blob: 3c72d8074a6ca84cc69a02ad9bc43d26d792b6dd [file] [log] [blame]
/******************** (C) COPYRIGHT 2010 STMicroelectronics ********************
*
* Copyright (c) 2014-2015, The Linux Foundation. All rights reserved.
*
* File Name : lis3dh_acc.c
* Authors : MSH - Motion Mems BU - Application Team
* : Matteo Dameno (matteo.dameno@st.com)
* : Carmine Iascone (carmine.iascone@st.com)
* : Samuel Huo (samuel.huo@st.com)
* Version : V.1.1.0
* Date : 07/10/2012
* Description : LIS3DH accelerometer sensor driver
*
*******************************************************************************
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THE PRESENT SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, FOR THE SOLE
* PURPOSE TO SUPPORT YOUR APPLICATION DEVELOPMENT.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* THIS SOFTWARE IS SPECIFICALLY DESIGNED FOR EXCLUSIVE USE WITH ST PARTS.
*
******************************************************************************
Revision 1.0.0 05/11/09
First Release;
Revision 1.0.3 22/01/2010
Linux K&R Compliant Release;
Revision 1.0.5 16/08/2010
modified _get_acceleration_data function;
modified _update_odr function;
manages 2 interrupts;
Revision 1.0.6 15/11/2010
supports sysfs;
no more support for ioctl;
Revision 1.0.7 26/11/2010
checks for availability of interrupts pins
correction on FUZZ and FLAT values;
Revision 1.0.8 2010/Apr/01
corrects a bug in interrupt pin management in 1.0.7
Revision 1.0.9 07/25/2011
Romove several unused functions,add 5ms delay in init,change sysfs attributes.
Revision 1.1.0 07/10/2012
To replace some deprecated functions for 3.4 kernel; to pass the checkpatch's formatting requirement;
To add regulator request;
******************************************************************************/
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/uaccess.h>
#include <linux/workqueue.h>
#include <linux/irq.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/pm.h>
#include <linux/input/lis3dh.h>
#include <linux/module.h>
#include <linux/regulator/consumer.h>
#include <linux/of_gpio.h>
#include <linux/sensors.h>
#define DEBUG 1
/*Calibration*/
#define LIS3DH_CAL_SKIP_COUNT 5
#define LIS3DH_CAL_MAX (10 + LIS3DH_CAL_SKIP_COUNT)
#define LIS3DH_CAL_NUM 99
#define RAW_TO_1G 16384
#define FACTORY_CALIBRATION_DELAY 100 /* ms */
#define G_MAX 17000
#define LIS3DH_FIFO_SIZE 32
#define LIS3DH_TIME_MS_TO_NS 1000000L
#define SENSITIVITY_2G 1 /** sensitivity scale */
#define SENSITIVITY_4G 2 /** sensitivity scale */
#define SENSITIVITY_8G 4 /** sensitivity scale */
#define SENSITIVITY_16G 12 /** sensitivity scale */
/* Accelerometer Sensor Operating Mode */
#define LIS3DH_ACC_ENABLE 0x01
#define LIS3DH_ACC_DISABLE 0x00
#define HIGH_RESOLUTION 0x08
#define AXISDATA_REG 0x28
#define WHOAMI_LIS3DH_ACC 0x33 /* Expected content for WAI */
/* CONTROL REGISTERS */
#define WHO_AM_I 0x0F /* WhoAmI register */
#define TEMP_CFG_REG 0x1F /* temper sens control reg */
/* ctrl 1: ODR3 ODR2 ODR ODR0 LPen Zenable Yenable Zenable */
#define CTRL_REG1 0x20 /* control reg 1 */
#define CTRL_REG2 0x21 /* control reg 2 */
#define CTRL_REG3 0x22 /* control reg 3 */
#define CTRL_REG4 0x23 /* control reg 4 */
#define CTRL_REG5 0x24 /* control reg 5 */
#define CTRL_REG6 0x25 /* control reg 6 */
#define FIFO_CTRL_REG 0x2E /* FiFo control reg */
#define FIFO_SRC_REG 0x2F /* FiFo source reg */
#define INT_CFG1 0x30 /* interrupt 1 config */
#define INT_SRC1 0x31 /* interrupt 1 source */
#define INT_THS1 0x32 /* interrupt 1 threshold */
#define INT_DUR1 0x33 /* interrupt 1 duration */
#define TT_CFG 0x38 /* tap config */
#define TT_SRC 0x39 /* tap source */
#define TT_THS 0x3A /* tap threshold */
#define TT_LIM 0x3B /* tap time limit */
#define TT_TLAT 0x3C /* tap time latency */
#define TT_TW 0x3D /* tap time window */
/* end CONTROL REGISTRES */
#define ENABLE_HIGH_RESOLUTION 1
#define LIS3DH_ACC_PM_OFF 0x00
#define LIS3DH_ACC_ENABLE_ALL_AXES 0x07
/* FIFO REG BITS*/
#define PMODE_MASK 0x08
#define REG1_ODR_MASK 0XF0
#define REG1_ODR_SHIFT 4
#define FIFO_MODE_SHIFT 6
#define FIFO_MODE_MASK 0xC0
#define FIFO_WM_CFG_MASK 0x1F
#define FIFO_STATE_WATER_MARK 0x80
#define FIFO_STATE_FULL 0x40
#define FIFO_SRC_DATA_CNT_MASK 0x1F
#define FIFO_MAX_CNT 0x1F
#define FIFO_SRC_OVRN_MASK 0x40
#define REG5_FIFO_EN 0x40
/* interrupt configure REG BITS */
#define INT_GEN_I1_CLICK 0x80
#define INT_GEN_I1_GEN1 0x40
#define INT_GEN_I1_DRDY1 0x10
#define INT_GEN_I1_WTM 0x04
#define INT_GEN_I1_OVRN 0x02
#define IS_FIFO_FULL(status) (status & FIFO_STATE_FULL)
#define IS_WATER_MARK_REACHED(status) (status & FIFO_STATE_WATER_MARK)
#define ODR1 0x10 /* 1Hz output data rate */
#define ODR10 0x20 /* 10Hz output data rate */
#define ODR25 0x30 /* 25Hz output data rate */
#define ODR50 0x40 /* 50Hz output data rate */
#define ODR100 0x50 /* 100Hz output data rate */
#define ODR200 0x60 /* 200Hz output data rate */
#define ODR400 0x70 /* 400Hz output data rate */
#define ODR1250 0x90 /* 1250Hz output data rate */
#define IA 0x40
#define ZH 0x20
#define ZL 0x10
#define YH 0x08
#define YL 0x04
#define XH 0x02
#define XL 0x01
/* */
/* CTRL REG BITS*/
#define CTRL_REG3_I1_AOI1 0x40
#define CTRL_REG6_I2_TAPEN 0x80
#define CTRL_REG6_HLACTIVE 0x02
/* */
#define NO_MASK 0xFF
#define INT1_DURATION_MASK 0x7F
#define INT1_THRESHOLD_MASK 0x7F
#define TAP_CFG_MASK 0x3F
#define TAP_THS_MASK 0x7F
#define TAP_TLIM_MASK 0x7F
#define TAP_TLAT_MASK NO_MASK
#define TAP_TW_MASK NO_MASK
/*soc irq set*/
#define CONFIG_IRQ_DRDY1 0x10
#define CONFIG_BLOCK_READ 0x80
/* TAP_SOURCE_REG BIT */
#define DTAP 0x20
#define STAP 0x10
#define SIGNTAP 0x08
#define ZTAP 0x04
#define YTAP 0x02
#define XTAZ 0x01
#define FUZZ 0
#define FLAT 0
#define I2C_RETRY_DELAY 5
#define I2C_RETRIES 5
#define I2C_AUTO_INCREMENT 0x80
/* RESUME STATE INDICES */
#define RES_CTRL_REG1 0
#define RES_CTRL_REG2 1
#define RES_CTRL_REG3 2
#define RES_CTRL_REG4 3
#define RES_CTRL_REG5 4
#define RES_CTRL_REG6 5
#define RES_INT_CFG1 6
#define RES_INT_THS1 7
#define RES_INT_DUR1 8
#define RES_TT_CFG 9
#define RES_TT_THS 10
#define RES_TT_LIM 11
#define RES_TT_TLAT 12
#define RES_TT_TW 13
#define RES_TEMP_CFG_REG 14
#define RES_REFERENCE_REG 15
#define RES_FIFO_CTRL_REG 16
#define RESUME_ENTRIES 17
/* end RESUME STATE INDICES */
#define BATCH_MODE_NORMAL 0
#define BATCH_MODE_WAKE_UPON_FIFO_FULL 2
/* interrput mode for sensor max delay ms */
#define LIS_INT_MAX_DELAY 1000
enum {
LIS3DH_BYPASS_MODE = 0,
LIS3DH_FIFO_MODE,
LIS3DH_STREAM_MODE,
LIS3DH_STREAM2FIFO_MODE,
LIS3DH_FIFO_MODE_NUM
};
struct odr_config_table {
unsigned int cutoff_ms;
unsigned int mask;
};
struct odr_config_table lis3dh_acc_odr_table[] = {
{ 1, ODR1250 },
{ 3, ODR400 }, /* round to 3 */
{ 5, ODR200 },
{ 10, ODR100 },
{ 20, ODR50 },
{ 40, ODR25 },
{ 100, ODR10 },
{ 1000, ODR1 },
};
struct lis3dh_acc_data {
struct i2c_client *client;
struct lis3dh_acc_platform_data *pdata;
struct sensors_classdev cdev;
struct pinctrl *pinctrl;
struct pinctrl_state *pin_default;
struct pinctrl_state *pin_sleep;
struct mutex lock;
struct workqueue_struct *data_wq;
struct delayed_work input_work;
struct input_dev *input_dev;
int hw_initialized;
/* hw_working=-1 means not tested yet */
int hw_working;
/* flag sensor is enabled (batch/poll) */
atomic_t enabled;
int on_before_suspend;
int pre_enable;
char calibrate_buf[LIS3DH_CAL_NUM];
int cal_params[3];
bool use_cal;
atomic_t cal_status;
u8 sensitivity;
u8 resume_state[RESUME_ENTRIES];
/* batch mode is configured */
bool use_batch;
unsigned int delay_ms;
unsigned int batch_mode;
unsigned int fifo_timeout_ms;
unsigned int flush_count;
int irq1;
int irq2;
#ifdef DEBUG
u8 reg_addr;
#endif
};
static struct sensors_classdev lis3dh_acc_cdev = {
.name = "lis3dh-accel",
.vendor = "STMicroelectronics",
.version = 1,
.handle = SENSORS_ACCELERATION_HANDLE,
.type = SENSOR_TYPE_ACCELEROMETER,
.max_range = "156.8",
.resolution = "0.000598144", /* m/s^2 */
.sensor_power = "0.01",
.min_delay = 10000,
.max_delay = 6400,
.delay_msec = 200,
.fifo_reserved_event_count = 0,
.fifo_max_event_count = 0,
.enabled = 0,
.max_latency = 0,
.flags = 0,
.sensors_enable = NULL,
.sensors_poll_delay = NULL,
.sensors_set_latency = NULL,
.sensors_flush = NULL,
.sensors_calibrate = NULL,
.sensors_write_cal_params = NULL,
.params = NULL,
};
struct sensor_regulator {
struct regulator *vreg;
const char *name;
u32 min_uV;
u32 max_uV;
};
struct sensor_regulator lis3dh_acc_vreg[] = {
{NULL, "vdd", 1700000, 3600000},
{NULL, "vddio", 1700000, 3600000},
};
static int lis3dh_acc_get_calibrate(struct lis3dh_acc_data *acc,
int *xyz);
static inline s64 lis3dh_acc_get_time_ns(void)
{
struct timespec ts;
ktime_get_ts(&ts);
return timespec_to_ns(&ts);
}
static unsigned int lis3dh_acc_odr_to_interval(struct lis3dh_acc_data *acc,
unsigned int odr)
{
unsigned int odr_mask;
unsigned int i;
odr_mask = (odr << REG1_ODR_SHIFT) & REG1_ODR_MASK;
for (i = ARRAY_SIZE(lis3dh_acc_odr_table) - 1; i > 0; i--) {
if (lis3dh_acc_odr_table[i].mask == odr_mask)
break;
}
return lis3dh_acc_odr_table[i].cutoff_ms;
}
static int lis3dh_acc_config_regulator(struct lis3dh_acc_data *acc, bool on)
{
int rc = 0, i;
int num_reg = sizeof(lis3dh_acc_vreg) / sizeof(struct sensor_regulator);
if (on) {
for (i = 0; i < num_reg; i++) {
lis3dh_acc_vreg[i].vreg =
regulator_get(&acc->client->dev,
lis3dh_acc_vreg[i].name);
if (IS_ERR(lis3dh_acc_vreg[i].vreg)) {
rc = PTR_ERR(lis3dh_acc_vreg[i].vreg);
dev_err(&acc->client->dev,
"Regulator(%s) get failed rc=%d\n",
lis3dh_acc_vreg[i].name, rc);
lis3dh_acc_vreg[i].vreg = NULL;
goto deinit_vregs;
}
if (regulator_count_voltages(
lis3dh_acc_vreg[i].vreg) > 0) {
rc = regulator_set_voltage(
lis3dh_acc_vreg[i].vreg,
lis3dh_acc_vreg[i].min_uV,
lis3dh_acc_vreg[i].max_uV);
if (rc) {
dev_err(&acc->client->dev,
"Regulator(%s)Set voltage failed rc=%d\n",
lis3dh_acc_vreg[i].name, rc);
regulator_put(lis3dh_acc_vreg[i].vreg);
lis3dh_acc_vreg[i].vreg = NULL;
goto deinit_vregs;
}
}
}
return rc;
} else {
i = num_reg;
goto deinit_vregs;
}
deinit_vregs:
while (--i >= 0) {
if (!IS_ERR_OR_NULL(lis3dh_acc_vreg[i].vreg)) {
regulator_put(lis3dh_acc_vreg[i].vreg);
lis3dh_acc_vreg[i].vreg = NULL;
}
}
return rc;
}
static int lis3dh_acc_set_regulator(struct lis3dh_acc_data *acc, bool on)
{
int rc = 0, i;
int num_reg = sizeof(lis3dh_acc_vreg) / sizeof(struct sensor_regulator);
if (on) {
for (i = 0; i < num_reg; i++) {
if (!IS_ERR_OR_NULL(lis3dh_acc_vreg[i].vreg)) {
rc = regulator_enable(lis3dh_acc_vreg[i].vreg);
if (rc) {
dev_err(&acc->client->dev,
"Enable regulator(%s) failed rc=%d\n",
lis3dh_acc_vreg[i].name, rc);
goto disable_regulator;
}
}
}
return rc;
} else {
for (i = (num_reg - 1); i >= 0; i--) {
if (!IS_ERR_OR_NULL(lis3dh_acc_vreg[i].vreg)) {
rc = regulator_disable(lis3dh_acc_vreg[i].vreg);
if (rc)
dev_err(&acc->client->dev,
"Disable regulator(%s) failed rc=%d\n",
lis3dh_acc_vreg[i].name, rc);
}
}
return 0;
}
disable_regulator:
while (--i >= 0) {
if (!IS_ERR_OR_NULL(lis3dh_acc_vreg[i].vreg))
regulator_disable(lis3dh_acc_vreg[i].vreg);
}
return rc;
}
static int lis3dh_acc_i2c_read(struct lis3dh_acc_data *acc,
u8 *buf, int len)
{
int err;
int tries = 0;
struct i2c_msg msgs[] = {
{
.addr = acc->client->addr,
.flags = acc->client->flags & I2C_M_TEN,
.len = 1,
.buf = buf,
},
{
.addr = acc->client->addr,
.flags = (acc->client->flags & I2C_M_TEN) | I2C_M_RD,
.len = len,
.buf = buf,
},
};
do {
err = i2c_transfer(acc->client->adapter, msgs, 2);
if (err != 2)
msleep_interruptible(I2C_RETRY_DELAY);
} while ((err != 2) && (++tries < I2C_RETRIES));
if (err != 2) {
dev_err(&acc->client->dev, "read transfer error\n");
err = -EIO;
} else {
err = 0;
}
return err;
}
static int lis3dh_acc_i2c_write(struct lis3dh_acc_data *acc, u8 *buf, int len)
{
int err;
int tries = 0;
struct i2c_msg msgs[] = {
{
.addr = acc->client->addr,
.flags = acc->client->flags & I2C_M_TEN,
.len = len + 1,
.buf = buf,
},
};
do {
err = i2c_transfer(acc->client->adapter, msgs, 1);
if (err != 1)
msleep_interruptible(I2C_RETRY_DELAY);
} while ((err != 1) && (++tries < I2C_RETRIES));
if (err != 1) {
dev_err(&acc->client->dev, "write transfer error\n");
err = -EIO;
} else {
err = 0;
}
return err;
}
static int lis3dh_acc_hw_init(struct lis3dh_acc_data *acc)
{
int err = -1;
u8 buf[7];
buf[0] = WHO_AM_I;
err = lis3dh_acc_i2c_read(acc, buf, 1);
if (err < 0) {
dev_warn(&acc->client->dev,
"Error reading WHO_AM_I: is device available/working?\n");
goto err_firstread;
} else
acc->hw_working = 1;
if (buf[0] != WHOAMI_LIS3DH_ACC) {
dev_err(&acc->client->dev,
"device unknown. Expected: 0x%x, Replies: 0x%x\n",
WHOAMI_LIS3DH_ACC, buf[0]);
err = -1; /* choose the right coded error */
goto err_unknown_device;
}
buf[0] = CTRL_REG1;
buf[1] = acc->resume_state[RES_CTRL_REG1];
err = lis3dh_acc_i2c_write(acc, buf, 1);
if (err < 0)
goto err_resume_state;
buf[0] = TEMP_CFG_REG;
buf[1] = acc->resume_state[RES_TEMP_CFG_REG];
err = lis3dh_acc_i2c_write(acc, buf, 1);
if (err < 0)
goto err_resume_state;
buf[0] = FIFO_CTRL_REG;
buf[1] = acc->resume_state[RES_FIFO_CTRL_REG];
err = lis3dh_acc_i2c_write(acc, buf, 1);
if (err < 0)
goto err_resume_state;
buf[0] = (I2C_AUTO_INCREMENT | TT_THS);
buf[1] = acc->resume_state[RES_TT_THS];
buf[2] = acc->resume_state[RES_TT_LIM];
buf[3] = acc->resume_state[RES_TT_TLAT];
buf[4] = acc->resume_state[RES_TT_TW];
err = lis3dh_acc_i2c_write(acc, buf, 4);
if (err < 0)
goto err_resume_state;
buf[0] = TT_CFG;
buf[1] = acc->resume_state[RES_TT_CFG];
err = lis3dh_acc_i2c_write(acc, buf, 1);
if (err < 0)
goto err_resume_state;
buf[0] = (I2C_AUTO_INCREMENT | INT_THS1);
buf[1] = acc->resume_state[RES_INT_THS1];
buf[2] = acc->resume_state[RES_INT_DUR1];
err = lis3dh_acc_i2c_write(acc, buf, 2);
if (err < 0)
goto err_resume_state;
buf[0] = INT_CFG1;
buf[1] = acc->resume_state[RES_INT_CFG1];
err = lis3dh_acc_i2c_write(acc, buf, 1);
if (err < 0)
goto err_resume_state;
buf[0] = (I2C_AUTO_INCREMENT | CTRL_REG2);
buf[1] = acc->resume_state[RES_CTRL_REG2];
buf[2] = acc->resume_state[RES_CTRL_REG3];
buf[3] = acc->resume_state[RES_CTRL_REG4];
buf[4] = acc->resume_state[RES_CTRL_REG5];
buf[5] = acc->resume_state[RES_CTRL_REG6];
err = lis3dh_acc_i2c_write(acc, buf, 5);
if (err < 0)
goto err_resume_state;
acc->hw_initialized = 1;
return 0;
err_firstread:
acc->hw_working = 0;
err_unknown_device:
err_resume_state:
acc->hw_initialized = 0;
dev_err(&acc->client->dev, "hw init error 0x%x,0x%x: %d\n", buf[0],
buf[1], err);
return err;
}
static void lis3dh_acc_device_power_off(struct lis3dh_acc_data *acc)
{
int err;
u8 buf[2] = { CTRL_REG1, LIS3DH_ACC_PM_OFF };
err = lis3dh_acc_i2c_write(acc, buf, 1);
if (err < 0)
dev_err(&acc->client->dev, "soft power off failed: %d\n", err);
lis3dh_acc_set_regulator(acc, false);
if (acc->hw_initialized) {
if (gpio_is_valid(acc->pdata->gpio_int1)
&& acc->pdata->enable_int)
disable_irq_nosync(acc->irq1);
if (gpio_is_valid(acc->pdata->gpio_int2)
&& acc->pdata->enable_int)
disable_irq_nosync(acc->irq2);
acc->hw_initialized = 0;
}
}
static int lis3dh_acc_device_power_on(struct lis3dh_acc_data *acc)
{
int err = -1;
err = lis3dh_acc_set_regulator(acc, true);
if (err < 0) {
dev_err(&acc->client->dev,
"power_on failed: %d\n", err);
return err;
}
msleep(20);
if (!acc->hw_initialized) {
err = lis3dh_acc_hw_init(acc);
if (acc->hw_working == 1 && err < 0) {
lis3dh_acc_set_regulator(acc, false);
return err;
}
}
if (acc->hw_initialized) {
if (gpio_is_valid(acc->pdata->gpio_int1)
&& acc->pdata->enable_int)
enable_irq(acc->irq1);
if (gpio_is_valid(acc->pdata->gpio_int2)
&& acc->pdata->enable_int)
enable_irq(acc->irq2);
}
return 0;
}
int lis3dh_acc_update_g_range(struct lis3dh_acc_data *acc, u8 new_g_range)
{
int err = -1;
u8 sensitivity;
u8 buf[2];
u8 updated_val;
u8 init_val;
u8 new_val;
u8 mask = LIS3DH_ACC_FS_MASK | HIGH_RESOLUTION;
switch (new_g_range) {
case LIS3DH_ACC_G_2G:
sensitivity = SENSITIVITY_2G;
break;
case LIS3DH_ACC_G_4G:
sensitivity = SENSITIVITY_4G;
break;
case LIS3DH_ACC_G_8G:
sensitivity = SENSITIVITY_8G;
break;
case LIS3DH_ACC_G_16G:
sensitivity = SENSITIVITY_16G;
break;
default:
dev_err(&acc->client->dev, "invalid g range requested: %u\n",
new_g_range);
return -EINVAL;
}
if (atomic_read(&acc->enabled)) {
/* Updates configuration register 4,
* which contains g range setting */
buf[0] = CTRL_REG4;
err = lis3dh_acc_i2c_read(acc, buf, 1);
if (err < 0)
goto error;
init_val = buf[0];
acc->resume_state[RES_CTRL_REG4] = init_val;
new_val = new_g_range | HIGH_RESOLUTION;
updated_val = ((mask & new_val) | ((~mask) & init_val));
buf[1] = updated_val;
buf[0] = CTRL_REG4;
err = lis3dh_acc_i2c_write(acc, buf, 1);
if (err < 0)
goto error;
acc->resume_state[RES_CTRL_REG4] = updated_val;
acc->sensitivity = sensitivity;
}
return err;
error:
dev_err(&acc->client->dev, "update g range failed 0x%x,0x%x: %d\n",
buf[0], buf[1], err);
return err;
}
static unsigned int lis3dh_acc_delay_to_odr(struct lis3dh_acc_data *acc,
unsigned int delay_ms)
{
unsigned int i;
/*
* Following, looks for the longest possible odr interval scrolling the
* odr_table vector from the end (shortest interval) backward (longest
* interval), to support the polling interval requested by the system.
* It must be the longest interval lower then the poll interval.
* polling interval should not less then 1.
*/
for (i = ARRAY_SIZE(lis3dh_acc_odr_table) - 1; i > 0; i--) {
if (lis3dh_acc_odr_table[i].cutoff_ms <= delay_ms)
break;
}
return lis3dh_acc_odr_table[i].mask;
}
static int lis3dh_acc_update_odr(struct lis3dh_acc_data *acc,
unsigned int delay_ms)
{
int err = -1;
u8 config[2];
config[1] = lis3dh_acc_delay_to_odr(acc, delay_ms);
config[1] |= LIS3DH_ACC_ENABLE_ALL_AXES;
config[0] = CTRL_REG1;
err = lis3dh_acc_i2c_write(acc, config, 1);
if (err < 0)
goto error;
acc->resume_state[RES_CTRL_REG1] = config[1];
dev_dbg(&acc->client->dev,
"update odr success delay=%u code=%#x\n", delay_ms, config[1]);
return 0;
error:
dev_err(&acc->client->dev, "update odr failed 0x%x,0x%x: %d\n",
config[0], config[1], err);
return err;
}
static int lis3dh_acc_calc_watermark(struct lis3dh_acc_data *acc,
unsigned int timeout_ms)
{
unsigned int num;
unsigned int odr, delay_ms;
/* Get actual odr and calculate watermark */
odr = acc->resume_state[RES_CTRL_REG1] >> 4;
delay_ms = lis3dh_acc_odr_to_interval(acc, odr);
/* Ensure watermark number always > 1 and not divide by zero */
if ((timeout_ms < delay_ms) || (delay_ms == 0)) {
dev_err(&acc->client->dev,
"Timeout(%u) is less than polling interval(%u)\n",
timeout_ms, delay_ms);
return -EINVAL;
}
num = timeout_ms / delay_ms;
dev_dbg(&acc->client->dev,
"timeout_ms=%d, delay=%d sample_num =%d\n",
timeout_ms, delay_ms, num);
return num;
}
static int lis3dh_acc_get_fifo_lvl(struct lis3dh_acc_data *acc)
{
int error = 0;
unsigned char buf[2];
unsigned int fifo_lvl;
buf[0] = FIFO_SRC_REG;
error = lis3dh_acc_i2c_read(acc, buf, 1);
if (error < 0) {
dev_err(&acc->client->dev, "read fifo level error\n");
return error;
}
fifo_lvl = buf[0] & FIFO_SRC_DATA_CNT_MASK;
if ((fifo_lvl == FIFO_MAX_CNT)
&& (buf[0] | FIFO_SRC_OVRN_MASK))
fifo_lvl = FIFO_MAX_CNT + 1;
return fifo_lvl;
}
static int lis3dh_acc_set_wtm_int(struct lis3dh_acc_data *acc, bool enable)
{
unsigned char buf[2];
int error = 0;
buf[0] = CTRL_REG3;
error = lis3dh_acc_i2c_read(acc, buf, 1);
if (error < 0) {
dev_err(&acc->client->dev, "read fifo control reg error\n");
return error;
}
if (enable)
buf[1] = buf[0] | INT_GEN_I1_WTM;
else
buf[1] = buf[0] & (~INT_GEN_I1_WTM);
buf[0] = CTRL_REG3;
error = lis3dh_acc_i2c_write(acc, buf, 1);
if (error < 0) {
dev_err(&acc->client->dev, "write fifo control reg error\n");
return error;
}
acc->resume_state[RES_CTRL_REG3] = buf[1];
return 0;
}
/*
* Turn ON/OFF FIFO by setting the FIFO_En bit,
* FIFO must be enabled before activate FIFO mode.
*/
static int lis3dh_enable_fifo(struct i2c_client *client, bool enable)
{
unsigned char buf[2];
int error;
struct lis3dh_acc_data *acc = i2c_get_clientdata(client);
buf[0] = CTRL_REG5;
error = lis3dh_acc_i2c_read(acc, buf, 1);
if (error < 0) {
dev_err(&client->dev, "read fifo enable reg error\n");
return error;
}
if (enable)
buf[1] = buf[0] | REG5_FIFO_EN;
else
buf[1] = buf[0] & (~REG5_FIFO_EN);
buf[0] = CTRL_REG5;
error = lis3dh_acc_i2c_write(acc, buf, 1);
if (error < 0) {
dev_err(&client->dev, "write fifo enable reg error\n");
return error;
}
acc->resume_state[RES_CTRL_REG5] = buf[1];
dev_dbg(&client->dev, "lis3dh REG5 = %#x\n", buf[1]);
buf[0] = CTRL_REG3;
error = lis3dh_acc_i2c_read(acc, buf, 1);
if (error < 0) {
dev_err(&client->dev, "read fifo control reg error\n");
return error;
}
if (enable) {
buf[0] = buf[0] & (~INT_GEN_I1_DRDY1);
buf[1] = buf[0] | INT_GEN_I1_OVRN;
} else {
/* disable I1_WTM and I1_OVERRUN */
buf[1] = buf[0] & ~(INT_GEN_I1_OVRN | INT_GEN_I1_WTM);
/* REenable I1_DRDY1 */
if (acc->pdata->enable_int)
buf[1] = buf[1] | INT_GEN_I1_DRDY1;
}
buf[0] = CTRL_REG3;
error = lis3dh_acc_i2c_write(acc, buf, 1);
if (error < 0) {
dev_err(&client->dev, "write enable fifo reg error\n");
return error;
}
acc->resume_state[RES_CTRL_REG3] = buf[1];
dev_dbg(&client->dev,
"EN FIFO; lis3dh REG3=%#x, err=%d\n", buf[1], error);
return error;
}
/*
* Activate FIFO mode by setting FIFO mode bits.
*/
static int lis3dh_set_fifo_mode(struct i2c_client *client,
unsigned char fifo_mode)
{
unsigned char buf[2];
int error;
struct lis3dh_acc_data *acc = i2c_get_clientdata(client);
buf[0] = FIFO_CTRL_REG;
error = lis3dh_acc_i2c_read(acc, buf, 1);
if (error < 0) {
dev_err(&client->dev, "read fifo reg error\n");
return error;
}
buf[1] = buf[0] & (~FIFO_MODE_MASK);
buf[1] |= (unsigned char)(fifo_mode << FIFO_MODE_SHIFT);
buf[0] = FIFO_CTRL_REG;
error = lis3dh_acc_i2c_write(acc, buf, 1);
if (error < 0) {
dev_err(&client->dev, "write fifo mode error\n");
return error;
}
acc->resume_state[RES_FIFO_CTRL_REG] = buf[1];
dev_dbg(&client->dev,
"lis3dh_set_fifo_mode: lis3dh fifo_reg = %#x\n", buf[1]);
return error;
}
static int lis3dh_interrupt_status(struct lis3dh_acc_data *acc, char *status)
{
int error;
char buf;
buf = FIFO_SRC_REG;
error = lis3dh_acc_i2c_read(acc, &buf, 1);
if (error < 0) {
dev_err(&acc->client->dev, "read interrupt status error\n");
return error;
} else {
*status = buf;
dev_dbg(&acc->client->dev, "FIFO_SRC = %#x\n", (int) buf);
}
return 0;
}
static int lis3dh_enable_DRDY_int(struct lis3dh_acc_data *acc)
{
int error;
char buf[2];
if (acc->pdata->enable_int) {
buf[0] = CTRL_REG3;
error = lis3dh_acc_i2c_read(acc, buf, 1);
if (error < 0) {
dev_err(&acc->client->dev,
"read fifo control reg error\n");
return error;
}
buf[1] = buf[0] | INT_GEN_I1_DRDY1;
buf[0] = CTRL_REG3;
error = lis3dh_acc_i2c_write(acc, buf, 1);
if (error < 0) {
dev_err(&acc->client->dev,
"write enable fifo reg error\n");
return error;
}
acc->resume_state[RES_CTRL_REG3] = buf[1];
} else {
dev_info(&acc->client->dev, "Interrupt not enabled\n");
}
return 0;
}
static int lis3dh_acc_set_waterwark(struct lis3dh_acc_data *acc,
int watermark)
{
unsigned char buf[2];
int error = 0;
if (watermark < LIS3DH_FIFO_SIZE - 1) {
buf[0] = FIFO_CTRL_REG;
error = lis3dh_acc_i2c_read(acc, buf, 1);
if (error < 0) {
dev_err(&acc->client->dev, "read fifo reg error\n");
return error;
}
buf[1] = buf[0] & (~FIFO_WM_CFG_MASK);
buf[1] = buf[1] | (watermark & FIFO_WM_CFG_MASK);
buf[0] = FIFO_CTRL_REG;
error = lis3dh_acc_i2c_write(acc, buf, 1);
if (error < 0) {
dev_err(&acc->client->dev, "write fifo mode error\n");
return error;
}
acc->resume_state[RES_FIFO_CTRL_REG] = buf[1];
error = lis3dh_acc_set_wtm_int(acc, true);
} else {
error = lis3dh_acc_set_wtm_int(acc, false);
dev_dbg(&acc->client->dev,
"Watermark (%d) >= FIFO level (%d), disable WTM int!\n",
watermark, LIS3DH_FIFO_SIZE - 1);
}
return error;
}
static int lis3dh_acc_enable_batch(struct lis3dh_acc_data *acc, bool en)
{
struct i2c_client *client = acc->client;
int watermark;
int err;
mutex_lock(&acc->lock);
if (en) {
watermark = lis3dh_acc_calc_watermark(acc,
acc->fifo_timeout_ms);
if (watermark <= 0) {
dev_err(&acc->client->dev,
"enable batch: cannot calculate watermark, ret=%d\n",
watermark);
err = -EINVAL;
goto exit;
}
err = lis3dh_acc_set_waterwark(acc, watermark);
if (err < 0) {
dev_err(&acc->client->dev,
"enable batch: cannot set watermark, ret=%d\n",
err);
goto exit;
}
err = lis3dh_enable_fifo(client, true);
if (err < 0) {
dev_err(&acc->client->dev,
"enable batch: cannot enable FIFO\n");
goto exit;
}
err = lis3dh_set_fifo_mode(client, LIS3DH_FIFO_MODE);
if (err < 0) {
dev_err(&acc->client->dev,
"enable batch: cannot set FIFO mode\n");
goto exit;
}
} else {
err = lis3dh_set_fifo_mode(client, LIS3DH_BYPASS_MODE);
if (err < 0) {
dev_err(&acc->client->dev,
"enable batch: cannot set FIFO mode\n");
goto exit;
}
err = lis3dh_enable_fifo(client, false);
if (err < 0) {
dev_err(&acc->client->dev,
"enable batch: cannot enable FIFO\n");
goto exit;
}
}
exit:
mutex_unlock(&acc->lock);
return err;
}
static int lis3dh_acc_register_write(struct lis3dh_acc_data *acc, u8 *buf,
u8 reg_address, u8 new_value)
{
int err = -1;
/* Sets configuration register at reg_address
* NOTE: this is a straight overwrite */
buf[0] = reg_address;
buf[1] = new_value;
err = lis3dh_acc_i2c_write(acc, buf, 1);
if (err < 0)
return err;
return err;
}
static int lis3dh_acc_get_acceleration_data(struct lis3dh_acc_data *acc,
int *xyz)
{
int err = -1;
/* Data bytes from hardware xL, xH, yL, yH, zL, zH */
u8 acc_data[6];
/* x,y,z hardware data */
s16 hw_d[3] = { 0 };
acc_data[0] = (I2C_AUTO_INCREMENT | AXISDATA_REG);
err = lis3dh_acc_i2c_read(acc, acc_data, 6);
if (err < 0)
return err;
hw_d[0] = (((s16) ((acc_data[1] << 8) | acc_data[0])));
hw_d[1] = (((s16) ((acc_data[3] << 8) | acc_data[2])));
hw_d[2] = (((s16) ((acc_data[5] << 8) | acc_data[4])));
xyz[0] = ((acc->pdata->negate_x) ? (-hw_d[acc->pdata->axis_map_x])
: (hw_d[acc->pdata->axis_map_x]));
xyz[1] = ((acc->pdata->negate_y) ? (-hw_d[acc->pdata->axis_map_y])
: (hw_d[acc->pdata->axis_map_y]));
xyz[2] = ((acc->pdata->negate_z) ? (-hw_d[acc->pdata->axis_map_z])
: (hw_d[acc->pdata->axis_map_z]));
xyz[0] = xyz[0] * acc->sensitivity;
xyz[1] = xyz[1] * acc->sensitivity;
xyz[2] = xyz[2] * acc->sensitivity;
dev_dbg(&acc->client->dev, "%s read x=%d, y=%d, z=%d\n",
LIS3DH_ACC_DEV_NAME, xyz[0], xyz[1], xyz[2]);
if (acc->use_cal) {
err = lis3dh_acc_get_calibrate(acc, xyz);
if (err < 0) {
dev_err(&acc->client->dev,
"get calibrate data falied\n");
return err;
}
}
return err;
}
static void lis3dh_acc_report_values(struct lis3dh_acc_data *acc,
int *xyz)
{
input_report_abs(acc->input_dev, ABS_X, xyz[0]);
input_report_abs(acc->input_dev, ABS_Y, xyz[1]);
input_report_abs(acc->input_dev, ABS_Z, xyz[2]);
input_sync(acc->input_dev);
}
static int lis3dh_acc_enable(struct lis3dh_acc_data *acc)
{
int err;
if (atomic_read(&acc->cal_status)) {
dev_err(&acc->client->dev,
"can not enable when sensor do calibration\n");
return -EBUSY;
}
dev_dbg(&acc->client->dev, "enable acc: state =%d\n",
atomic_read(&acc->enabled));
if (!atomic_cmpxchg(&acc->enabled, 0, 1)) {
if (pinctrl_select_state(acc->pinctrl, acc->pin_default))
dev_err(&acc->client->dev,
"can't select pinctrl default state\n");
err = lis3dh_acc_device_power_on(acc);
if (err < 0) {
atomic_set(&acc->enabled, 0);
return err;
}
err = lis3dh_acc_update_odr(acc, acc->delay_ms);
if (err) {
atomic_set(&acc->enabled, 0);
dev_err(&acc->client->dev, "update_odr err=%d\n", err);
return err;
}
if (!acc->pdata->enable_int && !acc->use_batch) {
queue_delayed_work(acc->data_wq, &acc->input_work,
msecs_to_jiffies(acc->delay_ms));
return 0;
}
if (acc->use_batch) {
err = lis3dh_acc_enable_batch(acc, true);
if (err < 0) {
atomic_set(&acc->enabled, 0);
dev_err(&acc->client->dev,
"enable batch err=%d\n", err);
return err;
}
} else {
err = lis3dh_enable_DRDY_int(acc);
if (err) {
atomic_set(&acc->enabled, 0);
dev_err(&acc->client->dev,
"enable interrupt err=%d\n", err);
return err;
}
}
}
return 0;
}
static int lis3dh_acc_disable(struct lis3dh_acc_data *acc)
{
int err = 0;
if (atomic_read(&acc->cal_status)) {
dev_err(&acc->client->dev,
"can not disable when sensor do calibration now\n");
return -EBUSY;
}
dev_dbg(&acc->client->dev, "disable state=%d\n",
atomic_read(&acc->enabled));
if (atomic_cmpxchg(&acc->enabled, 1, 0)) {
if (acc->use_batch) {
err = lis3dh_acc_enable_batch(acc, false);
if (err < 0) {
atomic_set(&acc->enabled, 1);
return err;
}
}
if (!acc->pdata->enable_int && !acc->use_batch)
cancel_delayed_work_sync(&acc->input_work);
lis3dh_acc_device_power_off(acc);
if (pinctrl_select_state(acc->pinctrl, acc->pin_sleep))
dev_err(&acc->client->dev,
"can't select pinctrl sleep state\n");
}
return 0;
}
static irqreturn_t lis3dh_acc_isr1(int irq, void *dev)
{
int err;
char status;
int i;
int fifo_cnt;
int xyz[3] = { 0 };
u64 timestamp = 0;
u32 time_h, time_l, time_ms;
struct lis3dh_acc_data *acc = dev;
err = lis3dh_interrupt_status(acc, &status);
if (err) {
dev_err(&acc->client->dev, "read status error\n");
goto exit;
}
if (IS_FIFO_FULL(status) || IS_WATER_MARK_REACHED(status)) {
timestamp = lis3dh_acc_get_time_ns();
time_ms = lis3dh_acc_odr_to_interval(acc,
(acc->resume_state[RES_CTRL_REG1] >> 4));
fifo_cnt = lis3dh_acc_get_fifo_lvl(acc);
dev_dbg(&acc->client->dev, "TS: base=%lld, interval=%d fifo_cnt=%d\n",
timestamp, time_ms, fifo_cnt);
timestamp = timestamp -
((u64)time_ms * LIS3DH_TIME_MS_TO_NS * fifo_cnt);
for (i = 0; i < fifo_cnt; i++) {
err = lis3dh_acc_get_acceleration_data(acc, xyz);
if (err < 0) {
dev_err(&acc->client->dev,
"get_acceleration_data failed\n");
goto exit;
} else {
timestamp = timestamp +
((u64)time_ms * LIS3DH_TIME_MS_TO_NS);
time_h = (u32)((timestamp >> 32) & 0xFFFFFFFF);
time_l = (u32)(timestamp & 0xFFFFFFFF);
input_report_abs(acc->input_dev, ABS_RX,
time_h);
input_report_abs(acc->input_dev, ABS_RY,
time_l);
lis3dh_acc_report_values(acc, xyz);
}
}
err = lis3dh_set_fifo_mode(acc->client, LIS3DH_BYPASS_MODE);
if (err < 0) {
dev_err(&acc->client->dev,
"set fifo mode to bypass failed\n");
goto exit;
}
err = lis3dh_set_fifo_mode(acc->client, LIS3DH_FIFO_MODE);
if (err < 0) {
dev_err(&acc->client->dev,
"set fifo mode to bypass failed\n");
goto exit;
}
} else {
err = lis3dh_acc_get_acceleration_data(acc, xyz);
if (err < 0) {
dev_err(&acc->client->dev,
"get_acceleration_data failed\n");
goto exit;
} else {
lis3dh_acc_report_values(acc, xyz);
}
}
exit:
return IRQ_HANDLED;
}
static irqreturn_t lis3dh_acc_isr2(int irq, void *dev)
{
struct lis3dh_acc_data *acc = dev;
int err;
int xyz[3] = { 0 };
err = lis3dh_acc_get_acceleration_data(acc, xyz);
if (err < 0)
dev_err(&acc->client->dev, "get_acceleration_data failed\n");
else
lis3dh_acc_report_values(acc, xyz);
return IRQ_HANDLED;
}
static ssize_t read_single_reg(struct device *dev, char *buf, u8 reg)
{
ssize_t ret;
struct lis3dh_acc_data *acc = dev_get_drvdata(dev);
int err;
u8 data = reg;
err = lis3dh_acc_i2c_read(acc, &data, 1);
if (err < 0)
return err;
ret = snprintf(buf, 4, "0x%02x\n", data);
return ret;
}
static int write_reg(struct device *dev, const char *buf, u8 reg,
u8 mask, int resumeIndex)
{
int err = -1;
struct lis3dh_acc_data *acc = dev_get_drvdata(dev);
u8 x[2];
u8 new_val;
unsigned long val;
if (kstrtoul(buf, 16, &val))
return -EINVAL;
new_val = ((u8) val & mask);
x[0] = reg;
x[1] = new_val;
err = lis3dh_acc_register_write(acc, x, reg, new_val);
if (err < 0)
return err;
acc->resume_state[resumeIndex] = new_val;
return err;
}
static int lis3dh_axis_calibrate(struct lis3dh_acc_data *acc,
int *cal_xyz)
{
int xyz[3] = { 0 };
int arry[3] = { 0 };
int err;
int i;
for (i = 0; i < LIS3DH_CAL_MAX; i++) {
msleep(FACTORY_CALIBRATION_DELAY);
err = lis3dh_acc_get_acceleration_data(acc, xyz);
if (err < 0) {
dev_err(&acc->client->dev,
"get_acceleration_data failed\n");
return err;
}
if (i < LIS3DH_CAL_SKIP_COUNT)
continue;
arry[0] += xyz[0];
arry[1] += xyz[1];
arry[2] += xyz[2];
}
cal_xyz[0] = arry[0] / (LIS3DH_CAL_MAX -
LIS3DH_CAL_SKIP_COUNT);
cal_xyz[1] = arry[1] / (LIS3DH_CAL_MAX -
LIS3DH_CAL_SKIP_COUNT);
cal_xyz[2] = arry[2] / (LIS3DH_CAL_MAX -
LIS3DH_CAL_SKIP_COUNT);
return 0;
}
static int lis3dh_calibrate(struct sensors_classdev *sensors_cdev,
int axis, int apply_now)
{
struct lis3dh_acc_data *acc = container_of(sensors_cdev,
struct lis3dh_acc_data, cdev);
int xyz[3] = { 0 };
int err;
acc->use_cal = false;
acc->pre_enable = atomic_read(&acc->enabled);
if (acc->pre_enable) {
err = lis3dh_acc_disable(acc);
if (err < 0) {
dev_err(&acc->client->dev, "cannot disable sensor\n");
return err;
}
}
if (atomic_cmpxchg(&acc->cal_status, 0, 1)) {
dev_err(&acc->client->dev, "do calibration error\n");
return -EBUSY;
}
err = lis3dh_acc_device_power_on(acc);
if (err < 0) {
dev_err(&acc->client->dev, "cannot power on sensor\n");
return err;
}
err = lis3dh_axis_calibrate(acc, xyz);
if (err < 0) {
dev_err(&acc->client->dev, "accel calibrate error\n");
return err;
}
switch (axis) {
case AXIS_X:
xyz[1] = 0;
xyz[2] = 0;
break;
case AXIS_Y:
xyz[0] = 0;
xyz[2] = 0;
break;
case AXIS_Z:
xyz[0] = 0;
xyz[1] = 0;
xyz[2] = xyz[2] - RAW_TO_1G;
break;
case AXIS_XYZ:
xyz[2] = xyz[2] - RAW_TO_1G;
break;
default:
dev_err(&acc->client->dev, "can not calibrate accel\n");
break;
}
memset(acc->calibrate_buf, 0, sizeof(acc->calibrate_buf));
snprintf(acc->calibrate_buf, sizeof(acc->calibrate_buf),
"%d,%d,%d", xyz[0], xyz[1], xyz[2]);
if (apply_now) {
acc->cal_params[0] = xyz[0];
acc->cal_params[1] = xyz[1];
acc->cal_params[2] = xyz[2];
acc->use_cal = true;
}
lis3dh_acc_device_power_off(acc);
atomic_set(&acc->cal_status, 0);
if (acc->pre_enable) {
err = lis3dh_acc_enable(acc);
if (err < 0) {
dev_err(&acc->client->dev, "cannot enable sensor\n");
return err;
}
}
return 0;
}
static int lis3dh_write_cal_params(struct sensors_classdev *sensors_cdev,
struct cal_result_t *cal_result)
{
struct lis3dh_acc_data *acc = container_of(sensors_cdev,
struct lis3dh_acc_data, cdev);
acc->cal_params[0] = cal_result->offset_x;
acc->cal_params[1] = cal_result->offset_y;
acc->cal_params[2] = cal_result->offset_z;
snprintf(acc->calibrate_buf, sizeof(acc->calibrate_buf),
"%d,%d,%d", acc->cal_params[0], acc->cal_params[1],
acc->cal_params[2]);
acc->use_cal = true;
dev_dbg(&acc->client->dev, "read accel calibrate bias %d,%d,%d\n",
acc->cal_params[0], acc->cal_params[1], acc->cal_params[2]);
return 0;
}
static int lis3dh_acc_get_calibrate(struct lis3dh_acc_data *acc, int *xyz)
{
xyz[0] -= acc->cal_params[0];
xyz[1] -= acc->cal_params[1];
xyz[2] -= acc->cal_params[2];
dev_dbg(&acc->client->dev, "%s read calibrate x=%d, y=%d, z=%d\n",
LIS3DH_ACC_DEV_NAME, xyz[0], xyz[1], xyz[2]);
return 0;
}
static ssize_t attr_get_polling_rate(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int val;
struct lis3dh_acc_data *acc = dev_get_drvdata(dev);
mutex_lock(&acc->lock);
val = acc->delay_ms;
mutex_unlock(&acc->lock);
return snprintf(buf, 8, "%d\n", val);
}
static ssize_t attr_set_polling_rate(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct lis3dh_acc_data *acc = dev_get_drvdata(dev);
unsigned long interval_ms;
if (atomic_read(&acc->cal_status)) {
dev_err(&acc->client->dev,
"can not set rate when sensor do calibration now\n");
return -EBUSY;
}
if (kstrtoul(buf, 10, &interval_ms))
return -EINVAL;
if (!interval_ms)
return -EINVAL;
mutex_lock(&acc->lock);
acc->delay_ms = interval_ms;
lis3dh_acc_update_odr(acc, interval_ms);
mutex_unlock(&acc->lock);
return size;
}
static ssize_t attr_get_range(struct device *dev,
struct device_attribute *attr, char *buf)
{
char val;
struct lis3dh_acc_data *acc = dev_get_drvdata(dev);
char range = 2;
mutex_lock(&acc->lock);
val = acc->pdata->g_range;
switch (val) {
case LIS3DH_ACC_G_2G:
range = 2;
break;
case LIS3DH_ACC_G_4G:
range = 4;
break;
case LIS3DH_ACC_G_8G:
range = 8;
break;
case LIS3DH_ACC_G_16G:
range = 16;
break;
}
mutex_unlock(&acc->lock);
return snprintf(buf, 4, "%d\n", range);
}
static ssize_t attr_set_range(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct lis3dh_acc_data *acc = dev_get_drvdata(dev);
unsigned long val;
if (kstrtoul(buf, 10, &val))
return -EINVAL;
mutex_lock(&acc->lock);
acc->pdata->g_range = val;
lis3dh_acc_update_g_range(acc, val);
mutex_unlock(&acc->lock);
return size;
}
static ssize_t attr_get_enable(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lis3dh_acc_data *acc = dev_get_drvdata(dev);
int val = atomic_read(&acc->enabled);
return snprintf(buf, sizeof(val) + 2, "%d\n", val);
}
static ssize_t attr_set_enable(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct lis3dh_acc_data *acc = dev_get_drvdata(dev);
unsigned long val;
if (kstrtoul(buf, 10, &val))
return -EINVAL;
if (val)
lis3dh_acc_enable(acc);
else
lis3dh_acc_disable(acc);
return size;
}
static ssize_t attr_set_intconfig1(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, INT_CFG1, NO_MASK, RES_INT_CFG1);
}
static ssize_t attr_get_intconfig1(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_CFG1);
}
static ssize_t attr_set_duration1(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, INT_DUR1, INT1_DURATION_MASK, RES_INT_DUR1);
}
static ssize_t attr_get_duration1(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_DUR1);
}
static ssize_t attr_set_thresh1(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, INT_THS1, INT1_THRESHOLD_MASK, RES_INT_THS1);
}
static ssize_t attr_get_thresh1(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_THS1);
}
static ssize_t attr_get_source1(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_SRC1);
}
static ssize_t attr_set_click_cfg(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, TT_CFG, TAP_CFG_MASK, RES_TT_CFG);
}
static ssize_t attr_get_click_cfg(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, TT_CFG);
}
static ssize_t attr_get_click_source(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, TT_SRC);
}
static ssize_t attr_set_click_ths(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, TT_THS, TAP_THS_MASK, RES_TT_THS);
}
static ssize_t attr_get_click_ths(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, TT_THS);
}
static ssize_t attr_set_click_tlim(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, TT_LIM, TAP_TLIM_MASK, RES_TT_LIM);
}
static ssize_t attr_get_click_tlim(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, TT_LIM);
}
static ssize_t attr_set_click_tlat(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, TT_TLAT, TAP_TLAT_MASK, RES_TT_TLAT);
}
static ssize_t attr_get_click_tlat(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, TT_TLAT);
}
static ssize_t attr_set_click_tw(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, TT_TLAT, TAP_TW_MASK, RES_TT_TLAT);
}
static ssize_t attr_get_click_tw(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, TT_TLAT);
}
#ifdef DEBUG
/* PAY ATTENTION: These DEBUG funtions don't manage resume_state */
static ssize_t attr_reg_set(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
int rc;
struct lis3dh_acc_data *acc = dev_get_drvdata(dev);
u8 x[2];
unsigned long val;
if (kstrtoul(buf, 16, &val))
return -EINVAL;
mutex_lock(&acc->lock);
x[0] = acc->reg_addr;
mutex_unlock(&acc->lock);
x[1] = val;
rc = lis3dh_acc_i2c_write(acc, x, 1);
/*TODO: error need to be managed */
return size;
}
static ssize_t attr_reg_get(struct device *dev, struct device_attribute *attr,
char *buf)
{
ssize_t ret;
struct lis3dh_acc_data *acc = dev_get_drvdata(dev);
int rc;
u8 data;
mutex_lock(&acc->lock);
data = acc->reg_addr;
mutex_unlock(&acc->lock);
rc = lis3dh_acc_i2c_read(acc, &data, 1);
/* TODO: error need to be managed */
ret = snprintf(buf, 8, "0x%02x\n", data);
return ret;
}
static ssize_t attr_addr_set(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct lis3dh_acc_data *acc = dev_get_drvdata(dev);
unsigned long val;
if (kstrtoul(buf, 16, &val))
return -EINVAL;
mutex_lock(&acc->lock);
acc->reg_addr = val;
mutex_unlock(&acc->lock);
return size;
}
#endif
static struct device_attribute attributes[] = {
__ATTR(poll_delay, 0664, attr_get_polling_rate,
attr_set_polling_rate),
__ATTR(range, 0664, attr_get_range, attr_set_range),
__ATTR(enable, 0664, attr_get_enable, attr_set_enable),
__ATTR(int1_config, 0664, attr_get_intconfig1, attr_set_intconfig1),
__ATTR(int1_duration, 0664, attr_get_duration1, attr_set_duration1),
__ATTR(int1_threshold, 0664, attr_get_thresh1, attr_set_thresh1),
__ATTR(int1_source, 0444, attr_get_source1, NULL),
__ATTR(click_config, 0664, attr_get_click_cfg, attr_set_click_cfg),
__ATTR(click_source, 0444, attr_get_click_source, NULL),
__ATTR(click_threshold, 0664, attr_get_click_ths, attr_set_click_ths),
__ATTR(click_timelimit, 0664, attr_get_click_tlim,
attr_set_click_tlim),
__ATTR(click_timelatency, 0664, attr_get_click_tlat,
attr_set_click_tlat),
__ATTR(click_timewindow, 0664, attr_get_click_tw, attr_set_click_tw),
#ifdef DEBUG
__ATTR(reg_value, 0664, attr_reg_get, attr_reg_set),
__ATTR(reg_addr, 0220, NULL, attr_addr_set),
#endif
};
static int create_sysfs_interfaces(struct device *dev)
{
int i;
int err;
for (i = 0; i < ARRAY_SIZE(attributes); i++) {
err = device_create_file(dev, attributes + i);
if (err)
goto error;
}
return 0;
error:
for (; i >= 0; i--)
device_remove_file(dev, attributes + i);
dev_err(dev, "%s:Unable to create interface\n", __func__);
return err;
}
static int remove_sysfs_interfaces(struct device *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(attributes); i++)
device_remove_file(dev, attributes + i);
return 0;
}
static int lis3dh_acc_flush(struct sensors_classdev *sensors_cdev)
{
struct lis3dh_acc_data *acc = container_of(sensors_cdev,
struct lis3dh_acc_data, cdev);
s64 timestamp;
int err;
int fifo_cnt;
int i;
u32 time_h, time_l, time_ms;
int xyz[3] = {0};
timestamp = lis3dh_acc_get_time_ns();
time_ms = lis3dh_acc_odr_to_interval(acc,
(acc->resume_state[RES_CTRL_REG1] >> 4));
fifo_cnt = lis3dh_acc_get_fifo_lvl(acc);
dev_dbg(&acc->client->dev, "TS: base=%lld, interval=%d fifo_cnt=%d\n",
timestamp, time_ms, fifo_cnt);
timestamp = timestamp -
((s64)time_ms * LIS3DH_TIME_MS_TO_NS * fifo_cnt);
for (i = 0; i < fifo_cnt; i++) {
err = lis3dh_acc_get_acceleration_data(acc, xyz);
if (err < 0) {
dev_err(&acc->client->dev,
"get_acceleration_data failed\n");
goto exit;
} else {
timestamp = timestamp +
(time_ms * LIS3DH_TIME_MS_TO_NS);
time_h = (u32)(((u64)timestamp >> 32) & 0xFFFFFFFF);
time_l = (u32)(timestamp & 0xFFFFFFFF);
input_report_abs(acc->input_dev, ABS_RX,
time_h);
input_report_abs(acc->input_dev, ABS_RY,
time_l);
lis3dh_acc_report_values(acc, xyz);
}
}
input_event(acc->input_dev, EV_SYN, SYN_CONFIG, acc->flush_count++);
input_sync(acc->input_dev);
return 0;
exit:
return err;
}
static int lis3dh_acc_poll_delay_set(struct sensors_classdev *sensors_cdev,
unsigned int delay_msec)
{
struct lis3dh_acc_data *acc = container_of(sensors_cdev,
struct lis3dh_acc_data, cdev);
int err;
int watermark;
if (atomic_read(&acc->cal_status)) {
dev_err(&acc->client->dev,
"can not set delay when sensor do calibration now\n");
return -EBUSY;
}
dev_dbg(&acc->client->dev, "set poll delay =%d\n", delay_msec);
mutex_lock(&acc->lock);
acc->delay_ms = delay_msec;
/*
* Device may not power on,
* only set register when device is enabled.
*/
if (atomic_read(&acc->enabled)) {
err = lis3dh_acc_update_odr(acc, delay_msec);
if (err < 0) {
dev_err(&acc->client->dev, "Cannot update ODR\n");
err = -EBUSY;
goto exit;
}
if (acc->use_batch) {
watermark = lis3dh_acc_calc_watermark(acc,
acc->fifo_timeout_ms);
if (watermark <= 0) {
dev_err(&acc->client->dev,
"Cannot calculate watermark, ret=%d\n",
watermark);
err = -EINVAL;
goto exit;
} else {
err = lis3dh_acc_set_waterwark(acc, watermark);
}
}
}
exit:
mutex_unlock(&acc->lock);
return err;
}
static int lis3dh_acc_enable_set(struct sensors_classdev *sensors_cdev,
unsigned int enable)
{
struct lis3dh_acc_data *acc = container_of(sensors_cdev,
struct lis3dh_acc_data, cdev);
int err;
if (enable) {
err = lis3dh_acc_enable(acc);
if (err < 0) {
dev_err(&acc->client->dev, "enable error\n");
return err;
}
} else {
err = lis3dh_acc_disable(acc);
if (err < 0) {
dev_err(&acc->client->dev, "enable error\n");
return err;
}
}
return err;
}
static int lis3dh_latency_set(struct sensors_classdev *cdev,
unsigned int max_latency)
{
struct lis3dh_acc_data *acc = container_of(cdev,
struct lis3dh_acc_data, cdev);
struct i2c_client *client = acc->client;
int ret;
/* Does not support batch in while interrupt is not enabled */
if (!acc->pdata->enable_int) {
dev_err(&client->dev,
"Cannot set batch mode, interrupt is not enabled!\n");
return -EPERM;
}
acc->fifo_timeout_ms = max_latency;
acc->use_batch = max_latency ? true : false;
ret = lis3dh_acc_enable_batch(acc, max_latency);
if (ret) {
dev_err(&client->dev, "enable batch:%d failed\n", max_latency);
return ret;
}
return 0;
}
/* Work function for polling mode */
static void lis3dh_acc_input_work_func(struct work_struct *work)
{
struct lis3dh_acc_data *acc;
int xyz[3] = { 0 };
int err;
acc = container_of((struct delayed_work *)work,
struct lis3dh_acc_data, input_work);
mutex_lock(&acc->lock);
err = lis3dh_acc_get_acceleration_data(acc, xyz);
if (err < 0)
dev_err(&acc->client->dev, "get_acceleration_data failed\n");
else
lis3dh_acc_report_values(acc, xyz);
queue_delayed_work(acc->data_wq, &acc->input_work,
msecs_to_jiffies(acc->delay_ms));
mutex_unlock(&acc->lock);
}
int lis3dh_acc_input_open(struct input_dev *input)
{
struct lis3dh_acc_data *acc = input_get_drvdata(input);
return lis3dh_acc_enable(acc);
}
void lis3dh_acc_input_close(struct input_dev *dev)
{
struct lis3dh_acc_data *acc = input_get_drvdata(dev);
lis3dh_acc_disable(acc);
}
static int lis3dh_acc_validate_pdata(struct lis3dh_acc_data *acc)
{
acc->pdata->init_interval = max(acc->pdata->init_interval,
acc->pdata->min_interval);
if (acc->pdata->axis_map_x > 2 ||
acc->pdata->axis_map_y > 2 ||
acc->pdata->axis_map_z > 2) {
dev_err(&acc->client->dev,
"invalid axis_map value x:%u y:%u z%u\n",
acc->pdata->axis_map_x,
acc->pdata->axis_map_y, acc->pdata->axis_map_z);
return -EINVAL;
}
/* Only allow 0 and 1 for negation boolean flag */
if (acc->pdata->negate_x > 1 || acc->pdata->negate_y > 1
|| acc->pdata->negate_z > 1) {
dev_err(&acc->client->dev,
"invalid negate value x:%u y:%u z:%u\n",
acc->pdata->negate_x,
acc->pdata->negate_y, acc->pdata->negate_z);
return -EINVAL;
}
/* Enforce minimum polling interval */
if (acc->pdata->init_interval < acc->pdata->min_interval) {
dev_err(&acc->client->dev, "minimum poll interval violated\n");
return -EINVAL;
}
return 0;
}
static int lis3dh_acc_input_init(struct lis3dh_acc_data *acc)
{
int err;
acc->input_dev = devm_input_allocate_device(&acc->client->dev);
if (!acc->input_dev) {
err = -ENOMEM;
dev_err(&acc->client->dev, "input device allocation failed\n");
goto err0;
}
acc->input_dev->open = lis3dh_acc_input_open;
acc->input_dev->close = lis3dh_acc_input_close;
acc->input_dev->name = ACCEL_INPUT_DEV_NAME;
acc->input_dev->id.bustype = BUS_I2C;
acc->input_dev->dev.parent = &acc->client->dev;
input_set_drvdata(acc->input_dev, acc);
set_bit(EV_ABS, acc->input_dev->evbit);
/* next is used for interruptA sources data if the case */
set_bit(ABS_MISC, acc->input_dev->absbit);
/* next is used for interruptB sources data if the case */
set_bit(ABS_WHEEL, acc->input_dev->absbit);
input_set_abs_params(acc->input_dev, ABS_RX, 0, (1UL << 31) - 1,
FUZZ, FLAT);
input_set_abs_params(acc->input_dev, ABS_RY, 0, (1UL << 31) - 1,
FUZZ, FLAT);
input_set_abs_params(acc->input_dev, ABS_X, -G_MAX, G_MAX, FUZZ, FLAT);
input_set_abs_params(acc->input_dev, ABS_Y, -G_MAX, G_MAX, FUZZ, FLAT);
input_set_abs_params(acc->input_dev, ABS_Z, -G_MAX, G_MAX, FUZZ, FLAT);
/* next is used for interruptA sources data if the case */
input_set_abs_params(acc->input_dev, ABS_MISC, INT_MIN, INT_MAX, 0, 0);
/* next is used for interruptB sources data if the case */
input_set_abs_params(acc->input_dev, ABS_WHEEL, INT_MIN, INT_MAX, 0, 0);
err = input_register_device(acc->input_dev);
if (err) {
dev_err(&acc->client->dev,
"unable to register input device %s\n",
acc->input_dev->name);
goto err0;
}
return 0;
err0:
return err;
}
static int lis3dh_pinctrl_init(struct lis3dh_acc_data *acc)
{
struct i2c_client *client = acc->client;
acc->pinctrl = devm_pinctrl_get(&client->dev);
if (IS_ERR_OR_NULL(acc->pinctrl)) {
dev_err(&client->dev, "Failed to get pinctrl\n");
return PTR_ERR(acc->pinctrl);
}
acc->pin_default =
pinctrl_lookup_state(acc->pinctrl, "lis3dh_default");
if (IS_ERR_OR_NULL(acc->pin_default)) {
dev_err(&client->dev, "Failed to look up default state\n");
return PTR_ERR(acc->pin_default);
}
acc->pin_sleep =
pinctrl_lookup_state(acc->pinctrl, "lis3dh_sleep");
if (IS_ERR_OR_NULL(acc->pin_sleep)) {
dev_err(&client->dev, "Failed to look up sleep state\n");
return PTR_ERR(acc->pin_sleep);
}
return 0;
}
#ifdef CONFIG_OF
static int lis3dh_parse_dt(struct device *dev,
struct lis3dh_acc_platform_data *pdata)
{
struct device_node *np = dev->of_node;
u32 temp_val;
int rc;
rc = of_property_read_u32(np, "st,min-interval", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read min-interval\n");
return rc;
} else {
pdata->min_interval = temp_val;
}
rc = of_property_read_u32(np, "st,init-interval", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read init-interval\n");
return rc;
} else {
pdata->init_interval = temp_val;
}
rc = of_property_read_u32(np, "st,axis-map-x", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read axis-map_x\n");
return rc;
} else {
pdata->axis_map_x = (u8)temp_val;
}
rc = of_property_read_u32(np, "st,axis-map-y", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read axis_map_y\n");
return rc;
} else {
pdata->axis_map_y = (u8)temp_val;
}
rc = of_property_read_u32(np, "st,axis-map-z", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read axis-map-z\n");
return rc;
} else {
pdata->axis_map_z = (u8)temp_val;
}
rc = of_property_read_u32(np, "st,g-range", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read g-range\n");
return rc;
} else {
switch (temp_val) {
case 2:
pdata->g_range = LIS3DH_ACC_G_2G;
break;
case 4:
pdata->g_range = LIS3DH_ACC_G_4G;
break;
case 8:
pdata->g_range = LIS3DH_ACC_G_8G;
break;
case 16:
pdata->g_range = LIS3DH_ACC_G_16G;
break;
default:
pdata->g_range = LIS3DH_ACC_G_2G;
break;
}
}
pdata->negate_x = of_property_read_bool(np, "st,negate-x");
pdata->negate_y = of_property_read_bool(np, "st,negate-y");
pdata->negate_z = of_property_read_bool(np, "st,negate-z");
pdata->enable_int = of_property_read_bool(np, "st,enable-int");
pdata->gpio_int1 = of_get_named_gpio_flags(dev->of_node,
"st,gpio-int1", 0, NULL);
pdata->gpio_int2 = of_get_named_gpio_flags(dev->of_node,
"st,gpio-int2", 0, NULL);
return 0;
}
#else
static int lis3dh_parse_dt(struct device *dev,
struct lis3dh_acc_platform_data *pdata)
{
return -EINVAL;
}
#endif
static int lis3dh_acc_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct lis3dh_acc_data *acc;
int err = -1;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "client not i2c capable\n");
err = -ENODEV;
goto exit_check_functionality_failed;
}
acc = kzalloc(sizeof(struct lis3dh_acc_data), GFP_KERNEL);
if (acc == NULL) {
err = -ENOMEM;
dev_err(&client->dev,
"failed to allocate memory for module data: "
"%d\n", err);
goto exit_check_functionality_failed;
}
mutex_init(&acc->lock);
mutex_lock(&acc->lock);
acc->client = client;
i2c_set_clientdata(client, acc);
acc->pdata = kmalloc(sizeof(*acc->pdata), GFP_KERNEL);
if (acc->pdata == NULL) {
err = -ENOMEM;
dev_err(&client->dev,
"failed to allocate memory for pdata: %d\n",
err);
goto err_mutexunlock;
}
memset(acc->pdata, 0 , sizeof(*acc->pdata));
if (client->dev.of_node) {
err = lis3dh_parse_dt(&client->dev, acc->pdata);
if (err) {
dev_err(&client->dev, "Failed to parse device tree\n");
err = -EINVAL;
goto exit_kfree_pdata;
}
} else if (client->dev.platform_data != NULL) {
memcpy(acc->pdata, client->dev.platform_data,
sizeof(*acc->pdata));
} else {
dev_err(&client->dev, "No valid platform data. exiting.\n");
err = -ENODEV;
goto exit_kfree_pdata;
}
err = lis3dh_acc_validate_pdata(acc);
if (err < 0) {
dev_err(&client->dev, "failed to validate platform data\n");
goto exit_kfree_pdata;
}
/* initialize pinctrl */
err = lis3dh_pinctrl_init(acc);
if (err) {
dev_err(&client->dev, "Can't initialize pinctrl\n");
goto exit_kfree_pdata;
}
err = pinctrl_select_state(acc->pinctrl, acc->pin_default);
if (err) {
dev_err(&client->dev,
"Can't select pinctrl default state\n");
goto exit_kfree_pdata;
}
if (acc->pdata->init) {
err = acc->pdata->init();
if (err < 0) {
dev_err(&client->dev, "init failed: %d\n", err);
goto err_pdata_init;
}
}
if (gpio_is_valid(acc->pdata->gpio_int1)
&& acc->pdata->enable_int)
acc->irq1 = gpio_to_irq(acc->pdata->gpio_int1);
if (gpio_is_valid(acc->pdata->gpio_int2)
&& acc->pdata->enable_int)
acc->irq2 = gpio_to_irq(acc->pdata->gpio_int2);
memset(acc->resume_state, 0, ARRAY_SIZE(acc->resume_state));
acc->resume_state[RES_CTRL_REG1] = LIS3DH_ACC_ENABLE_ALL_AXES;
acc->resume_state[RES_CTRL_REG2] = 0x00;
acc->resume_state[RES_CTRL_REG3] = 0x00;
acc->resume_state[RES_CTRL_REG4] = 0x00;
acc->resume_state[RES_CTRL_REG5] = 0x00;
acc->resume_state[RES_CTRL_REG6] = 0x00;
acc->resume_state[RES_TEMP_CFG_REG] = 0x00;
acc->resume_state[RES_FIFO_CTRL_REG] = 0x00;
acc->resume_state[RES_INT_CFG1] = 0x00;
acc->resume_state[RES_INT_THS1] = 0x00;
acc->resume_state[RES_INT_DUR1] = 0x00;
acc->resume_state[RES_TT_CFG] = 0x00;
acc->resume_state[RES_TT_THS] = 0x00;
acc->resume_state[RES_TT_LIM] = 0x00;
acc->resume_state[RES_TT_TLAT] = 0x00;
acc->resume_state[RES_TT_TW] = 0x00;
acc->cal_params[0] = 0;
acc->cal_params[1] = 0;
acc->cal_params[2] = 0;
acc->use_cal = false;
atomic_set(&acc->cal_status, 0);
if (acc->pdata->enable_int) {
if (gpio_is_valid(acc->pdata->gpio_int1))
acc->resume_state[RES_CTRL_REG3] = CONFIG_IRQ_DRDY1;
acc->resume_state[RES_CTRL_REG4] = CONFIG_BLOCK_READ;
}
err = lis3dh_acc_config_regulator(acc, true);
if (err < 0) {
dev_err(&client->dev, "Configure power failed: %d\n", err);
goto err_pdata_init;
}
err = lis3dh_acc_device_power_on(acc);
if (err < 0) {
dev_err(&client->dev, "power on failed: %d\n", err);
goto err_regulator_init;
}
atomic_set(&acc->enabled, 1);
err = lis3dh_acc_update_g_range(acc, acc->pdata->g_range);
if (err < 0) {
dev_err(&client->dev, "update_g_range failed\n");
goto err_power_off;
}
acc->use_batch = false;
acc->batch_mode = BATCH_MODE_NORMAL;
acc->fifo_timeout_ms = 0;
acc->delay_ms = acc->pdata->init_interval;
err = lis3dh_acc_update_odr(acc, acc->delay_ms);
if (err < 0) {
dev_err(&client->dev, "update_odr failed\n");
goto err_power_off;
}
err = lis3dh_acc_input_init(acc);
if (err < 0) {
dev_err(&client->dev, "input init failed\n");
goto err_power_off;
}
acc->data_wq = NULL;
if (!acc->pdata->enable_int) {
acc->data_wq = create_freezable_workqueue("lis3dh_data_work");
if (!acc->data_wq) {
dev_err(&client->dev, "create workquque failed\n");
goto err_power_off;
}
INIT_DELAYED_WORK(&acc->input_work,
lis3dh_acc_input_work_func);
}
err = create_sysfs_interfaces(&client->dev);
if (err < 0) {
dev_err(&client->dev,
"device LIS3DH_ACC_DEV_NAME sysfs register failed\n");
goto err_destroy_workqueue;
}
acc->cdev = lis3dh_acc_cdev;
acc->cdev.sensors_enable = lis3dh_acc_enable_set;
acc->cdev.sensors_poll_delay = lis3dh_acc_poll_delay_set;
/* batch is possiable only when interrupt is enabled */
if (gpio_is_valid(acc->pdata->gpio_int1) && acc->pdata->enable_int) {
acc->cdev.sensors_set_latency = lis3dh_latency_set;
acc->cdev.sensors_flush = lis3dh_acc_flush;
acc->cdev.fifo_reserved_event_count = LIS3DH_FIFO_SIZE;
acc->cdev.fifo_max_event_count = LIS3DH_FIFO_SIZE;
acc->cdev.max_delay = LIS_INT_MAX_DELAY;
}
acc->cdev.sensors_calibrate = lis3dh_calibrate;
acc->cdev.sensors_write_cal_params = lis3dh_write_cal_params;
memset(&acc->cdev.cal_result, 0, sizeof(acc->cdev.cal_result));
acc->cdev.params = acc->calibrate_buf;
err = sensors_classdev_register(&client->dev, &acc->cdev);
if (err) {
dev_err(&client->dev,
"class device create failed: %d\n", err);
goto err_remove_sysfs_int;
}
lis3dh_acc_device_power_off(acc);
/* As default, do not report information */
atomic_set(&acc->enabled, 0);
if (gpio_is_valid(acc->pdata->gpio_int1) && acc->pdata->enable_int) {
err = request_threaded_irq(acc->irq1, NULL,
lis3dh_acc_isr1,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
"lis3dh_acc_irq1", acc);
if (err < 0) {
dev_err(&client->dev,
"request irq1 failed: %d\n", err);
goto err_unreg_sensor_class;
}
disable_irq_nosync(acc->irq1);
}
if (gpio_is_valid(acc->pdata->gpio_int2) && acc->pdata->enable_int) {
err = request_threaded_irq(acc->irq2, NULL,
lis3dh_acc_isr2,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
"lis3dh_acc_irq2", acc);
if (err < 0) {
dev_err(&client->dev,
"request irq2 failed: %d\n", err);
goto err_free_irq1;
}
disable_irq_nosync(acc->irq2);
}
if (acc->pdata->enable_int)
device_init_wakeup(&client->dev, 1);
if (pinctrl_select_state(acc->pinctrl, acc->pin_sleep))
dev_err(&client->dev,
"Can't select pinctrl sleep state\n");
mutex_unlock(&acc->lock);
dev_dbg(&client->dev, "%s: probed\n", LIS3DH_ACC_DEV_NAME);
return 0;
err_free_irq1:
if (gpio_is_valid(acc->pdata->gpio_int1) && acc->pdata->enable_int)
free_irq(acc->irq1, acc);
err_unreg_sensor_class:
sensors_classdev_unregister(&acc->cdev);
err_remove_sysfs_int:
remove_sysfs_interfaces(&client->dev);
err_destroy_workqueue:
if (acc->data_wq)
destroy_workqueue(acc->data_wq);
err_power_off:
lis3dh_acc_device_power_off(acc);
err_regulator_init:
lis3dh_acc_config_regulator(acc, false);
err_pdata_init:
if (acc->pdata->exit)
acc->pdata->exit();
exit_kfree_pdata:
kfree(acc->pdata);
err_mutexunlock:
mutex_unlock(&acc->lock);
kfree(acc);
exit_check_functionality_failed:
dev_err(&client->dev, "%s: Driver Init failed\n", LIS3DH_ACC_DEV_NAME);
return err;
}
static int lis3dh_acc_remove(struct i2c_client *client)
{
struct lis3dh_acc_data *acc = i2c_get_clientdata(client);
lis3dh_acc_device_power_off(acc);
if (gpio_is_valid(acc->pdata->gpio_int1) && acc->pdata->enable_int)
free_irq(acc->irq1, acc);
if (gpio_is_valid(acc->pdata->gpio_int2) && acc->pdata->enable_int)
free_irq(acc->irq2, acc);
sensors_classdev_unregister(&acc->cdev);
lis3dh_acc_config_regulator(acc, false);
remove_sysfs_interfaces(&client->dev);
if (acc->data_wq)
destroy_workqueue(acc->data_wq);
if (acc->pdata->exit)
acc->pdata->exit();
kfree(acc->pdata);
kfree(acc);
return 0;
}
#ifdef CONFIG_PM
static int lis3dh_acc_resume(struct i2c_client *client)
{
struct lis3dh_acc_data *acc = i2c_get_clientdata(client);
int err;
if (!acc->on_before_suspend)
return 0;
if (!acc->use_batch) {
err = lis3dh_acc_enable(acc);
if (err < 0)
dev_err(&client->dev,
"Resume: fail to enable sensor\n");
return 0;
}
/* resume to FIFO mode */
if (acc->batch_mode == BATCH_MODE_WAKE_UPON_FIFO_FULL) {
irq_set_irq_wake(acc->irq1, 0);
dev_dbg(&client->dev, "Resume: cancel irq wakeup\n");
} else {
err = lis3dh_set_fifo_mode(client, LIS3DH_FIFO_MODE);
dev_dbg(&client->dev, "Resume: swich back to FIFO mode\n");
if (err < 0)
dev_err(&client->dev,
"Resume: set fifo mode error\n");
}
return 0;
}
static int lis3dh_acc_suspend(struct i2c_client *client, pm_message_t mesg)
{
struct lis3dh_acc_data *acc = i2c_get_clientdata(client);
int err;
acc->on_before_suspend = atomic_read(&acc->enabled);
if (!acc->on_before_suspend)
return 0;
/* Power off the sensor if not in batch */
if (!acc->use_batch) {
err = lis3dh_acc_disable(acc);
if (err < 0)
dev_err(&client->dev,
"Suspend: fail to disable sensor\n");
return 0;
}
/*
* set IRQ wakeup if FIFO full wakeup is required,
* otherwise switch to steam mode and drop data.
*/
if (acc->batch_mode == BATCH_MODE_WAKE_UPON_FIFO_FULL) {
irq_set_irq_wake(acc->irq1, 1);
dev_dbg(&client->dev, "Suspend: Wakeup upon FIFO full\n");
} else {
err = lis3dh_set_fifo_mode(client, LIS3DH_STREAM_MODE);
dev_dbg(&client->dev, "Suspend: swich to STREAM mode\n");
if (err < 0)
dev_err(&client->dev,
"Suspend: set fifo mode error\n");
}
return 0;
}
#else
#define lis3dh_acc_suspend NULL
#define lis3dh_acc_resume NULL
#endif /* CONFIG_PM */
static const struct i2c_device_id lis3dh_acc_id[]
= { { LIS3DH_ACC_DEV_NAME, 0 }, { }, };
static struct of_device_id lis3dh_acc_match_table[] = {
{ .compatible = "st,lis3dh", },
{ },
};
MODULE_DEVICE_TABLE(i2c, lis3dh_acc_id);
static struct i2c_driver lis3dh_acc_driver = {
.driver = {
.owner = THIS_MODULE,
.name = LIS3DH_ACC_DEV_NAME,
.of_match_table = lis3dh_acc_match_table,
},
.probe = lis3dh_acc_probe,
.remove = lis3dh_acc_remove,
.suspend = lis3dh_acc_suspend,
.resume = lis3dh_acc_resume,
.id_table = lis3dh_acc_id,
};
static int __init lis3dh_acc_init(void)
{
return i2c_add_driver(&lis3dh_acc_driver);
}
static void __exit lis3dh_acc_exit(void)
{
i2c_del_driver(&lis3dh_acc_driver);
return;
}
module_init(lis3dh_acc_init);
module_exit(lis3dh_acc_exit);
MODULE_DESCRIPTION("lis3dh digital accelerometer sysfs driver");
MODULE_AUTHOR("Matteo Dameno, Carmine Iascone, Samuel Huo, STMicroelectronics");
MODULE_LICENSE("GPL");