  | 
 | /* Check request completion status */ | 
 | static enum dma_status edma_tx_status(struct dma_chan *chan, | 
 | 				      dma_cookie_t cookie, | 
 | 				      struct dma_tx_state *txstate) | 
 | { | 
 | 	struct edma_chan *echan = to_edma_chan(chan); | 
 | 	struct virt_dma_desc *vdesc; | 
 | 	enum dma_status ret; | 
 | 	unsigned long flags; | 
 |  | 
 | 	ret = dma_cookie_status(chan, cookie, txstate); | 
 | 	if (ret == DMA_COMPLETE || !txstate) | 
 | 		return ret; | 
 |  | 
 | 	spin_lock_irqsave(&echan->vchan.lock, flags); | 
 | 	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) | 
 | 		txstate->residue = edma_residue(echan->edesc); | 
 | 	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie))) | 
 | 		txstate->residue = to_edma_desc(&vdesc->tx)->residue; | 
 | 	spin_unlock_irqrestore(&echan->vchan.lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __init edma_chan_init(struct edma_cc *ecc, | 
 | 				  struct dma_device *dma, | 
 | 				  struct edma_chan *echans) | 
 | { | 
 | 	int i, j; | 
 |  | 
 | 	for (i = 0; i < EDMA_CHANS; i++) { | 
 | 		struct edma_chan *echan = &echans[i]; | 
 | 		echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i); | 
 | 		echan->ecc = ecc; | 
 | 		echan->vchan.desc_free = edma_desc_free; | 
 |  | 
 | 		vchan_init(&echan->vchan, dma); | 
 |  | 
 | 		INIT_LIST_HEAD(&echan->node); | 
 | 		for (j = 0; j < EDMA_MAX_SLOTS; j++) | 
 | 			echan->slot[j] = -1; | 
 | 	} | 
 | } | 
 |  | 
 | #define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ | 
 | 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ | 
 | 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ | 
 | 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) | 
 |  | 
 | static int edma_dma_device_slave_caps(struct dma_chan *dchan, | 
 | 				      struct dma_slave_caps *caps) | 
 | { | 
 | 	caps->src_addr_widths = EDMA_DMA_BUSWIDTHS; | 
 | 	caps->dstn_addr_widths = EDMA_DMA_BUSWIDTHS; | 
 | 	caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); | 
 | 	caps->cmd_pause = true; | 
 | 	caps->cmd_terminate = true; | 
 | 	caps->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma, | 
 | 			  struct device *dev) | 
 | { | 
 | 	dma->device_prep_slave_sg = edma_prep_slave_sg; | 
 | 	dma->device_prep_dma_cyclic = edma_prep_dma_cyclic; | 
 | 	dma->device_prep_dma_memcpy = edma_prep_dma_memcpy; | 
 | 	dma->device_alloc_chan_resources = edma_alloc_chan_resources; | 
 | 	dma->device_free_chan_resources = edma_free_chan_resources; | 
 | 	dma->device_issue_pending = edma_issue_pending; | 
 | 	dma->device_tx_status = edma_tx_status; | 
 | 	dma->device_control = edma_control; | 
 | 	dma->device_slave_caps = edma_dma_device_slave_caps; | 
 | 	dma->dev = dev; | 
 |  | 
 | 	/* | 
 | 	 * code using dma memcpy must make sure alignment of | 
 | 	 * length is at dma->copy_align boundary. | 
 | 	 */ | 
 | 	dma->copy_align = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
 |  | 
 | 	INIT_LIST_HEAD(&dma->channels); | 
 | } | 
 |  | 
 | static int edma_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct edma_cc *ecc; | 
 | 	int ret; | 
 |  | 
 | 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL); | 
 | 	if (!ecc) { | 
 | 		dev_err(&pdev->dev, "Can't allocate controller\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	ecc->ctlr = pdev->id; | 
 | 	ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY); | 
 | 	if (ecc->dummy_slot < 0) { | 
 | 		dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n"); | 
 | 		return ecc->dummy_slot; | 
 | 	} | 
 |  | 
 | 	dma_cap_zero(ecc->dma_slave.cap_mask); | 
 | 	dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask); | 
 | 	dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask); | 
 | 	dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask); | 
 |  | 
 | 	edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev); | 
 |  | 
 | 	edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans); | 
 |  | 
 | 	ret = dma_async_device_register(&ecc->dma_slave); | 
 | 	if (ret) | 
 | 		goto err_reg1; | 
 |  | 
 | 	platform_set_drvdata(pdev, ecc); | 
 |  | 
 | 	dev_info(&pdev->dev, "TI EDMA DMA engine driver\n"); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_reg1: | 
 | 	edma_free_slot(ecc->dummy_slot); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int edma_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct device *dev = &pdev->dev; | 
 | 	struct edma_cc *ecc = dev_get_drvdata(dev); | 
 |  | 
 | 	dma_async_device_unregister(&ecc->dma_slave); | 
 | 	edma_free_slot(ecc->dummy_slot); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct platform_driver edma_driver = { | 
 | 	.probe		= edma_probe, | 
 | 	.remove		= edma_remove, | 
 | 	.driver = { | 
 | 		.name = "edma-dma-engine", | 
 | 		.owner = THIS_MODULE, | 
 | 	}, | 
 | }; | 
 |  | 
 | bool edma_filter_fn(struct dma_chan *chan, void *param) | 
 | { | 
 | 	if (chan->device->dev->driver == &edma_driver.driver) { | 
 | 		struct edma_chan *echan = to_edma_chan(chan); | 
 | 		unsigned ch_req = *(unsigned *)param; | 
 | 		return ch_req == echan->ch_num; | 
 | 	} | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL(edma_filter_fn); | 
 |  | 
 | static int edma_init(void) | 
 | { | 
 | 	return platform_driver_register(&edma_driver); | 
 | } | 
 | subsys_initcall(edma_init); | 
 |  | 
 | static void __exit edma_exit(void) | 
 | { | 
 | 	platform_driver_unregister(&edma_driver); | 
 | } | 
 | module_exit(edma_exit); | 
 |  | 
 | MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); | 
 | MODULE_DESCRIPTION("TI EDMA DMA engine driver"); | 
 | MODULE_LICENSE("GPL v2"); |