blob: 225805401a01321da64f763696ff3f12aa481036 [file] [log] [blame]
/*
* Copyright (C) 2011 Kionix, Inc.
* Written by Chris Hudson <chudson@kionix.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
* 02111-1307, USA
*/
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/sensors.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/input/kxtj9.h>
#include <linux/input-polldev.h>
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#define ACCEL_INPUT_DEV_NAME "accelerometer"
#define DEVICE_NAME "kxtj9"
#define G_MAX 8000
/* OUTPUT REGISTERS */
#define XOUT_L 0x06
#define WHO_AM_I 0x0F
/* CONTROL REGISTERS */
#define INT_REL 0x1A
#define CTRL_REG1 0x1B
#define INT_CTRL1 0x1E
#define DATA_CTRL 0x21
/* CONTROL REGISTER 1 BITS */
#define PC1_OFF 0x7F
#define PC1_ON (1 << 7)
/* Data ready funtion enable bit: set during probe if using irq mode */
#define DRDYE (1 << 5)
/* DATA CONTROL REGISTER BITS */
#define ODR12_5F 0
#define ODR25F 1
#define ODR50F 2
#define ODR100F 3
#define ODR200F 4
#define ODR400F 5
#define ODR800F 6
/* INTERRUPT CONTROL REGISTER 1 BITS */
/* Set these during probe if using irq mode */
#define KXTJ9_IEL (1 << 3)
#define KXTJ9_IEA (1 << 4)
#define KXTJ9_IEN (1 << 5)
/* INPUT_ABS CONSTANTS */
#define FUZZ 3
#define FLAT 3
/* RESUME STATE INDICES */
#define RES_DATA_CTRL 0
#define RES_CTRL_REG1 1
#define RES_INT_CTRL1 2
#define RESUME_ENTRIES 3
/* POWER SUPPLY VOLTAGE RANGE */
#define KXTJ9_VDD_MIN_UV 2000000
#define KXTJ9_VDD_MAX_UV 3300000
#define KXTJ9_VIO_MIN_UV 1750000
#define KXTJ9_VIO_MAX_UV 1950000
/*
* The following table lists the maximum appropriate poll interval for each
* available output data rate.
*/
static struct sensors_classdev sensors_cdev = {
.name = "kxtj9-accel",
.vendor = "Kionix",
.version = 1,
.handle = 0,
.type = 1,
.max_range = "19.6",
.resolution = "0.01",
.sensor_power = "0.2",
.min_delay = 2000, /* microsecond */
.fifo_reserved_event_count = 0,
.fifo_max_event_count = 0,
.enabled = 0,
.delay_msec = 200, /* millisecond */
.sensors_enable = NULL,
.sensors_poll_delay = NULL,
};
static const struct {
unsigned int cutoff;
u8 mask;
} kxtj9_odr_table[] = {
{ 3, ODR800F },
{ 5, ODR400F },
{ 10, ODR200F },
{ 20, ODR100F },
{ 40, ODR50F },
{ 80, ODR25F },
{ 0, ODR12_5F},
};
struct kxtj9_data {
struct i2c_client *client;
struct kxtj9_platform_data pdata;
struct input_dev *input_dev;
#ifdef CONFIG_INPUT_KXTJ9_POLLED_MODE
struct input_polled_dev *poll_dev;
#endif
unsigned int last_poll_interval;
bool enable;
u8 shift;
u8 ctrl_reg1;
u8 data_ctrl;
u8 int_ctrl;
bool power_enabled;
struct regulator *vdd;
struct regulator *vio;
struct sensors_classdev cdev;
};
static int kxtj9_i2c_read(struct kxtj9_data *tj9, u8 addr, u8 *data, int len)
{
struct i2c_msg msgs[] = {
{
.addr = tj9->client->addr,
.flags = tj9->client->flags,
.len = 1,
.buf = &addr,
},
{
.addr = tj9->client->addr,
.flags = tj9->client->flags | I2C_M_RD,
.len = len,
.buf = data,
},
};
return i2c_transfer(tj9->client->adapter, msgs, 2);
}
static void kxtj9_report_acceleration_data(struct kxtj9_data *tj9)
{
s16 acc_data[3]; /* Data bytes from hardware xL, xH, yL, yH, zL, zH */
s16 x, y, z;
int err;
err = kxtj9_i2c_read(tj9, XOUT_L, (u8 *)acc_data, 6);
if (err < 0)
dev_err(&tj9->client->dev, "accelerometer data read failed\n");
x = le16_to_cpu(acc_data[tj9->pdata.axis_map_x]);
y = le16_to_cpu(acc_data[tj9->pdata.axis_map_y]);
z = le16_to_cpu(acc_data[tj9->pdata.axis_map_z]);
/* 8 bits output mode support */
if (!(tj9->ctrl_reg1 & RES_12BIT)) {
x <<= 4;
y <<= 4;
z <<= 4;
}
x >>= tj9->shift;
y >>= tj9->shift;
z >>= tj9->shift;
input_report_abs(tj9->input_dev, ABS_X, tj9->pdata.negate_x ? -x : x);
input_report_abs(tj9->input_dev, ABS_Y, tj9->pdata.negate_y ? -y : y);
input_report_abs(tj9->input_dev, ABS_Z, tj9->pdata.negate_z ? -z : z);
input_sync(tj9->input_dev);
}
static irqreturn_t kxtj9_isr(int irq, void *dev)
{
struct kxtj9_data *tj9 = dev;
int err;
/* data ready is the only possible interrupt type */
kxtj9_report_acceleration_data(tj9);
err = i2c_smbus_read_byte_data(tj9->client, INT_REL);
if (err < 0)
dev_err(&tj9->client->dev,
"error clearing interrupt status: %d\n", err);
return IRQ_HANDLED;
}
static int kxtj9_update_g_range(struct kxtj9_data *tj9, u8 new_g_range)
{
switch (new_g_range) {
case KXTJ9_G_2G:
tj9->shift = 4;
break;
case KXTJ9_G_4G:
tj9->shift = 3;
break;
case KXTJ9_G_8G:
tj9->shift = 2;
break;
default:
return -EINVAL;
}
tj9->ctrl_reg1 &= 0xe7;
tj9->ctrl_reg1 |= new_g_range;
return 0;
}
static int kxtj9_update_odr(struct kxtj9_data *tj9, unsigned int poll_interval)
{
int err;
int i;
/* Use the lowest ODR that can support the requested poll interval */
for (i = 0; i < ARRAY_SIZE(kxtj9_odr_table); i++) {
tj9->data_ctrl = kxtj9_odr_table[i].mask;
if (poll_interval < kxtj9_odr_table[i].cutoff)
break;
}
err = i2c_smbus_write_byte_data(tj9->client, CTRL_REG1, 0);
if (err < 0)
return err;
err = i2c_smbus_write_byte_data(tj9->client, DATA_CTRL, tj9->data_ctrl);
if (err < 0)
return err;
err = i2c_smbus_write_byte_data(tj9->client, CTRL_REG1, tj9->ctrl_reg1);
if (err < 0)
return err;
return 0;
}
static int kxtj9_power_on(struct kxtj9_data *data, bool on)
{
int rc = 0;
if (!on && data->power_enabled) {
rc = regulator_disable(data->vdd);
if (rc) {
dev_err(&data->client->dev,
"Regulator vdd disable failed rc=%d\n", rc);
return rc;
}
rc = regulator_disable(data->vio);
if (rc) {
dev_err(&data->client->dev,
"Regulator vio disable failed rc=%d\n", rc);
rc = regulator_enable(data->vdd);
if (rc) {
dev_err(&data->client->dev,
"Regulator vdd enable failed rc=%d\n",
rc);
}
}
data->power_enabled = false;
} else if (on && !data->power_enabled) {
rc = regulator_enable(data->vdd);
if (rc) {
dev_err(&data->client->dev,
"Regulator vdd enable failed rc=%d\n", rc);
return rc;
}
rc = regulator_enable(data->vio);
if (rc) {
dev_err(&data->client->dev,
"Regulator vio enable failed rc=%d\n", rc);
regulator_disable(data->vdd);
}
data->power_enabled = true;
} else {
dev_warn(&data->client->dev,
"Power on=%d. enabled=%d\n",
on, data->power_enabled);
}
return rc;
}
static int kxtj9_power_init(struct kxtj9_data *data, bool on)
{
int rc;
if (!on) {
if (regulator_count_voltages(data->vdd) > 0)
regulator_set_voltage(data->vdd, 0, KXTJ9_VDD_MAX_UV);
regulator_put(data->vdd);
if (regulator_count_voltages(data->vio) > 0)
regulator_set_voltage(data->vio, 0, KXTJ9_VIO_MAX_UV);
regulator_put(data->vio);
} else {
data->vdd = regulator_get(&data->client->dev, "vdd");
if (IS_ERR(data->vdd)) {
rc = PTR_ERR(data->vdd);
dev_err(&data->client->dev,
"Regulator get failed vdd rc=%d\n", rc);
return rc;
}
if (regulator_count_voltages(data->vdd) > 0) {
rc = regulator_set_voltage(data->vdd, KXTJ9_VDD_MIN_UV,
KXTJ9_VDD_MAX_UV);
if (rc) {
dev_err(&data->client->dev,
"Regulator set failed vdd rc=%d\n",
rc);
goto reg_vdd_put;
}
}
data->vio = regulator_get(&data->client->dev, "vio");
if (IS_ERR(data->vio)) {
rc = PTR_ERR(data->vio);
dev_err(&data->client->dev,
"Regulator get failed vio rc=%d\n", rc);
goto reg_vdd_set;
}
if (regulator_count_voltages(data->vio) > 0) {
rc = regulator_set_voltage(data->vio, KXTJ9_VIO_MIN_UV,
KXTJ9_VIO_MAX_UV);
if (rc) {
dev_err(&data->client->dev,
"Regulator set failed vio rc=%d\n", rc);
goto reg_vio_put;
}
}
}
return 0;
reg_vio_put:
regulator_put(data->vio);
reg_vdd_set:
if (regulator_count_voltages(data->vdd) > 0)
regulator_set_voltage(data->vdd, 0, KXTJ9_VDD_MAX_UV);
reg_vdd_put:
regulator_put(data->vdd);
return rc;
}
static int kxtj9_device_power_on(struct kxtj9_data *tj9)
{
int err = 0;
if (tj9->pdata.power_on) {
err = tj9->pdata.power_on();
} else {
err = kxtj9_power_on(tj9, true);
if (err) {
dev_err(&tj9->client->dev, "power on failed");
goto err_exit;
}
/* Use 80ms as vendor suggested. */
msleep(80);
}
err_exit:
dev_dbg(&tj9->client->dev, "soft power on complete err=%d.\n", err);
return err;
}
static void kxtj9_device_power_off(struct kxtj9_data *tj9)
{
int err;
tj9->ctrl_reg1 &= PC1_OFF;
err = i2c_smbus_write_byte_data(tj9->client, CTRL_REG1, tj9->ctrl_reg1);
if (err < 0)
dev_err(&tj9->client->dev, "soft power off failed\n");
if (tj9->pdata.power_off)
tj9->pdata.power_off();
else
kxtj9_power_on(tj9, false);
dev_dbg(&tj9->client->dev, "soft power off complete.\n");
return ;
}
static int kxtj9_enable(struct kxtj9_data *tj9)
{
int err;
err = kxtj9_device_power_on(tj9);
if (err < 0)
return err;
/* ensure that PC1 is cleared before updating control registers */
err = i2c_smbus_write_byte_data(tj9->client, CTRL_REG1, 0);
if (err < 0)
return err;
/* only write INT_CTRL_REG1 if in irq mode */
if (tj9->client->irq) {
err = i2c_smbus_write_byte_data(tj9->client,
INT_CTRL1, tj9->int_ctrl);
if (err < 0)
return err;
}
err = kxtj9_update_g_range(tj9, tj9->pdata.g_range);
if (err < 0)
return err;
/* turn on outputs */
tj9->ctrl_reg1 |= PC1_ON;
err = i2c_smbus_write_byte_data(tj9->client, CTRL_REG1, tj9->ctrl_reg1);
if (err < 0)
return err;
err = kxtj9_update_odr(tj9, tj9->last_poll_interval);
if (err < 0)
return err;
/* clear initial interrupt if in irq mode */
if (tj9->client->irq) {
err = i2c_smbus_read_byte_data(tj9->client, INT_REL);
if (err < 0) {
dev_err(&tj9->client->dev,
"error clearing interrupt: %d\n", err);
goto fail;
}
}
return 0;
fail:
kxtj9_device_power_off(tj9);
return err;
}
static void kxtj9_disable(struct kxtj9_data *tj9)
{
kxtj9_device_power_off(tj9);
}
static void kxtj9_init_input_device(struct kxtj9_data *tj9,
struct input_dev *input_dev)
{
__set_bit(EV_ABS, input_dev->evbit);
input_set_abs_params(input_dev, ABS_X, -G_MAX, G_MAX, FUZZ, FLAT);
input_set_abs_params(input_dev, ABS_Y, -G_MAX, G_MAX, FUZZ, FLAT);
input_set_abs_params(input_dev, ABS_Z, -G_MAX, G_MAX, FUZZ, FLAT);
input_dev->name = ACCEL_INPUT_DEV_NAME;
input_dev->id.bustype = BUS_I2C;
input_dev->dev.parent = &tj9->client->dev;
}
static int kxtj9_setup_input_device(struct kxtj9_data *tj9)
{
struct input_dev *input_dev;
int err;
input_dev = input_allocate_device();
if (!input_dev) {
dev_err(&tj9->client->dev, "input device allocate failed\n");
return -ENOMEM;
}
tj9->input_dev = input_dev;
input_set_drvdata(input_dev, tj9);
kxtj9_init_input_device(tj9, input_dev);
err = input_register_device(tj9->input_dev);
if (err) {
dev_err(&tj9->client->dev,
"unable to register input polled device %s: %d\n",
tj9->input_dev->name, err);
input_free_device(tj9->input_dev);
return err;
}
return 0;
}
static int kxtj9_enable_set(struct sensors_classdev *sensors_cdev,
unsigned int enabled)
{
struct kxtj9_data *tj9 = container_of(sensors_cdev,
struct kxtj9_data, cdev);
struct input_dev *input_dev = tj9->input_dev;
mutex_lock(&input_dev->mutex);
if (enabled == 0) {
disable_irq(tj9->client->irq);
kxtj9_disable(tj9);
tj9->enable = false;
} else if (enabled == 1) {
if (!kxtj9_enable(tj9)) {
enable_irq(tj9->client->irq);
tj9->enable = true;
}
} else {
dev_err(&tj9->client->dev,
"Invalid value of input, input=%d\n", enabled);
mutex_unlock(&input_dev->mutex);
return -EINVAL;
}
mutex_unlock(&input_dev->mutex);
return 0;
}
static ssize_t kxtj9_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct kxtj9_data *tj9 = i2c_get_clientdata(client);
return snprintf(buf, 4, "%d\n", tj9->enable);
}
static ssize_t kxtj9_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct kxtj9_data *tj9 = i2c_get_clientdata(client);
unsigned long data;
int error;
error = kstrtoul(buf, 10, &data);
if (error < 0)
return error;
error = kxtj9_enable_set(&tj9->cdev, data);
if (error < 0)
return error;
return count;
}
static DEVICE_ATTR(enable, S_IRUGO|S_IWUSR|S_IWGRP,
kxtj9_enable_show, kxtj9_enable_store);
/*
* When IRQ mode is selected, we need to provide an interface to allow the user
* to change the output data rate of the part. For consistency, we are using
* the set_poll method, which accepts a poll interval in milliseconds, and then
* calls update_odr() while passing this value as an argument. In IRQ mode, the
* data outputs will not be read AT the requested poll interval, rather, the
* lowest ODR that can support the requested interval. The client application
* will be responsible for retrieving data from the input node at the desired
* interval.
*/
static int kxtj9_poll_delay_set(struct sensors_classdev *sensors_cdev,
unsigned int delay_msec)
{
struct kxtj9_data *tj9 = container_of(sensors_cdev,
struct kxtj9_data, cdev);
struct input_dev *input_dev = tj9->input_dev;
/* Lock the device to prevent races with open/close (and itself) */
mutex_lock(&input_dev->mutex);
if (tj9->enable)
disable_irq(tj9->client->irq);
tj9->last_poll_interval = max(delay_msec, tj9->pdata.min_interval);
if (tj9->enable) {
kxtj9_update_odr(tj9, tj9->last_poll_interval);
enable_irq(tj9->client->irq);
}
mutex_unlock(&input_dev->mutex);
return 0;
}
/* Returns currently selected poll interval (in ms) */
static ssize_t kxtj9_get_poll_delay(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct kxtj9_data *tj9 = i2c_get_clientdata(client);
return sprintf(buf, "%d\n", tj9->last_poll_interval);
}
/* Allow users to select a new poll interval (in ms) */
static ssize_t kxtj9_set_poll_delay(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct kxtj9_data *tj9 = i2c_get_clientdata(client);
unsigned int interval;
int error;
error = kstrtouint(buf, 10, &interval);
if (error < 0)
return error;
error = kxtj9_poll_delay_set(&tj9->cdev, interval);
if (error < 0)
return error;
return count;
}
static DEVICE_ATTR(poll_delay, S_IRUGO|S_IWUSR|S_IWGRP,
kxtj9_get_poll_delay, kxtj9_set_poll_delay);
static struct attribute *kxtj9_attributes[] = {
&dev_attr_enable.attr,
&dev_attr_poll_delay.attr,
NULL
};
static struct attribute_group kxtj9_attribute_group = {
.attrs = kxtj9_attributes
};
#ifdef CONFIG_INPUT_KXTJ9_POLLED_MODE
static void kxtj9_poll(struct input_polled_dev *dev)
{
struct kxtj9_data *tj9 = dev->private;
unsigned int poll_interval = dev->poll_interval;
kxtj9_report_acceleration_data(tj9);
if (poll_interval != tj9->last_poll_interval) {
kxtj9_update_odr(tj9, poll_interval);
tj9->last_poll_interval = poll_interval;
}
}
static void kxtj9_polled_input_open(struct input_polled_dev *dev)
{
struct kxtj9_data *tj9 = dev->private;
kxtj9_enable(tj9);
}
static void kxtj9_polled_input_close(struct input_polled_dev *dev)
{
struct kxtj9_data *tj9 = dev->private;
kxtj9_disable(tj9);
}
static int kxtj9_setup_polled_device(struct kxtj9_data *tj9)
{
int err;
struct input_polled_dev *poll_dev;
poll_dev = input_allocate_polled_device();
if (!poll_dev) {
dev_err(&tj9->client->dev,
"Failed to allocate polled device\n");
return -ENOMEM;
}
tj9->poll_dev = poll_dev;
tj9->input_dev = poll_dev->input;
poll_dev->private = tj9;
poll_dev->poll = kxtj9_poll;
poll_dev->open = kxtj9_polled_input_open;
poll_dev->close = kxtj9_polled_input_close;
kxtj9_init_input_device(tj9, poll_dev->input);
err = input_register_polled_device(poll_dev);
if (err) {
dev_err(&tj9->client->dev,
"Unable to register polled device, err=%d\n", err);
input_free_polled_device(poll_dev);
return err;
}
return 0;
}
static void kxtj9_teardown_polled_device(struct kxtj9_data *tj9)
{
input_unregister_polled_device(tj9->poll_dev);
input_free_polled_device(tj9->poll_dev);
}
#else
static inline int kxtj9_setup_polled_device(struct kxtj9_data *tj9)
{
return -ENOSYS;
}
static inline void kxtj9_teardown_polled_device(struct kxtj9_data *tj9)
{
}
#endif
static int kxtj9_verify(struct kxtj9_data *tj9)
{
int retval;
retval = i2c_smbus_read_byte_data(tj9->client, WHO_AM_I);
if (retval < 0) {
dev_err(&tj9->client->dev, "read err int source\n");
goto out;
}
retval = (retval != 0x05 && retval != 0x07 && retval != 0x08)
? -EIO : 0;
out:
return retval;
}
#ifdef CONFIG_OF
static int kxtj9_parse_dt(struct device *dev,
struct kxtj9_platform_data *kxtj9_pdata)
{
struct device_node *np = dev->of_node;
u32 temp_val;
int rc;
rc = of_property_read_u32(np, "kionix,min-interval", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read min-interval\n");
return rc;
} else {
kxtj9_pdata->min_interval = temp_val;
}
rc = of_property_read_u32(np, "kionix,init-interval", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read init-interval\n");
return rc;
} else {
kxtj9_pdata->init_interval = temp_val;
}
rc = of_property_read_u32(np, "kionix,axis-map-x", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read axis-map_x\n");
return rc;
} else {
kxtj9_pdata->axis_map_x = (u8)temp_val;
}
rc = of_property_read_u32(np, "kionix,axis-map-y", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read axis_map_y\n");
return rc;
} else {
kxtj9_pdata->axis_map_y = (u8)temp_val;
}
rc = of_property_read_u32(np, "kionix,axis-map-z", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read axis-map-z\n");
return rc;
} else {
kxtj9_pdata->axis_map_z = (u8)temp_val;
}
rc = of_property_read_u32(np, "kionix,g-range", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read g-range\n");
return rc;
} else {
switch (temp_val) {
case 2:
kxtj9_pdata->g_range = KXTJ9_G_2G;
break;
case 4:
kxtj9_pdata->g_range = KXTJ9_G_4G;
break;
case 8:
kxtj9_pdata->g_range = KXTJ9_G_8G;
break;
default:
kxtj9_pdata->g_range = KXTJ9_G_2G;
break;
}
}
kxtj9_pdata->negate_x = of_property_read_bool(np, "kionix,negate-x");
kxtj9_pdata->negate_y = of_property_read_bool(np, "kionix,negate-y");
kxtj9_pdata->negate_z = of_property_read_bool(np, "kionix,negate-z");
if (of_property_read_bool(np, "kionix,res-12bit"))
kxtj9_pdata->res_ctl = RES_12BIT;
else
kxtj9_pdata->res_ctl = RES_8BIT;
return 0;
}
#else
static int kxtj9_parse_dt(struct device *dev,
struct kxtj9_platform_data *kxtj9_pdata)
{
return -ENODEV;
}
#endif /* !CONFIG_OF */
static int kxtj9_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct kxtj9_data *tj9;
int err;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_I2C | I2C_FUNC_SMBUS_BYTE_DATA)) {
dev_err(&client->dev, "client is not i2c capable\n");
return -ENXIO;
}
tj9 = kzalloc(sizeof(*tj9), GFP_KERNEL);
if (!tj9) {
dev_err(&client->dev,
"failed to allocate memory for module data\n");
return -ENOMEM;
}
if (client->dev.of_node) {
memset(&tj9->pdata, 0 , sizeof(tj9->pdata));
err = kxtj9_parse_dt(&client->dev, &tj9->pdata);
if (err) {
dev_err(&client->dev,
"Unable to parse platfrom data err=%d\n", err);
return err;
}
} else {
if (client->dev.platform_data)
tj9->pdata = *(struct kxtj9_platform_data *)
client->dev.platform_data;
else {
dev_err(&client->dev,
"platform data is NULL; exiting\n");
return -EINVAL;
}
}
tj9->client = client;
tj9->power_enabled = false;
if (tj9->pdata.init) {
err = tj9->pdata.init();
if (err < 0)
goto err_free_mem;
}
err = kxtj9_power_init(tj9, true);
if (err < 0) {
dev_err(&tj9->client->dev, "power init failed! err=%d", err);
goto err_pdata_exit;
}
err = kxtj9_device_power_on(tj9);
if (err < 0) {
dev_err(&client->dev, "power on failed! err=%d\n", err);
goto err_power_deinit;
}
err = kxtj9_verify(tj9);
if (err < 0) {
dev_err(&client->dev, "device not recognized\n");
goto err_power_off;
}
i2c_set_clientdata(client, tj9);
tj9->ctrl_reg1 = tj9->pdata.res_ctl | tj9->pdata.g_range;
tj9->last_poll_interval = tj9->pdata.init_interval;
tj9->cdev = sensors_cdev;
/* The min_delay is used by userspace and the unit is microsecond. */
tj9->cdev.min_delay = tj9->pdata.min_interval * 1000;
tj9->cdev.delay_msec = tj9->pdata.init_interval;
tj9->cdev.sensors_enable = kxtj9_enable_set;
tj9->cdev.sensors_poll_delay = kxtj9_poll_delay_set;
err = sensors_classdev_register(&client->dev, &tj9->cdev);
if (err) {
dev_err(&client->dev, "class device create failed: %d\n", err);
goto err_power_off;
}
if (client->irq) {
/* If in irq mode, populate INT_CTRL_REG1 and enable DRDY. */
tj9->int_ctrl |= KXTJ9_IEN | KXTJ9_IEA | KXTJ9_IEL;
tj9->ctrl_reg1 |= DRDYE;
err = kxtj9_setup_input_device(tj9);
if (err)
goto err_power_off;
err = request_threaded_irq(client->irq, NULL, kxtj9_isr,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
"kxtj9-irq", tj9);
if (err) {
dev_err(&client->dev, "request irq failed: %d\n", err);
goto err_destroy_input;
}
disable_irq(tj9->client->irq);
err = sysfs_create_group(&client->dev.kobj, &kxtj9_attribute_group);
if (err) {
dev_err(&client->dev, "sysfs create failed: %d\n", err);
goto err_free_irq;
}
} else {
err = kxtj9_setup_polled_device(tj9);
if (err)
goto err_power_off;
}
dev_dbg(&client->dev, "%s: kxtj9_probe OK.\n", __func__);
kxtj9_device_power_off(tj9);
return 0;
err_free_irq:
free_irq(client->irq, tj9);
err_destroy_input:
input_unregister_device(tj9->input_dev);
err_power_off:
kxtj9_device_power_off(tj9);
err_power_deinit:
kxtj9_power_init(tj9, false);
err_pdata_exit:
if (tj9->pdata.exit)
tj9->pdata.exit();
err_free_mem:
kfree(tj9);
dev_err(&client->dev, "%s: kxtj9_probe err=%d\n", __func__, err);
return err;
}
static int kxtj9_remove(struct i2c_client *client)
{
struct kxtj9_data *tj9 = i2c_get_clientdata(client);
if (client->irq) {
sysfs_remove_group(&client->dev.kobj, &kxtj9_attribute_group);
free_irq(client->irq, tj9);
input_unregister_device(tj9->input_dev);
} else {
kxtj9_teardown_polled_device(tj9);
}
kxtj9_device_power_off(tj9);
kxtj9_power_init(tj9, false);
if (tj9->pdata.exit)
tj9->pdata.exit();
kfree(tj9);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int kxtj9_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct kxtj9_data *tj9 = i2c_get_clientdata(client);
struct input_dev *input_dev = tj9->input_dev;
mutex_lock(&input_dev->mutex);
if (input_dev->users && tj9->enable)
kxtj9_disable(tj9);
mutex_unlock(&input_dev->mutex);
return 0;
}
static int kxtj9_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct kxtj9_data *tj9 = i2c_get_clientdata(client);
struct input_dev *input_dev = tj9->input_dev;
int retval = 0;
mutex_lock(&input_dev->mutex);
if (input_dev->users && tj9->enable)
kxtj9_enable(tj9);
mutex_unlock(&input_dev->mutex);
return retval;
}
#endif
static SIMPLE_DEV_PM_OPS(kxtj9_pm_ops, kxtj9_suspend, kxtj9_resume);
static const struct i2c_device_id kxtj9_id[] = {
{ DEVICE_NAME, 0 },
{ },
};
static struct of_device_id kxtj9_match_table[] = {
{ .compatible = "kionix,kxtj9", },
{ },
};
MODULE_DEVICE_TABLE(i2c, kxtj9_id);
static struct i2c_driver kxtj9_driver = {
.driver = {
.name = DEVICE_NAME,
.owner = THIS_MODULE,
.of_match_table = kxtj9_match_table,
.pm = &kxtj9_pm_ops,
},
.probe = kxtj9_probe,
.remove = kxtj9_remove,
.id_table = kxtj9_id,
};
module_i2c_driver(kxtj9_driver);
MODULE_DESCRIPTION("KXTJ9 accelerometer driver");
MODULE_AUTHOR("Chris Hudson <chudson@kionix.com>");
MODULE_LICENSE("GPL");