|  | /* | 
|  | * drivers/dma/fsl_raid.c | 
|  | * | 
|  | * Freescale RAID Engine device driver | 
|  | * | 
|  | * Author: | 
|  | *	Harninder Rai <harninder.rai@freescale.com> | 
|  | *	Naveen Burmi <naveenburmi@freescale.com> | 
|  | * | 
|  | * Rewrite: | 
|  | *	Xuelin Shi <xuelin.shi@freescale.com> | 
|  | * | 
|  | * Copyright (c) 2010-2014 Freescale Semiconductor, Inc. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions are met: | 
|  | *     * Redistributions of source code must retain the above copyright | 
|  | *       notice, this list of conditions and the following disclaimer. | 
|  | *     * Redistributions in binary form must reproduce the above copyright | 
|  | *       notice, this list of conditions and the following disclaimer in the | 
|  | *       documentation and/or other materials provided with the distribution. | 
|  | *     * Neither the name of Freescale Semiconductor nor the | 
|  | *       names of its contributors may be used to endorse or promote products | 
|  | *       derived from this software without specific prior written permission. | 
|  | * | 
|  | * ALTERNATIVELY, this software may be distributed under the terms of the | 
|  | * GNU General Public License ("GPL") as published by the Free Software | 
|  | * Foundation, either version 2 of that License or (at your option) any | 
|  | * later version. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY | 
|  | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | 
|  | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
|  | * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY | 
|  | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | 
|  | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | 
|  | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
|  | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * | 
|  | * Theory of operation: | 
|  | * | 
|  | * General capabilities: | 
|  | *	RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q | 
|  | *	calculations required in RAID5 and RAID6 operations. RE driver | 
|  | *	registers with Linux's ASYNC layer as dma driver. RE hardware | 
|  | *	maintains strict ordering of the requests through chained | 
|  | *	command queueing. | 
|  | * | 
|  | * Data flow: | 
|  | *	Software RAID layer of Linux (MD layer) maintains RAID partitions, | 
|  | *	strips, stripes etc. It sends requests to the underlying ASYNC layer | 
|  | *	which further passes it to RE driver. ASYNC layer decides which request | 
|  | *	goes to which job ring of RE hardware. For every request processed by | 
|  | *	RAID Engine, driver gets an interrupt unless coalescing is set. The | 
|  | *	per job ring interrupt handler checks the status register for errors, | 
|  | *	clears the interrupt and leave the post interrupt processing to the irq | 
|  | *	thread. | 
|  | */ | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/of_irq.h> | 
|  | #include <linux/of_address.h> | 
|  | #include <linux/of_platform.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/dmapool.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include "dmaengine.h" | 
|  | #include "fsl_raid.h" | 
|  |  | 
|  | #define FSL_RE_MAX_XOR_SRCS	16 | 
|  | #define FSL_RE_MAX_PQ_SRCS	16 | 
|  | #define FSL_RE_MIN_DESCS	256 | 
|  | #define FSL_RE_MAX_DESCS	(4 * FSL_RE_MIN_DESCS) | 
|  | #define FSL_RE_FRAME_FORMAT	0x1 | 
|  | #define FSL_RE_MAX_DATA_LEN	(1024*1024) | 
|  |  | 
|  | #define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx) | 
|  |  | 
|  | /* Add descriptors into per chan software queue - submit_q */ | 
|  | static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | struct fsl_re_desc *desc; | 
|  | struct fsl_re_chan *re_chan; | 
|  | dma_cookie_t cookie; | 
|  | unsigned long flags; | 
|  |  | 
|  | desc = to_fsl_re_dma_desc(tx); | 
|  | re_chan = container_of(tx->chan, struct fsl_re_chan, chan); | 
|  |  | 
|  | spin_lock_irqsave(&re_chan->desc_lock, flags); | 
|  | cookie = dma_cookie_assign(tx); | 
|  | list_add_tail(&desc->node, &re_chan->submit_q); | 
|  | spin_unlock_irqrestore(&re_chan->desc_lock, flags); | 
|  |  | 
|  | return cookie; | 
|  | } | 
|  |  | 
|  | /* Copy descriptor from per chan software queue into hardware job ring */ | 
|  | static void fsl_re_issue_pending(struct dma_chan *chan) | 
|  | { | 
|  | struct fsl_re_chan *re_chan; | 
|  | int avail; | 
|  | struct fsl_re_desc *desc, *_desc; | 
|  | unsigned long flags; | 
|  |  | 
|  | re_chan = container_of(chan, struct fsl_re_chan, chan); | 
|  |  | 
|  | spin_lock_irqsave(&re_chan->desc_lock, flags); | 
|  | avail = FSL_RE_SLOT_AVAIL( | 
|  | in_be32(&re_chan->jrregs->inbring_slot_avail)); | 
|  |  | 
|  | list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) { | 
|  | if (!avail) | 
|  | break; | 
|  |  | 
|  | list_move_tail(&desc->node, &re_chan->active_q); | 
|  |  | 
|  | memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count], | 
|  | &desc->hwdesc, sizeof(struct fsl_re_hw_desc)); | 
|  |  | 
|  | re_chan->inb_count = (re_chan->inb_count + 1) & | 
|  | FSL_RE_RING_SIZE_MASK; | 
|  | out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1)); | 
|  | avail--; | 
|  | } | 
|  | spin_unlock_irqrestore(&re_chan->desc_lock, flags); | 
|  | } | 
|  |  | 
|  | static void fsl_re_desc_done(struct fsl_re_desc *desc) | 
|  | { | 
|  | dma_async_tx_callback callback; | 
|  | void *callback_param; | 
|  |  | 
|  | dma_cookie_complete(&desc->async_tx); | 
|  |  | 
|  | callback = desc->async_tx.callback; | 
|  | callback_param = desc->async_tx.callback_param; | 
|  | if (callback) | 
|  | callback(callback_param); | 
|  |  | 
|  | dma_descriptor_unmap(&desc->async_tx); | 
|  | } | 
|  |  | 
|  | static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan) | 
|  | { | 
|  | struct fsl_re_desc *desc, *_desc; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&re_chan->desc_lock, flags); | 
|  | list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) { | 
|  | if (async_tx_test_ack(&desc->async_tx)) | 
|  | list_move_tail(&desc->node, &re_chan->free_q); | 
|  | } | 
|  | spin_unlock_irqrestore(&re_chan->desc_lock, flags); | 
|  |  | 
|  | fsl_re_issue_pending(&re_chan->chan); | 
|  | } | 
|  |  | 
|  | static void fsl_re_dequeue(unsigned long data) | 
|  | { | 
|  | struct fsl_re_chan *re_chan; | 
|  | struct fsl_re_desc *desc, *_desc; | 
|  | struct fsl_re_hw_desc *hwdesc; | 
|  | unsigned long flags; | 
|  | unsigned int count, oub_count; | 
|  | int found; | 
|  |  | 
|  | re_chan = dev_get_drvdata((struct device *)data); | 
|  |  | 
|  | fsl_re_cleanup_descs(re_chan); | 
|  |  | 
|  | spin_lock_irqsave(&re_chan->desc_lock, flags); | 
|  | count =	FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full)); | 
|  | while (count--) { | 
|  | found = 0; | 
|  | hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count]; | 
|  | list_for_each_entry_safe(desc, _desc, &re_chan->active_q, | 
|  | node) { | 
|  | /* compare the hw dma addr to find the completed */ | 
|  | if (desc->hwdesc.lbea32 == hwdesc->lbea32 && | 
|  | desc->hwdesc.addr_low == hwdesc->addr_low) { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (found) { | 
|  | fsl_re_desc_done(desc); | 
|  | list_move_tail(&desc->node, &re_chan->ack_q); | 
|  | } else { | 
|  | dev_err(re_chan->dev, | 
|  | "found hwdesc not in sw queue, discard it\n"); | 
|  | } | 
|  |  | 
|  | oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK; | 
|  | re_chan->oub_count = oub_count; | 
|  |  | 
|  | out_be32(&re_chan->jrregs->oubring_job_rmvd, | 
|  | FSL_RE_RMVD_JOB(1)); | 
|  | } | 
|  | spin_unlock_irqrestore(&re_chan->desc_lock, flags); | 
|  | } | 
|  |  | 
|  | /* Per Job Ring interrupt handler */ | 
|  | static irqreturn_t fsl_re_isr(int irq, void *data) | 
|  | { | 
|  | struct fsl_re_chan *re_chan; | 
|  | u32 irqstate, status; | 
|  |  | 
|  | re_chan = dev_get_drvdata((struct device *)data); | 
|  |  | 
|  | irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status); | 
|  | if (!irqstate) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | /* | 
|  | * There's no way in upper layer (read MD layer) to recover from | 
|  | * error conditions except restart everything. In long term we | 
|  | * need to do something more than just crashing | 
|  | */ | 
|  | if (irqstate & FSL_RE_ERROR) { | 
|  | status = in_be32(&re_chan->jrregs->jr_status); | 
|  | dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n", | 
|  | irqstate, status); | 
|  | } | 
|  |  | 
|  | /* Clear interrupt */ | 
|  | out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR); | 
|  |  | 
|  | tasklet_schedule(&re_chan->irqtask); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static enum dma_status fsl_re_tx_status(struct dma_chan *chan, | 
|  | dma_cookie_t cookie, | 
|  | struct dma_tx_state *txstate) | 
|  | { | 
|  | return dma_cookie_status(chan, cookie, txstate); | 
|  | } | 
|  |  | 
|  | static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index, | 
|  | size_t length, dma_addr_t addr, bool final) | 
|  | { | 
|  | u32 efrl = length & FSL_RE_CF_LENGTH_MASK; | 
|  |  | 
|  | efrl |= final << FSL_RE_CF_FINAL_SHIFT; | 
|  | cf[index].efrl32 = efrl; | 
|  | cf[index].addr_high = upper_32_bits(addr); | 
|  | cf[index].addr_low = lower_32_bits(addr); | 
|  | } | 
|  |  | 
|  | static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan, | 
|  | struct fsl_re_desc *desc, | 
|  | void *cf, dma_addr_t paddr) | 
|  | { | 
|  | desc->re_chan = re_chan; | 
|  | desc->async_tx.tx_submit = fsl_re_tx_submit; | 
|  | dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan); | 
|  | INIT_LIST_HEAD(&desc->node); | 
|  |  | 
|  | desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT; | 
|  | desc->hwdesc.lbea32 = upper_32_bits(paddr); | 
|  | desc->hwdesc.addr_low = lower_32_bits(paddr); | 
|  | desc->cf_addr = cf; | 
|  | desc->cf_paddr = paddr; | 
|  |  | 
|  | desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE); | 
|  | desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE; | 
|  |  | 
|  | return desc; | 
|  | } | 
|  |  | 
|  | static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct fsl_re_desc *desc = NULL; | 
|  | void *cf; | 
|  | dma_addr_t paddr; | 
|  | unsigned long lock_flag; | 
|  |  | 
|  | fsl_re_cleanup_descs(re_chan); | 
|  |  | 
|  | spin_lock_irqsave(&re_chan->desc_lock, lock_flag); | 
|  | if (!list_empty(&re_chan->free_q)) { | 
|  | /* take one desc from free_q */ | 
|  | desc = list_first_entry(&re_chan->free_q, | 
|  | struct fsl_re_desc, node); | 
|  | list_del(&desc->node); | 
|  |  | 
|  | desc->async_tx.flags = flags; | 
|  | } | 
|  | spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag); | 
|  |  | 
|  | if (!desc) { | 
|  | desc = kzalloc(sizeof(*desc), GFP_NOWAIT); | 
|  | if (!desc) | 
|  | return NULL; | 
|  |  | 
|  | cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT, | 
|  | &paddr); | 
|  | if (!cf) { | 
|  | kfree(desc); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | desc = fsl_re_init_desc(re_chan, desc, cf, paddr); | 
|  | desc->async_tx.flags = flags; | 
|  |  | 
|  | spin_lock_irqsave(&re_chan->desc_lock, lock_flag); | 
|  | re_chan->alloc_count++; | 
|  | spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag); | 
|  | } | 
|  |  | 
|  | return desc; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq( | 
|  | struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, | 
|  | unsigned int src_cnt, const unsigned char *scf, size_t len, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct fsl_re_chan *re_chan; | 
|  | struct fsl_re_desc *desc; | 
|  | struct fsl_re_xor_cdb *xor; | 
|  | struct fsl_re_cmpnd_frame *cf; | 
|  | u32 cdb; | 
|  | unsigned int i, j; | 
|  | unsigned int save_src_cnt = src_cnt; | 
|  | int cont_q = 0; | 
|  |  | 
|  | re_chan = container_of(chan, struct fsl_re_chan, chan); | 
|  | if (len > FSL_RE_MAX_DATA_LEN) { | 
|  | dev_err(re_chan->dev, "genq tx length %lu, max length %d\n", | 
|  | len, FSL_RE_MAX_DATA_LEN); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | desc = fsl_re_chan_alloc_desc(re_chan, flags); | 
|  | if (desc <= 0) | 
|  | return NULL; | 
|  |  | 
|  | if (scf && (flags & DMA_PREP_CONTINUE)) { | 
|  | cont_q = 1; | 
|  | src_cnt += 1; | 
|  | } | 
|  |  | 
|  | /* Filling xor CDB */ | 
|  | cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; | 
|  | cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT; | 
|  | cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; | 
|  | cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT; | 
|  | cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; | 
|  | xor = desc->cdb_addr; | 
|  | xor->cdb32 = cdb; | 
|  |  | 
|  | if (scf) { | 
|  | /* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */ | 
|  | for (i = 0; i < save_src_cnt; i++) | 
|  | xor->gfm[i] = scf[i]; | 
|  | if (cont_q) | 
|  | xor->gfm[i++] = 1; | 
|  | } else { | 
|  | /* compute P, that is XOR all srcs */ | 
|  | for (i = 0; i < src_cnt; i++) | 
|  | xor->gfm[i] = 1; | 
|  | } | 
|  |  | 
|  | /* Filling frame 0 of compound frame descriptor with CDB */ | 
|  | cf = desc->cf_addr; | 
|  | fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0); | 
|  |  | 
|  | /* Fill CFD's 1st frame with dest buffer */ | 
|  | fill_cfd_frame(cf, 1, len, dest, 0); | 
|  |  | 
|  | /* Fill CFD's rest of the frames with source buffers */ | 
|  | for (i = 2, j = 0; j < save_src_cnt; i++, j++) | 
|  | fill_cfd_frame(cf, i, len, src[j], 0); | 
|  |  | 
|  | if (cont_q) | 
|  | fill_cfd_frame(cf, i++, len, dest, 0); | 
|  |  | 
|  | /* Setting the final bit in the last source buffer frame in CFD */ | 
|  | cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT; | 
|  |  | 
|  | return &desc->async_tx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prep function for P parity calculation.In RAID Engine terminology, | 
|  | * XOR calculation is called GenQ calculation done through GenQ command | 
|  | */ | 
|  | static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor( | 
|  | struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, | 
|  | unsigned int src_cnt, size_t len, unsigned long flags) | 
|  | { | 
|  | /* NULL let genq take all coef as 1 */ | 
|  | return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prep function for P/Q parity calculation.In RAID Engine terminology, | 
|  | * P/Q calculation is called GenQQ done through GenQQ command | 
|  | */ | 
|  | static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq( | 
|  | struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src, | 
|  | unsigned int src_cnt, const unsigned char *scf, size_t len, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct fsl_re_chan *re_chan; | 
|  | struct fsl_re_desc *desc; | 
|  | struct fsl_re_pq_cdb *pq; | 
|  | struct fsl_re_cmpnd_frame *cf; | 
|  | u32 cdb; | 
|  | u8 *p; | 
|  | int gfmq_len, i, j; | 
|  | unsigned int save_src_cnt = src_cnt; | 
|  |  | 
|  | re_chan = container_of(chan, struct fsl_re_chan, chan); | 
|  | if (len > FSL_RE_MAX_DATA_LEN) { | 
|  | dev_err(re_chan->dev, "pq tx length is %lu, max length is %d\n", | 
|  | len, FSL_RE_MAX_DATA_LEN); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RE requires at least 2 sources, if given only one source, we pass the | 
|  | * second source same as the first one. | 
|  | * With only one source, generating P is meaningless, only generate Q. | 
|  | */ | 
|  | if (src_cnt == 1) { | 
|  | struct dma_async_tx_descriptor *tx; | 
|  | dma_addr_t dma_src[2]; | 
|  | unsigned char coef[2]; | 
|  |  | 
|  | dma_src[0] = *src; | 
|  | coef[0] = *scf; | 
|  | dma_src[1] = *src; | 
|  | coef[1] = 0; | 
|  | tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len, | 
|  | flags); | 
|  | if (tx) | 
|  | desc = to_fsl_re_dma_desc(tx); | 
|  |  | 
|  | return tx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * During RAID6 array creation, Linux's MD layer gets P and Q | 
|  | * calculated separately in two steps. But our RAID Engine has | 
|  | * the capability to calculate both P and Q with a single command | 
|  | * Hence to merge well with MD layer, we need to provide a hook | 
|  | * here and call re_jq_prep_dma_genq() function | 
|  | */ | 
|  |  | 
|  | if (flags & DMA_PREP_PQ_DISABLE_P) | 
|  | return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt, | 
|  | scf, len, flags); | 
|  |  | 
|  | if (flags & DMA_PREP_CONTINUE) | 
|  | src_cnt += 3; | 
|  |  | 
|  | desc = fsl_re_chan_alloc_desc(re_chan, flags); | 
|  | if (desc <= 0) | 
|  | return NULL; | 
|  |  | 
|  | /* Filling GenQQ CDB */ | 
|  | cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; | 
|  | cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT; | 
|  | cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; | 
|  | cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT; | 
|  | cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; | 
|  |  | 
|  | pq = desc->cdb_addr; | 
|  | pq->cdb32 = cdb; | 
|  |  | 
|  | p = pq->gfm_q1; | 
|  | /* Init gfm_q1[] */ | 
|  | for (i = 0; i < src_cnt; i++) | 
|  | p[i] = 1; | 
|  |  | 
|  | /* Align gfm[] to 32bit */ | 
|  | gfmq_len = ALIGN(src_cnt, 4); | 
|  |  | 
|  | /* Init gfm_q2[] */ | 
|  | p += gfmq_len; | 
|  | for (i = 0; i < src_cnt; i++) | 
|  | p[i] = scf[i]; | 
|  |  | 
|  | /* Filling frame 0 of compound frame descriptor with CDB */ | 
|  | cf = desc->cf_addr; | 
|  | fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0); | 
|  |  | 
|  | /* Fill CFD's 1st & 2nd frame with dest buffers */ | 
|  | for (i = 1, j = 0; i < 3; i++, j++) | 
|  | fill_cfd_frame(cf, i, len, dest[j], 0); | 
|  |  | 
|  | /* Fill CFD's rest of the frames with source buffers */ | 
|  | for (i = 3, j = 0; j < save_src_cnt; i++, j++) | 
|  | fill_cfd_frame(cf, i, len, src[j], 0); | 
|  |  | 
|  | /* PQ computation continuation */ | 
|  | if (flags & DMA_PREP_CONTINUE) { | 
|  | if (src_cnt - save_src_cnt == 3) { | 
|  | p[save_src_cnt] = 0; | 
|  | p[save_src_cnt + 1] = 0; | 
|  | p[save_src_cnt + 2] = 1; | 
|  | fill_cfd_frame(cf, i++, len, dest[0], 0); | 
|  | fill_cfd_frame(cf, i++, len, dest[1], 0); | 
|  | fill_cfd_frame(cf, i++, len, dest[1], 0); | 
|  | } else { | 
|  | dev_err(re_chan->dev, "PQ tx continuation error!\n"); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Setting the final bit in the last source buffer frame in CFD */ | 
|  | cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT; | 
|  |  | 
|  | return &desc->async_tx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE | 
|  | * command. Logic of this function will need to be modified once multipage | 
|  | * support is added in Linux's MD/ASYNC Layer | 
|  | */ | 
|  | static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy( | 
|  | struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, | 
|  | size_t len, unsigned long flags) | 
|  | { | 
|  | struct fsl_re_chan *re_chan; | 
|  | struct fsl_re_desc *desc; | 
|  | size_t length; | 
|  | struct fsl_re_cmpnd_frame *cf; | 
|  | struct fsl_re_move_cdb *move; | 
|  | u32 cdb; | 
|  |  | 
|  | re_chan = container_of(chan, struct fsl_re_chan, chan); | 
|  |  | 
|  | if (len > FSL_RE_MAX_DATA_LEN) { | 
|  | dev_err(re_chan->dev, "cp tx length is %lu, max length is %d\n", | 
|  | len, FSL_RE_MAX_DATA_LEN); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | desc = fsl_re_chan_alloc_desc(re_chan, flags); | 
|  | if (desc <= 0) | 
|  | return NULL; | 
|  |  | 
|  | /* Filling move CDB */ | 
|  | cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; | 
|  | cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; | 
|  | cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT; | 
|  | cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; | 
|  |  | 
|  | move = desc->cdb_addr; | 
|  | move->cdb32 = cdb; | 
|  |  | 
|  | /* Filling frame 0 of CFD with move CDB */ | 
|  | cf = desc->cf_addr; | 
|  | fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0); | 
|  |  | 
|  | length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN); | 
|  |  | 
|  | /* Fill CFD's 1st frame with dest buffer */ | 
|  | fill_cfd_frame(cf, 1, length, dest, 0); | 
|  |  | 
|  | /* Fill CFD's 2nd frame with src buffer */ | 
|  | fill_cfd_frame(cf, 2, length, src, 1); | 
|  |  | 
|  | return &desc->async_tx; | 
|  | } | 
|  |  | 
|  | static int fsl_re_alloc_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | struct fsl_re_chan *re_chan; | 
|  | struct fsl_re_desc *desc; | 
|  | void *cf; | 
|  | dma_addr_t paddr; | 
|  | int i; | 
|  |  | 
|  | re_chan = container_of(chan, struct fsl_re_chan, chan); | 
|  | for (i = 0; i < FSL_RE_MIN_DESCS; i++) { | 
|  | desc = kzalloc(sizeof(*desc), GFP_KERNEL); | 
|  | if (!desc) | 
|  | break; | 
|  |  | 
|  | cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL, | 
|  | &paddr); | 
|  | if (!cf) { | 
|  | kfree(desc); | 
|  | break; | 
|  | } | 
|  |  | 
|  | INIT_LIST_HEAD(&desc->node); | 
|  | fsl_re_init_desc(re_chan, desc, cf, paddr); | 
|  |  | 
|  | list_add_tail(&desc->node, &re_chan->free_q); | 
|  | re_chan->alloc_count++; | 
|  | } | 
|  | return re_chan->alloc_count; | 
|  | } | 
|  |  | 
|  | static void fsl_re_free_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | struct fsl_re_chan *re_chan; | 
|  | struct fsl_re_desc *desc; | 
|  |  | 
|  | re_chan = container_of(chan, struct fsl_re_chan, chan); | 
|  | while (re_chan->alloc_count--) { | 
|  | desc = list_first_entry(&re_chan->free_q, | 
|  | struct fsl_re_desc, | 
|  | node); | 
|  |  | 
|  | list_del(&desc->node); | 
|  | dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr, | 
|  | desc->cf_paddr); | 
|  | kfree(desc); | 
|  | } | 
|  |  | 
|  | if (!list_empty(&re_chan->free_q)) | 
|  | dev_err(re_chan->dev, "chan resource cannot be cleaned!\n"); | 
|  | } | 
|  |  | 
|  | static int fsl_re_chan_probe(struct platform_device *ofdev, | 
|  | struct device_node *np, u8 q, u32 off) | 
|  | { | 
|  | struct device *dev, *chandev; | 
|  | struct fsl_re_drv_private *re_priv; | 
|  | struct fsl_re_chan *chan; | 
|  | struct dma_device *dma_dev; | 
|  | u32 ptr; | 
|  | u32 status; | 
|  | int ret = 0, rc; | 
|  | struct platform_device *chan_ofdev; | 
|  |  | 
|  | dev = &ofdev->dev; | 
|  | re_priv = dev_get_drvdata(dev); | 
|  | dma_dev = &re_priv->dma_dev; | 
|  |  | 
|  | chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL); | 
|  | if (!chan) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* create platform device for chan node */ | 
|  | chan_ofdev = of_platform_device_create(np, NULL, dev); | 
|  | if (!chan_ofdev) { | 
|  | dev_err(dev, "Not able to create ofdev for jr %d\n", q); | 
|  | ret = -EINVAL; | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | /* read reg property from dts */ | 
|  | rc = of_property_read_u32(np, "reg", &ptr); | 
|  | if (rc) { | 
|  | dev_err(dev, "Reg property not found in jr %d\n", q); | 
|  | ret = -ENODEV; | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs + | 
|  | off + ptr); | 
|  |  | 
|  | /* read irq property from dts */ | 
|  | chan->irq = irq_of_parse_and_map(np, 0); | 
|  | if (chan->irq == NO_IRQ) { | 
|  | dev_err(dev, "No IRQ defined for JR %d\n", q); | 
|  | ret = -ENODEV; | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q); | 
|  |  | 
|  | chandev = &chan_ofdev->dev; | 
|  | tasklet_init(&chan->irqtask, fsl_re_dequeue, (unsigned long)chandev); | 
|  |  | 
|  | ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev); | 
|  | if (ret) { | 
|  | dev_err(dev, "Unable to register interrupt for JR %d\n", q); | 
|  | ret = -EINVAL; | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | re_priv->re_jrs[q] = chan; | 
|  | chan->chan.device = dma_dev; | 
|  | chan->chan.private = chan; | 
|  | chan->dev = chandev; | 
|  | chan->re_dev = re_priv; | 
|  |  | 
|  | spin_lock_init(&chan->desc_lock); | 
|  | INIT_LIST_HEAD(&chan->ack_q); | 
|  | INIT_LIST_HEAD(&chan->active_q); | 
|  | INIT_LIST_HEAD(&chan->submit_q); | 
|  | INIT_LIST_HEAD(&chan->free_q); | 
|  |  | 
|  | chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool, | 
|  | GFP_KERNEL, &chan->inb_phys_addr); | 
|  | if (!chan->inb_ring_virt_addr) { | 
|  | dev_err(dev, "No dma memory for inb_ring_virt_addr\n"); | 
|  | ret = -ENOMEM; | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool, | 
|  | GFP_KERNEL, &chan->oub_phys_addr); | 
|  | if (!chan->oub_ring_virt_addr) { | 
|  | dev_err(dev, "No dma memory for oub_ring_virt_addr\n"); | 
|  | ret = -ENOMEM; | 
|  | goto err_free_1; | 
|  | } | 
|  |  | 
|  | /* Program the Inbound/Outbound ring base addresses and size */ | 
|  | out_be32(&chan->jrregs->inbring_base_h, | 
|  | chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK); | 
|  | out_be32(&chan->jrregs->oubring_base_h, | 
|  | chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK); | 
|  | out_be32(&chan->jrregs->inbring_base_l, | 
|  | chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT); | 
|  | out_be32(&chan->jrregs->oubring_base_l, | 
|  | chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT); | 
|  | out_be32(&chan->jrregs->inbring_size, | 
|  | FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT); | 
|  | out_be32(&chan->jrregs->oubring_size, | 
|  | FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT); | 
|  |  | 
|  | /* Read LIODN value from u-boot */ | 
|  | status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK; | 
|  |  | 
|  | /* Program the CFG reg */ | 
|  | out_be32(&chan->jrregs->jr_config_1, | 
|  | FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status); | 
|  |  | 
|  | dev_set_drvdata(chandev, chan); | 
|  |  | 
|  | /* Enable RE/CHAN */ | 
|  | out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_free_1: | 
|  | dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr, | 
|  | chan->inb_phys_addr); | 
|  | err_free: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Probe function for RAID Engine */ | 
|  | static int fsl_re_probe(struct platform_device *ofdev) | 
|  | { | 
|  | struct fsl_re_drv_private *re_priv; | 
|  | struct device_node *np; | 
|  | struct device_node *child; | 
|  | u32 off; | 
|  | u8 ridx = 0; | 
|  | struct dma_device *dma_dev; | 
|  | struct resource *res; | 
|  | int rc; | 
|  | struct device *dev = &ofdev->dev; | 
|  |  | 
|  | re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL); | 
|  | if (!re_priv) | 
|  | return -ENOMEM; | 
|  |  | 
|  | res = platform_get_resource(ofdev, IORESOURCE_MEM, 0); | 
|  | if (!res) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* IOMAP the entire RAID Engine region */ | 
|  | re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res)); | 
|  | if (!re_priv->re_regs) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Program the RE mode */ | 
|  | out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE); | 
|  |  | 
|  | /* Program Galois Field polynomial */ | 
|  | out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY); | 
|  |  | 
|  | dev_info(dev, "version %x, mode %x, gfp %x\n", | 
|  | in_be32(&re_priv->re_regs->re_version_id), | 
|  | in_be32(&re_priv->re_regs->global_config), | 
|  | in_be32(&re_priv->re_regs->galois_field_config)); | 
|  |  | 
|  | dma_dev = &re_priv->dma_dev; | 
|  | dma_dev->dev = dev; | 
|  | INIT_LIST_HEAD(&dma_dev->channels); | 
|  | dma_set_mask(dev, DMA_BIT_MASK(40)); | 
|  |  | 
|  | dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources; | 
|  | dma_dev->device_tx_status = fsl_re_tx_status; | 
|  | dma_dev->device_issue_pending = fsl_re_issue_pending; | 
|  |  | 
|  | dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS; | 
|  | dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor; | 
|  | dma_cap_set(DMA_XOR, dma_dev->cap_mask); | 
|  |  | 
|  | dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS; | 
|  | dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq; | 
|  | dma_cap_set(DMA_PQ, dma_dev->cap_mask); | 
|  |  | 
|  | dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy; | 
|  | dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); | 
|  |  | 
|  | dma_dev->device_free_chan_resources = fsl_re_free_chan_resources; | 
|  |  | 
|  | re_priv->total_chans = 0; | 
|  |  | 
|  | re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev, | 
|  | FSL_RE_CF_CDB_SIZE, | 
|  | FSL_RE_CF_CDB_ALIGN, 0); | 
|  |  | 
|  | if (!re_priv->cf_desc_pool) { | 
|  | dev_err(dev, "No memory for fsl re_cf desc pool\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev, | 
|  | sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE, | 
|  | FSL_RE_FRAME_ALIGN, 0); | 
|  | if (!re_priv->hw_desc_pool) { | 
|  | dev_err(dev, "No memory for fsl re_hw desc pool\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | dev_set_drvdata(dev, re_priv); | 
|  |  | 
|  | /* Parse Device tree to find out the total number of JQs present */ | 
|  | for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") { | 
|  | rc = of_property_read_u32(np, "reg", &off); | 
|  | if (rc) { | 
|  | dev_err(dev, "Reg property not found in JQ node\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | /* Find out the Job Rings present under each JQ */ | 
|  | for_each_child_of_node(np, child) { | 
|  | rc = of_device_is_compatible(child, | 
|  | "fsl,raideng-v1.0-job-ring"); | 
|  | if (rc) { | 
|  | fsl_re_chan_probe(ofdev, child, ridx++, off); | 
|  | re_priv->total_chans++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | dma_async_device_register(dma_dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void fsl_re_remove_chan(struct fsl_re_chan *chan) | 
|  | { | 
|  | dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr, | 
|  | chan->inb_phys_addr); | 
|  |  | 
|  | dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr, | 
|  | chan->oub_phys_addr); | 
|  | } | 
|  |  | 
|  | static int fsl_re_remove(struct platform_device *ofdev) | 
|  | { | 
|  | struct fsl_re_drv_private *re_priv; | 
|  | struct device *dev; | 
|  | int i; | 
|  |  | 
|  | dev = &ofdev->dev; | 
|  | re_priv = dev_get_drvdata(dev); | 
|  |  | 
|  | /* Cleanup chan related memory areas */ | 
|  | for (i = 0; i < re_priv->total_chans; i++) | 
|  | fsl_re_remove_chan(re_priv->re_jrs[i]); | 
|  |  | 
|  | /* Unregister the driver */ | 
|  | dma_async_device_unregister(&re_priv->dma_dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct of_device_id fsl_re_ids[] = { | 
|  | { .compatible = "fsl,raideng-v1.0", }, | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static struct platform_driver fsl_re_driver = { | 
|  | .driver = { | 
|  | .name = "fsl-raideng", | 
|  | .owner = THIS_MODULE, | 
|  | .of_match_table = fsl_re_ids, | 
|  | }, | 
|  | .probe = fsl_re_probe, | 
|  | .remove = fsl_re_remove, | 
|  | }; | 
|  |  | 
|  | module_platform_driver(fsl_re_driver); | 
|  |  | 
|  | MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>"); | 
|  | MODULE_LICENSE("GPL v2"); | 
|  | MODULE_DESCRIPTION("Freescale RAID Engine Device Driver"); |