blob: 9a505e32d07c1294bf2d0bb20b60364208d6a603 [file] [log] [blame]
/*!
* @section LICENSE
* (C) Copyright 2013 Bosch Sensortec GmbH All Rights Reserved
*
* This software program is licensed subject to the GNU General
* Public License (GPL).Version 2,June 1991,
* available at http://www.fsf.org/copyleft/gpl.html
*
* @filename bma2x2.c
* @date 2014/02/13 15:50
* @id "564eaab"
* @version 2.0
*
* @brief
* This file contains all function implementations for the BMA2X2 in linux
*/
#ifdef CONFIG_SIG_MOTION
#undef CONFIG_HAS_EARLYSUSPEND
#endif
#include <linux/module.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/workqueue.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <asm/irq.h>
#include <linux/regulator/consumer.h>
#include <linux/of_gpio.h>
#include <linux/sensors.h>
#ifdef CONFIG_HAS_EARLYSUSPEND
#include <linux/earlysuspend.h>
#endif
#ifdef __KERNEL__
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/unistd.h>
#include <linux/types.h>
#include <linux/string.h>
#else
#include <unistd.h>
#include <sys/types.h>
#include <string.h>
#endif
#include "bstclass.h"
#define ACC_NAME "ACC"
#define BMA2X2_ENABLE_INT1
#ifdef ENABLE_ISR_DEBUG_MSG
#define ISR_INFO(dev, fmt, arg...) dev_info(dev, fmt, ##arg)
#else
#define ISR_INFO(dev, fmt, arg...)
#endif
#define BMA2X2_SENSOR_IDENTIFICATION_ENABLE
#define SENSOR_NAME "bma2x2-accel"
#define ABSMIN -512
#define ABSMAX 512
#define SLOPE_THRESHOLD_VALUE 32
#define SLOPE_DURATION_VALUE 1
#define INTERRUPT_LATCH_MODE 13
#define INTERRUPT_ENABLE 1
#define INTERRUPT_DISABLE 0
#define MAP_SLOPE_INTERRUPT 2
#define SLOPE_X_INDEX 5
#define SLOPE_Y_INDEX 6
#define SLOPE_Z_INDEX 7
#define BMA2X2_RANGE_SET 3 /* +/- 2G */
#define BMA2X2_RANGE_SHIFT 4 /* shift 4 bits for 2G */
#define BMA2X2_BW_SET 12 /* 125HZ */
#define I2C_RETRY_DELAY() usleep_range(1000, 2000)
/* wait 2ms for calibration ready */
#define WAIT_CAL_READY() usleep_range(2000, 2500)
/* >3ms wait device ready */
#define WAIT_DEVICE_READY() usleep_range(3000, 5000)
/* >5ms for device reset */
#define RESET_DELAY() usleep_range(5000, 10000)
/* wait 10ms for self test done */
#define SELF_TEST_DELAY() usleep_range(10000, 15000)
#define LOW_G_INTERRUPT REL_Z
#define HIGH_G_INTERRUPT REL_HWHEEL
#define SLOP_INTERRUPT REL_DIAL
#define DOUBLE_TAP_INTERRUPT REL_WHEEL
#define SINGLE_TAP_INTERRUPT REL_MISC
#define ORIENT_INTERRUPT ABS_PRESSURE
#define FLAT_INTERRUPT ABS_DISTANCE
#define SLOW_NO_MOTION_INTERRUPT REL_Y
#define HIGH_G_INTERRUPT_X_HAPPENED 1
#define HIGH_G_INTERRUPT_Y_HAPPENED 2
#define HIGH_G_INTERRUPT_Z_HAPPENED 3
#define HIGH_G_INTERRUPT_X_NEGATIVE_HAPPENED 4
#define HIGH_G_INTERRUPT_Y_NEGATIVE_HAPPENED 5
#define HIGH_G_INTERRUPT_Z_NEGATIVE_HAPPENED 6
#define SLOPE_INTERRUPT_X_HAPPENED 7
#define SLOPE_INTERRUPT_Y_HAPPENED 8
#define SLOPE_INTERRUPT_Z_HAPPENED 9
#define SLOPE_INTERRUPT_X_NEGATIVE_HAPPENED 10
#define SLOPE_INTERRUPT_Y_NEGATIVE_HAPPENED 11
#define SLOPE_INTERRUPT_Z_NEGATIVE_HAPPENED 12
#define DOUBLE_TAP_INTERRUPT_HAPPENED 13
#define SINGLE_TAP_INTERRUPT_HAPPENED 14
#define UPWARD_PORTRAIT_UP_INTERRUPT_HAPPENED 15
#define UPWARD_PORTRAIT_DOWN_INTERRUPT_HAPPENED 16
#define UPWARD_LANDSCAPE_LEFT_INTERRUPT_HAPPENED 17
#define UPWARD_LANDSCAPE_RIGHT_INTERRUPT_HAPPENED 18
#define DOWNWARD_PORTRAIT_UP_INTERRUPT_HAPPENED 19
#define DOWNWARD_PORTRAIT_DOWN_INTERRUPT_HAPPENED 20
#define DOWNWARD_LANDSCAPE_LEFT_INTERRUPT_HAPPENED 21
#define DOWNWARD_LANDSCAPE_RIGHT_INTERRUPT_HAPPENED 22
#define FLAT_INTERRUPT_TURE_HAPPENED 23
#define FLAT_INTERRUPT_FALSE_HAPPENED 24
#define LOW_G_INTERRUPT_HAPPENED 25
#define SLOW_NO_MOTION_INTERRUPT_HAPPENED 26
#define PAD_LOWG 0
#define PAD_HIGHG 1
#define PAD_SLOP 2
#define PAD_DOUBLE_TAP 3
#define PAD_SINGLE_TAP 4
#define PAD_ORIENT 5
#define PAD_FLAT 6
#define PAD_SLOW_NO_MOTION 7
#define BMA2X2_EEP_OFFSET 0x16
#define BMA2X2_IMAGE_BASE 0x38
#define BMA2X2_IMAGE_LEN 22
#define BMA2X2_CHIP_ID_REG 0x00
#define BMA2X2_VERSION_REG 0x01
#define BMA2X2_X_AXIS_LSB_REG 0x02
#define BMA2X2_X_AXIS_MSB_REG 0x03
#define BMA2X2_Y_AXIS_LSB_REG 0x04
#define BMA2X2_Y_AXIS_MSB_REG 0x05
#define BMA2X2_Z_AXIS_LSB_REG 0x06
#define BMA2X2_Z_AXIS_MSB_REG 0x07
#define BMA2X2_TEMPERATURE_REG 0x08
#define BMA2X2_STATUS1_REG 0x09
#define BMA2X2_STATUS2_REG 0x0A
#define BMA2X2_STATUS_TAP_SLOPE_REG 0x0B
#define BMA2X2_STATUS_ORIENT_HIGH_REG 0x0C
#define BMA2X2_STATUS_FIFO_REG 0x0E
#define BMA2X2_RANGE_SEL_REG 0x0F
#define BMA2X2_BW_SEL_REG 0x10
#define BMA2X2_MODE_CTRL_REG 0x11
#define BMA2X2_LOW_NOISE_CTRL_REG 0x12
#define BMA2X2_DATA_CTRL_REG 0x13
#define BMA2X2_RESET_REG 0x14
#define BMA2X2_INT_ENABLE1_REG 0x16
#define BMA2X2_INT_ENABLE2_REG 0x17
#define BMA2X2_INT_SLO_NO_MOT_REG 0x18
#define BMA2X2_INT1_PAD_SEL_REG 0x19
#define BMA2X2_INT_DATA_SEL_REG 0x1A
#define BMA2X2_INT2_PAD_SEL_REG 0x1B
#define BMA2X2_INT_SRC_REG 0x1E
#define BMA2X2_INT_SET_REG 0x20
#define BMA2X2_INT_CTRL_REG 0x21
#define BMA2X2_LOW_DURN_REG 0x22
#define BMA2X2_LOW_THRES_REG 0x23
#define BMA2X2_LOW_HIGH_HYST_REG 0x24
#define BMA2X2_HIGH_DURN_REG 0x25
#define BMA2X2_HIGH_THRES_REG 0x26
#define BMA2X2_SLOPE_DURN_REG 0x27
#define BMA2X2_SLOPE_THRES_REG 0x28
#define BMA2X2_SLO_NO_MOT_THRES_REG 0x29
#define BMA2X2_TAP_PARAM_REG 0x2A
#define BMA2X2_TAP_THRES_REG 0x2B
#define BMA2X2_ORIENT_PARAM_REG 0x2C
#define BMA2X2_THETA_BLOCK_REG 0x2D
#define BMA2X2_THETA_FLAT_REG 0x2E
#define BMA2X2_FLAT_HOLD_TIME_REG 0x2F
#define BMA2X2_FIFO_WML_TRIG 0x30
#define BMA2X2_SELF_TEST_REG 0x32
#define BMA2X2_EEPROM_CTRL_REG 0x33
#define BMA2X2_SERIAL_CTRL_REG 0x34
#define BMA2X2_EXTMODE_CTRL_REG 0x35
#define BMA2X2_OFFSET_CTRL_REG 0x36
#define BMA2X2_OFFSET_PARAMS_REG 0x37
#define BMA2X2_OFFSET_X_AXIS_REG 0x38
#define BMA2X2_OFFSET_Y_AXIS_REG 0x39
#define BMA2X2_OFFSET_Z_AXIS_REG 0x3A
#define BMA2X2_GP0_REG 0x3B
#define BMA2X2_GP1_REG 0x3C
#define BMA2X2_FIFO_MODE_REG 0x3E
#define BMA2X2_FIFO_DATA_OUTPUT_REG 0x3F
#define BMA2X2_CHIP_ID__POS 0
#define BMA2X2_CHIP_ID__MSK 0xFF
#define BMA2X2_CHIP_ID__LEN 8
#define BMA2X2_CHIP_ID__REG BMA2X2_CHIP_ID_REG
#define BMA2X2_VERSION__POS 0
#define BMA2X2_VERSION__LEN 8
#define BMA2X2_VERSION__MSK 0xFF
#define BMA2X2_VERSION__REG BMA2X2_VERSION_REG
#define BMA2x2_SLO_NO_MOT_DUR__POS 2
#define BMA2x2_SLO_NO_MOT_DUR__LEN 6
#define BMA2x2_SLO_NO_MOT_DUR__MSK 0xFC
#define BMA2x2_SLO_NO_MOT_DUR__REG BMA2X2_SLOPE_DURN_REG
#define BMA2X2_NEW_DATA_X__POS 0
#define BMA2X2_NEW_DATA_X__LEN 1
#define BMA2X2_NEW_DATA_X__MSK 0x01
#define BMA2X2_NEW_DATA_X__REG BMA2X2_X_AXIS_LSB_REG
#define BMA2X2_ACC_X14_LSB__POS 2
#define BMA2X2_ACC_X14_LSB__LEN 6
#define BMA2X2_ACC_X14_LSB__MSK 0xFC
#define BMA2X2_ACC_X14_LSB__REG BMA2X2_X_AXIS_LSB_REG
#define BMA2X2_ACC_X12_LSB__POS 4
#define BMA2X2_ACC_X12_LSB__LEN 4
#define BMA2X2_ACC_X12_LSB__MSK 0xF0
#define BMA2X2_ACC_X12_LSB__REG BMA2X2_X_AXIS_LSB_REG
#define BMA2X2_ACC_X10_LSB__POS 6
#define BMA2X2_ACC_X10_LSB__LEN 2
#define BMA2X2_ACC_X10_LSB__MSK 0xC0
#define BMA2X2_ACC_X10_LSB__REG BMA2X2_X_AXIS_LSB_REG
#define BMA2X2_ACC_X8_LSB__POS 0
#define BMA2X2_ACC_X8_LSB__LEN 0
#define BMA2X2_ACC_X8_LSB__MSK 0x00
#define BMA2X2_ACC_X8_LSB__REG BMA2X2_X_AXIS_LSB_REG
#define BMA2X2_ACC_X_MSB__POS 0
#define BMA2X2_ACC_X_MSB__LEN 8
#define BMA2X2_ACC_X_MSB__MSK 0xFF
#define BMA2X2_ACC_X_MSB__REG BMA2X2_X_AXIS_MSB_REG
#define BMA2X2_NEW_DATA_Y__POS 0
#define BMA2X2_NEW_DATA_Y__LEN 1
#define BMA2X2_NEW_DATA_Y__MSK 0x01
#define BMA2X2_NEW_DATA_Y__REG BMA2X2_Y_AXIS_LSB_REG
#define BMA2X2_ACC_Y14_LSB__POS 2
#define BMA2X2_ACC_Y14_LSB__LEN 6
#define BMA2X2_ACC_Y14_LSB__MSK 0xFC
#define BMA2X2_ACC_Y14_LSB__REG BMA2X2_Y_AXIS_LSB_REG
#define BMA2X2_ACC_Y12_LSB__POS 4
#define BMA2X2_ACC_Y12_LSB__LEN 4
#define BMA2X2_ACC_Y12_LSB__MSK 0xF0
#define BMA2X2_ACC_Y12_LSB__REG BMA2X2_Y_AXIS_LSB_REG
#define BMA2X2_ACC_Y10_LSB__POS 6
#define BMA2X2_ACC_Y10_LSB__LEN 2
#define BMA2X2_ACC_Y10_LSB__MSK 0xC0
#define BMA2X2_ACC_Y10_LSB__REG BMA2X2_Y_AXIS_LSB_REG
#define BMA2X2_ACC_Y8_LSB__POS 0
#define BMA2X2_ACC_Y8_LSB__LEN 0
#define BMA2X2_ACC_Y8_LSB__MSK 0x00
#define BMA2X2_ACC_Y8_LSB__REG BMA2X2_Y_AXIS_LSB_REG
#define BMA2X2_ACC_Y_MSB__POS 0
#define BMA2X2_ACC_Y_MSB__LEN 8
#define BMA2X2_ACC_Y_MSB__MSK 0xFF
#define BMA2X2_ACC_Y_MSB__REG BMA2X2_Y_AXIS_MSB_REG
#define BMA2X2_NEW_DATA_Z__POS 0
#define BMA2X2_NEW_DATA_Z__LEN 1
#define BMA2X2_NEW_DATA_Z__MSK 0x01
#define BMA2X2_NEW_DATA_Z__REG BMA2X2_Z_AXIS_LSB_REG
#define BMA2X2_ACC_Z14_LSB__POS 2
#define BMA2X2_ACC_Z14_LSB__LEN 6
#define BMA2X2_ACC_Z14_LSB__MSK 0xFC
#define BMA2X2_ACC_Z14_LSB__REG BMA2X2_Z_AXIS_LSB_REG
#define BMA2X2_ACC_Z12_LSB__POS 4
#define BMA2X2_ACC_Z12_LSB__LEN 4
#define BMA2X2_ACC_Z12_LSB__MSK 0xF0
#define BMA2X2_ACC_Z12_LSB__REG BMA2X2_Z_AXIS_LSB_REG
#define BMA2X2_ACC_Z10_LSB__POS 6
#define BMA2X2_ACC_Z10_LSB__LEN 2
#define BMA2X2_ACC_Z10_LSB__MSK 0xC0
#define BMA2X2_ACC_Z10_LSB__REG BMA2X2_Z_AXIS_LSB_REG
#define BMA2X2_ACC_Z8_LSB__POS 0
#define BMA2X2_ACC_Z8_LSB__LEN 0
#define BMA2X2_ACC_Z8_LSB__MSK 0x00
#define BMA2X2_ACC_Z8_LSB__REG BMA2X2_Z_AXIS_LSB_REG
#define BMA2X2_ACC_Z_MSB__POS 0
#define BMA2X2_ACC_Z_MSB__LEN 8
#define BMA2X2_ACC_Z_MSB__MSK 0xFF
#define BMA2X2_ACC_Z_MSB__REG BMA2X2_Z_AXIS_MSB_REG
#define BMA2X2_TEMPERATURE__POS 0
#define BMA2X2_TEMPERATURE__LEN 8
#define BMA2X2_TEMPERATURE__MSK 0xFF
#define BMA2X2_TEMPERATURE__REG BMA2X2_TEMP_RD_REG
#define BMA2X2_LOWG_INT_S__POS 0
#define BMA2X2_LOWG_INT_S__LEN 1
#define BMA2X2_LOWG_INT_S__MSK 0x01
#define BMA2X2_LOWG_INT_S__REG BMA2X2_STATUS1_REG
#define BMA2X2_HIGHG_INT_S__POS 1
#define BMA2X2_HIGHG_INT_S__LEN 1
#define BMA2X2_HIGHG_INT_S__MSK 0x02
#define BMA2X2_HIGHG_INT_S__REG BMA2X2_STATUS1_REG
#define BMA2X2_SLOPE_INT_S__POS 2
#define BMA2X2_SLOPE_INT_S__LEN 1
#define BMA2X2_SLOPE_INT_S__MSK 0x04
#define BMA2X2_SLOPE_INT_S__REG BMA2X2_STATUS1_REG
#define BMA2X2_SLO_NO_MOT_INT_S__POS 3
#define BMA2X2_SLO_NO_MOT_INT_S__LEN 1
#define BMA2X2_SLO_NO_MOT_INT_S__MSK 0x08
#define BMA2X2_SLO_NO_MOT_INT_S__REG BMA2X2_STATUS1_REG
#define BMA2X2_DOUBLE_TAP_INT_S__POS 4
#define BMA2X2_DOUBLE_TAP_INT_S__LEN 1
#define BMA2X2_DOUBLE_TAP_INT_S__MSK 0x10
#define BMA2X2_DOUBLE_TAP_INT_S__REG BMA2X2_STATUS1_REG
#define BMA2X2_SINGLE_TAP_INT_S__POS 5
#define BMA2X2_SINGLE_TAP_INT_S__LEN 1
#define BMA2X2_SINGLE_TAP_INT_S__MSK 0x20
#define BMA2X2_SINGLE_TAP_INT_S__REG BMA2X2_STATUS1_REG
#define BMA2X2_ORIENT_INT_S__POS 6
#define BMA2X2_ORIENT_INT_S__LEN 1
#define BMA2X2_ORIENT_INT_S__MSK 0x40
#define BMA2X2_ORIENT_INT_S__REG BMA2X2_STATUS1_REG
#define BMA2X2_FLAT_INT_S__POS 7
#define BMA2X2_FLAT_INT_S__LEN 1
#define BMA2X2_FLAT_INT_S__MSK 0x80
#define BMA2X2_FLAT_INT_S__REG BMA2X2_STATUS1_REG
#define BMA2X2_FIFO_FULL_INT_S__POS 5
#define BMA2X2_FIFO_FULL_INT_S__LEN 1
#define BMA2X2_FIFO_FULL_INT_S__MSK 0x20
#define BMA2X2_FIFO_FULL_INT_S__REG BMA2X2_STATUS2_REG
#define BMA2X2_FIFO_WM_INT_S__POS 6
#define BMA2X2_FIFO_WM_INT_S__LEN 1
#define BMA2X2_FIFO_WM_INT_S__MSK 0x40
#define BMA2X2_FIFO_WM_INT_S__REG BMA2X2_STATUS2_REG
#define BMA2X2_DATA_INT_S__POS 7
#define BMA2X2_DATA_INT_S__LEN 1
#define BMA2X2_DATA_INT_S__MSK 0x80
#define BMA2X2_DATA_INT_S__REG BMA2X2_STATUS2_REG
#define BMA2X2_SLOPE_FIRST_X__POS 0
#define BMA2X2_SLOPE_FIRST_X__LEN 1
#define BMA2X2_SLOPE_FIRST_X__MSK 0x01
#define BMA2X2_SLOPE_FIRST_X__REG BMA2X2_STATUS_TAP_SLOPE_REG
#define BMA2X2_SLOPE_FIRST_Y__POS 1
#define BMA2X2_SLOPE_FIRST_Y__LEN 1
#define BMA2X2_SLOPE_FIRST_Y__MSK 0x02
#define BMA2X2_SLOPE_FIRST_Y__REG BMA2X2_STATUS_TAP_SLOPE_REG
#define BMA2X2_SLOPE_FIRST_Z__POS 2
#define BMA2X2_SLOPE_FIRST_Z__LEN 1
#define BMA2X2_SLOPE_FIRST_Z__MSK 0x04
#define BMA2X2_SLOPE_FIRST_Z__REG BMA2X2_STATUS_TAP_SLOPE_REG
#define BMA2X2_SLOPE_SIGN_S__POS 3
#define BMA2X2_SLOPE_SIGN_S__LEN 1
#define BMA2X2_SLOPE_SIGN_S__MSK 0x08
#define BMA2X2_SLOPE_SIGN_S__REG BMA2X2_STATUS_TAP_SLOPE_REG
#define BMA2X2_TAP_FIRST_X__POS 4
#define BMA2X2_TAP_FIRST_X__LEN 1
#define BMA2X2_TAP_FIRST_X__MSK 0x10
#define BMA2X2_TAP_FIRST_X__REG BMA2X2_STATUS_TAP_SLOPE_REG
#define BMA2X2_TAP_FIRST_Y__POS 5
#define BMA2X2_TAP_FIRST_Y__LEN 1
#define BMA2X2_TAP_FIRST_Y__MSK 0x20
#define BMA2X2_TAP_FIRST_Y__REG BMA2X2_STATUS_TAP_SLOPE_REG
#define BMA2X2_TAP_FIRST_Z__POS 6
#define BMA2X2_TAP_FIRST_Z__LEN 1
#define BMA2X2_TAP_FIRST_Z__MSK 0x40
#define BMA2X2_TAP_FIRST_Z__REG BMA2X2_STATUS_TAP_SLOPE_REG
#define BMA2X2_TAP_SIGN_S__POS 7
#define BMA2X2_TAP_SIGN_S__LEN 1
#define BMA2X2_TAP_SIGN_S__MSK 0x80
#define BMA2X2_TAP_SIGN_S__REG BMA2X2_STATUS_TAP_SLOPE_REG
#define BMA2X2_HIGHG_FIRST_X__POS 0
#define BMA2X2_HIGHG_FIRST_X__LEN 1
#define BMA2X2_HIGHG_FIRST_X__MSK 0x01
#define BMA2X2_HIGHG_FIRST_X__REG BMA2X2_STATUS_ORIENT_HIGH_REG
#define BMA2X2_HIGHG_FIRST_Y__POS 1
#define BMA2X2_HIGHG_FIRST_Y__LEN 1
#define BMA2X2_HIGHG_FIRST_Y__MSK 0x02
#define BMA2X2_HIGHG_FIRST_Y__REG BMA2X2_STATUS_ORIENT_HIGH_REG
#define BMA2X2_HIGHG_FIRST_Z__POS 2
#define BMA2X2_HIGHG_FIRST_Z__LEN 1
#define BMA2X2_HIGHG_FIRST_Z__MSK 0x04
#define BMA2X2_HIGHG_FIRST_Z__REG BMA2X2_STATUS_ORIENT_HIGH_REG
#define BMA2X2_HIGHG_SIGN_S__POS 3
#define BMA2X2_HIGHG_SIGN_S__LEN 1
#define BMA2X2_HIGHG_SIGN_S__MSK 0x08
#define BMA2X2_HIGHG_SIGN_S__REG BMA2X2_STATUS_ORIENT_HIGH_REG
#define BMA2X2_ORIENT_S__POS 4
#define BMA2X2_ORIENT_S__LEN 3
#define BMA2X2_ORIENT_S__MSK 0x70
#define BMA2X2_ORIENT_S__REG BMA2X2_STATUS_ORIENT_HIGH_REG
#define BMA2X2_FLAT_S__POS 7
#define BMA2X2_FLAT_S__LEN 1
#define BMA2X2_FLAT_S__MSK 0x80
#define BMA2X2_FLAT_S__REG BMA2X2_STATUS_ORIENT_HIGH_REG
#define BMA2X2_FIFO_FRAME_COUNTER_S__POS 0
#define BMA2X2_FIFO_FRAME_COUNTER_S__LEN 7
#define BMA2X2_FIFO_FRAME_COUNTER_S__MSK 0x7F
#define BMA2X2_FIFO_FRAME_COUNTER_S__REG BMA2X2_STATUS_FIFO_REG
#define BMA2X2_FIFO_OVERRUN_S__POS 7
#define BMA2X2_FIFO_OVERRUN_S__LEN 1
#define BMA2X2_FIFO_OVERRUN_S__MSK 0x80
#define BMA2X2_FIFO_OVERRUN_S__REG BMA2X2_STATUS_FIFO_REG
#define BMA2X2_RANGE_SEL__POS 0
#define BMA2X2_RANGE_SEL__LEN 4
#define BMA2X2_RANGE_SEL__MSK 0x0F
#define BMA2X2_RANGE_SEL__REG BMA2X2_RANGE_SEL_REG
#define BMA2X2_BANDWIDTH__POS 0
#define BMA2X2_BANDWIDTH__LEN 5
#define BMA2X2_BANDWIDTH__MSK 0x1F
#define BMA2X2_BANDWIDTH__REG BMA2X2_BW_SEL_REG
#define BMA2X2_SLEEP_DUR__POS 1
#define BMA2X2_SLEEP_DUR__LEN 4
#define BMA2X2_SLEEP_DUR__MSK 0x1E
#define BMA2X2_SLEEP_DUR__REG BMA2X2_MODE_CTRL_REG
#define BMA2X2_MODE_CTRL__POS 5
#define BMA2X2_MODE_CTRL__LEN 3
#define BMA2X2_MODE_CTRL__MSK 0xE0
#define BMA2X2_MODE_CTRL__REG BMA2X2_MODE_CTRL_REG
#define BMA2X2_DEEP_SUSPEND__POS 5
#define BMA2X2_DEEP_SUSPEND__LEN 1
#define BMA2X2_DEEP_SUSPEND__MSK 0x20
#define BMA2X2_DEEP_SUSPEND__REG BMA2X2_MODE_CTRL_REG
#define BMA2X2_EN_LOW_POWER__POS 6
#define BMA2X2_EN_LOW_POWER__LEN 1
#define BMA2X2_EN_LOW_POWER__MSK 0x40
#define BMA2X2_EN_LOW_POWER__REG BMA2X2_MODE_CTRL_REG
#define BMA2X2_EN_SUSPEND__POS 7
#define BMA2X2_EN_SUSPEND__LEN 1
#define BMA2X2_EN_SUSPEND__MSK 0x80
#define BMA2X2_EN_SUSPEND__REG BMA2X2_MODE_CTRL_REG
#define BMA2X2_SLEEP_TIMER__POS 5
#define BMA2X2_SLEEP_TIMER__LEN 1
#define BMA2X2_SLEEP_TIMER__MSK 0x20
#define BMA2X2_SLEEP_TIMER__REG BMA2X2_LOW_NOISE_CTRL_REG
#define BMA2X2_LOW_POWER_MODE__POS 6
#define BMA2X2_LOW_POWER_MODE__LEN 1
#define BMA2X2_LOW_POWER_MODE__MSK 0x40
#define BMA2X2_LOW_POWER_MODE__REG BMA2X2_LOW_NOISE_CTRL_REG
#define BMA2X2_EN_LOW_NOISE__POS 7
#define BMA2X2_EN_LOW_NOISE__LEN 1
#define BMA2X2_EN_LOW_NOISE__MSK 0x80
#define BMA2X2_EN_LOW_NOISE__REG BMA2X2_LOW_NOISE_CTRL_REG
#define BMA2X2_DIS_SHADOW_PROC__POS 6
#define BMA2X2_DIS_SHADOW_PROC__LEN 1
#define BMA2X2_DIS_SHADOW_PROC__MSK 0x40
#define BMA2X2_DIS_SHADOW_PROC__REG BMA2X2_DATA_CTRL_REG
#define BMA2X2_EN_DATA_HIGH_BW__POS 7
#define BMA2X2_EN_DATA_HIGH_BW__LEN 1
#define BMA2X2_EN_DATA_HIGH_BW__MSK 0x80
#define BMA2X2_EN_DATA_HIGH_BW__REG BMA2X2_DATA_CTRL_REG
#define BMA2X2_EN_SOFT_RESET__POS 0
#define BMA2X2_EN_SOFT_RESET__LEN 8
#define BMA2X2_EN_SOFT_RESET__MSK 0xFF
#define BMA2X2_EN_SOFT_RESET__REG BMA2X2_RESET_REG
#define BMA2X2_EN_SOFT_RESET_VALUE 0xB6
#define BMA2X2_EN_SLOPE_X_INT__POS 0
#define BMA2X2_EN_SLOPE_X_INT__LEN 1
#define BMA2X2_EN_SLOPE_X_INT__MSK 0x01
#define BMA2X2_EN_SLOPE_X_INT__REG BMA2X2_INT_ENABLE1_REG
#define BMA2X2_EN_SLOPE_Y_INT__POS 1
#define BMA2X2_EN_SLOPE_Y_INT__LEN 1
#define BMA2X2_EN_SLOPE_Y_INT__MSK 0x02
#define BMA2X2_EN_SLOPE_Y_INT__REG BMA2X2_INT_ENABLE1_REG
#define BMA2X2_EN_SLOPE_Z_INT__POS 2
#define BMA2X2_EN_SLOPE_Z_INT__LEN 1
#define BMA2X2_EN_SLOPE_Z_INT__MSK 0x04
#define BMA2X2_EN_SLOPE_Z_INT__REG BMA2X2_INT_ENABLE1_REG
#define BMA2X2_EN_DOUBLE_TAP_INT__POS 4
#define BMA2X2_EN_DOUBLE_TAP_INT__LEN 1
#define BMA2X2_EN_DOUBLE_TAP_INT__MSK 0x10
#define BMA2X2_EN_DOUBLE_TAP_INT__REG BMA2X2_INT_ENABLE1_REG
#define BMA2X2_EN_SINGLE_TAP_INT__POS 5
#define BMA2X2_EN_SINGLE_TAP_INT__LEN 1
#define BMA2X2_EN_SINGLE_TAP_INT__MSK 0x20
#define BMA2X2_EN_SINGLE_TAP_INT__REG BMA2X2_INT_ENABLE1_REG
#define BMA2X2_EN_ORIENT_INT__POS 6
#define BMA2X2_EN_ORIENT_INT__LEN 1
#define BMA2X2_EN_ORIENT_INT__MSK 0x40
#define BMA2X2_EN_ORIENT_INT__REG BMA2X2_INT_ENABLE1_REG
#define BMA2X2_EN_FLAT_INT__POS 7
#define BMA2X2_EN_FLAT_INT__LEN 1
#define BMA2X2_EN_FLAT_INT__MSK 0x80
#define BMA2X2_EN_FLAT_INT__REG BMA2X2_INT_ENABLE1_REG
#define BMA2X2_EN_HIGHG_X_INT__POS 0
#define BMA2X2_EN_HIGHG_X_INT__LEN 1
#define BMA2X2_EN_HIGHG_X_INT__MSK 0x01
#define BMA2X2_EN_HIGHG_X_INT__REG BMA2X2_INT_ENABLE2_REG
#define BMA2X2_EN_HIGHG_Y_INT__POS 1
#define BMA2X2_EN_HIGHG_Y_INT__LEN 1
#define BMA2X2_EN_HIGHG_Y_INT__MSK 0x02
#define BMA2X2_EN_HIGHG_Y_INT__REG BMA2X2_INT_ENABLE2_REG
#define BMA2X2_EN_HIGHG_Z_INT__POS 2
#define BMA2X2_EN_HIGHG_Z_INT__LEN 1
#define BMA2X2_EN_HIGHG_Z_INT__MSK 0x04
#define BMA2X2_EN_HIGHG_Z_INT__REG BMA2X2_INT_ENABLE2_REG
#define BMA2X2_EN_LOWG_INT__POS 3
#define BMA2X2_EN_LOWG_INT__LEN 1
#define BMA2X2_EN_LOWG_INT__MSK 0x08
#define BMA2X2_EN_LOWG_INT__REG BMA2X2_INT_ENABLE2_REG
#define BMA2X2_EN_NEW_DATA_INT__POS 4
#define BMA2X2_EN_NEW_DATA_INT__LEN 1
#define BMA2X2_EN_NEW_DATA_INT__MSK 0x10
#define BMA2X2_EN_NEW_DATA_INT__REG BMA2X2_INT_ENABLE2_REG
#define BMA2X2_INT_FFULL_EN_INT__POS 5
#define BMA2X2_INT_FFULL_EN_INT__LEN 1
#define BMA2X2_INT_FFULL_EN_INT__MSK 0x20
#define BMA2X2_INT_FFULL_EN_INT__REG BMA2X2_INT_ENABLE2_REG
#define BMA2X2_INT_FWM_EN_INT__POS 6
#define BMA2X2_INT_FWM_EN_INT__LEN 1
#define BMA2X2_INT_FWM_EN_INT__MSK 0x40
#define BMA2X2_INT_FWM_EN_INT__REG BMA2X2_INT_ENABLE2_REG
#define BMA2X2_INT_SLO_NO_MOT_EN_X_INT__POS 0
#define BMA2X2_INT_SLO_NO_MOT_EN_X_INT__LEN 1
#define BMA2X2_INT_SLO_NO_MOT_EN_X_INT__MSK 0x01
#define BMA2X2_INT_SLO_NO_MOT_EN_X_INT__REG BMA2X2_INT_SLO_NO_MOT_REG
#define BMA2X2_INT_SLO_NO_MOT_EN_Y_INT__POS 1
#define BMA2X2_INT_SLO_NO_MOT_EN_Y_INT__LEN 1
#define BMA2X2_INT_SLO_NO_MOT_EN_Y_INT__MSK 0x02
#define BMA2X2_INT_SLO_NO_MOT_EN_Y_INT__REG BMA2X2_INT_SLO_NO_MOT_REG
#define BMA2X2_INT_SLO_NO_MOT_EN_Z_INT__POS 2
#define BMA2X2_INT_SLO_NO_MOT_EN_Z_INT__LEN 1
#define BMA2X2_INT_SLO_NO_MOT_EN_Z_INT__MSK 0x04
#define BMA2X2_INT_SLO_NO_MOT_EN_Z_INT__REG BMA2X2_INT_SLO_NO_MOT_REG
#define BMA2X2_INT_SLO_NO_MOT_EN_SEL_INT__POS 3
#define BMA2X2_INT_SLO_NO_MOT_EN_SEL_INT__LEN 1
#define BMA2X2_INT_SLO_NO_MOT_EN_SEL_INT__MSK 0x08
#define BMA2X2_INT_SLO_NO_MOT_EN_SEL_INT__REG BMA2X2_INT_SLO_NO_MOT_REG
#define BMA2X2_EN_INT1_PAD_LOWG__POS 0
#define BMA2X2_EN_INT1_PAD_LOWG__LEN 1
#define BMA2X2_EN_INT1_PAD_LOWG__MSK 0x01
#define BMA2X2_EN_INT1_PAD_LOWG__REG BMA2X2_INT1_PAD_SEL_REG
#define BMA2X2_EN_INT1_PAD_HIGHG__POS 1
#define BMA2X2_EN_INT1_PAD_HIGHG__LEN 1
#define BMA2X2_EN_INT1_PAD_HIGHG__MSK 0x02
#define BMA2X2_EN_INT1_PAD_HIGHG__REG BMA2X2_INT1_PAD_SEL_REG
#define BMA2X2_EN_INT1_PAD_SLOPE__POS 2
#define BMA2X2_EN_INT1_PAD_SLOPE__LEN 1
#define BMA2X2_EN_INT1_PAD_SLOPE__MSK 0x04
#define BMA2X2_EN_INT1_PAD_SLOPE__REG BMA2X2_INT1_PAD_SEL_REG
#define BMA2X2_EN_INT1_PAD_SLO_NO_MOT__POS 3
#define BMA2X2_EN_INT1_PAD_SLO_NO_MOT__LEN 1
#define BMA2X2_EN_INT1_PAD_SLO_NO_MOT__MSK 0x08
#define BMA2X2_EN_INT1_PAD_SLO_NO_MOT__REG BMA2X2_INT1_PAD_SEL_REG
#define BMA2X2_EN_INT1_PAD_DB_TAP__POS 4
#define BMA2X2_EN_INT1_PAD_DB_TAP__LEN 1
#define BMA2X2_EN_INT1_PAD_DB_TAP__MSK 0x10
#define BMA2X2_EN_INT1_PAD_DB_TAP__REG BMA2X2_INT1_PAD_SEL_REG
#define BMA2X2_EN_INT1_PAD_SNG_TAP__POS 5
#define BMA2X2_EN_INT1_PAD_SNG_TAP__LEN 1
#define BMA2X2_EN_INT1_PAD_SNG_TAP__MSK 0x20
#define BMA2X2_EN_INT1_PAD_SNG_TAP__REG BMA2X2_INT1_PAD_SEL_REG
#define BMA2X2_EN_INT1_PAD_ORIENT__POS 6
#define BMA2X2_EN_INT1_PAD_ORIENT__LEN 1
#define BMA2X2_EN_INT1_PAD_ORIENT__MSK 0x40
#define BMA2X2_EN_INT1_PAD_ORIENT__REG BMA2X2_INT1_PAD_SEL_REG
#define BMA2X2_EN_INT1_PAD_FLAT__POS 7
#define BMA2X2_EN_INT1_PAD_FLAT__LEN 1
#define BMA2X2_EN_INT1_PAD_FLAT__MSK 0x80
#define BMA2X2_EN_INT1_PAD_FLAT__REG BMA2X2_INT1_PAD_SEL_REG
#define BMA2X2_EN_INT2_PAD_LOWG__POS 0
#define BMA2X2_EN_INT2_PAD_LOWG__LEN 1
#define BMA2X2_EN_INT2_PAD_LOWG__MSK 0x01
#define BMA2X2_EN_INT2_PAD_LOWG__REG BMA2X2_INT2_PAD_SEL_REG
#define BMA2X2_EN_INT2_PAD_HIGHG__POS 1
#define BMA2X2_EN_INT2_PAD_HIGHG__LEN 1
#define BMA2X2_EN_INT2_PAD_HIGHG__MSK 0x02
#define BMA2X2_EN_INT2_PAD_HIGHG__REG BMA2X2_INT2_PAD_SEL_REG
#define BMA2X2_EN_INT2_PAD_SLOPE__POS 2
#define BMA2X2_EN_INT2_PAD_SLOPE__LEN 1
#define BMA2X2_EN_INT2_PAD_SLOPE__MSK 0x04
#define BMA2X2_EN_INT2_PAD_SLOPE__REG BMA2X2_INT2_PAD_SEL_REG
#define BMA2X2_EN_INT2_PAD_SLO_NO_MOT__POS 3
#define BMA2X2_EN_INT2_PAD_SLO_NO_MOT__LEN 1
#define BMA2X2_EN_INT2_PAD_SLO_NO_MOT__MSK 0x08
#define BMA2X2_EN_INT2_PAD_SLO_NO_MOT__REG BMA2X2_INT2_PAD_SEL_REG
#define BMA2X2_EN_INT2_PAD_DB_TAP__POS 4
#define BMA2X2_EN_INT2_PAD_DB_TAP__LEN 1
#define BMA2X2_EN_INT2_PAD_DB_TAP__MSK 0x10
#define BMA2X2_EN_INT2_PAD_DB_TAP__REG BMA2X2_INT2_PAD_SEL_REG
#define BMA2X2_EN_INT2_PAD_SNG_TAP__POS 5
#define BMA2X2_EN_INT2_PAD_SNG_TAP__LEN 1
#define BMA2X2_EN_INT2_PAD_SNG_TAP__MSK 0x20
#define BMA2X2_EN_INT2_PAD_SNG_TAP__REG BMA2X2_INT2_PAD_SEL_REG
#define BMA2X2_EN_INT2_PAD_ORIENT__POS 6
#define BMA2X2_EN_INT2_PAD_ORIENT__LEN 1
#define BMA2X2_EN_INT2_PAD_ORIENT__MSK 0x40
#define BMA2X2_EN_INT2_PAD_ORIENT__REG BMA2X2_INT2_PAD_SEL_REG
#define BMA2X2_EN_INT2_PAD_FLAT__POS 7
#define BMA2X2_EN_INT2_PAD_FLAT__LEN 1
#define BMA2X2_EN_INT2_PAD_FLAT__MSK 0x80
#define BMA2X2_EN_INT2_PAD_FLAT__REG BMA2X2_INT2_PAD_SEL_REG
#define BMA2X2_EN_INT1_PAD_NEWDATA__POS 0
#define BMA2X2_EN_INT1_PAD_NEWDATA__LEN 1
#define BMA2X2_EN_INT1_PAD_NEWDATA__MSK 0x01
#define BMA2X2_EN_INT1_PAD_NEWDATA__REG BMA2X2_INT_DATA_SEL_REG
#define BMA2X2_EN_INT1_PAD_FWM__POS 1
#define BMA2X2_EN_INT1_PAD_FWM__LEN 1
#define BMA2X2_EN_INT1_PAD_FWM__MSK 0x02
#define BMA2X2_EN_INT1_PAD_FWM__REG BMA2X2_INT_DATA_SEL_REG
#define BMA2X2_EN_INT1_PAD_FFULL__POS 2
#define BMA2X2_EN_INT1_PAD_FFULL__LEN 1
#define BMA2X2_EN_INT1_PAD_FFULL__MSK 0x04
#define BMA2X2_EN_INT1_PAD_FFULL__REG BMA2X2_INT_DATA_SEL_REG
#define BMA2X2_EN_INT2_PAD_FFULL__POS 5
#define BMA2X2_EN_INT2_PAD_FFULL__LEN 1
#define BMA2X2_EN_INT2_PAD_FFULL__MSK 0x20
#define BMA2X2_EN_INT2_PAD_FFULL__REG BMA2X2_INT_DATA_SEL_REG
#define BMA2X2_EN_INT2_PAD_FWM__POS 6
#define BMA2X2_EN_INT2_PAD_FWM__LEN 1
#define BMA2X2_EN_INT2_PAD_FWM__MSK 0x40
#define BMA2X2_EN_INT2_PAD_FWM__REG BMA2X2_INT_DATA_SEL_REG
#define BMA2X2_EN_INT2_PAD_NEWDATA__POS 7
#define BMA2X2_EN_INT2_PAD_NEWDATA__LEN 1
#define BMA2X2_EN_INT2_PAD_NEWDATA__MSK 0x80
#define BMA2X2_EN_INT2_PAD_NEWDATA__REG BMA2X2_INT_DATA_SEL_REG
#define BMA2X2_UNFILT_INT_SRC_LOWG__POS 0
#define BMA2X2_UNFILT_INT_SRC_LOWG__LEN 1
#define BMA2X2_UNFILT_INT_SRC_LOWG__MSK 0x01
#define BMA2X2_UNFILT_INT_SRC_LOWG__REG BMA2X2_INT_SRC_REG
#define BMA2X2_UNFILT_INT_SRC_HIGHG__POS 1
#define BMA2X2_UNFILT_INT_SRC_HIGHG__LEN 1
#define BMA2X2_UNFILT_INT_SRC_HIGHG__MSK 0x02
#define BMA2X2_UNFILT_INT_SRC_HIGHG__REG BMA2X2_INT_SRC_REG
#define BMA2X2_UNFILT_INT_SRC_SLOPE__POS 2
#define BMA2X2_UNFILT_INT_SRC_SLOPE__LEN 1
#define BMA2X2_UNFILT_INT_SRC_SLOPE__MSK 0x04
#define BMA2X2_UNFILT_INT_SRC_SLOPE__REG BMA2X2_INT_SRC_REG
#define BMA2X2_UNFILT_INT_SRC_SLO_NO_MOT__POS 3
#define BMA2X2_UNFILT_INT_SRC_SLO_NO_MOT__LEN 1
#define BMA2X2_UNFILT_INT_SRC_SLO_NO_MOT__MSK 0x08
#define BMA2X2_UNFILT_INT_SRC_SLO_NO_MOT__REG BMA2X2_INT_SRC_REG
#define BMA2X2_UNFILT_INT_SRC_TAP__POS 4
#define BMA2X2_UNFILT_INT_SRC_TAP__LEN 1
#define BMA2X2_UNFILT_INT_SRC_TAP__MSK 0x10
#define BMA2X2_UNFILT_INT_SRC_TAP__REG BMA2X2_INT_SRC_REG
#define BMA2X2_UNFILT_INT_SRC_DATA__POS 5
#define BMA2X2_UNFILT_INT_SRC_DATA__LEN 1
#define BMA2X2_UNFILT_INT_SRC_DATA__MSK 0x20
#define BMA2X2_UNFILT_INT_SRC_DATA__REG BMA2X2_INT_SRC_REG
#define BMA2X2_INT1_PAD_ACTIVE_LEVEL__POS 0
#define BMA2X2_INT1_PAD_ACTIVE_LEVEL__LEN 1
#define BMA2X2_INT1_PAD_ACTIVE_LEVEL__MSK 0x01
#define BMA2X2_INT1_PAD_ACTIVE_LEVEL__REG BMA2X2_INT_SET_REG
#define BMA2X2_INT2_PAD_ACTIVE_LEVEL__POS 2
#define BMA2X2_INT2_PAD_ACTIVE_LEVEL__LEN 1
#define BMA2X2_INT2_PAD_ACTIVE_LEVEL__MSK 0x04
#define BMA2X2_INT2_PAD_ACTIVE_LEVEL__REG BMA2X2_INT_SET_REG
#define BMA2X2_INT1_PAD_OUTPUT_TYPE__POS 1
#define BMA2X2_INT1_PAD_OUTPUT_TYPE__LEN 1
#define BMA2X2_INT1_PAD_OUTPUT_TYPE__MSK 0x02
#define BMA2X2_INT1_PAD_OUTPUT_TYPE__REG BMA2X2_INT_SET_REG
#define BMA2X2_INT2_PAD_OUTPUT_TYPE__POS 3
#define BMA2X2_INT2_PAD_OUTPUT_TYPE__LEN 1
#define BMA2X2_INT2_PAD_OUTPUT_TYPE__MSK 0x08
#define BMA2X2_INT2_PAD_OUTPUT_TYPE__REG BMA2X2_INT_SET_REG
#define BMA2X2_INT_MODE_SEL__POS 0
#define BMA2X2_INT_MODE_SEL__LEN 4
#define BMA2X2_INT_MODE_SEL__MSK 0x0F
#define BMA2X2_INT_MODE_SEL__REG BMA2X2_INT_CTRL_REG
#define BMA2X2_RESET_INT__POS 7
#define BMA2X2_RESET_INT__LEN 1
#define BMA2X2_RESET_INT__MSK 0x80
#define BMA2X2_RESET_INT__REG BMA2X2_INT_CTRL_REG
#define BMA2X2_LOWG_DUR__POS 0
#define BMA2X2_LOWG_DUR__LEN 8
#define BMA2X2_LOWG_DUR__MSK 0xFF
#define BMA2X2_LOWG_DUR__REG BMA2X2_LOW_DURN_REG
#define BMA2X2_LOWG_THRES__POS 0
#define BMA2X2_LOWG_THRES__LEN 8
#define BMA2X2_LOWG_THRES__MSK 0xFF
#define BMA2X2_LOWG_THRES__REG BMA2X2_LOW_THRES_REG
#define BMA2X2_LOWG_HYST__POS 0
#define BMA2X2_LOWG_HYST__LEN 2
#define BMA2X2_LOWG_HYST__MSK 0x03
#define BMA2X2_LOWG_HYST__REG BMA2X2_LOW_HIGH_HYST_REG
#define BMA2X2_LOWG_INT_MODE__POS 2
#define BMA2X2_LOWG_INT_MODE__LEN 1
#define BMA2X2_LOWG_INT_MODE__MSK 0x04
#define BMA2X2_LOWG_INT_MODE__REG BMA2X2_LOW_HIGH_HYST_REG
#define BMA2X2_HIGHG_DUR__POS 0
#define BMA2X2_HIGHG_DUR__LEN 8
#define BMA2X2_HIGHG_DUR__MSK 0xFF
#define BMA2X2_HIGHG_DUR__REG BMA2X2_HIGH_DURN_REG
#define BMA2X2_HIGHG_THRES__POS 0
#define BMA2X2_HIGHG_THRES__LEN 8
#define BMA2X2_HIGHG_THRES__MSK 0xFF
#define BMA2X2_HIGHG_THRES__REG BMA2X2_HIGH_THRES_REG
#define BMA2X2_HIGHG_HYST__POS 6
#define BMA2X2_HIGHG_HYST__LEN 2
#define BMA2X2_HIGHG_HYST__MSK 0xC0
#define BMA2X2_HIGHG_HYST__REG BMA2X2_LOW_HIGH_HYST_REG
#define BMA2X2_SLOPE_DUR__POS 0
#define BMA2X2_SLOPE_DUR__LEN 2
#define BMA2X2_SLOPE_DUR__MSK 0x03
#define BMA2X2_SLOPE_DUR__REG BMA2X2_SLOPE_DURN_REG
#define BMA2X2_SLO_NO_MOT_DUR__POS 2
#define BMA2X2_SLO_NO_MOT_DUR__LEN 6
#define BMA2X2_SLO_NO_MOT_DUR__MSK 0xFC
#define BMA2X2_SLO_NO_MOT_DUR__REG BMA2X2_SLOPE_DURN_REG
#define BMA2X2_SLOPE_THRES__POS 0
#define BMA2X2_SLOPE_THRES__LEN 8
#define BMA2X2_SLOPE_THRES__MSK 0xFF
#define BMA2X2_SLOPE_THRES__REG BMA2X2_SLOPE_THRES_REG
#define BMA2X2_SLO_NO_MOT_THRES__POS 0
#define BMA2X2_SLO_NO_MOT_THRES__LEN 8
#define BMA2X2_SLO_NO_MOT_THRES__MSK 0xFF
#define BMA2X2_SLO_NO_MOT_THRES__REG BMA2X2_SLO_NO_MOT_THRES_REG
#define BMA2X2_TAP_DUR__POS 0
#define BMA2X2_TAP_DUR__LEN 3
#define BMA2X2_TAP_DUR__MSK 0x07
#define BMA2X2_TAP_DUR__REG BMA2X2_TAP_PARAM_REG
#define BMA2X2_TAP_SHOCK_DURN__POS 6
#define BMA2X2_TAP_SHOCK_DURN__LEN 1
#define BMA2X2_TAP_SHOCK_DURN__MSK 0x40
#define BMA2X2_TAP_SHOCK_DURN__REG BMA2X2_TAP_PARAM_REG
#define BMA2X2_ADV_TAP_INT__POS 5
#define BMA2X2_ADV_TAP_INT__LEN 1
#define BMA2X2_ADV_TAP_INT__MSK 0x20
#define BMA2X2_ADV_TAP_INT__REG BMA2X2_TAP_PARAM_REG
#define BMA2X2_TAP_QUIET_DURN__POS 7
#define BMA2X2_TAP_QUIET_DURN__LEN 1
#define BMA2X2_TAP_QUIET_DURN__MSK 0x80
#define BMA2X2_TAP_QUIET_DURN__REG BMA2X2_TAP_PARAM_REG
#define BMA2X2_TAP_THRES__POS 0
#define BMA2X2_TAP_THRES__LEN 5
#define BMA2X2_TAP_THRES__MSK 0x1F
#define BMA2X2_TAP_THRES__REG BMA2X2_TAP_THRES_REG
#define BMA2X2_TAP_SAMPLES__POS 6
#define BMA2X2_TAP_SAMPLES__LEN 2
#define BMA2X2_TAP_SAMPLES__MSK 0xC0
#define BMA2X2_TAP_SAMPLES__REG BMA2X2_TAP_THRES_REG
#define BMA2X2_ORIENT_MODE__POS 0
#define BMA2X2_ORIENT_MODE__LEN 2
#define BMA2X2_ORIENT_MODE__MSK 0x03
#define BMA2X2_ORIENT_MODE__REG BMA2X2_ORIENT_PARAM_REG
#define BMA2X2_ORIENT_BLOCK__POS 2
#define BMA2X2_ORIENT_BLOCK__LEN 2
#define BMA2X2_ORIENT_BLOCK__MSK 0x0C
#define BMA2X2_ORIENT_BLOCK__REG BMA2X2_ORIENT_PARAM_REG
#define BMA2X2_ORIENT_HYST__POS 4
#define BMA2X2_ORIENT_HYST__LEN 3
#define BMA2X2_ORIENT_HYST__MSK 0x70
#define BMA2X2_ORIENT_HYST__REG BMA2X2_ORIENT_PARAM_REG
#define BMA2X2_ORIENT_AXIS__POS 7
#define BMA2X2_ORIENT_AXIS__LEN 1
#define BMA2X2_ORIENT_AXIS__MSK 0x80
#define BMA2X2_ORIENT_AXIS__REG BMA2X2_THETA_BLOCK_REG
#define BMA2X2_ORIENT_UD_EN__POS 6
#define BMA2X2_ORIENT_UD_EN__LEN 1
#define BMA2X2_ORIENT_UD_EN__MSK 0x40
#define BMA2X2_ORIENT_UD_EN__REG BMA2X2_THETA_BLOCK_REG
#define BMA2X2_THETA_BLOCK__POS 0
#define BMA2X2_THETA_BLOCK__LEN 6
#define BMA2X2_THETA_BLOCK__MSK 0x3F
#define BMA2X2_THETA_BLOCK__REG BMA2X2_THETA_BLOCK_REG
#define BMA2X2_THETA_FLAT__POS 0
#define BMA2X2_THETA_FLAT__LEN 6
#define BMA2X2_THETA_FLAT__MSK 0x3F
#define BMA2X2_THETA_FLAT__REG BMA2X2_THETA_FLAT_REG
#define BMA2X2_FLAT_HOLD_TIME__POS 4
#define BMA2X2_FLAT_HOLD_TIME__LEN 2
#define BMA2X2_FLAT_HOLD_TIME__MSK 0x30
#define BMA2X2_FLAT_HOLD_TIME__REG BMA2X2_FLAT_HOLD_TIME_REG
#define BMA2X2_FLAT_HYS__POS 0
#define BMA2X2_FLAT_HYS__LEN 3
#define BMA2X2_FLAT_HYS__MSK 0x07
#define BMA2X2_FLAT_HYS__REG BMA2X2_FLAT_HOLD_TIME_REG
#define BMA2X2_FIFO_WML_TRIG_RETAIN__POS 0
#define BMA2X2_FIFO_WML_TRIG_RETAIN__LEN 6
#define BMA2X2_FIFO_WML_TRIG_RETAIN__MSK 0x3F
#define BMA2X2_FIFO_WML_TRIG_RETAIN__REG BMA2X2_FIFO_WML_TRIG
#define BMA2X2_EN_SELF_TEST__POS 0
#define BMA2X2_EN_SELF_TEST__LEN 2
#define BMA2X2_EN_SELF_TEST__MSK 0x03
#define BMA2X2_EN_SELF_TEST__REG BMA2X2_SELF_TEST_REG
#define BMA2X2_NEG_SELF_TEST__POS 2
#define BMA2X2_NEG_SELF_TEST__LEN 1
#define BMA2X2_NEG_SELF_TEST__MSK 0x04
#define BMA2X2_NEG_SELF_TEST__REG BMA2X2_SELF_TEST_REG
#define BMA2X2_SELF_TEST_AMP__POS 4
#define BMA2X2_SELF_TEST_AMP__LEN 1
#define BMA2X2_SELF_TEST_AMP__MSK 0x10
#define BMA2X2_SELF_TEST_AMP__REG BMA2X2_SELF_TEST_REG
#define BMA2X2_UNLOCK_EE_PROG_MODE__POS 0
#define BMA2X2_UNLOCK_EE_PROG_MODE__LEN 1
#define BMA2X2_UNLOCK_EE_PROG_MODE__MSK 0x01
#define BMA2X2_UNLOCK_EE_PROG_MODE__REG BMA2X2_EEPROM_CTRL_REG
#define BMA2X2_START_EE_PROG_TRIG__POS 1
#define BMA2X2_START_EE_PROG_TRIG__LEN 1
#define BMA2X2_START_EE_PROG_TRIG__MSK 0x02
#define BMA2X2_START_EE_PROG_TRIG__REG BMA2X2_EEPROM_CTRL_REG
#define BMA2X2_EE_PROG_READY__POS 2
#define BMA2X2_EE_PROG_READY__LEN 1
#define BMA2X2_EE_PROG_READY__MSK 0x04
#define BMA2X2_EE_PROG_READY__REG BMA2X2_EEPROM_CTRL_REG
#define BMA2X2_UPDATE_IMAGE__POS 3
#define BMA2X2_UPDATE_IMAGE__LEN 1
#define BMA2X2_UPDATE_IMAGE__MSK 0x08
#define BMA2X2_UPDATE_IMAGE__REG BMA2X2_EEPROM_CTRL_REG
#define BMA2X2_EE_REMAIN__POS 4
#define BMA2X2_EE_REMAIN__LEN 4
#define BMA2X2_EE_REMAIN__MSK 0xF0
#define BMA2X2_EE_REMAIN__REG BMA2X2_EEPROM_CTRL_REG
#define BMA2X2_EN_SPI_MODE_3__POS 0
#define BMA2X2_EN_SPI_MODE_3__LEN 1
#define BMA2X2_EN_SPI_MODE_3__MSK 0x01
#define BMA2X2_EN_SPI_MODE_3__REG BMA2X2_SERIAL_CTRL_REG
#define BMA2X2_I2C_WATCHDOG_PERIOD__POS 1
#define BMA2X2_I2C_WATCHDOG_PERIOD__LEN 1
#define BMA2X2_I2C_WATCHDOG_PERIOD__MSK 0x02
#define BMA2X2_I2C_WATCHDOG_PERIOD__REG BMA2X2_SERIAL_CTRL_REG
#define BMA2X2_EN_I2C_WATCHDOG__POS 2
#define BMA2X2_EN_I2C_WATCHDOG__LEN 1
#define BMA2X2_EN_I2C_WATCHDOG__MSK 0x04
#define BMA2X2_EN_I2C_WATCHDOG__REG BMA2X2_SERIAL_CTRL_REG
#define BMA2X2_EXT_MODE__POS 7
#define BMA2X2_EXT_MODE__LEN 1
#define BMA2X2_EXT_MODE__MSK 0x80
#define BMA2X2_EXT_MODE__REG BMA2X2_EXTMODE_CTRL_REG
#define BMA2X2_ALLOW_UPPER__POS 6
#define BMA2X2_ALLOW_UPPER__LEN 1
#define BMA2X2_ALLOW_UPPER__MSK 0x40
#define BMA2X2_ALLOW_UPPER__REG BMA2X2_EXTMODE_CTRL_REG
#define BMA2X2_MAP_2_LOWER__POS 5
#define BMA2X2_MAP_2_LOWER__LEN 1
#define BMA2X2_MAP_2_LOWER__MSK 0x20
#define BMA2X2_MAP_2_LOWER__REG BMA2X2_EXTMODE_CTRL_REG
#define BMA2X2_MAGIC_NUMBER__POS 0
#define BMA2X2_MAGIC_NUMBER__LEN 5
#define BMA2X2_MAGIC_NUMBER__MSK 0x1F
#define BMA2X2_MAGIC_NUMBER__REG BMA2X2_EXTMODE_CTRL_REG
#define BMA2X2_UNLOCK_EE_WRITE_TRIM__POS 4
#define BMA2X2_UNLOCK_EE_WRITE_TRIM__LEN 4
#define BMA2X2_UNLOCK_EE_WRITE_TRIM__MSK 0xF0
#define BMA2X2_UNLOCK_EE_WRITE_TRIM__REG BMA2X2_CTRL_UNLOCK_REG
#define BMA2X2_EN_SLOW_COMP_X__POS 0
#define BMA2X2_EN_SLOW_COMP_X__LEN 1
#define BMA2X2_EN_SLOW_COMP_X__MSK 0x01
#define BMA2X2_EN_SLOW_COMP_X__REG BMA2X2_OFFSET_CTRL_REG
#define BMA2X2_EN_SLOW_COMP_Y__POS 1
#define BMA2X2_EN_SLOW_COMP_Y__LEN 1
#define BMA2X2_EN_SLOW_COMP_Y__MSK 0x02
#define BMA2X2_EN_SLOW_COMP_Y__REG BMA2X2_OFFSET_CTRL_REG
#define BMA2X2_EN_SLOW_COMP_Z__POS 2
#define BMA2X2_EN_SLOW_COMP_Z__LEN 1
#define BMA2X2_EN_SLOW_COMP_Z__MSK 0x04
#define BMA2X2_EN_SLOW_COMP_Z__REG BMA2X2_OFFSET_CTRL_REG
#define BMA2X2_FAST_CAL_RDY_S__POS 4
#define BMA2X2_FAST_CAL_RDY_S__LEN 1
#define BMA2X2_FAST_CAL_RDY_S__MSK 0x10
#define BMA2X2_FAST_CAL_RDY_S__REG BMA2X2_OFFSET_CTRL_REG
#define BMA2X2_CAL_TRIGGER__POS 5
#define BMA2X2_CAL_TRIGGER__LEN 2
#define BMA2X2_CAL_TRIGGER__MSK 0x60
#define BMA2X2_CAL_TRIGGER__REG BMA2X2_OFFSET_CTRL_REG
#define BMA2X2_RESET_OFFSET_REGS__POS 7
#define BMA2X2_RESET_OFFSET_REGS__LEN 1
#define BMA2X2_RESET_OFFSET_REGS__MSK 0x80
#define BMA2X2_RESET_OFFSET_REGS__REG BMA2X2_OFFSET_CTRL_REG
#define BMA2X2_COMP_CUTOFF__POS 0
#define BMA2X2_COMP_CUTOFF__LEN 1
#define BMA2X2_COMP_CUTOFF__MSK 0x01
#define BMA2X2_COMP_CUTOFF__REG BMA2X2_OFFSET_PARAMS_REG
#define BMA2X2_COMP_TARGET_OFFSET_X__POS 1
#define BMA2X2_COMP_TARGET_OFFSET_X__LEN 2
#define BMA2X2_COMP_TARGET_OFFSET_X__MSK 0x06
#define BMA2X2_COMP_TARGET_OFFSET_X__REG BMA2X2_OFFSET_PARAMS_REG
#define BMA2X2_COMP_TARGET_OFFSET_Y__POS 3
#define BMA2X2_COMP_TARGET_OFFSET_Y__LEN 2
#define BMA2X2_COMP_TARGET_OFFSET_Y__MSK 0x18
#define BMA2X2_COMP_TARGET_OFFSET_Y__REG BMA2X2_OFFSET_PARAMS_REG
#define BMA2X2_COMP_TARGET_OFFSET_Z__POS 5
#define BMA2X2_COMP_TARGET_OFFSET_Z__LEN 2
#define BMA2X2_COMP_TARGET_OFFSET_Z__MSK 0x60
#define BMA2X2_COMP_TARGET_OFFSET_Z__REG BMA2X2_OFFSET_PARAMS_REG
#define BMA2X2_FIFO_DATA_SELECT__POS 0
#define BMA2X2_FIFO_DATA_SELECT__LEN 2
#define BMA2X2_FIFO_DATA_SELECT__MSK 0x03
#define BMA2X2_FIFO_DATA_SELECT__REG BMA2X2_FIFO_MODE_REG
#define BMA2X2_FIFO_TRIGGER_SOURCE__POS 2
#define BMA2X2_FIFO_TRIGGER_SOURCE__LEN 2
#define BMA2X2_FIFO_TRIGGER_SOURCE__MSK 0x0C
#define BMA2X2_FIFO_TRIGGER_SOURCE__REG BMA2X2_FIFO_MODE_REG
#define BMA2X2_FIFO_TRIGGER_ACTION__POS 4
#define BMA2X2_FIFO_TRIGGER_ACTION__LEN 2
#define BMA2X2_FIFO_TRIGGER_ACTION__MSK 0x30
#define BMA2X2_FIFO_TRIGGER_ACTION__REG BMA2X2_FIFO_MODE_REG
#define BMA2X2_FIFO_MODE__POS 6
#define BMA2X2_FIFO_MODE__LEN 2
#define BMA2X2_FIFO_MODE__MSK 0xC0
#define BMA2X2_FIFO_MODE__REG BMA2X2_FIFO_MODE_REG
#define BMA2X2_STATUS1 0
#define BMA2X2_STATUS2 1
#define BMA2X2_STATUS3 2
#define BMA2X2_STATUS4 3
#define BMA2X2_STATUS5 4
#define BMA2X2_RANGE_2G 3
#define BMA2X2_RANGE_4G 5
#define BMA2X2_RANGE_8G 8
#define BMA2X2_RANGE_16G 12
#define BMA2X2_BW_7_81HZ 0x08
#define BMA2X2_BW_15_63HZ 0x09
#define BMA2X2_BW_31_25HZ 0x0A
#define BMA2X2_BW_62_50HZ 0x0B
#define BMA2X2_BW_125HZ 0x0C
#define BMA2X2_BW_250HZ 0x0D
#define BMA2X2_BW_500HZ 0x0E
#define BMA2X2_BW_1000HZ 0x0F
#define BMA2X2_SLEEP_DUR_0_5MS 0x05
#define BMA2X2_SLEEP_DUR_1MS 0x06
#define BMA2X2_SLEEP_DUR_2MS 0x07
#define BMA2X2_SLEEP_DUR_4MS 0x08
#define BMA2X2_SLEEP_DUR_6MS 0x09
#define BMA2X2_SLEEP_DUR_10MS 0x0A
#define BMA2X2_SLEEP_DUR_25MS 0x0B
#define BMA2X2_SLEEP_DUR_50MS 0x0C
#define BMA2X2_SLEEP_DUR_100MS 0x0D
#define BMA2X2_SLEEP_DUR_500MS 0x0E
#define BMA2X2_SLEEP_DUR_1S 0x0F
#define BMA2X2_LATCH_DUR_NON_LATCH 0x00
#define BMA2X2_LATCH_DUR_250MS 0x01
#define BMA2X2_LATCH_DUR_500MS 0x02
#define BMA2X2_LATCH_DUR_1S 0x03
#define BMA2X2_LATCH_DUR_2S 0x04
#define BMA2X2_LATCH_DUR_4S 0x05
#define BMA2X2_LATCH_DUR_8S 0x06
#define BMA2X2_LATCH_DUR_LATCH 0x07
#define BMA2X2_LATCH_DUR_NON_LATCH1 0x08
#define BMA2X2_LATCH_DUR_250US 0x09
#define BMA2X2_LATCH_DUR_500US 0x0A
#define BMA2X2_LATCH_DUR_1MS 0x0B
#define BMA2X2_LATCH_DUR_12_5MS 0x0C
#define BMA2X2_LATCH_DUR_25MS 0x0D
#define BMA2X2_LATCH_DUR_50MS 0x0E
#define BMA2X2_LATCH_DUR_LATCH1 0x0F
#define BMA2X2_MODE_NORMAL 0
#define BMA2X2_MODE_LOWPOWER1 1
#define BMA2X2_MODE_SUSPEND 2
#define BMA2X2_MODE_DEEP_SUSPEND 3
#define BMA2X2_MODE_LOWPOWER2 4
#define BMA2X2_MODE_STANDBY 5
#define BMA2X2_X_AXIS 0
#define BMA2X2_Y_AXIS 1
#define BMA2X2_Z_AXIS 2
#define BMA2X2_Low_G_Interrupt 0
#define BMA2X2_High_G_X_Interrupt 1
#define BMA2X2_High_G_Y_Interrupt 2
#define BMA2X2_High_G_Z_Interrupt 3
#define BMA2X2_DATA_EN 4
#define BMA2X2_Slope_X_Interrupt 5
#define BMA2X2_Slope_Y_Interrupt 6
#define BMA2X2_Slope_Z_Interrupt 7
#define BMA2X2_Single_Tap_Interrupt 8
#define BMA2X2_Double_Tap_Interrupt 9
#define BMA2X2_Orient_Interrupt 10
#define BMA2X2_Flat_Interrupt 11
#define BMA2X2_FFULL_INTERRUPT 12
#define BMA2X2_FWM_INTERRUPT 13
#define BMA2X2_INT1_LOWG 0
#define BMA2X2_INT2_LOWG 1
#define BMA2X2_INT1_HIGHG 0
#define BMA2X2_INT2_HIGHG 1
#define BMA2X2_INT1_SLOPE 0
#define BMA2X2_INT2_SLOPE 1
#define BMA2X2_INT1_SLO_NO_MOT 0
#define BMA2X2_INT2_SLO_NO_MOT 1
#define BMA2X2_INT1_DTAP 0
#define BMA2X2_INT2_DTAP 1
#define BMA2X2_INT1_STAP 0
#define BMA2X2_INT2_STAP 1
#define BMA2X2_INT1_ORIENT 0
#define BMA2X2_INT2_ORIENT 1
#define BMA2X2_INT1_FLAT 0
#define BMA2X2_INT2_FLAT 1
#define BMA2X2_INT1_NDATA 0
#define BMA2X2_INT2_NDATA 1
#define BMA2X2_INT1_FWM 0
#define BMA2X2_INT2_FWM 1
#define BMA2X2_INT1_FFULL 0
#define BMA2X2_INT2_FFULL 1
#define BMA2X2_SRC_LOWG 0
#define BMA2X2_SRC_HIGHG 1
#define BMA2X2_SRC_SLOPE 2
#define BMA2X2_SRC_SLO_NO_MOT 3
#define BMA2X2_SRC_TAP 4
#define BMA2X2_SRC_DATA 5
#define BMA2X2_INT1_OUTPUT 0
#define BMA2X2_INT2_OUTPUT 1
#define BMA2X2_INT1_LEVEL 0
#define BMA2X2_INT2_LEVEL 1
#define BMA2X2_LOW_DURATION 0
#define BMA2X2_HIGH_DURATION 1
#define BMA2X2_SLOPE_DURATION 2
#define BMA2X2_SLO_NO_MOT_DURATION 3
#define BMA2X2_LOW_THRESHOLD 0
#define BMA2X2_HIGH_THRESHOLD 1
#define BMA2X2_SLOPE_THRESHOLD 2
#define BMA2X2_SLO_NO_MOT_THRESHOLD 3
#define BMA2X2_LOWG_HYST 0
#define BMA2X2_HIGHG_HYST 1
#define BMA2X2_ORIENT_THETA 0
#define BMA2X2_FLAT_THETA 1
#define BMA2X2_I2C_SELECT 0
#define BMA2X2_I2C_EN 1
#define BMA2X2_SLOW_COMP_X 0
#define BMA2X2_SLOW_COMP_Y 1
#define BMA2X2_SLOW_COMP_Z 2
#define BMA2X2_CUT_OFF 0
#define BMA2X2_OFFSET_TRIGGER_X 1
#define BMA2X2_OFFSET_TRIGGER_Y 2
#define BMA2X2_OFFSET_TRIGGER_Z 3
#define BMA2X2_GP0 0
#define BMA2X2_GP1 1
#define BMA2X2_SLO_NO_MOT_EN_X 0
#define BMA2X2_SLO_NO_MOT_EN_Y 1
#define BMA2X2_SLO_NO_MOT_EN_Z 2
#define BMA2X2_SLO_NO_MOT_EN_SEL 3
#define BMA2X2_WAKE_UP_DUR_20MS 0
#define BMA2X2_WAKE_UP_DUR_80MS 1
#define BMA2X2_WAKE_UP_DUR_320MS 2
#define BMA2X2_WAKE_UP_DUR_2560MS 3
#define BMA2X2_SELF_TEST0_ON 1
#define BMA2X2_SELF_TEST1_ON 2
#define BMA2X2_EE_W_OFF 0
#define BMA2X2_EE_W_ON 1
#define BMA2X2_LOW_TH_IN_G(gthres, range) ((256 * gthres) / range)
#define BMA2X2_HIGH_TH_IN_G(gthres, range) ((256 * gthres) / range)
#define BMA2X2_LOW_HY_IN_G(ghyst, range) ((32 * ghyst) / range)
#define BMA2X2_HIGH_HY_IN_G(ghyst, range) ((32 * ghyst) / range)
#define BMA2X2_SLOPE_TH_IN_G(gthres, range) ((128 * gthres) / range)
#define BMA2X2_GET_BITSLICE(regvar, bitname)\
((regvar & bitname##__MSK) >> bitname##__POS)
#define BMA2X2_SET_BITSLICE(regvar, bitname, val)\
((regvar & ~bitname##__MSK) | ((val<<bitname##__POS)&bitname##__MSK))
#ifdef CONFIG_BMA_ENABLE_NEWDATA_INT
#define BMA2x2_IS_NEWDATA_INT_ENABLED() (true)
#else
#define BMA2x2_IS_NEWDATA_INT_ENABLED() (false)
#endif
#ifdef BMA2X2_ENABLE_INT1
#define BMA2x2_IS_INT1_ENABLED() (true)
#else
#define BMA2x2_IS_INT1_ENABLED() (false)
#endif
#ifdef BMA2X2_ENABLE_INT2
#define BMA2x2_IS_INT2_ENABLED() (true)
#else
#define BMA2x2_IS_INT2_ENABLED() (false)
#endif
#define CHECK_CHIP_ID_TIME_MAX 5
#define BMA255_CHIP_ID 0XFA
#define BMA250E_CHIP_ID 0XF9
#define BMA222E_CHIP_ID 0XF8
#define BMA280_CHIP_ID 0XFB
#define BMA355_CHIP_ID 0XEA
#define BMA255_TYPE 0
#define BMA250E_TYPE 1
#define BMA222E_TYPE 2
#define BMA280_TYPE 3
#define MAX_FIFO_F_LEVEL 32
#define MAX_FIFO_F_BYTES 6
#define BMA_MAX_RETRY_I2C_XFER (100)
#ifdef CONFIG_DOUBLE_TAP
#define DEFAULT_TAP_JUDGE_PERIOD 1000 /* default judge in 1 second */
#endif
/*! Bosch sensor unknown place*/
#define BOSCH_SENSOR_PLACE_UNKNOWN (-1)
/*! Bosch sensor remapping table size P0~P7*/
#define MAX_AXIS_REMAP_TAB_SZ 8
#define BOSCH_SENSOR_PLANE 0
#define BOSCH_SENSOR_UP 1
#define BOSCH_SENSOR_DOWN 2
#define RETRY_TIME 50
/*!
* @brief:BMI058 feature
* macro definition
*/
#define BMA2X2_FIFO_DAT_SEL_X 1
#define BMA2X2_FIFO_DAT_SEL_Y 2
#define BMA2X2_FIFO_DAT_SEL_Z 3
#ifdef CONFIG_SENSORS_BMI058
#define C_BMI058_One_U8X 1
#define C_BMI058_Two_U8X 2
#define BMI058_OFFSET_TRIGGER_X BMA2X2_OFFSET_TRIGGER_Y
#define BMI058_OFFSET_TRIGGER_Y BMA2X2_OFFSET_TRIGGER_X
/*! BMI058 X AXIS OFFSET REG definition*/
#define BMI058_OFFSET_X_AXIS_REG BMA2X2_OFFSET_Y_AXIS_REG
/*! BMI058 Y AXIS OFFSET REG definition*/
#define BMI058_OFFSET_Y_AXIS_REG BMA2X2_OFFSET_X_AXIS_REG
#define BMI058_FIFO_DAT_SEL_X BMA2X2_FIFO_DAT_SEL_Y
#define BMI058_FIFO_DAT_SEL_Y BMA2X2_FIFO_DAT_SEL_X
/*! BMA2x2 common slow no motion X interrupt type definition*/
#define BMA2X2_SLOW_NO_MOT_X_INT 12
/*! BMA2x2 common slow no motion Y interrupt type definition*/
#define BMA2X2_SLOW_NO_MOT_Y_INT 13
/*! BMA2x2 common High G X interrupt type definition*/
#define BMA2X2_HIGHG_X_INT 1
/*! BMA2x2 common High G Y interrupt type definition*/
#define BMA2X2_HIGHG_Y_INT 2
/*! BMA2x2 common slope X interrupt type definition*/
#define BMA2X2_SLOPE_X_INT 5
/*! BMA2x2 common slope Y interrupt type definition*/
#define BMA2X2_SLOPE_Y_INT 6
/*! this structure holds some interrupt types difference
**between BMA2x2 and BMI058.
*/
struct interrupt_map_t {
int x;
int y;
};
/*!*Need to use BMA2x2 Common interrupt type definition to
* instead of Some of BMI058 reversed Interrupt type
* because of HW Register.
* The reversed Interrupt types contain:
* slow_no_mot_x_int && slow_not_mot_y_int
* highg_x_int && highg_y_int
* slope_x_int && slope_y_int
**/
static const struct interrupt_map_t int_map[] = {
{BMA2X2_SLOW_NO_MOT_X_INT, BMA2X2_SLOW_NO_MOT_Y_INT},
{BMA2X2_HIGHG_X_INT, BMA2X2_HIGHG_Y_INT},
{BMA2X2_SLOPE_X_INT, BMA2X2_SLOPE_Y_INT}
};
/*! high g or slope interrupt type definition for BMI058*/
/*! High G interrupt of x, y, z axis happened */
#define HIGH_G_INTERRUPT_X HIGH_G_INTERRUPT_Y_HAPPENED
#define HIGH_G_INTERRUPT_Y HIGH_G_INTERRUPT_X_HAPPENED
#define HIGH_G_INTERRUPT_Z HIGH_G_INTERRUPT_Z_HAPPENED
/*! High G interrupt of x, y, z negative axis happened */
#define HIGH_G_INTERRUPT_X_N HIGH_G_INTERRUPT_Y_NEGATIVE_HAPPENED
#define HIGH_G_INTERRUPT_Y_N HIGH_G_INTERRUPT_X_NEGATIVE_HAPPENED
#define HIGH_G_INTERRUPT_Z_N HIGH_G_INTERRUPT_Z_NEGATIVE_HAPPENED
/*! Slope interrupt of x, y, z axis happened */
#define SLOPE_INTERRUPT_X SLOPE_INTERRUPT_Y_HAPPENED
#define SLOPE_INTERRUPT_Y SLOPE_INTERRUPT_X_HAPPENED
#define SLOPE_INTERRUPT_Z SLOPE_INTERRUPT_Z_HAPPENED
/*! Slope interrupt of x, y, z negative axis happened */
#define SLOPE_INTERRUPT_X_N SLOPE_INTERRUPT_Y_NEGATIVE_HAPPENED
#define SLOPE_INTERRUPT_Y_N SLOPE_INTERRUPT_X_NEGATIVE_HAPPENED
#define SLOPE_INTERRUPT_Z_N SLOPE_INTERRUPT_Z_NEGATIVE_HAPPENED
#else
/*! high g or slope interrupt type definition*/
/*! High G interrupt of x, y, z axis happened */
#define HIGH_G_INTERRUPT_X HIGH_G_INTERRUPT_X_HAPPENED
#define HIGH_G_INTERRUPT_Y HIGH_G_INTERRUPT_Y_HAPPENED
#define HIGH_G_INTERRUPT_Z HIGH_G_INTERRUPT_Z_HAPPENED
/*! High G interrupt of x, y, z negative axis happened */
#define HIGH_G_INTERRUPT_X_N HIGH_G_INTERRUPT_X_NEGATIVE_HAPPENED
#define HIGH_G_INTERRUPT_Y_N HIGH_G_INTERRUPT_Y_NEGATIVE_HAPPENED
#define HIGH_G_INTERRUPT_Z_N HIGH_G_INTERRUPT_Z_NEGATIVE_HAPPENED
/*! Slope interrupt of x, y, z axis happened */
#define SLOPE_INTERRUPT_X SLOPE_INTERRUPT_X_HAPPENED
#define SLOPE_INTERRUPT_Y SLOPE_INTERRUPT_Y_HAPPENED
#define SLOPE_INTERRUPT_Z SLOPE_INTERRUPT_Z_HAPPENED
/*! Slope interrupt of x, y, z negative axis happened */
#define SLOPE_INTERRUPT_X_N SLOPE_INTERRUPT_X_NEGATIVE_HAPPENED
#define SLOPE_INTERRUPT_Y_N SLOPE_INTERRUPT_Y_NEGATIVE_HAPPENED
#define SLOPE_INTERRUPT_Z_N SLOPE_INTERRUPT_Z_NEGATIVE_HAPPENED
#endif/*End of CONFIG_SENSORS_BMI058*/
/*BMA power supply VDD 1.62V-3.6V VIO 1.2-3.6V */
#define BMA2x2_VDD_MIN_UV 2000000
#define BMA2x2_VDD_MAX_UV 3400000
#define BMA2x2_VIO_MIN_UV 1500000
#define BMA2x2_VIO_MAX_UV 3400000
/* Polling delay in msecs */
#define POLL_INTERVAL_MIN_MS 10
#define POLL_INTERVAL_MAX_MS 4000
#define POLL_DEFAULT_INTERVAL_MS 200
/* Interrupt delay in msecs */
#define BMA_INT_MAX_DELAY 64
#define MAX_RANGE_MAP 4
struct bma2x2_type_map_t {
/*! bma2x2 sensor chip id */
uint16_t chip_id;
/*! bma2x2 sensor type */
uint16_t sensor_type;
/*! bma2x2 sensor name */
const char *sensor_name;
/*! bma2x2 sensor resolution */
const char *resolution;
};
static const struct bma2x2_type_map_t sensor_type_map[] = {
{BMA255_CHIP_ID, BMA255_TYPE, "BMA255/254", "0.00957031"},
{BMA355_CHIP_ID, BMA255_TYPE, "BMA355", "0.00957031"},
{BMA250E_CHIP_ID, BMA250E_TYPE, "BMA250E", "0.03828125"},
{BMA222E_CHIP_ID, BMA222E_TYPE, "BMA222E", "0.153125"},
{BMA280_CHIP_ID, BMA280_TYPE, "BMA280", "0.00239258"},
};
/*!
* we use a typedef to hide the detail,
* because this type might be changed
*/
struct bosch_sensor_axis_remap {
/* src means which source will be mapped to target x, y, z axis */
/* if an target OS axis is remapped from (-)x,
* src is 0, sign_* is (-)1 */
/* if an target OS axis is remapped from (-)y,
* src is 1, sign_* is (-)1 */
/* if an target OS axis is remapped from (-)z,
* src is 2, sign_* is (-)1 */
int src_x:3;
int src_y:3;
int src_z:3;
int sign_x:2;
int sign_y:2;
int sign_z:2;
};
struct bosch_sensor_data {
union {
int16_t v[3];
struct {
int16_t x;
int16_t y;
int16_t z;
};
};
};
struct bma2x2acc {
s16 x;
s16 y;
s16 z;
};
struct bma2x2_platform_data {
int poll_interval;
int gpio_int1;
int gpio_int2;
unsigned int int1_flag;
unsigned int int2_flag;
s8 place;
bool int_en;
bool use_int2; /* Use interrupt pin2 */
};
struct bma2x2_suspend_state {
bool powerEn;
};
struct bma2x2_pinctrl_data {
struct pinctrl *pctrl;
struct pinctrl_state *pins_default;
struct pinctrl_state *pins_sleep;
};
struct bma2x2_data {
struct i2c_client *bma2x2_client;
struct sensors_classdev cdev;
atomic_t delay;
atomic_t enable;
atomic_t selftest_result;
unsigned int chip_id;
unsigned int chip_type;
unsigned int fifo_count;
unsigned char fifo_datasel;
unsigned char mode;
signed char sensor_type;
struct input_dev *input;
struct bst_dev *bst_acc;
struct bma2x2acc value;
struct mutex value_mutex;
struct mutex enable_mutex;
struct mutex mode_mutex;
struct workqueue_struct *data_wq;
struct delayed_work work;
struct work_struct irq_work;
struct regulator *vdd;
struct regulator *vio;
bool power_enabled;
unsigned char bandwidth;
unsigned char range;
unsigned int int_flag;
int sensitivity;
#ifdef CONFIG_HAS_EARLYSUSPEND
struct early_suspend early_suspend;
#endif
int IRQ;
struct bma2x2_platform_data *pdata;
struct bma2x2_suspend_state suspend_state;
struct bma2x2_pinctrl_data *pctrl_data;
int ref_count;
struct input_dev *dev_interrupt;
#ifdef CONFIG_SIG_MOTION
struct class *g_sensor_class;
struct device *g_sensor_dev;
/*struct bma250_platform_data *pdata;*/
atomic_t en_sig_motion;
#endif
#ifdef CONFIG_DOUBLE_TAP
struct class *g_sensor_class_doubletap;
struct device *g_sensor_dev_doubletap;
atomic_t en_double_tap;
unsigned char tap_times;
struct mutex tap_mutex;
struct timer_list tap_timer;
int tap_time_period;
#endif
};
#ifdef CONFIG_HAS_EARLYSUSPEND
static void bma2x2_early_suspend(struct early_suspend *h);
static void bma2x2_late_resume(struct early_suspend *h);
#endif
static int bma2x2_open_init(struct i2c_client *client,
struct bma2x2_data *data);
static int bma2x2_set_mode(struct i2c_client *client, u8 mode);
static int bma2x2_get_mode(struct i2c_client *client, u8 *mode);
static int bma2x2_get_fifo_mode(struct i2c_client *client, u8 *fifo_mode);
static int bma2x2_set_fifo_mode(struct i2c_client *client, u8 fifo_mode);
static int bma2x2_normal_to_suspend(struct bma2x2_data *bma2x2,
unsigned char data1, unsigned char data2);
static int bma2x2_store_state(struct i2c_client *client,
struct bma2x2_data *data);
static int bma2x2_power_ctl(struct bma2x2_data *data, bool on);
static int bma2x2_eeprom_prog(struct i2c_client *client);
static int bma2x2_get_sensitivity(struct bma2x2_data *bma2x2, int range);
static void bma2x2_pinctrl_state(struct bma2x2_data *data, bool active);
static struct sensors_classdev sensors_cdev = {
.name = "bma2x2-accel",
.vendor = "bosch",
.version = 1,
.handle = SENSORS_ACCELERATION_HANDLE,
.type = SENSOR_TYPE_ACCELEROMETER,
.max_range = "156.8", /* 16g */
.resolution = "0.153125", /* 15.6mg */
.sensor_power = "0.13", /* typical value */
.min_delay = POLL_INTERVAL_MIN_MS * 1000, /* in microseconds */
.max_delay = POLL_INTERVAL_MAX_MS,
.max_latency = POLL_INTERVAL_MAX_MS,
.fifo_reserved_event_count = 0,
.fifo_max_event_count = 0,
.enabled = 0,
.delay_msec = POLL_DEFAULT_INTERVAL_MS, /* in millisecond */
.sensors_enable = NULL,
.sensors_poll_delay = NULL,
.sensors_self_test = NULL,
};
/*Remapping for BMA2X2*/
static const struct bosch_sensor_axis_remap
bst_axis_remap_tab_dft[MAX_AXIS_REMAP_TAB_SZ] = {
/* src_x src_y src_z sign_x sign_y sign_z */
{ 0, 1, 2, 1, 1, 1 }, /* P0 */
{ 1, 0, 2, 1, -1, 1 }, /* P1 */
{ 0, 1, 2, -1, -1, 1 }, /* P2 */
{ 1, 0, 2, -1, 1, 1 }, /* P3 */
{ 0, 1, 2, -1, 1, -1 }, /* P4 */
{ 1, 0, 2, -1, -1, -1 }, /* P5 */
{ 0, 1, 2, 1, -1, -1 }, /* P6 */
{ 1, 0, 2, 1, 1, -1 }, /* P7 */
};
static const int bosch_sensor_range_map[MAX_RANGE_MAP] = {
0, /*2G range*/
1, /*4G range*/
2, /*8G range*/
3 /*16G range*/
};
static void bst_remap_sensor_data(struct bosch_sensor_data *data,
const struct bosch_sensor_axis_remap *remap)
{
struct bosch_sensor_data tmp;
tmp.x = data->v[remap->src_x] * remap->sign_x;
tmp.y = data->v[remap->src_y] * remap->sign_y;
tmp.z = data->v[remap->src_z] * remap->sign_z;
memcpy(data, &tmp, sizeof(*data));
}
static void bst_remap_sensor_data_dft_tab(struct bosch_sensor_data *data,
int place)
{
/* sensor with place 0 needs not to be remapped */
if ((place <= 0) || (place >= MAX_AXIS_REMAP_TAB_SZ))
return;
bst_remap_sensor_data(data, &bst_axis_remap_tab_dft[place]);
}
static void bma2x2_remap_sensor_data(struct bma2x2acc *val,
struct bma2x2_data *client_data)
{
struct bosch_sensor_data bsd;
#ifdef CONFIG_SENSORS_BMI058
/*x,y need to be invesed becase of HW Register for BMI058*/
bsd.y = val->x;
bsd.x = val->y;
bsd.z = val->z;
#else
bsd.x = val->x;
bsd.y = val->y;
bsd.z = val->z;
#endif
bst_remap_sensor_data_dft_tab(&bsd,
client_data->pdata->place);
val->x = bsd.x;
val->y = bsd.y;
val->z = bsd.z;
}
static int bma2x2_smbus_read_byte(struct i2c_client *client,
unsigned char reg_addr, unsigned char *data)
{
s32 dummy;
dummy = i2c_smbus_read_byte_data(client, reg_addr);
if (dummy < 0)
return -EIO;
*data = dummy & 0x000000ff;
return 0;
}
static int bma2x2_smbus_write_byte(struct i2c_client *client,
unsigned char reg_addr, unsigned char *data)
{
s32 dummy;
dummy = i2c_smbus_write_byte_data(client, reg_addr, *data);
if (dummy < 0)
return -EIO;
udelay(2);
return 0;
}
static int bma2x2_smbus_read_byte_block(struct i2c_client *client,
unsigned char reg_addr, unsigned char *data, unsigned char len)
{
s32 dummy;
dummy = i2c_smbus_read_i2c_block_data(client, reg_addr, len, data);
if (dummy < 0)
return -EIO;
return 0;
}
static int bma_i2c_burst_read(struct i2c_client *client, u8 reg_addr,
u8 *data, u16 len)
{
int retry;
struct i2c_msg msg[] = {
{
.addr = client->addr,
.flags = 0,
.len = 1,
.buf = &reg_addr,
},
{
.addr = client->addr,
.flags = I2C_M_RD,
.len = len,
.buf = data,
},
};
for (retry = 0; retry < BMA_MAX_RETRY_I2C_XFER; retry++) {
if (i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg)) > 0)
break;
else
I2C_RETRY_DELAY();
}
if (BMA_MAX_RETRY_I2C_XFER <= retry) {
dev_err(&client->dev, "I2C xfer error");
return -EIO;
}
return 0;
}
static int bma2x2_check_chip_id(struct i2c_client *client,
struct bma2x2_data *data)
{
int i = 0;
int err = 0;
unsigned char chip_id;
unsigned char read_count = 0;
unsigned char bma2x2_sensor_type_count = 0;
bma2x2_sensor_type_count =
sizeof(sensor_type_map) / sizeof(struct bma2x2_type_map_t);
while (read_count++ < CHECK_CHIP_ID_TIME_MAX) {
err = bma2x2_smbus_read_byte(client, BMA2X2_CHIP_ID_REG,
&chip_id);
if (err < 0) {
dev_err(&client->dev,
"Bosch Sensortec Device not found"
"i2c bus read error, read chip_id:%d\n", chip_id);
err = -ENODEV;
return err;
}
for (i = 0; i < bma2x2_sensor_type_count; i++) {
if (sensor_type_map[i].chip_id == chip_id) {
data->sensor_type =
sensor_type_map[i].sensor_type;
data->chip_id = chip_id;
dev_dbg(&client->dev,
"Bosch Sensortec Device detected, HW IC name: %s\n",
sensor_type_map[i].sensor_name);
data->chip_type = i;
return err;
}
}
if (i < bma2x2_sensor_type_count) {
return err;
} else if (read_count == CHECK_CHIP_ID_TIME_MAX) {
dev_err(&client->dev,
"Failed!Bosch Sensortec Device"
" not found, mismatch chip_id:%d\n",
chip_id);
err = -ENODEV;
return err;
}
I2C_RETRY_DELAY();
}
return err;
}
#if defined(BMA2X2_ENABLE_INT1) || defined(BMA2X2_ENABLE_INT2)
static int bma2x2_set_newdata(struct i2c_client *client,
unsigned char channel, unsigned char int_newdata)
{
unsigned char data;
int comres = 0;
switch (channel) {
case BMA2X2_INT1_NDATA:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT1_PAD_NEWDATA__REG, &data);
data = BMA2X2_SET_BITSLICE(data,
BMA2X2_EN_INT1_PAD_NEWDATA, int_newdata);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT1_PAD_NEWDATA__REG, &data);
break;
case BMA2X2_INT2_NDATA:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT2_PAD_NEWDATA__REG, &data);
data = BMA2X2_SET_BITSLICE(data,
BMA2X2_EN_INT2_PAD_NEWDATA, int_newdata);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT2_PAD_NEWDATA__REG, &data);
break;
default:
comres = -1;
break;
}
return comres;
}
#endif
#ifdef BMA2X2_ENABLE_INT1
static int bma2x2_set_int1_pad_sel(struct i2c_client *client, unsigned char
int1sel)
{
int comres = 0;
unsigned char data;
unsigned char state;
state = 0x01;
switch (int1sel) {
case 0:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT1_PAD_LOWG__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT1_PAD_LOWG,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT1_PAD_LOWG__REG, &data);
break;
case 1:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT1_PAD_HIGHG__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT1_PAD_HIGHG,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT1_PAD_HIGHG__REG, &data);
break;
case 2:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT1_PAD_SLOPE__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT1_PAD_SLOPE,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT1_PAD_SLOPE__REG, &data);
break;
case 3:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT1_PAD_DB_TAP__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT1_PAD_DB_TAP,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT1_PAD_DB_TAP__REG, &data);
break;
case 4:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT1_PAD_SNG_TAP__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT1_PAD_SNG_TAP,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT1_PAD_SNG_TAP__REG, &data);
break;
case 5:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT1_PAD_ORIENT__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT1_PAD_ORIENT,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT1_PAD_ORIENT__REG, &data);
break;
case 6:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT1_PAD_FLAT__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT1_PAD_FLAT,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT1_PAD_FLAT__REG, &data);
break;
case 7:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT1_PAD_SLO_NO_MOT__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT1_PAD_SLO_NO_MOT,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT1_PAD_SLO_NO_MOT__REG, &data);
break;
default:
break;
}
return comres;
}
#endif /* BMA2X2_ENABLE_INT1 */
#ifdef BMA2X2_ENABLE_INT2
static int bma2x2_set_int2_pad_sel(struct i2c_client *client, unsigned char
int2sel)
{
int comres = 0;
unsigned char data;
unsigned char state;
state = 0x01;
switch (int2sel) {
case 0:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT2_PAD_LOWG__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT2_PAD_LOWG,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT2_PAD_LOWG__REG, &data);
break;
case 1:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT2_PAD_HIGHG__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT2_PAD_HIGHG,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT2_PAD_HIGHG__REG, &data);
break;
case 2:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT2_PAD_SLOPE__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT2_PAD_SLOPE,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT2_PAD_SLOPE__REG, &data);
break;
case 3:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT2_PAD_DB_TAP__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT2_PAD_DB_TAP,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT2_PAD_DB_TAP__REG, &data);
break;
case 4:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT2_PAD_SNG_TAP__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT2_PAD_SNG_TAP,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT2_PAD_SNG_TAP__REG, &data);
break;
case 5:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT2_PAD_ORIENT__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT2_PAD_ORIENT,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT2_PAD_ORIENT__REG, &data);
break;
case 6:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT2_PAD_FLAT__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT2_PAD_FLAT,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT2_PAD_FLAT__REG, &data);
break;
case 7:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_EN_INT2_PAD_SLO_NO_MOT__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_INT2_PAD_SLO_NO_MOT,
state);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_EN_INT2_PAD_SLO_NO_MOT__REG, &data);
break;
default:
break;
}
return comres;
}
#endif /* BMA2X2_ENABLE_INT2 */
static int bma2x2_set_Int_Enable(struct i2c_client *client, unsigned char
InterruptType , unsigned char value)
{
int comres = 0;
unsigned char data1, data2;
if ((11 < InterruptType) && (InterruptType < 16)) {
switch (InterruptType) {
case 12:
/* slow/no motion X Interrupt */
comres = bma2x2_smbus_read_byte(client,
BMA2X2_INT_SLO_NO_MOT_EN_X_INT__REG, &data1);
data1 = BMA2X2_SET_BITSLICE(data1,
BMA2X2_INT_SLO_NO_MOT_EN_X_INT, value);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_INT_SLO_NO_MOT_EN_X_INT__REG, &data1);
break;
case 13:
/* slow/no motion Y Interrupt */
comres = bma2x2_smbus_read_byte(client,
BMA2X2_INT_SLO_NO_MOT_EN_Y_INT__REG, &data1);
data1 = BMA2X2_SET_BITSLICE(data1,
BMA2X2_INT_SLO_NO_MOT_EN_Y_INT, value);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_INT_SLO_NO_MOT_EN_Y_INT__REG, &data1);
break;
case 14:
/* slow/no motion Z Interrupt */
comres = bma2x2_smbus_read_byte(client,
BMA2X2_INT_SLO_NO_MOT_EN_Z_INT__REG, &data1);
data1 = BMA2X2_SET_BITSLICE(data1,
BMA2X2_INT_SLO_NO_MOT_EN_Z_INT, value);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_INT_SLO_NO_MOT_EN_Z_INT__REG, &data1);
break;
case 15:
/* slow / no motion Interrupt select */
comres = bma2x2_smbus_read_byte(client,
BMA2X2_INT_SLO_NO_MOT_EN_SEL_INT__REG, &data1);
data1 = BMA2X2_SET_BITSLICE(data1,
BMA2X2_INT_SLO_NO_MOT_EN_SEL_INT, value);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_INT_SLO_NO_MOT_EN_SEL_INT__REG, &data1);
}
return comres;
}
comres = bma2x2_smbus_read_byte(client, BMA2X2_INT_ENABLE1_REG, &data1);
comres = bma2x2_smbus_read_byte(client, BMA2X2_INT_ENABLE2_REG, &data2);
value = value & 1;
switch (InterruptType) {
case 0:
/* Low G Interrupt */
data2 = BMA2X2_SET_BITSLICE(data2, BMA2X2_EN_LOWG_INT, value);
break;
case 1:
/* High G X Interrupt */
data2 = BMA2X2_SET_BITSLICE(data2, BMA2X2_EN_HIGHG_X_INT,
value);
break;
case 2:
/* High G Y Interrupt */
data2 = BMA2X2_SET_BITSLICE(data2, BMA2X2_EN_HIGHG_Y_INT,
value);
break;
case 3:
/* High G Z Interrupt */
data2 = BMA2X2_SET_BITSLICE(data2, BMA2X2_EN_HIGHG_Z_INT,
value);
break;
case 4:
/* New Data Interrupt */
data2 = BMA2X2_SET_BITSLICE(data2, BMA2X2_EN_NEW_DATA_INT,
value);
break;
case 5:
/* Slope X Interrupt */
data1 = BMA2X2_SET_BITSLICE(data1, BMA2X2_EN_SLOPE_X_INT,
value);
break;
case 6:
/* Slope Y Interrupt */
data1 = BMA2X2_SET_BITSLICE(data1, BMA2X2_EN_SLOPE_Y_INT,
value);
break;
case 7:
/* Slope Z Interrupt */
data1 = BMA2X2_SET_BITSLICE(data1, BMA2X2_EN_SLOPE_Z_INT,
value);
break;
case 8:
/* Single Tap Interrupt */
data1 = BMA2X2_SET_BITSLICE(data1, BMA2X2_EN_SINGLE_TAP_INT,
value);
break;
case 9:
/* Double Tap Interrupt */
data1 = BMA2X2_SET_BITSLICE(data1, BMA2X2_EN_DOUBLE_TAP_INT,
value);
break;
case 10:
/* Orient Interrupt */
data1 = BMA2X2_SET_BITSLICE(data1, BMA2X2_EN_ORIENT_INT, value);
break;
case 11:
/* Flat Interrupt */
data1 = BMA2X2_SET_BITSLICE(data1, BMA2X2_EN_FLAT_INT, value);
break;
default:
break;
}
comres = bma2x2_smbus_write_byte(client, BMA2X2_INT_ENABLE1_REG,
&data1);
comres = bma2x2_smbus_write_byte(client, BMA2X2_INT_ENABLE2_REG,
&data2);
return comres;
}
#if defined(BMA2X2_ENABLE_INT1) || defined(BMA2X2_ENABLE_INT2)
static int bma2x2_get_interruptstatus1(struct i2c_client *client, unsigned char
*intstatus)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_STATUS1_REG, &data);
*intstatus = data;
return comres;
}
#ifdef CONFIG_BMA_ENABLE_NEWDATA_INT
static int bma2x2_get_interruptstatus2(struct i2c_client *client, unsigned char
*intstatus)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_STATUS2_REG, &data);
*intstatus = data;
return comres;
}
#endif
static int bma2x2_get_HIGH_first(struct i2c_client *client, unsigned char
param, unsigned char *intstatus)
{
int comres = 0;
unsigned char data;
switch (param) {
case 0:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_STATUS_ORIENT_HIGH_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_HIGHG_FIRST_X);
*intstatus = data;
break;
case 1:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_STATUS_ORIENT_HIGH_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_HIGHG_FIRST_Y);
*intstatus = data;
break;
case 2:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_STATUS_ORIENT_HIGH_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_HIGHG_FIRST_Z);
*intstatus = data;
break;
default:
break;
}
return comres;
}
static int bma2x2_get_HIGH_sign(struct i2c_client *client, unsigned char
*intstatus)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_STATUS_ORIENT_HIGH_REG,
&data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_HIGHG_SIGN_S);
*intstatus = data;
return comres;
}
#ifndef CONFIG_SIG_MOTION
static int bma2x2_get_slope_first(struct i2c_client *client, unsigned char
param, unsigned char *intstatus)
{
int comres = 0;
unsigned char data;
switch (param) {
case 0:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_STATUS_TAP_SLOPE_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_SLOPE_FIRST_X);
*intstatus = data;
break;
case 1:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_STATUS_TAP_SLOPE_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_SLOPE_FIRST_Y);
*intstatus = data;
break;
case 2:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_STATUS_TAP_SLOPE_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_SLOPE_FIRST_Z);
*intstatus = data;
break;
default:
break;
}
return comres;
}
static int bma2x2_get_slope_sign(struct i2c_client *client, unsigned char
*intstatus)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_STATUS_TAP_SLOPE_REG,
&data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_SLOPE_SIGN_S);
*intstatus = data;
return comres;
}
#endif
static int bma2x2_get_orient_status(struct i2c_client *client, unsigned char
*intstatus)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_STATUS_ORIENT_HIGH_REG,
&data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_ORIENT_S);
*intstatus = data;
return comres;
}
static int bma2x2_get_orient_flat_status(struct i2c_client *client, unsigned
char *intstatus)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_STATUS_ORIENT_HIGH_REG,
&data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_FLAT_S);
*intstatus = data;
return comres;
}
#endif /* defined(BMA2X2_ENABLE_INT1)||defined(BMA2X2_ENABLE_INT2) */
static int bma2x2_set_Int_Mode(struct i2c_client *client, unsigned char Mode)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client,
BMA2X2_INT_MODE_SEL__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_INT_MODE_SEL, Mode);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_INT_MODE_SEL__REG, &data);
return comres;
}
static int bma2x2_set_int1_active_lvl(struct i2c_client *client,
bool activeHigh)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client,
BMA2X2_INT1_PAD_ACTIVE_LEVEL__REG, &data);
if (comres)
return comres;
data = BMA2X2_SET_BITSLICE(data,
BMA2X2_INT1_PAD_ACTIVE_LEVEL, activeHigh ? 1 : 0);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_INT1_PAD_ACTIVE_LEVEL__REG, &data);
return comres;
}
static int bma2x2_set_int2_active_lvl(struct i2c_client *client,
bool activeHigh)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client,
BMA2X2_INT2_PAD_ACTIVE_LEVEL__REG, &data);
if (comres)
return comres;
data = BMA2X2_SET_BITSLICE(data,
BMA2X2_INT2_PAD_ACTIVE_LEVEL, activeHigh ? 1 : 0);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_INT2_PAD_ACTIVE_LEVEL__REG, &data);
return comres;
}
static int bma2x2_get_Int_Mode(struct i2c_client *client, unsigned char *Mode)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client,
BMA2X2_INT_MODE_SEL__REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_INT_MODE_SEL);
*Mode = data;
return comres;
}
static int bma2x2_set_slope_duration(struct i2c_client *client, unsigned char
duration)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client,
BMA2X2_SLOPE_DUR__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_SLOPE_DUR, duration);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_SLOPE_DUR__REG, &data);
return comres;
}
static int bma2x2_get_slope_duration(struct i2c_client *client, unsigned char
*status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client,
BMA2X2_SLOPE_DURN_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_SLOPE_DUR);
*status = data;
return comres;
}
static int bma2x2_set_slope_no_mot_duration(struct i2c_client *client,
unsigned char duration)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client,
BMA2x2_SLO_NO_MOT_DUR__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2x2_SLO_NO_MOT_DUR, duration);
comres = bma2x2_smbus_write_byte(client,
BMA2x2_SLO_NO_MOT_DUR__REG, &data);
return comres;
}
static int bma2x2_get_slope_no_mot_duration(struct i2c_client *client,
unsigned char *status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client,
BMA2x2_SLO_NO_MOT_DUR__REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2x2_SLO_NO_MOT_DUR);
*status = data;
return comres;
}
static int bma2x2_set_slope_threshold(struct i2c_client *client,
unsigned char threshold)
{
int comres = 0;
unsigned char data;
data = threshold;
comres = bma2x2_smbus_write_byte(client,
BMA2X2_SLOPE_THRES__REG, &data);
return comres;
}
static int bma2x2_get_slope_threshold(struct i2c_client *client,
unsigned char *status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client,
BMA2X2_SLOPE_THRES_REG, &data);
*status = data;
return comres;
}
static int bma2x2_set_slope_no_mot_threshold(struct i2c_client *client,
unsigned char threshold)
{
int comres = 0;
unsigned char data;
data = threshold;
comres = bma2x2_smbus_write_byte(client,
BMA2X2_SLO_NO_MOT_THRES_REG, &data);
return comres;
}
static int bma2x2_get_slope_no_mot_threshold(struct i2c_client *client,
unsigned char *status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client,
BMA2X2_SLO_NO_MOT_THRES_REG, &data);
*status = data;
return comres;
}
static int bma2x2_set_low_g_duration(struct i2c_client *client, unsigned char
duration)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_LOWG_DUR__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_LOWG_DUR, duration);
comres = bma2x2_smbus_write_byte(client, BMA2X2_LOWG_DUR__REG, &data);
return comres;
}
static int bma2x2_get_low_g_duration(struct i2c_client *client, unsigned char
*status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_LOW_DURN_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_LOWG_DUR);
*status = data;
return comres;
}
static int bma2x2_set_low_g_threshold(struct i2c_client *client, unsigned char
threshold)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_LOWG_THRES__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_LOWG_THRES, threshold);
comres = bma2x2_smbus_write_byte(client, BMA2X2_LOWG_THRES__REG, &data);
return comres;
}
static int bma2x2_get_low_g_threshold(struct i2c_client *client, unsigned char
*status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_LOW_THRES_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_LOWG_THRES);
*status = data;
return comres;
}
static int bma2x2_set_high_g_duration(struct i2c_client *client, unsigned char
duration)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_HIGHG_DUR__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_HIGHG_DUR, duration);
comres = bma2x2_smbus_write_byte(client, BMA2X2_HIGHG_DUR__REG, &data);
return comres;
}
static int bma2x2_get_high_g_duration(struct i2c_client *client, unsigned char
*status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_HIGH_DURN_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_HIGHG_DUR);
*status = data;
return comres;
}
static int bma2x2_set_high_g_threshold(struct i2c_client *client, unsigned char
threshold)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_HIGHG_THRES__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_HIGHG_THRES, threshold);
comres = bma2x2_smbus_write_byte(client, BMA2X2_HIGHG_THRES__REG,
&data);
return comres;
}
static int bma2x2_get_high_g_threshold(struct i2c_client *client, unsigned char
*status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_HIGH_THRES_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_HIGHG_THRES);
*status = data;
return comres;
}
static int bma2x2_set_tap_duration(struct i2c_client *client, unsigned char
duration)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_TAP_DUR__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_TAP_DUR, duration);
comres = bma2x2_smbus_write_byte(client, BMA2X2_TAP_DUR__REG, &data);
return comres;
}
static int bma2x2_get_tap_duration(struct i2c_client *client, unsigned char
*status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_TAP_PARAM_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_TAP_DUR);
*status = data;
return comres;
}
static int bma2x2_set_tap_shock(struct i2c_client *client, unsigned char setval)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_TAP_SHOCK_DURN__REG,
&data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_TAP_SHOCK_DURN, setval);
comres = bma2x2_smbus_write_byte(client, BMA2X2_TAP_SHOCK_DURN__REG,
&data);
return comres;
}
static int bma2x2_get_tap_shock(struct i2c_client *client, unsigned char
*status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_TAP_PARAM_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_TAP_SHOCK_DURN);
*status = data;
return comres;
}
static int bma2x2_set_tap_quiet(struct i2c_client *client, unsigned char
duration)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_TAP_QUIET_DURN__REG,
&data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_TAP_QUIET_DURN, duration);
comres = bma2x2_smbus_write_byte(client, BMA2X2_TAP_QUIET_DURN__REG,
&data);
return comres;
}
static int bma2x2_get_tap_quiet(struct i2c_client *client, unsigned char
*status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_TAP_PARAM_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_TAP_QUIET_DURN);
*status = data;
return comres;
}
static int bma2x2_set_tap_threshold(struct i2c_client *client, unsigned char
threshold)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_TAP_THRES__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_TAP_THRES, threshold);
comres = bma2x2_smbus_write_byte(client, BMA2X2_TAP_THRES__REG, &data);
return comres;
}
static int bma2x2_get_tap_threshold(struct i2c_client *client, unsigned char
*status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_TAP_THRES_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_TAP_THRES);
*status = data;
return comres;
}
static int bma2x2_set_tap_samp(struct i2c_client *client, unsigned char samp)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_TAP_SAMPLES__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_TAP_SAMPLES, samp);
comres = bma2x2_smbus_write_byte(client, BMA2X2_TAP_SAMPLES__REG,
&data);
return comres;
}
static int bma2x2_get_tap_samp(struct i2c_client *client, unsigned char *status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_TAP_THRES_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_TAP_SAMPLES);
*status = data;
return comres;
}
static int bma2x2_set_orient_mode(struct i2c_client *client, unsigned char mode)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_ORIENT_MODE__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_ORIENT_MODE, mode);
comres = bma2x2_smbus_write_byte(client, BMA2X2_ORIENT_MODE__REG,
&data);
return comres;
}
static int bma2x2_get_orient_mode(struct i2c_client *client, unsigned char
*status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_ORIENT_PARAM_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_ORIENT_MODE);
*status = data;
return comres;
}
static int bma2x2_set_orient_blocking(struct i2c_client *client, unsigned char
samp)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_ORIENT_BLOCK__REG,
&data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_ORIENT_BLOCK, samp);
comres = bma2x2_smbus_write_byte(client, BMA2X2_ORIENT_BLOCK__REG,
&data);
return comres;
}
static int bma2x2_get_orient_blocking(struct i2c_client *client, unsigned char
*status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_ORIENT_PARAM_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_ORIENT_BLOCK);
*status = data;
return comres;
}
static int bma2x2_set_orient_hyst(struct i2c_client *client, unsigned char
orienthyst)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_ORIENT_HYST__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_ORIENT_HYST, orienthyst);
comres = bma2x2_smbus_write_byte(client, BMA2X2_ORIENT_HYST__REG,
&data);
return comres;
}
static int bma2x2_get_orient_hyst(struct i2c_client *client, unsigned char
*status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_ORIENT_PARAM_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_ORIENT_HYST);
*status = data;
return comres;
}
static int bma2x2_set_theta_blocking(struct i2c_client *client, unsigned char
thetablk)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_THETA_BLOCK__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_THETA_BLOCK, thetablk);
comres = bma2x2_smbus_write_byte(client, BMA2X2_THETA_BLOCK__REG,
&data);
return comres;
}
static int bma2x2_get_theta_blocking(struct i2c_client *client, unsigned char
*status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_THETA_BLOCK_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_THETA_BLOCK);
*status = data;
return comres;
}
static int bma2x2_set_theta_flat(struct i2c_client *client, unsigned char
thetaflat)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_THETA_FLAT__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_THETA_FLAT, thetaflat);
comres = bma2x2_smbus_write_byte(client, BMA2X2_THETA_FLAT__REG, &data);
return comres;
}
static int bma2x2_get_theta_flat(struct i2c_client *client, unsigned char
*status)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_THETA_FLAT_REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_THETA_FLAT);
*status = data;
return comres;
}
static int bma2x2_set_flat_hold_time(struct i2c_client *client, unsigned char
holdtime)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_FLAT_HOLD_TIME__REG,
&data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_FLAT_HOLD_TIME, holdtime);
comres = bma2x2_smbus_write_byte(client, BMA2X2_FLAT_HOLD_TIME__REG,
&data);
return comres;
}
static int bma2x2_get_flat_hold_time(struct i2c_client *client, unsigned char
*holdtime)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_FLAT_HOLD_TIME_REG,
&data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_FLAT_HOLD_TIME);
*holdtime = data;
return comres;
}
/*!
* brief: bma2x2 switch from normal to suspend mode
* @param[i] bma2x2
* @param[i] data1, write to PMU_LPW
* @param[i] data2, write to PMU_LOW_NOSIE
*
* @return zero success, none-zero failed
*/
static int bma2x2_normal_to_suspend(struct bma2x2_data *bma2x2,
unsigned char data1, unsigned char data2)
{
unsigned char current_fifo_mode;
unsigned char current_op_mode;
if (bma2x2 == NULL)
return -EINVAL;
/* get current op mode from mode register */
if (bma2x2_get_mode(bma2x2->bma2x2_client, &current_op_mode) < 0)
return -EIO;
/* only aimed at operatiom mode chang from normal/lpw1 mode
* to suspend state.
*/
if (current_op_mode == BMA2X2_MODE_NORMAL ||
current_op_mode == BMA2X2_MODE_LOWPOWER1) {
/* get current fifo mode from fifo config register */
if (bma2x2_get_fifo_mode(bma2x2->bma2x2_client,
&current_fifo_mode) < 0)
return -EIO;
else {
bma2x2_smbus_write_byte(bma2x2->bma2x2_client,
BMA2X2_LOW_NOISE_CTRL_REG, &data2);
bma2x2_smbus_write_byte(bma2x2->bma2x2_client,
BMA2X2_MODE_CTRL_REG, &data1);
bma2x2_smbus_write_byte(bma2x2->bma2x2_client,
BMA2X2_FIFO_MODE__REG, &current_fifo_mode);
WAIT_DEVICE_READY();
return 0;
}
} else {
bma2x2_smbus_write_byte(bma2x2->bma2x2_client,
BMA2X2_LOW_NOISE_CTRL_REG, &data2);
bma2x2_smbus_write_byte(bma2x2->bma2x2_client,
BMA2X2_MODE_CTRL_REG, &data1);
WAIT_DEVICE_READY();
return 0;
}
}
static int bma2x2_set_mode(struct i2c_client *client, unsigned char mode)
{
int comres = 0;
unsigned char data1, data2;
int ret = 0;
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
mutex_lock(&bma2x2->mode_mutex);
if (BMA2X2_MODE_SUSPEND == mode) {
if (bma2x2->ref_count > 0) {
bma2x2->ref_count--;
if (0 < bma2x2->ref_count) {
mutex_unlock(&bma2x2->mode_mutex);
return 0;
}
}
} else {
bma2x2->ref_count++;
if (1 < bma2x2->ref_count) {
mutex_unlock(&bma2x2->mode_mutex);
return 0;
}
}
mutex_unlock(&bma2x2->mode_mutex);
if (mode < 6) {
comres = bma2x2_smbus_read_byte(client, BMA2X2_MODE_CTRL_REG,
&data1);
comres = bma2x2_smbus_read_byte(client,
BMA2X2_LOW_NOISE_CTRL_REG,
&data2);
switch (mode) {
case BMA2X2_MODE_NORMAL:
data1 = BMA2X2_SET_BITSLICE(data1,
BMA2X2_MODE_CTRL, 0);
data2 = BMA2X2_SET_BITSLICE(data2,
BMA2X2_LOW_POWER_MODE, 0);
bma2x2_smbus_write_byte(client,
BMA2X2_MODE_CTRL_REG, &data1);
WAIT_DEVICE_READY();
bma2x2_smbus_write_byte(client,
BMA2X2_LOW_NOISE_CTRL_REG, &data2);
break;
case BMA2X2_MODE_LOWPOWER1:
data1 = BMA2X2_SET_BITSLICE(data1,
BMA2X2_MODE_CTRL, 2);
data2 = BMA2X2_SET_BITSLICE(data2,
BMA2X2_LOW_POWER_MODE, 0);
bma2x2_smbus_write_byte(client,
BMA2X2_MODE_CTRL_REG, &data1);
WAIT_DEVICE_READY();
bma2x2_smbus_write_byte(client,
BMA2X2_LOW_NOISE_CTRL_REG, &data2);
break;
case BMA2X2_MODE_SUSPEND:
data1 = BMA2X2_SET_BITSLICE(data1,
BMA2X2_MODE_CTRL, 4);
data2 = BMA2X2_SET_BITSLICE(data2,
BMA2X2_LOW_POWER_MODE, 0);
/*aimed at anomaly resolution when switch to suspend*/
ret = bma2x2_normal_to_suspend(bma2x2, data1, data2);
if (ret < 0)
dev_err(&client->dev,
"Error switching to suspend");
break;
case BMA2X2_MODE_DEEP_SUSPEND:
data1 = BMA2X2_SET_BITSLICE(data1,
BMA2X2_MODE_CTRL, 1);
data2 = BMA2X2_SET_BITSLICE(data2,
BMA2X2_LOW_POWER_MODE, 1);
bma2x2_smbus_write_byte(client,
BMA2X2_MODE_CTRL_REG, &data1);
WAIT_DEVICE_READY();
bma2x2_smbus_write_byte(client,
BMA2X2_LOW_NOISE_CTRL_REG, &data2);
break;
case BMA2X2_MODE_LOWPOWER2:
data1 = BMA2X2_SET_BITSLICE(data1,
BMA2X2_MODE_CTRL, 2);
data2 = BMA2X2_SET_BITSLICE(data2,
BMA2X2_LOW_POWER_MODE, 1);
bma2x2_smbus_write_byte(client,
BMA2X2_MODE_CTRL_REG, &data1);
WAIT_DEVICE_READY();
bma2x2_smbus_write_byte(client,
BMA2X2_LOW_NOISE_CTRL_REG, &data2);
break;
case BMA2X2_MODE_STANDBY:
data1 = BMA2X2_SET_BITSLICE(data1,
BMA2X2_MODE_CTRL, 4);
data2 = BMA2X2_SET_BITSLICE(data2,
BMA2X2_LOW_POWER_MODE, 1);
bma2x2_smbus_write_byte(client,
BMA2X2_LOW_NOISE_CTRL_REG, &data2);
WAIT_DEVICE_READY();
bma2x2_smbus_write_byte(client,
BMA2X2_MODE_CTRL_REG, &data1);
break;
}
} else {
comres = -1;
}
return comres;
}
static int bma2x2_get_mode(struct i2c_client *client, unsigned char *mode)
{
int comres = 0;
unsigned char data1, data2;
comres = bma2x2_smbus_read_byte(client, BMA2X2_MODE_CTRL_REG, &data1);
comres = bma2x2_smbus_read_byte(client, BMA2X2_LOW_NOISE_CTRL_REG,
&data2);
data1 = (data1 & 0xE0) >> 5;
data2 = (data2 & 0x40) >> 6;
if (data2 == 0x00) {
switch (data1) {
case 0:
*mode = BMA2X2_MODE_NORMAL;
break;
case 1:
*mode = BMA2X2_MODE_DEEP_SUSPEND;
break;
case 2:
*mode = BMA2X2_MODE_LOWPOWER1;
break;
case 4:
case 6:
*mode = BMA2X2_MODE_SUSPEND;
break;
default:
comres = -ENODEV;
break;
}
} else if (data2 == 0x01) {
switch (data1) {
case 0:
case 1:
case 6:
*mode = BMA2X2_MODE_DEEP_SUSPEND;
break;
case 2:
*mode = BMA2X2_MODE_LOWPOWER2;
break;
case 4:
*mode = BMA2X2_MODE_STANDBY;
break;
default:
comres = -ENODEV;
break;
}
} else {
comres = -ENODEV;
}
return comres;
}
static int bma2x2_set_range(struct i2c_client *client, unsigned char Range)
{
int comres = 0;
unsigned char data1;
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if ((Range == 3) || (Range == 5) || (Range == 8) || (Range == 12)) {
comres = bma2x2_smbus_read_byte(client, BMA2X2_RANGE_SEL_REG,
&data1);
switch (Range) {
case BMA2X2_RANGE_2G:
data1 = BMA2X2_SET_BITSLICE(data1,
BMA2X2_RANGE_SEL, 3);
break;
case BMA2X2_RANGE_4G:
data1 = BMA2X2_SET_BITSLICE(data1,
BMA2X2_RANGE_SEL, 5);
break;
case BMA2X2_RANGE_8G:
data1 = BMA2X2_SET_BITSLICE(data1,
BMA2X2_RANGE_SEL, 8);
break;
case BMA2X2_RANGE_16G:
data1 = BMA2X2_SET_BITSLICE(data1,
BMA2X2_RANGE_SEL, 12);
break;
default:
break;
}
comres += bma2x2_smbus_write_byte(client, BMA2X2_RANGE_SEL_REG,
&data1);
bma2x2_get_sensitivity(bma2x2, Range);
} else {
comres = -1;
}
return comres;
}
static int bma2x2_get_range(struct i2c_client *client, unsigned char *Range)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_RANGE_SEL__REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_RANGE_SEL);
*Range = data;
return comres;
}
static int bma2x2_set_bandwidth(struct i2c_client *client, unsigned char BW)
{
int comres = 0;
unsigned char data;
int Bandwidth = 0;
if (BW > 7 && BW < 16) {
switch (BW) {
case BMA2X2_BW_7_81HZ:
Bandwidth = BMA2X2_BW_7_81HZ;
/* 7.81 Hz 64000 uS */
break;
case BMA2X2_BW_15_63HZ:
Bandwidth = BMA2X2_BW_15_63HZ;
/* 15.63 Hz 32000 uS */
break;
case BMA2X2_BW_31_25HZ:
Bandwidth = BMA2X2_BW_31_25HZ;
/* 31.25 Hz 16000 uS */
break;
case BMA2X2_BW_62_50HZ:
Bandwidth = BMA2X2_BW_62_50HZ;
/* 62.50 Hz 8000 uS */
break;
case BMA2X2_BW_125HZ:
Bandwidth = BMA2X2_BW_125HZ;
/* 125 Hz 4000 uS */
break;
case BMA2X2_BW_250HZ:
Bandwidth = BMA2X2_BW_250HZ;
/* 250 Hz 2000 uS */
break;
case BMA2X2_BW_500HZ:
Bandwidth = BMA2X2_BW_500HZ;
/* 500 Hz 1000 uS */
break;
case BMA2X2_BW_1000HZ:
Bandwidth = BMA2X2_BW_1000HZ;
/* 1000 Hz 500 uS */
break;
default:
break;
}
comres = bma2x2_smbus_read_byte(client, BMA2X2_BANDWIDTH__REG,
&data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_BANDWIDTH, Bandwidth);
comres += bma2x2_smbus_write_byte(client, BMA2X2_BANDWIDTH__REG,
&data);
} else {
comres = -1;
}
return comres;
}
static int bma2x2_get_bandwidth(struct i2c_client *client, unsigned char *BW)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_BANDWIDTH__REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_BANDWIDTH);
*BW = data;
return comres;
}
int bma2x2_get_sleep_duration(struct i2c_client *client, unsigned char
*sleep_dur)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client,
BMA2X2_SLEEP_DUR__REG, &data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_SLEEP_DUR);
*sleep_dur = data;
return comres;
}
int bma2x2_set_sleep_duration(struct i2c_client *client, unsigned char
sleep_dur)
{
int comres = 0;
unsigned char data;
int sleep_duration = 0;
if (sleep_dur > 4 && sleep_dur < 16) {
switch (sleep_dur) {
case BMA2X2_SLEEP_DUR_0_5MS:
sleep_duration = BMA2X2_SLEEP_DUR_0_5MS;
/* 0.5 MS */
break;
case BMA2X2_SLEEP_DUR_1MS:
sleep_duration = BMA2X2_SLEEP_DUR_1MS;
/* 1 MS */
break;
case BMA2X2_SLEEP_DUR_2MS:
sleep_duration = BMA2X2_SLEEP_DUR_2MS;
/* 2 MS */
break;
case BMA2X2_SLEEP_DUR_4MS:
sleep_duration = BMA2X2_SLEEP_DUR_4MS;
/* 4 MS */
break;
case BMA2X2_SLEEP_DUR_6MS:
sleep_duration = BMA2X2_SLEEP_DUR_6MS;
/* 6 MS */
break;
case BMA2X2_SLEEP_DUR_10MS:
sleep_duration = BMA2X2_SLEEP_DUR_10MS;
/* 10 MS */
break;
case BMA2X2_SLEEP_DUR_25MS:
sleep_duration = BMA2X2_SLEEP_DUR_25MS;
/* 25 MS */
break;
case BMA2X2_SLEEP_DUR_50MS:
sleep_duration = BMA2X2_SLEEP_DUR_50MS;
/* 50 MS */
break;
case BMA2X2_SLEEP_DUR_100MS:
sleep_duration = BMA2X2_SLEEP_DUR_100MS;
/* 100 MS */
break;
case BMA2X2_SLEEP_DUR_500MS:
sleep_duration = BMA2X2_SLEEP_DUR_500MS;
/* 500 MS */
break;
case BMA2X2_SLEEP_DUR_1S:
sleep_duration = BMA2X2_SLEEP_DUR_1S;
/* 1 SECS */
break;
default:
break;
}
comres = bma2x2_smbus_read_byte(client, BMA2X2_SLEEP_DUR__REG,
&data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_SLEEP_DUR,
sleep_duration);
comres = bma2x2_smbus_write_byte(client, BMA2X2_SLEEP_DUR__REG,
&data);
} else {
comres = -1;
}
return comres;
}
static int bma2x2_get_fifo_mode(struct i2c_client *client, unsigned char
*fifo_mode)
{
int comres;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_FIFO_MODE__REG, &data);
*fifo_mode = BMA2X2_GET_BITSLICE(data, BMA2X2_FIFO_MODE);
return comres;
}
static int bma2x2_set_fifo_mode(struct i2c_client *client, unsigned char
fifo_mode)
{
unsigned char data;
int comres = 0;
if (fifo_mode < 4) {
comres = bma2x2_smbus_read_byte(client, BMA2X2_FIFO_MODE__REG,
&data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_FIFO_MODE, fifo_mode);
comres = bma2x2_smbus_write_byte(client, BMA2X2_FIFO_MODE__REG,
&data);
} else {
comres = -1;
}
return comres;
}
static int bma2x2_get_fifo_trig(struct i2c_client *client, unsigned char
*fifo_trig)
{
int comres;
unsigned char data;
comres = bma2x2_smbus_read_byte(client,
BMA2X2_FIFO_TRIGGER_ACTION__REG, &data);
*fifo_trig = BMA2X2_GET_BITSLICE(data, BMA2X2_FIFO_TRIGGER_ACTION);
return comres;
}
static int bma2x2_set_fifo_trig(struct i2c_client *client, unsigned char
fifo_trig)
{
unsigned char data;
int comres = 0;
if (fifo_trig < 4) {
comres = bma2x2_smbus_read_byte(client,
BMA2X2_FIFO_TRIGGER_ACTION__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_FIFO_TRIGGER_ACTION,
fifo_trig);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_FIFO_TRIGGER_ACTION__REG, &data);
} else {
comres = -1;
}
return comres;
}
static int bma2x2_get_fifo_trig_src(struct i2c_client *client, unsigned char
*trig_src)
{
int comres;
unsigned char data;
comres = bma2x2_smbus_read_byte(client,
BMA2X2_FIFO_TRIGGER_SOURCE__REG, &data);
*trig_src = BMA2X2_GET_BITSLICE(data, BMA2X2_FIFO_TRIGGER_SOURCE);
return comres;
}
static int bma2x2_set_fifo_trig_src(struct i2c_client *client, unsigned char
trig_src)
{
unsigned char data;
int comres = 0;
if (trig_src < 4) {
comres = bma2x2_smbus_read_byte(client,
BMA2X2_FIFO_TRIGGER_SOURCE__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_FIFO_TRIGGER_SOURCE,
trig_src);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_FIFO_TRIGGER_SOURCE__REG, &data);
} else {
comres = -1;
}
return comres;
}
static int bma2x2_get_fifo_framecount(struct i2c_client *client, unsigned char
*framecount)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client,
BMA2X2_FIFO_FRAME_COUNTER_S__REG, &data);
*framecount = BMA2X2_GET_BITSLICE(data, BMA2X2_FIFO_FRAME_COUNTER_S);
return comres;
}
static int bma2x2_get_fifo_data_sel(struct i2c_client *client, unsigned char
*data_sel)
{
int comres;
unsigned char data;
comres = bma2x2_smbus_read_byte(client,
BMA2X2_FIFO_DATA_SELECT__REG, &data);
*data_sel = BMA2X2_GET_BITSLICE(data, BMA2X2_FIFO_DATA_SELECT);
return comres;
}
static int bma2x2_set_fifo_data_sel(struct i2c_client *client, unsigned char
data_sel)
{
unsigned char data;
int comres = 0;
if (data_sel < 4) {
comres = bma2x2_smbus_read_byte(client,
BMA2X2_FIFO_DATA_SELECT__REG,
&data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_FIFO_DATA_SELECT,
data_sel);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_FIFO_DATA_SELECT__REG,
&data);
} else {
comres = -1;
}
return comres;
}
static int bma2x2_get_offset_target(struct i2c_client *client, unsigned char
channel, unsigned char *offset)
{
unsigned char data;
int comres = 0;
switch (channel) {
case BMA2X2_CUT_OFF:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_COMP_CUTOFF__REG, &data);
*offset = BMA2X2_GET_BITSLICE(data, BMA2X2_COMP_CUTOFF);
break;
case BMA2X2_OFFSET_TRIGGER_X:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_COMP_TARGET_OFFSET_X__REG, &data);
*offset = BMA2X2_GET_BITSLICE(data,
BMA2X2_COMP_TARGET_OFFSET_X);
break;
case BMA2X2_OFFSET_TRIGGER_Y:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_COMP_TARGET_OFFSET_Y__REG, &data);
*offset = BMA2X2_GET_BITSLICE(data,
BMA2X2_COMP_TARGET_OFFSET_Y);
break;
case BMA2X2_OFFSET_TRIGGER_Z:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_COMP_TARGET_OFFSET_Z__REG, &data);
*offset = BMA2X2_GET_BITSLICE(data,
BMA2X2_COMP_TARGET_OFFSET_Z);
break;
default:
comres = -1;
break;
}
return comres;
}
static int bma2x2_set_offset_target(struct i2c_client *client, unsigned char
channel, unsigned char offset)
{
unsigned char data;
int comres = 0;
switch (channel) {
case BMA2X2_CUT_OFF:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_COMP_CUTOFF__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_COMP_CUTOFF,
offset);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_COMP_CUTOFF__REG, &data);
break;
case BMA2X2_OFFSET_TRIGGER_X:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_COMP_TARGET_OFFSET_X__REG,
&data);
data = BMA2X2_SET_BITSLICE(data,
BMA2X2_COMP_TARGET_OFFSET_X,
offset);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_COMP_TARGET_OFFSET_X__REG,
&data);
break;
case BMA2X2_OFFSET_TRIGGER_Y:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_COMP_TARGET_OFFSET_Y__REG,
&data);
data = BMA2X2_SET_BITSLICE(data,
BMA2X2_COMP_TARGET_OFFSET_Y,
offset);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_COMP_TARGET_OFFSET_Y__REG,
&data);
break;
case BMA2X2_OFFSET_TRIGGER_Z:
comres = bma2x2_smbus_read_byte(client,
BMA2X2_COMP_TARGET_OFFSET_Z__REG,
&data);
data = BMA2X2_SET_BITSLICE(data,
BMA2X2_COMP_TARGET_OFFSET_Z,
offset);
comres = bma2x2_smbus_write_byte(client,
BMA2X2_COMP_TARGET_OFFSET_Z__REG,
&data);
break;
default:
comres = -1;
break;
}
return comres;
}
static int bma2x2_get_cal_ready(struct i2c_client *client,
unsigned char *calrdy)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_FAST_CAL_RDY_S__REG,
&data);
data = BMA2X2_GET_BITSLICE(data, BMA2X2_FAST_CAL_RDY_S);
*calrdy = data;
return comres;
}
static int bma2x2_set_cal_trigger(struct i2c_client *client, unsigned char
caltrigger)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_CAL_TRIGGER__REG, &data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_CAL_TRIGGER, caltrigger);
comres = bma2x2_smbus_write_byte(client, BMA2X2_CAL_TRIGGER__REG,
&data);
return comres;
}
static int bma2x2_write_reg(struct i2c_client *client, unsigned char addr,
unsigned char *data)
{
int comres = 0;
comres = bma2x2_smbus_write_byte(client, addr, data);
return comres;
}
static int bma2x2_set_offset_x(struct i2c_client *client, unsigned char
offsetfilt)
{
int comres = 0;
unsigned char data;
data = offsetfilt;
#ifdef CONFIG_SENSORS_BMI058
comres = bma2x2_smbus_write_byte(client, BMI058_OFFSET_X_AXIS_REG,
&data);
#else
comres = bma2x2_smbus_write_byte(client, BMA2X2_OFFSET_X_AXIS_REG,
&data);
#endif
return comres;
}
static int bma2x2_get_offset_x(struct i2c_client *client, unsigned char
*offsetfilt)
{
int comres = 0;
unsigned char data;
#ifdef CONFIG_SENSORS_BMI058
comres = bma2x2_smbus_read_byte(client, BMI058_OFFSET_X_AXIS_REG,
&data);
#else
comres = bma2x2_smbus_read_byte(client, BMA2X2_OFFSET_X_AXIS_REG,
&data);
#endif
*offsetfilt = data;
return comres;
}
static int bma2x2_set_offset_y(struct i2c_client *client, unsigned char
offsetfilt)
{
int comres = 0;
unsigned char data;
data = offsetfilt;
#ifdef CONFIG_SENSORS_BMI058
comres = bma2x2_smbus_write_byte(client, BMI058_OFFSET_Y_AXIS_REG,
&data);
#else
comres = bma2x2_smbus_write_byte(client, BMA2X2_OFFSET_Y_AXIS_REG,
&data);
#endif
return comres;
}
static int bma2x2_get_offset_y(struct i2c_client *client, unsigned char
*offsetfilt)
{
int comres = 0;
unsigned char data;
#ifdef CONFIG_SENSORS_BMI058
comres = bma2x2_smbus_read_byte(client, BMI058_OFFSET_Y_AXIS_REG,
&data);
#else
comres = bma2x2_smbus_read_byte(client, BMA2X2_OFFSET_Y_AXIS_REG,
&data);
#endif
*offsetfilt = data;
return comres;
}
static int bma2x2_set_offset_z(struct i2c_client *client, unsigned char
offsetfilt)
{
int comres = 0;
unsigned char data;
data = offsetfilt;
comres = bma2x2_smbus_write_byte(client, BMA2X2_OFFSET_Z_AXIS_REG,
&data);
return comres;
}
static int bma2x2_get_offset_z(struct i2c_client *client, unsigned char
*offsetfilt)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_OFFSET_Z_AXIS_REG,
&data);
*offsetfilt = data;
return comres;
}
static int bma2x2_set_selftest_st(struct i2c_client *client, unsigned char
selftest)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_EN_SELF_TEST__REG,
&data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_EN_SELF_TEST, selftest);
comres = bma2x2_smbus_write_byte(client, BMA2X2_EN_SELF_TEST__REG,
&data);
return comres;
}
static int bma2x2_set_selftest_stn(struct i2c_client *client, unsigned char stn)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_NEG_SELF_TEST__REG,
&data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_NEG_SELF_TEST, stn);
comres = bma2x2_smbus_write_byte(client, BMA2X2_NEG_SELF_TEST__REG,
&data);
return comres;
}
static int bma2x2_set_selftest_amp(struct i2c_client *client, unsigned char amp)
{
int comres = 0;
unsigned char data;
comres = bma2x2_smbus_read_byte(client, BMA2X2_SELF_TEST_AMP__REG,
&data);
data = BMA2X2_SET_BITSLICE(data, BMA2X2_SELF_TEST_AMP, amp);
comres = bma2x2_smbus_write_byte(client, BMA2X2_SELF_TEST_AMP__REG,
&data);
return comres;
}
static int bma2x2_read_accel_x(struct i2c_client *client,
signed char sensor_type, short *a_x)
{
int comres = 0;
unsigned char data[2];
switch (sensor_type) {
case 0:
comres = bma2x2_smbus_read_byte_block(client,
BMA2X2_ACC_X12_LSB__REG, data, 2);
*a_x = BMA2X2_GET_BITSLICE(data[0], BMA2X2_ACC_X12_LSB)|
(BMA2X2_GET_BITSLICE(data[1],
BMA2X2_ACC_X_MSB)<<(BMA2X2_ACC_X12_LSB__LEN));
*a_x = *a_x << (sizeof(short)*8-(BMA2X2_ACC_X12_LSB__LEN
+ BMA2X2_ACC_X_MSB__LEN));
*a_x = *a_x >> (sizeof(short)*8-(BMA2X2_ACC_X12_LSB__LEN
+ BMA2X2_ACC_X_MSB__LEN));
break;
case 1:
comres = bma2x2_smbus_read_byte_block(client,
BMA2X2_ACC_X10_LSB__REG, data, 2);
*a_x = BMA2X2_GET_BITSLICE(data[0], BMA2X2_ACC_X10_LSB)|
(BMA2X2_GET_BITSLICE(data[1],
BMA2X2_ACC_X_MSB)<<(BMA2X2_ACC_X10_LSB__LEN));
*a_x = *a_x << (sizeof(short)*8-(BMA2X2_ACC_X10_LSB__LEN
+ BMA2X2_ACC_X_MSB__LEN));
*a_x = *a_x >> (sizeof(short)*8-(BMA2X2_ACC_X10_LSB__LEN
+ BMA2X2_ACC_X_MSB__LEN));
break;
case 2:
comres = bma2x2_smbus_read_byte_block(client,
BMA2X2_ACC_X8_LSB__REG, data, 2);
*a_x = BMA2X2_GET_BITSLICE(data[0], BMA2X2_ACC_X8_LSB)|
(BMA2X2_GET_BITSLICE(data[1],
BMA2X2_ACC_X_MSB)<<(BMA2X2_ACC_X8_LSB__LEN));
*a_x = *a_x << (sizeof(short)*8-(BMA2X2_ACC_X8_LSB__LEN
+ BMA2X2_ACC_X_MSB__LEN));
*a_x = *a_x >> (sizeof(short)*8-(BMA2X2_ACC_X8_LSB__LEN
+ BMA2X2_ACC_X_MSB__LEN));
break;
case 3:
comres = bma2x2_smbus_read_byte_block(client,
BMA2X2_ACC_X14_LSB__REG, data, 2);
*a_x = BMA2X2_GET_BITSLICE(data[0], BMA2X2_ACC_X14_LSB)|
(BMA2X2_GET_BITSLICE(data[1],
BMA2X2_ACC_X_MSB)<<(BMA2X2_ACC_X14_LSB__LEN));
*a_x = *a_x << (sizeof(short)*8-(BMA2X2_ACC_X14_LSB__LEN
+ BMA2X2_ACC_X_MSB__LEN));
*a_x = *a_x >> (sizeof(short)*8-(BMA2X2_ACC_X14_LSB__LEN
+ BMA2X2_ACC_X_MSB__LEN));
break;
default:
break;
}
return comres;
}
static int bma2x2_soft_reset(struct i2c_client *client)
{
int comres = 0;
unsigned char data = BMA2X2_EN_SOFT_RESET_VALUE;
comres = bma2x2_smbus_write_byte(client, BMA2X2_EN_SOFT_RESET__REG,
&data);
return comres;
}
static int bma2x2_read_accel_y(struct i2c_client *client,
signed char sensor_type, short *a_y)
{
int comres = 0;
unsigned char data[2];
switch (sensor_type) {
case 0:
comres = bma2x2_smbus_read_byte_block(client,
BMA2X2_ACC_Y12_LSB__REG, data, 2);
*a_y = BMA2X2_GET_BITSLICE(data[0], BMA2X2_ACC_Y12_LSB)|
(BMA2X2_GET_BITSLICE(data[1],
BMA2X2_ACC_Y_MSB)<<(BMA2X2_ACC_Y12_LSB__LEN));
*a_y = *a_y << (sizeof(short)*8-(BMA2X2_ACC_Y12_LSB__LEN
+ BMA2X2_ACC_Y_MSB__LEN));
*a_y = *a_y >> (sizeof(short)*8-(BMA2X2_ACC_Y12_LSB__LEN
+ BMA2X2_ACC_Y_MSB__LEN));
break;
case 1:
comres = bma2x2_smbus_read_byte_block(client,
BMA2X2_ACC_Y10_LSB__REG, data, 2);
*a_y = BMA2X2_GET_BITSLICE(data[0], BMA2X2_ACC_Y10_LSB)|
(BMA2X2_GET_BITSLICE(data[1],
BMA2X2_ACC_Y_MSB)<<(BMA2X2_ACC_Y10_LSB__LEN));
*a_y = *a_y << (sizeof(short)*8-(BMA2X2_ACC_Y10_LSB__LEN
+ BMA2X2_ACC_Y_MSB__LEN));
*a_y = *a_y >> (sizeof(short)*8-(BMA2X2_ACC_Y10_LSB__LEN
+ BMA2X2_ACC_Y_MSB__LEN));
break;
case 2:
comres = bma2x2_smbus_read_byte_block(client,
BMA2X2_ACC_Y8_LSB__REG, data, 2);
*a_y = BMA2X2_GET_BITSLICE(data[0], BMA2X2_ACC_Y8_LSB)|
(BMA2X2_GET_BITSLICE(data[1],
BMA2X2_ACC_Y_MSB)<<(BMA2X2_ACC_Y8_LSB__LEN));
*a_y = *a_y << (sizeof(short)*8-(BMA2X2_ACC_Y8_LSB__LEN
+ BMA2X2_ACC_Y_MSB__LEN));
*a_y = *a_y >> (sizeof(short)*8-(BMA2X2_ACC_Y8_LSB__LEN
+ BMA2X2_ACC_Y_MSB__LEN));
break;
case 3:
comres = bma2x2_smbus_read_byte_block(client,
BMA2X2_ACC_Y14_LSB__REG, data, 2);
*a_y = BMA2X2_GET_BITSLICE(data[0], BMA2X2_ACC_Y14_LSB)|
(BMA2X2_GET_BITSLICE(data[1],
BMA2X2_ACC_Y_MSB)<<(BMA2X2_ACC_Y14_LSB__LEN));
*a_y = *a_y << (sizeof(short)*8-(BMA2X2_ACC_Y14_LSB__LEN
+ BMA2X2_ACC_Y_MSB__LEN));
*a_y = *a_y >> (sizeof(short)*8-(BMA2X2_ACC_Y14_LSB__LEN
+ BMA2X2_ACC_Y_MSB__LEN));
break;
default:
break;
}
return comres;
}
static int bma2x2_read_accel_z(struct i2c_client *client,
signed char sensor_type, short *a_z)
{
int comres = 0;
unsigned char data[2];
switch (sensor_type) {
case 0:
comres = bma2x2_smbus_read_byte_block(client,
BMA2X2_ACC_Z12_LSB__REG, data, 2);
*a_z = BMA2X2_GET_BITSLICE(data[0], BMA2X2_ACC_Z12_LSB)|
(BMA2X2_GET_BITSLICE(data[1],
BMA2X2_ACC_Z_MSB)<<(BMA2X2_ACC_Z12_LSB__LEN));
*a_z = *a_z << (sizeof(short)*8-(BMA2X2_ACC_Z12_LSB__LEN
+ BMA2X2_ACC_Z_MSB__LEN));
*a_z = *a_z >> (sizeof(short)*8-(BMA2X2_ACC_Z12_LSB__LEN
+ BMA2X2_ACC_Z_MSB__LEN));
break;
case 1:
comres = bma2x2_smbus_read_byte_block(client,
BMA2X2_ACC_Z10_LSB__REG, data, 2);
*a_z = BMA2X2_GET_BITSLICE(data[0], BMA2X2_ACC_Z10_LSB)|
(BMA2X2_GET_BITSLICE(data[1],
BMA2X2_ACC_Z_MSB)<<(BMA2X2_ACC_Z10_LSB__LEN));
*a_z = *a_z << (sizeof(short)*8-(BMA2X2_ACC_Z10_LSB__LEN
+ BMA2X2_ACC_Z_MSB__LEN));
*a_z = *a_z >> (sizeof(short)*8-(BMA2X2_ACC_Z10_LSB__LEN
+ BMA2X2_ACC_Z_MSB__LEN));
break;
case 2:
comres = bma2x2_smbus_read_byte_block(client,
BMA2X2_ACC_Z8_LSB__REG, data, 2);
*a_z = BMA2X2_GET_BITSLICE(data[0], BMA2X2_ACC_Z8_LSB)|
(BMA2X2_GET_BITSLICE(data[1],
BMA2X2_ACC_Z_MSB)<<(BMA2X2_ACC_Z8_LSB__LEN));
*a_z = *a_z << (sizeof(short)*8-(BMA2X2_ACC_Z8_LSB__LEN
+ BMA2X2_ACC_Z_MSB__LEN));
*a_z = *a_z >> (sizeof(short)*8-(BMA2X2_ACC_Z8_LSB__LEN
+ BMA2X2_ACC_Z_MSB__LEN));
break;
case 3:
comres = bma2x2_smbus_read_byte_block(client,
BMA2X2_ACC_Z14_LSB__REG, data, 2);
*a_z = BMA2X2_GET_BITSLICE(data[0], BMA2X2_ACC_Z14_LSB)|
(BMA2X2_GET_BITSLICE(data[1],
BMA2X2_ACC_Z_MSB)<<(BMA2X2_ACC_Z14_LSB__LEN));
*a_z = *a_z << (sizeof(short)*8-(BMA2X2_ACC_Z14_LSB__LEN
+ BMA2X2_ACC_Z_MSB__LEN));
*a_z = *a_z >> (sizeof(short)*8-(BMA2X2_ACC_Z14_LSB__LEN
+ BMA2X2_ACC_Z_MSB__LEN));
break;
default:
break;
}
return comres;
}
static int bma2x2_read_temperature(struct i2c_client *client,
signed char *temperature)
{
unsigned char data;
int comres = 0;
comres = bma2x2_smbus_read_byte(client, BMA2X2_TEMPERATURE_REG, &data);
*temperature = (signed char)data;
return comres;
}
static ssize_t bma2x2_enable_int_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int type, value;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
#ifdef CONFIG_SENSORS_BMI058
int i;
#endif
sscanf(buf, "%3d %3d", &type, &value);
#ifdef CONFIG_SENSORS_BMI058
for (i = 0; i < sizeof(int_map) / sizeof(struct interrupt_map_t); i++) {
if (int_map[i].x == type) {
type = int_map[i].y;
break;
}
if (int_map[i].y == type) {
type = int_map[i].x;
break;
}
}
#endif
if (bma2x2_set_Int_Enable(bma2x2->bma2x2_client, type, value) < 0)
return -EINVAL;
return count;
}
#if defined(BMA2X2_ENABLE_INT1)
static int bma2x2_sel_int1_pad(const struct bma2x2_data *data)
{
struct i2c_client *client = data->bma2x2_client;
int err = 0;
/* maps interrupt to INT1 pin */
err |= bma2x2_set_int1_pad_sel(client, PAD_LOWG);
err |= bma2x2_set_int1_pad_sel(client, PAD_HIGHG);
err |= bma2x2_set_int1_pad_sel(client, PAD_SLOP);
err |= bma2x2_set_int1_pad_sel(client, PAD_DOUBLE_TAP);
err |= bma2x2_set_int1_pad_sel(client, PAD_SINGLE_TAP);
err |= bma2x2_set_int1_pad_sel(client, PAD_ORIENT);
err |= bma2x2_set_int1_pad_sel(client, PAD_FLAT);
err |= bma2x2_set_int1_pad_sel(client, PAD_SLOW_NO_MOTION);
err |= bma2x2_set_newdata(client, BMA2X2_INT1_NDATA, 1);
err |= bma2x2_set_newdata(client, BMA2X2_INT2_NDATA, 0);
if (err) {
dev_err(&client->dev, "select pad int1 error, ret=%d\n", err);
err = -EIO;
}
return err;
}
#else
static int bma2x2_sel_int1_pad(const struct bma2x2_data *data)
{
return -EPERM;
}
#endif /* BMA2X2_ENABLE_INT1 */
#if defined(BMA2X2_ENABLE_INT2)
static int bma2x2_sel_int2_pad(const struct bma2x2_data *data)
{
struct i2c_client *client = data->bma2x2_client;
int err = 0;
/* maps interrupt to INT2 pin */
err |= bma2x2_set_int2_pad_sel(client, PAD_LOWG);
err |= bma2x2_set_int2_pad_sel(client, PAD_HIGHG);
err |= bma2x2_set_int2_pad_sel(client, PAD_SLOP);
err |= bma2x2_set_int2_pad_sel(client, PAD_DOUBLE_TAP);
err |= bma2x2_set_int2_pad_sel(client, PAD_SINGLE_TAP);
err |= bma2x2_set_int2_pad_sel(client, PAD_ORIENT);
err |= bma2x2_set_int2_pad_sel(client, PAD_FLAT);
err |= bma2x2_set_int2_pad_sel(client, PAD_SLOW_NO_MOTION);
err |= bma2x2_set_newdata(client, BMA2X2_INT1_NDATA, 0);
err |= bma2x2_set_newdata(client, BMA2X2_INT2_NDATA, 1);
if (err) {
dev_err(&client->dev, "select pad int1 error, ret=%d\n", err);
err = -EIO;
}
return err;
}
#else
static int bma2x2_sel_int2_pad(const struct bma2x2_data *data)
{
return -EPERM;
}
#endif /* BMA2X2_ENABLE_INT2 */
static ssize_t bma2x2_int_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_Int_Mode(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_int_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_Int_Mode(bma2x2->bma2x2_client, (unsigned char)data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_slope_duration_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_slope_duration(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_slope_duration_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_slope_duration(bma2x2->bma2x2_client, (unsigned
char)data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_slope_no_mot_duration_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_slope_no_mot_duration(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_slope_no_mot_duration_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_slope_no_mot_duration(bma2x2->bma2x2_client, (unsigned
char)data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_slope_threshold_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_slope_threshold(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_slope_threshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_slope_threshold(bma2x2->bma2x2_client, (unsigned
char)data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_slope_no_mot_threshold_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_slope_no_mot_threshold(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_slope_no_mot_threshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_slope_no_mot_threshold(bma2x2->bma2x2_client, (unsigned
char)data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_high_g_duration_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_high_g_duration(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_high_g_duration_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_high_g_duration(bma2x2->bma2x2_client, (unsigned
char)data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_high_g_threshold_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_high_g_threshold(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_high_g_threshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_high_g_threshold(bma2x2->bma2x2_client, (unsigned
char)data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_low_g_duration_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_low_g_duration(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_low_g_duration_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_low_g_duration(bma2x2->bma2x2_client, (unsigned
char)data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_low_g_threshold_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_low_g_threshold(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_low_g_threshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_low_g_threshold(bma2x2->bma2x2_client, (unsigned
char)data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_tap_threshold_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_tap_threshold(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_tap_threshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_tap_threshold(bma2x2->bma2x2_client, (unsigned char)data)
< 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_tap_duration_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_tap_duration(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_tap_duration_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_tap_duration(bma2x2->bma2x2_client, (unsigned char)data)
< 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_tap_quiet_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_tap_quiet(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_tap_quiet_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_tap_quiet(bma2x2->bma2x2_client, (unsigned char)data) <
0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_tap_shock_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_tap_shock(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_tap_shock_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_tap_shock(bma2x2->bma2x2_client, (unsigned char)data) <
0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_tap_samp_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_tap_samp(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_tap_samp_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_tap_samp(bma2x2->bma2x2_client, (unsigned char)data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_orient_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_orient_mode(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_orient_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_orient_mode(bma2x2->bma2x2_client, (unsigned char)data) <
0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_orient_blocking_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_orient_blocking(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_orient_blocking_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_orient_blocking(bma2x2->bma2x2_client, (unsigned
char)data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_orient_hyst_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_orient_hyst(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_orient_hyst_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_orient_hyst(bma2x2->bma2x2_client, (unsigned char)data) <
0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_orient_theta_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_theta_blocking(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_orient_theta_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_theta_blocking(bma2x2->bma2x2_client, (unsigned
char)data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_flat_theta_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_theta_flat(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_flat_theta_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_theta_flat(bma2x2->bma2x2_client, (unsigned char)data) <
0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_flat_hold_time_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_flat_hold_time(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_selftest_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
return snprintf(buf, PAGE_SIZE, "%d\n",
atomic_read(&bma2x2->selftest_result));
}
static ssize_t bma2x2_softreset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_soft_reset(bma2x2->bma2x2_client) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_selftest_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
unsigned char clear_value = 0;
int error;
short value1 = 0;
short value2 = 0;
short diff = 0;
unsigned long result = 0;
unsigned char test_result_branch = 0;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
bma2x2_soft_reset(bma2x2->bma2x2_client);
RESET_DELAY();
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (data != 1)
return -EINVAL;
bma2x2_write_reg(bma2x2->bma2x2_client, 0x32, &clear_value);
if ((bma2x2->sensor_type == BMA280_TYPE) ||
(bma2x2->sensor_type == BMA255_TYPE)) {
#ifdef CONFIG_SENSORS_BMI058
/*set self test amp */
if (bma2x2_set_selftest_amp(bma2x2->bma2x2_client, 1) < 0)
return -EINVAL;
/* set to 8 G range */
if (bma2x2_set_range(bma2x2->bma2x2_client,
BMA2X2_RANGE_8G) < 0)
return -EINVAL;
#else
/* set to 4 G range */
if (bma2x2_set_range(bma2x2->bma2x2_client,
BMA2X2_RANGE_4G) < 0)
return -EINVAL;
#endif
}
if ((bma2x2->sensor_type == BMA250E_TYPE) ||
(bma2x2->sensor_type == BMA222E_TYPE)) {
/* set to 8 G range */
if (bma2x2_set_range(bma2x2->bma2x2_client, 8) < 0)
return -EINVAL;
if (bma2x2_set_selftest_amp(bma2x2->bma2x2_client, 1) < 0)
return -EINVAL;
}
/* 1 for x-axis(but BMI058 is 1 for y-axis )*/
bma2x2_set_selftest_st(bma2x2->bma2x2_client, 1);
bma2x2_set_selftest_stn(bma2x2->bma2x2_client, 0);
SELF_TEST_DELAY();
bma2x2_read_accel_x(bma2x2->bma2x2_client,
bma2x2->sensor_type, &value1);
bma2x2_set_selftest_stn(bma2x2->bma2x2_client, 1);
SELF_TEST_DELAY();
bma2x2_read_accel_x(bma2x2->bma2x2_client,
bma2x2->sensor_type, &value2);
diff = value1-value2;
#ifdef CONFIG_SENSORS_BMI058
dev_dbg(dev, "diff y is %d,value1 is %d, value2 is %d\n", diff,
value1, value2);
test_result_branch = 2;
#else
dev_dbg(dev, "diff x is %d,value1 is %d, value2 is %d\n", diff,
value1, value2);
test_result_branch = 1;
#endif
if (bma2x2->sensor_type == BMA280_TYPE) {
#ifdef CONFIG_SENSORS_BMI058
if (abs(diff) < 819)
result |= test_result_branch;
#else
if (abs(diff) < 1638)
result |= test_result_branch;
#endif
}
if (bma2x2->sensor_type == BMA255_TYPE) {
if (abs(diff) < 409)
result |= 1;
}
if (bma2x2->sensor_type == BMA250E_TYPE) {
if (abs(diff) < 51)
result |= 1;
}
if (bma2x2->sensor_type == BMA222E_TYPE) {
if (abs(diff) < 12)
result |= 1;
}
/* 2 for y-axis but BMI058 is 1*/
bma2x2_set_selftest_st(bma2x2->bma2x2_client, 2);
bma2x2_set_selftest_stn(bma2x2->bma2x2_client, 0);
SELF_TEST_DELAY();
bma2x2_read_accel_y(bma2x2->bma2x2_client,
bma2x2->sensor_type, &value1);
bma2x2_set_selftest_stn(bma2x2->bma2x2_client, 1);
SELF_TEST_DELAY();
bma2x2_read_accel_y(bma2x2->bma2x2_client,
bma2x2->sensor_type, &value2);
diff = value1-value2;
#ifdef CONFIG_SENSORS_BMI058
dev_dbg(dev, "diff x is %d,value1 is %d, value2 is %d\n", diff,
value1, value2);
test_result_branch = 1;
#else
dev_dbg(dev, "diff y is %d,value1 is %d, value2 is %d\n", diff,
value1, value2);
test_result_branch = 2;
#endif
if (bma2x2->sensor_type == BMA280_TYPE) {
#ifdef CONFIG_SENSORS_BMI058
if (abs(diff) < 819)
result |= test_result_branch;
#else
if (abs(diff) < 1638)
result |= test_result_branch;
#endif
}
if (bma2x2->sensor_type == BMA255_TYPE) {
if (abs(diff) < 409)
result |= test_result_branch;
}
if (bma2x2->sensor_type == BMA250E_TYPE) {
if (abs(diff) < 51)
result |= test_result_branch;
}
if (bma2x2->sensor_type == BMA222E_TYPE) {
if (abs(diff) < 12)
result |= test_result_branch;
}
bma2x2_set_selftest_st(bma2x2->bma2x2_client, 3); /* 3 for z-axis*/
bma2x2_set_selftest_stn(bma2x2->bma2x2_client, 0);
SELF_TEST_DELAY();
bma2x2_read_accel_z(bma2x2->bma2x2_client,
bma2x2->sensor_type, &value1);
bma2x2_set_selftest_stn(bma2x2->bma2x2_client, 1);
SELF_TEST_DELAY();
bma2x2_read_accel_z(bma2x2->bma2x2_client,
bma2x2->sensor_type, &value2);
diff = value1-value2;
dev_dbg(dev, "diff z is %d,value1 is %d, value2 is %d\n", diff,
value1, value2);
if (bma2x2->sensor_type == BMA280_TYPE) {
#ifdef CONFIG_SENSORS_BMI058
if (abs(diff) < 409)
result |= 4;
#else
if (abs(diff) < 819)
result |= 4;
#endif
}
if (bma2x2->sensor_type == BMA255_TYPE) {
if (abs(diff) < 204)
result |= 4;
}
if (bma2x2->sensor_type == BMA250E_TYPE) {
if (abs(diff) < 25)
result |= 4;
}
if (bma2x2->sensor_type == BMA222E_TYPE) {
if (abs(diff) < 6)
result |= 4;
}
/* self test for bma254 */
if ((bma2x2->sensor_type == BMA255_TYPE) && (result > 0)) {
result = 0;
bma2x2_soft_reset(bma2x2->bma2x2_client);
RESET_DELAY();
bma2x2_write_reg(bma2x2->bma2x2_client, 0x32, &clear_value);
/* set to 8 G range */
if (bma2x2_set_range(bma2x2->bma2x2_client, 8) < 0)
return -EINVAL;
if (bma2x2_set_selftest_amp(bma2x2->bma2x2_client, 1) < 0)
return -EINVAL;
bma2x2_set_selftest_st(bma2x2->bma2x2_client, 1); /* 1
for x-axis*/
bma2x2_set_selftest_stn(bma2x2->bma2x2_client, 0); /*
positive direction*/
SELF_TEST_DELAY();
bma2x2_read_accel_x(bma2x2->bma2x2_client,
bma2x2->sensor_type, &value1);
bma2x2_set_selftest_stn(bma2x2->bma2x2_client, 1); /*
negative direction*/
SELF_TEST_DELAY();
bma2x2_read_accel_x(bma2x2->bma2x2_client,
bma2x2->sensor_type, &value2);
diff = value1-value2;
dev_dbg(dev, "diff x is %d,value1 is %d, value2 is %d\n",
diff, value1, value2);
if (abs(diff) < 204)
result |= 1;
bma2x2_set_selftest_st(bma2x2->bma2x2_client, 2); /* 2
for y-axis*/
bma2x2_set_selftest_stn(bma2x2->bma2x2_client, 0); /*
positive direction*/
SELF_TEST_DELAY();
bma2x2_read_accel_y(bma2x2->bma2x2_client,
bma2x2->sensor_type, &value1);
bma2x2_set_selftest_stn(bma2x2->bma2x2_client, 1); /*
negative direction*/
SELF_TEST_DELAY();
bma2x2_read_accel_y(bma2x2->bma2x2_client,
bma2x2->sensor_type, &value2);
diff = value1-value2;
dev_dbg(dev, "diff y is %d,value1 is %d, value2 is %d\n",
diff, value1, value2);
if (abs(diff) < 204)
result |= 2;
bma2x2_set_selftest_st(bma2x2->bma2x2_client, 3); /* 3
for z-axis*/
bma2x2_set_selftest_stn(bma2x2->bma2x2_client, 0); /*
positive direction*/
SELF_TEST_DELAY();
bma2x2_read_accel_z(bma2x2->bma2x2_client,
bma2x2->sensor_type, &value1);
bma2x2_set_selftest_stn(bma2x2->bma2x2_client, 1); /*
negative direction*/
SELF_TEST_DELAY();
bma2x2_read_accel_z(bma2x2->bma2x2_client,
bma2x2->sensor_type, &value2);
diff = value1-value2;
dev_dbg(dev, "diff z is %d,value1 is %d, value2 is %d\n",
diff, value1, value2);
if (abs(diff) < 102)
result |= 4;
}
atomic_set(&bma2x2->selftest_result, (unsigned int)result);
bma2x2_soft_reset(bma2x2->bma2x2_client);
RESET_DELAY();
dev_dbg(dev, "self test finished\n");
return count;
}
static ssize_t bma2x2_flat_hold_time_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_flat_hold_time(bma2x2->bma2x2_client, (unsigned
char)data) < 0)
return -EINVAL;
return count;
}
const int bma2x2_sensor_bitwidth[] = {
12, 10, 8, 14
};
static int bma2x2_get_sensitivity(struct bma2x2_data *bma2x2, int range)
{
switch (range) {
case BMA2X2_RANGE_2G:
bma2x2->sensitivity = bosch_sensor_range_map[0];
break;
case BMA2X2_RANGE_4G:
bma2x2->sensitivity = bosch_sensor_range_map[1];
break;
case BMA2X2_RANGE_8G:
bma2x2->sensitivity = bosch_sensor_range_map[2];
break;
case BMA2X2_RANGE_16G:
bma2x2->sensitivity = bosch_sensor_range_map[3];
break;
default:
bma2x2->sensitivity = bosch_sensor_range_map[0];
break;
}
return 0;
}
static int bma2x2_read_accel_xyz(struct i2c_client *client,
signed char sensor_type, struct bma2x2acc *acc)
{
int comres = 0;
unsigned char data[6];
struct bma2x2_data *client_data = i2c_get_clientdata(client);
#ifndef BMA2X2_SENSOR_IDENTIFICATION_ENABLE
int bitwidth;
#endif
comres = bma2x2_smbus_read_byte_block(client,
BMA2X2_ACC_X12_LSB__REG, data, 6);
if (sensor_type >= 4)
return -EINVAL;
acc->x = (data[1]<<8)|data[0];
acc->y = (data[3]<<8)|data[2];
acc->z = (data[5]<<8)|data[4];
#ifndef BMA2X2_SENSOR_IDENTIFICATION_ENABLE
bitwidth = bma2x2_sensor_bitwidth[sensor_type];
acc->x = (acc->x >> (16 - bitwidth));
acc->y = (acc->y >> (16 - bitwidth));
acc->z = (acc->z >> (16 - bitwidth));
#endif
bma2x2_remap_sensor_data(acc, client_data);
return comres;
}
static void bma2x2_report_axis_data(struct bma2x2_data *bma2x2,
struct bma2x2acc *value)
{
ktime_t ts;
int err;
ts = ktime_get();
err = bma2x2_read_accel_xyz(bma2x2->bma2x2_client,
bma2x2->sensor_type, value);
if (err < 0) {
dev_err(&bma2x2->bma2x2_client->dev,
"read accel data failed! err = %d\n", err);
return;
}
input_report_abs(bma2x2->input, ABS_X,
(int)value->x << bma2x2->sensitivity);
input_report_abs(bma2x2->input, ABS_Y,
(int)value->y << bma2x2->sensitivity);
input_report_abs(bma2x2->input, ABS_Z,
(int)value->z << bma2x2->sensitivity);
input_event(bma2x2->input, EV_SYN, SYN_TIME_SEC,
ktime_to_timespec(ts).tv_sec);
input_event(bma2x2->input, EV_SYN, SYN_TIME_NSEC,
ktime_to_timespec(ts).tv_nsec);
input_sync(bma2x2->input);
}
static void bma2x2_work_func(struct work_struct *work)
{
struct bma2x2_data *bma2x2 = container_of((struct delayed_work *)work,
struct bma2x2_data, work);
struct bma2x2acc value;
unsigned long delay = msecs_to_jiffies(atomic_read(&bma2x2->delay));
bma2x2_report_axis_data(bma2x2, &value);
mutex_lock(&bma2x2->value_mutex);
bma2x2->value = value;
mutex_unlock(&bma2x2->value_mutex);
queue_delayed_work(bma2x2->data_wq, &bma2x2->work, delay);
}
static ssize_t bma2x2_register_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int address, value;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
sscanf(buf, "%3d %3d", &address, &value);
if (bma2x2_write_reg(bma2x2->bma2x2_client, (unsigned char)address,
(unsigned char *)&value) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_register_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
size_t count = 0;
u8 reg[0x40];
int i;
for (i = 0; i < 0x40; i++) {
bma2x2_smbus_read_byte(bma2x2->bma2x2_client, i, reg+i);
count += snprintf(&buf[count], PAGE_SIZE,
"0x%x: %d\n", i, reg[i]);
}
return count;
}
static ssize_t bma2x2_range_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_range(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_range_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_range(bma2x2->bma2x2_client, (unsigned char) data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_bandwidth_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_bandwidth(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_bandwidth_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2->sensor_type == BMA280_TYPE)
if ((unsigned char) data > 14)
return -EINVAL;
if (bma2x2_set_bandwidth(bma2x2->bma2x2_client,
(unsigned char) data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_mode(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d %d\n", data, bma2x2->ref_count);
}
static ssize_t bma2x2_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_mode(bma2x2->bma2x2_client, (unsigned char) data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_value_cache_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct input_dev *input = to_input_dev(dev);
struct bma2x2_data *bma2x2 = input_get_drvdata(input);
struct bma2x2acc acc_value;
mutex_lock(&bma2x2->value_mutex);
acc_value = bma2x2->value;
mutex_unlock(&bma2x2->value_mutex);
return snprintf(buf, PAGE_SIZE, "%d %d %d\n", acc_value.x, acc_value.y,
acc_value.z);
}
static ssize_t bma2x2_value_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct input_dev *input = to_input_dev(dev);
struct bma2x2_data *bma2x2 = input_get_drvdata(input);
struct bma2x2acc acc_value;
bma2x2_read_accel_xyz(bma2x2->bma2x2_client, bma2x2->sensor_type,
&acc_value);
return snprintf(buf, PAGE_SIZE, "%d %d %d\n", acc_value.x, acc_value.y,
acc_value.z);
}
static ssize_t bma2x2_delay_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
return snprintf(buf, PAGE_SIZE, "%d\n", atomic_read(&bma2x2->delay));
}
static ssize_t bma2x2_chip_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
return snprintf(buf, PAGE_SIZE, "%d\n", bma2x2->chip_id);
}
static ssize_t bma2x2_place_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
int place = BOSCH_SENSOR_PLACE_UNKNOWN;
place = bma2x2->pdata->place;
return snprintf(buf, PAGE_SIZE, "%d\n", place);
}
static ssize_t bma2x2_delay_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (data < POLL_INTERVAL_MIN_MS)
data = POLL_INTERVAL_MIN_MS;
if (data > POLL_INTERVAL_MAX_MS)
data = POLL_INTERVAL_MAX_MS;
atomic_set(&bma2x2->delay, (unsigned int) data);
return count;
}
static ssize_t bma2x2_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
return snprintf(buf, PAGE_SIZE, "%d\n", atomic_read(&bma2x2->enable));
}
static int bma2x2_config_interrupt(struct bma2x2_data *data, int enable)
{
struct i2c_client *client = data->bma2x2_client;
int err = 0;
bool act_high;
if (!enable)
/* No need reset these interrupt configurations */
goto exit;
if ((data->int_flag | IRQF_TRIGGER_RISING) ||
(data->int_flag | IRQF_TRIGGER_HIGH))
act_high = true;
else
act_high = false;
if (data->pdata->use_int2) {
err = bma2x2_sel_int2_pad(data);
if (err) {
dev_err(&client->dev,
"Failed to select int2 pad, err=%d\n",
err);
goto exit;
}
err = bma2x2_set_int2_active_lvl(client, act_high);
if (err) {
dev_err(&client->dev,
"Failed to select int2 level, err=%d\n",
err);
goto exit;
}
} else {
err = bma2x2_sel_int1_pad(data);
if (err) {
dev_err(&client->dev,
"Failed to select int1 pad, err=%d\n",
err);
goto exit;
}
err = bma2x2_set_int1_active_lvl(client, act_high);
if (err) {
dev_err(&client->dev,
"Failed to select int2 level, err=%d\n",
err);
goto exit;
}
}
err = bma2x2_set_Int_Mode(client, BMA2X2_LATCH_DUR_LATCH1);
if (err) {
dev_err(&client->dev,
"Failed to set interrupt latch, err=%d\n",
err);
goto exit;
}
exit:
return err;
}
static void bma2x2_set_enable(struct device *dev, int enable)
{
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
int pre_enable = atomic_read(&bma2x2->enable);
mutex_lock(&bma2x2->enable_mutex);
if (enable) {
if (pre_enable == 0) {
if (bma2x2_power_ctl(bma2x2, true)) {
dev_err(dev, "power failed\n");
goto mutex_exit;
}
if (bma2x2_open_init(client, bma2x2) < 0) {
dev_err(dev, "set init failed\n");
goto mutex_exit;
}
bma2x2_set_mode(bma2x2->bma2x2_client,
BMA2X2_MODE_NORMAL);
if ((bma2x2->pdata->int_en) &&
(BMA2x2_IS_NEWDATA_INT_ENABLED())) {
if (bma2x2_config_interrupt(bma2x2, true)) {
dev_err(&client->dev,
"config interrupt failed\n");
goto mutex_exit;
}
if (bma2x2_set_Int_Enable(client,
BMA2X2_DATA_EN, 1)) {
dev_err(&client->dev,
"enable interrupt failed\n");
goto mutex_exit;
}
bma2x2_pinctrl_state(bma2x2, true);
enable_irq(bma2x2->IRQ);
} else {
queue_delayed_work(bma2x2->data_wq,
&bma2x2->work,
msecs_to_jiffies
(atomic_read(&bma2x2->delay)));
}
atomic_set(&bma2x2->enable, 1);
}
} else {
if (pre_enable == 1) {
if (bma2x2_store_state(client, bma2x2) < 0) {
dev_err(dev, "set state failed\n");
goto mutex_exit;
}
bma2x2_set_mode(bma2x2->bma2x2_client,
BMA2X2_MODE_SUSPEND);
bma2x2_pinctrl_state(bma2x2, false);
if ((bma2x2->pdata->int_en) &&
(BMA2x2_IS_NEWDATA_INT_ENABLED())) {
disable_irq(bma2x2->IRQ);
bma2x2_pinctrl_state(bma2x2, false);
if (bma2x2_set_Int_Enable(client,
BMA2X2_DATA_EN, 0)) {
dev_err(&client->dev,
"disable interrupt failed\n");
goto mutex_exit;
}
if (bma2x2_config_interrupt(bma2x2, false)) {
dev_err(&client->dev,
"deconfig interrupt failed\n");
goto mutex_exit;
}
} else {
cancel_delayed_work_sync(&bma2x2->work);
}
atomic_set(&bma2x2->enable, 0);
if (bma2x2_power_ctl(bma2x2, false)) {
dev_err(dev, "power failed\n");
goto mutex_exit;
}
}
}
mutex_exit:
mutex_unlock(&bma2x2->enable_mutex);
dev_dbg(&client->dev,
"set enable: en=%d, en_state=%d, use_int=%d\n",
enable, atomic_read(&bma2x2->enable),
bma2x2->pdata->int_en);
}
static ssize_t bma2x2_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if ((data == 0) || (data == 1))
bma2x2_set_enable(dev, data);
return count;
}
static int bma2x2_cdev_enable(struct sensors_classdev *sensors_cdev,
unsigned int enable)
{
struct bma2x2_data *data = container_of(sensors_cdev,
struct bma2x2_data, cdev);
bma2x2_set_enable(&data->bma2x2_client->dev, enable);
return 0;
}
static int bma2x2_is_power_enabled(struct bma2x2_data *data)
{
return atomic_read(&data->enable);
}
static int bma2x2_cdev_poll_delay(struct sensors_classdev *sensors_cdev,
unsigned int delay_ms)
{
struct bma2x2_data *data = container_of(sensors_cdev,
struct bma2x2_data, cdev);
if (delay_ms < POLL_INTERVAL_MIN_MS)
delay_ms = POLL_INTERVAL_MIN_MS;
if (delay_ms > POLL_INTERVAL_MAX_MS)
delay_ms = POLL_INTERVAL_MAX_MS;
atomic_set(&data->delay, (unsigned int) delay_ms);
return 0;
}
#ifdef CONFIG_SENSORS_BMI058
static int bma2x2_select_chanel(struct i2c_client *client)
{
unsigned char data_ore[3] = { BOSCH_SENSOR_PLANE };
signed char tmp;
int error, i;
int timeout;
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
unsigned char bmi058_channel_tb = {BMI058_OFFSET_TRIGGER_X,
BMI058_OFFSET_TRIGGER_Y, BMI058_OFFSET_TRIGGER_Z};
if (bma2x2->pdata->place > 3 && bma2x2->pdata->place < 8)
data_ore[2] = BOSCH_SENSOR_DOWN;
else if (bma2x2->pdata->place >= 0 && bma2x2->pdata->place < 4)
data_ore[2] = BOSCH_SENSOR_UP;
else {
dev_err(&client->dev, "unknown sensor place\n");
return -EINVAL;
}
if (bma2x2_set_mode(client, BMA2X2_MODE_NORMAL) < 0) {
dev_err(&client->dev, "set calibrate mode error\n");
return -EINVAL;
}
if (bma2x2_set_bandwidth(client, BMA2X2_BW_1000HZ) < 0) {
dev_err(&client->dev, "set calibrate bandwidth error\n");
return -EINVAL;
}
if (bma2x2_set_range(client, BMA2X2_RANGE_SET) < 0) {
dev_err(&client->dev, "set calibrate range error\n");
return -EINVAL;
}
for (i = 0; i < 3; i++) {
if (bma2x2_set_offset_target(client, bmi058_channel_tb[i],
(unsigned char)data_ore[i]) < 0) {
dev_err(&client->dev,
"set offset target error\n");
return -EINVAL;
}
if (bma2x2_set_cal_trigger(client, (i + 1)) < 0) {
dev_err(&client->dev,
"read calibration state error\n");
return -EINVAL;
}
timeout = 0;
do {
WAIT_CAL_READY();
error = bma2x2_get_cal_ready(client, &tmp);
if (error < 0) {
dev_err(&client->dev,
"read cal_ready error\n");
return error;
}
timeout++;
if (timeout == RETRY_TIME) {
dev_err(&client->dev,
"get fast calibration ready error\n");
return -EINVAL;
};
} while (tmp == 0);
}
bma2x2_set_bandwidth(client, bma2x2->bandwidth);
if (error < 0) {
dev_err(&client->dev, "restore calibrate bandwidth error\n");
return error;
}
return 0;
}
#else
static int bma2x2_select_chanel(struct i2c_client *client)
{
unsigned char data_ore[3] = { BOSCH_SENSOR_PLANE };
signed char tmp;
int error, i;
int timeout;
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
unsigned char channel_tab[] = {BMA2X2_OFFSET_TRIGGER_X,
BMA2X2_OFFSET_TRIGGER_Y, BMA2X2_OFFSET_TRIGGER_Z};
if (bma2x2->pdata->place > 3 && bma2x2->pdata->place < 8)
data_ore[2] = BOSCH_SENSOR_DOWN;
else if (bma2x2->pdata->place >= 0 && bma2x2->pdata->place < 4)
data_ore[2] = BOSCH_SENSOR_UP;
else {
dev_err(&client->dev, "unknown sensor place\n");
return -EINVAL;
}
if (bma2x2_set_mode(client, BMA2X2_MODE_NORMAL) < 0) {
dev_err(&client->dev, "set calibrate mode error\n");
return -EINVAL;
}
if (bma2x2_set_bandwidth(client, BMA2X2_BW_1000HZ) < 0) {
dev_err(&client->dev, "set calibrate bandwidth error\n");
return -EINVAL;
}
if (bma2x2_set_range(client, BMA2X2_RANGE_SET) < 0) {
dev_err(&client->dev, "set calibrate range error\n");
return -EINVAL;
}
for (i = 0; i < 3; i++) {
if (bma2x2_set_offset_target(client, channel_tab[i],
(unsigned char)data_ore[i]) < 0) {
dev_err(&client->dev,
"set offset target error\n");
return -EINVAL;
}
if (bma2x2_set_cal_trigger(client, (i + 1)) < 0) {
dev_err(&client->dev,
"read calibration state error\n");
return -EINVAL;
}
timeout = 0;
do {
WAIT_CAL_READY();
error = bma2x2_get_cal_ready(client, &tmp);
if (error < 0) {
dev_err(&client->dev,
"read cal_ready error\n");
return error;
}
timeout++;
if (timeout == RETRY_TIME) {
dev_err(&client->dev,
"get fast calibration ready error\n");
return -EINVAL;
};
} while (tmp == 0);
}
error = bma2x2_set_bandwidth(client, bma2x2->bandwidth);
if (error < 0) {
dev_err(&client->dev, "restore calibrate bandwidth error\n");
return error;
}
return 0;
}
#endif
static int bma2x2_self_calibration_xyz(struct sensors_classdev *sensors_cdev)
{
int error;
struct bma2x2_data *data = container_of(sensors_cdev,
struct bma2x2_data, cdev);
struct i2c_client *client = data->bma2x2_client;
error = bma2x2_select_chanel(client);
if (error < 0) {
dev_err(&client->dev, "xyz calibration error\n");
return error;
}
dev_dbg(&client->dev, "xyz axis fast calibration finished\n");
error = bma2x2_eeprom_prog(client);
if (error < 0) {
dev_err(&client->dev, "wirte calibration to eeprom failed\n");
return error;
}
return error;
}
static int bma2x2_eeprom_prog(struct i2c_client *client)
{
int res = 0, timeout = 0;
unsigned char databuf;
res = bma2x2_smbus_read_byte(client, BMA2X2_EEPROM_CTRL_REG,
&databuf);
if (res < 0) {
dev_err(&client->dev, "read eeprom control reg error1\n");
return res;
}
databuf |= 0x01;
res = bma2x2_smbus_write_byte(client, BMA2X2_EEPROM_CTRL_REG,
&databuf);
if (res < 0) {
dev_err(&client->dev, "write eeprom control reg error1\n");
return res;
}
res = bma2x2_smbus_read_byte(client, BMA2X2_EEPROM_CTRL_REG,
&databuf);
if (res < 0) {
dev_err(&client->dev, "read eeprom control reg error2\n");
return res;
}
databuf |= 0x02;
res = bma2x2_smbus_write_byte(client, BMA2X2_EEPROM_CTRL_REG,
&databuf);
if (res < 0) {
dev_err(&client->dev, "write eeprom control reg error2\n");
return res;
}
do {
WAIT_CAL_READY();
res = bma2x2_smbus_read_byte(client, BMA2X2_EEPROM_CTRL_REG,
&databuf);
if (res < 0) {
dev_err(&client->dev, "read nvm_rdy error\n");
return res;
}
databuf = (databuf >> 2) & 0x01;
if (++timeout == 50) {
dev_err(&client->dev, "check nvm_rdy time out\n");
break;
}
} while (databuf == 0);
res = bma2x2_smbus_read_byte(client, BMA2X2_EEPROM_CTRL_REG,
&databuf);
if (res < 0) {
dev_err(&client->dev, "read eeprom control reg error3\n");
return res;
}
databuf &= 0xFE;
res = bma2x2_smbus_write_byte(client, BMA2X2_EEPROM_CTRL_REG,
&databuf);
if (res < 0) {
dev_err(&client->dev, "write eeprom control reg error3\n");
return res;
}
return res;
}
static ssize_t bma2x2_fast_calibration_x_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
#ifdef CONFIG_SENSORS_BMI058
if (bma2x2_get_offset_target(bma2x2->bma2x2_client,
BMI058_OFFSET_TRIGGER_X, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
#else
if (bma2x2_get_offset_target(bma2x2->bma2x2_client,
BMA2X2_OFFSET_TRIGGER_X, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
#endif
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_fast_calibration_x_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
signed char tmp;
unsigned char timeout = 0;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
#ifdef CONFIG_SENSORS_BMI058
if (bma2x2_set_offset_target(bma2x2->bma2x2_client,
BMI058_OFFSET_TRIGGER_X, (unsigned char)data) < 0)
return -EINVAL;
#else
if (bma2x2_set_offset_target(bma2x2->bma2x2_client,
BMA2X2_OFFSET_TRIGGER_X, (unsigned char)data) < 0)
return -EINVAL;
#endif
if (bma2x2_set_cal_trigger(bma2x2->bma2x2_client, 1) < 0)
return -EINVAL;
do {
WAIT_CAL_READY();
bma2x2_get_cal_ready(bma2x2->bma2x2_client, &tmp);
timeout++;
if (timeout == 50) {
dev_err(&client->dev, "get fast calibration ready error\n");
return -EINVAL;
};
} while (tmp == 0);
dev_dbg(&client->dev, "x axis fast calibration finished\n");
return count;
}
static ssize_t bma2x2_fast_calibration_y_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
#ifdef CONFIG_SENSORS_BMI058
if (bma2x2_get_offset_target(bma2x2->bma2x2_client,
BMI058_OFFSET_TRIGGER_Y, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
#else
if (bma2x2_get_offset_target(bma2x2->bma2x2_client,
BMA2X2_OFFSET_TRIGGER_Y, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
#endif
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_fast_calibration_y_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
signed char tmp;
unsigned char timeout = 0;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
#ifdef CONFIG_SENSORS_BMI058
if (bma2x2_set_offset_target(bma2x2->bma2x2_client,
BMI058_OFFSET_TRIGGER_Y, (unsigned char)data) < 0)
return -EINVAL;
#else
if (bma2x2_set_offset_target(bma2x2->bma2x2_client,
BMA2X2_OFFSET_TRIGGER_Y, (unsigned char)data) < 0)
return -EINVAL;
#endif
if (bma2x2_set_cal_trigger(bma2x2->bma2x2_client, 2) < 0)
return -EINVAL;
do {
WAIT_CAL_READY();
bma2x2_get_cal_ready(bma2x2->bma2x2_client, &tmp);
timeout++;
if (timeout == 50) {
dev_err(&client->dev, "get fast calibration ready error\n");
return -EINVAL;
};
} while (tmp == 0);
dev_dbg(&client->dev, "y axis fast calibration finished\n");
return count;
}
static ssize_t bma2x2_fast_calibration_z_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_offset_target(bma2x2->bma2x2_client, 3, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_fast_calibration_z_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
signed char tmp;
unsigned char timeout = 0;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_offset_target(bma2x2->bma2x2_client, 3, (unsigned
char)data) < 0)
return -EINVAL;
if (bma2x2_set_cal_trigger(bma2x2->bma2x2_client, 3) < 0)
return -EINVAL;
do {
WAIT_CAL_READY();
bma2x2_get_cal_ready(bma2x2->bma2x2_client, &tmp);
timeout++;
if (timeout == 50) {
dev_err(&client->dev, "get fast calibration ready error\n");
return -EINVAL;
};
} while (tmp == 0);
dev_dbg(&client->dev, "z axis fast calibration finished\n");
return count;
}
static ssize_t bma2x2_SleepDur_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_sleep_duration(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_SleepDur_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_sleep_duration(bma2x2->bma2x2_client,
(unsigned char) data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_fifo_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_fifo_mode(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_fifo_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_fifo_mode(bma2x2->bma2x2_client,
(unsigned char) data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_fifo_trig_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_fifo_trig(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_fifo_trig_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_fifo_trig(bma2x2->bma2x2_client,
(unsigned char) data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_fifo_trig_src_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_fifo_trig_src(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_fifo_trig_src_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_fifo_trig_src(bma2x2->bma2x2_client,
(unsigned char) data) < 0)
return -EINVAL;
return count;
}
/*!
* @brief show fifo_data_sel axis definition(Android definition, not sensor HW reg).
* 0--> x, y, z axis fifo data for every frame
* 1--> only x axis fifo data for every frame
* 2--> only y axis fifo data for every frame
* 3--> only z axis fifo data for every frame
*/
static ssize_t bma2x2_fifo_data_sel_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
signed char place = BOSCH_SENSOR_PLACE_UNKNOWN;
if (bma2x2_get_fifo_data_sel(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
#ifdef CONFIG_SENSORS_BMI058
/*Update BMI058 fifo_data_sel to the BMA2x2 common definition*/
if (BMI058_FIFO_DAT_SEL_X == data)
data = BMA2X2_FIFO_DAT_SEL_X;
else if (BMI058_FIFO_DAT_SEL_Y == data)
data = BMA2X2_FIFO_DAT_SEL_Y;
#endif
/*remaping fifo_dat_sel if define virtual place in BSP files*/
place = bma2x2->pdata->place;
/* sensor with place 0 needs not to be remapped */
if ((place > 0) && (place < MAX_AXIS_REMAP_TAB_SZ)) {
/* BMA2X2_FIFO_DAT_SEL_X: 1, Y:2, Z:3;
* but bst_axis_remap_tab_dft[i].src_x:0, y:1, z:2
* so we need to +1*/
if (BMA2X2_FIFO_DAT_SEL_X == data)
data = bst_axis_remap_tab_dft[place].src_x + 1;
else if (BMA2X2_FIFO_DAT_SEL_Y == data)
data = bst_axis_remap_tab_dft[place].src_y + 1;
}
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_fifo_framecount_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_fifo_framecount(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_fifo_framecount_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
bma2x2->fifo_count = (unsigned int) data;
return count;
}
static ssize_t bma2x2_temperature_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_read_temperature(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
/*!
* @brief store fifo_data_sel axis definition(Android definition, not sensor HW reg).
* 0--> x, y, z axis fifo data for every frame
* 1--> only x axis fifo data for every frame
* 2--> only y axis fifo data for every frame
* 3--> only z axis fifo data for every frame
*/
static ssize_t bma2x2_fifo_data_sel_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
signed char place;
error = kstrtoul(buf, 10, &data);
if (error)
return error;
/*save fifo_data_sel(android definition)*/
bma2x2->fifo_datasel = (unsigned char) data;
/*remaping fifo_dat_sel if define virtual place*/
place = bma2x2->pdata->place;
/* sensor with place 0 needs not to be remapped */
if ((place > 0) && (place < MAX_AXIS_REMAP_TAB_SZ)) {
/*Need X Y axis revesal sensor place: P1, P3, P5, P7 */
/* BMA2X2_FIFO_DAT_SEL_X: 1, Y:2, Z:3;
* but bst_axis_remap_tab_dft[i].src_x:0, y:1, z:2
* so we need to +1*/
if (BMA2X2_FIFO_DAT_SEL_X == data)
data = bst_axis_remap_tab_dft[place].src_x + 1;
else if (BMA2X2_FIFO_DAT_SEL_Y == data)
data = bst_axis_remap_tab_dft[place].src_y + 1;
}
#ifdef CONFIG_SENSORS_BMI058
/*Update BMI058 fifo_data_sel to the BMA2x2 common definition*/
if (BMA2X2_FIFO_DAT_SEL_X == data)
data = BMI058_FIFO_DAT_SEL_X;
else if (BMA2X2_FIFO_DAT_SEL_Y == data)
data = BMI058_FIFO_DAT_SEL_Y;
#endif
if (bma2x2_set_fifo_data_sel(bma2x2->bma2x2_client,
(unsigned char) data) < 0)
return -EINVAL;
return count;
}
/*!
* brief: bma2x2 single axis data remaping
* @param[i] fifo_datasel fifo axis data select setting
* @param[i/o] remap_dir remapping direction
* @param[i] client_data to transfer sensor place
*
* @return none
*/
static void bma2x2_single_axis_remaping(unsigned char fifo_datasel,
unsigned char *remap_dir, struct bma2x2_data *client_data)
{
signed char place = client_data->pdata->place;
/* sensor with place 0 needs not to be remapped */
if ((place <= 0) || (place >= MAX_AXIS_REMAP_TAB_SZ))
return;
if (fifo_datasel < 1 || fifo_datasel > 3)
return;
switch (fifo_datasel) {
/*P2, P3, P4, P5 X axis(andorid) need to reverse*/
case BMA2X2_FIFO_DAT_SEL_X:
if (-1 == bst_axis_remap_tab_dft[place].sign_x)
*remap_dir = 1;
else
*remap_dir = 0;
break;
/*P1, P2, P5, P6 Y axis(andorid) need to reverse*/
case BMA2X2_FIFO_DAT_SEL_Y:
if (-1 == bst_axis_remap_tab_dft[place].sign_y)
*remap_dir = 1;
else
*remap_dir = 0;
break;
case BMA2X2_FIFO_DAT_SEL_Z:
/*P4, P5, P6, P7 Z axis(andorid) need to reverse*/
if (-1 == bst_axis_remap_tab_dft[place].sign_z)
*remap_dir = 1;
else
*remap_dir = 0;
break;
default:
break;
}
return;
}
static ssize_t bma2x2_fifo_data_out_frame_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int err, i, len;
signed char fifo_data_out[MAX_FIFO_F_LEVEL * MAX_FIFO_F_BYTES] = {0};
unsigned char f_len = 0;
s16 value;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
struct bma2x2acc acc_lsb;
unsigned char axis_dir_remap = 0;
if (bma2x2->fifo_datasel) {
/*Select one axis data output for every fifo frame*/
f_len = 2;
} else {
/*Select X Y Z axis data output for every fifo frame*/
f_len = 6;
}
if (bma2x2->fifo_count == 0)
return -EINVAL;
if (bma_i2c_burst_read(bma2x2->bma2x2_client,
BMA2X2_FIFO_DATA_OUTPUT_REG, fifo_data_out,
bma2x2->fifo_count * f_len) < 0)
return snprintf(buf, PAGE_SIZE, "Read byte block error\n");
err = 0;
/* please give attation for the fifo output data format*/
if (f_len == 6) {
/* Select X Y Z axis data output for every frame */
for (i = 0; i < bma2x2->fifo_count; i++) {
acc_lsb.x =
((unsigned char)fifo_data_out[i * f_len + 1] << 8 |
(unsigned char)fifo_data_out[i * f_len + 0]);
acc_lsb.y =
((unsigned char)fifo_data_out[i * f_len + 3] << 8 |
(unsigned char)fifo_data_out[i * f_len + 2]);
acc_lsb.z =
((unsigned char)fifo_data_out[i * f_len + 5] << 8 |
(unsigned char)fifo_data_out[i * f_len + 4]);
#ifndef BMA2X2_SENSOR_IDENTIFICATION_ENABLE
acc_lsb.x >>=
(16 - bma2x2_sensor_bitwidth[bma2x2->sensor_type]);
acc_lsb.y >>=
(16 - bma2x2_sensor_bitwidth[bma2x2->sensor_type]);
acc_lsb.z >>=
(16 - bma2x2_sensor_bitwidth[bma2x2->sensor_type]);
#endif
bma2x2_remap_sensor_data(&acc_lsb, bma2x2);
len = snprintf(buf, PAGE_SIZE, "%d %d %d ",
acc_lsb.x, acc_lsb.y, acc_lsb.z);
buf += len;
err += len;
}
} else {
/* single axis data output for every frame */
bma2x2_single_axis_remaping(bma2x2->fifo_datasel,
&axis_dir_remap, bma2x2);
for (i = 0; i < bma2x2->fifo_count * f_len / 2; i++) {
value = ((unsigned char)fifo_data_out[2 * i + 1] << 8 |
(unsigned char)fifo_data_out[2 * i]);
#ifndef BMA2X2_SENSOR_IDENTIFICATION_ENABLE
value >>=
(16 - bma2x2_sensor_bitwidth[bma2x2->sensor_type]);
#endif
if (axis_dir_remap)
value = 0 - value;
len = snprintf(buf, PAGE_SIZE, "%d ", value);
buf += len;
err += len;
}
}
return err;
}
static ssize_t bma2x2_offset_x_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_offset_x(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_offset_x_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_offset_x(bma2x2->bma2x2_client, (unsigned
char)data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_offset_y_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_offset_y(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_offset_y_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_offset_y(bma2x2->bma2x2_client, (unsigned
char)data) < 0)
return -EINVAL;
return count;
}
static ssize_t bma2x2_offset_z_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned char data;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
if (bma2x2_get_offset_z(bma2x2->bma2x2_client, &data) < 0)
return snprintf(buf, PAGE_SIZE, "Read error\n");
return snprintf(buf, PAGE_SIZE, "%d\n", data);
}
static ssize_t bma2x2_offset_z_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if (bma2x2_set_offset_z(bma2x2->bma2x2_client, (unsigned
char)data) < 0)
return -EINVAL;
return count;
}
#ifdef CONFIG_SIG_MOTION
static int bma2x2_set_en_slope_int(struct bma2x2_data *bma2x2,
int en)
{
int err;
struct i2c_client *client = bma2x2->bma2x2_client;
if (en) {
/* Set the related parameters which needs to be fine tuned by
* interfaces: slope_threshold and slope_duration
*/
/*dur: 192 samples ~= 3s*/
err = bma2x2_set_slope_duration(client, 0xc0);
err += bma2x2_set_slope_threshold(client, 0x16);
/*Enable the interrupts*/
err += bma2x2_set_Int_Enable(client, 5, 1);/*Slope X*/
err += bma2x2_set_Int_Enable(client, 6, 1);/*Slope Y*/
err += bma2x2_set_Int_Enable(client, 7, 1);/*Slope Z*/
#ifdef BMA2X2_ENABLE_INT1
/* TODO: SLOPE can now only be routed to INT1 pin*/
err += bma2x2_set_int1_pad_sel(client, PAD_SLOP);
#else
/* err += bma2x2_set_int2_pad_sel(client, PAD_SLOP); */
#endif
} else {
err = bma2x2_set_Int_Enable(client, 5, 0);/*Slope X*/
err += bma2x2_set_Int_Enable(client, 6, 0);/*Slope Y*/
err += bma2x2_set_Int_Enable(client, 7, 0);/*Slope Z*/
}
return err;
}
static ssize_t bma2x2_en_sig_motion_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
return snprintf(buf, PAGE_SIZE, "%d\n",
atomic_read(&bma2x2->en_sig_motion));
}
static int bma2x2_set_en_sig_motion(struct bma2x2_data *bma2x2,
int en)
{
int err = 0;
en = (en >= 1) ? 1 : 0; /* set sig motion sensor status */
if (atomic_read(&bma2x2->en_sig_motion) != en) {
if (en) {
err = bma2x2_set_mode(bma2x2->bma2x2_client,
BMA2X2_MODE_NORMAL);
err = bma2x2_set_en_slope_int(bma2x2, en);
enable_irq_wake(bma2x2->IRQ);
} else {
disable_irq_wake(bma2x2->IRQ);
err = bma2x2_set_en_slope_int(bma2x2, en);
err = bma2x2_set_mode(bma2x2->bma2x2_client,
BMA2X2_MODE_SUSPEND);
}
atomic_set(&bma2x2->en_sig_motion, en);
}
return err;
}
static ssize_t bma2x2_en_sig_motion_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if ((data == 0) || (data == 1))
bma2x2_set_en_sig_motion(bma2x2, data);
return count;
}
#endif
#ifdef CONFIG_DOUBLE_TAP
static int bma2x2_set_en_single_tap_int(struct bma2x2_data *bma2x2, int en)
{
int err;
struct i2c_client *client = bma2x2->bma2x2_client;
if (en) {
/* set tap interruption parameter here if needed.
bma2x2_set_tap_duration(client, 0xc0);
bma2x2_set_tap_threshold(client, 0x16);
*/
/*Enable the single tap interrupts*/
err = bma2x2_set_Int_Enable(client, 8, 1);
#ifdef BMA2X2_ENABLE_INT1
err += bma2x2_set_int1_pad_sel(client, PAD_SINGLE_TAP);
#else
err += bma2x2_set_int2_pad_sel(client, PAD_SINGLE_TAP);
#endif
} else {
err = bma2x2_set_Int_Enable(client, 8, 0);
}
return err;
}
static ssize_t bma2x2_tap_time_period_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
return snprintf(buf, PAGE_SIZE, "%d\n", bma2x2->tap_time_period);
}
static ssize_t bma2x2_tap_time_period_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
bma2x2->tap_time_period = data;
return count;
}
static ssize_t bma2x2_en_double_tap_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
return snprintf(buf, PAGE_SIZE, "%d\n",
atomic_read(&bma2x2->en_double_tap));
}
static int bma2x2_set_en_double_tap(struct bma2x2_data *bma2x2,
int en)
{
int err = 0;
en = (en >= 1) ? 1 : 0;
if (atomic_read(&bma2x2->en_double_tap) != en) {
if (en) {
err = bma2x2_set_mode(bma2x2->bma2x2_client,
BMA2X2_MODE_NORMAL);
err = bma2x2_set_en_single_tap_int(bma2x2, en);
} else {
err = bma2x2_set_en_single_tap_int(bma2x2, en);
err = bma2x2_set_mode(bma2x2->bma2x2_client,
BMA2X2_MODE_SUSPEND);
}
atomic_set(&bma2x2->en_double_tap, en);
}
return err;
}
static ssize_t bma2x2_en_double_tap_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long data;
int error;
struct i2c_client *client = to_i2c_client(dev);
struct bma2x2_data *bma2x2 = i2c_get_clientdata(client);
error = kstrtoul(buf, 10, &data);
if (error)
return error;
if ((data == 0) || (data == 1))
bma2x2_set_en_double_tap(bma2x2, data);
return count;
}
static void bma2x2_tap_timeout_handle(unsigned long data)
{
struct bma2x2_data *bma2x2 = (struct bma2x2_data *)data;
dev_dbg(&bma2x2->bma2x2_client->dev,
"tap interrupt handle, timeout\n");
mutex_lock(&bma2x2->tap_mutex);
bma2x2->tap_times = 0;
mutex_unlock(&bma2x2->tap_mutex);
/* if a single tap need to report, open the define */
#ifdef REPORT_SINGLE_TAP_WHEN_DOUBLE_TAP_SENSOR_ENABLED
input_report_rel(bma2x2->dev_interrupt,
SINGLE_TAP_INTERRUPT,
SINGLE_TAP_INTERRUPT_HAPPENED);
input_sync(bma2x2->dev_interrupt);
#endif
}
#endif
static DEVICE_ATTR(range, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_range_show, bma2x2_range_store);
static DEVICE_ATTR(bandwidth, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_bandwidth_show, bma2x2_bandwidth_store);
static DEVICE_ATTR(op_mode, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_mode_show, bma2x2_mode_store);
static DEVICE_ATTR(value, S_IRUSR|S_IRGRP,
bma2x2_value_show, NULL);
static DEVICE_ATTR(value_cache, S_IRUSR|S_IRGRP,
bma2x2_value_cache_show, NULL);
static DEVICE_ATTR(delay, S_IRUSR|S_IRGRP|S_IWUSR|S_IWGRP,
bma2x2_delay_show, bma2x2_delay_store);
static DEVICE_ATTR(enable, S_IRUSR|S_IRGRP|S_IWUSR|S_IWGRP,
bma2x2_enable_show, bma2x2_enable_store);
static DEVICE_ATTR(SleepDur, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_SleepDur_show, bma2x2_SleepDur_store);
static DEVICE_ATTR(fast_calibration_x, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_fast_calibration_x_show,
bma2x2_fast_calibration_x_store);
static DEVICE_ATTR(fast_calibration_y, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_fast_calibration_y_show,
bma2x2_fast_calibration_y_store);
static DEVICE_ATTR(fast_calibration_z, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_fast_calibration_z_show,
bma2x2_fast_calibration_z_store);
static DEVICE_ATTR(fifo_mode, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_fifo_mode_show, bma2x2_fifo_mode_store);
static DEVICE_ATTR(fifo_framecount, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_fifo_framecount_show, bma2x2_fifo_framecount_store);
static DEVICE_ATTR(fifo_trig, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_fifo_trig_show, bma2x2_fifo_trig_store);
static DEVICE_ATTR(fifo_trig_src, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_fifo_trig_src_show, bma2x2_fifo_trig_src_store);
static DEVICE_ATTR(fifo_data_sel, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_fifo_data_sel_show, bma2x2_fifo_data_sel_store);
static DEVICE_ATTR(fifo_data_frame, S_IRUSR|S_IRGRP,
bma2x2_fifo_data_out_frame_show, NULL);
static DEVICE_ATTR(reg, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_register_show, bma2x2_register_store);
static DEVICE_ATTR(chip_id, S_IRUSR|S_IRGRP,
bma2x2_chip_id_show, NULL);
static DEVICE_ATTR(offset_x, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_offset_x_show,
bma2x2_offset_x_store);
static DEVICE_ATTR(offset_y, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_offset_y_show,
bma2x2_offset_y_store);
static DEVICE_ATTR(offset_z, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_offset_z_show,
bma2x2_offset_z_store);
static DEVICE_ATTR(enable_int, S_IWUSR,
NULL, bma2x2_enable_int_store);
static DEVICE_ATTR(int_mode, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_int_mode_show, bma2x2_int_mode_store);
static DEVICE_ATTR(slope_duration, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_slope_duration_show, bma2x2_slope_duration_store);
static DEVICE_ATTR(slope_threshold, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_slope_threshold_show, bma2x2_slope_threshold_store);
static DEVICE_ATTR(slope_no_mot_duration, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_slope_no_mot_duration_show,
bma2x2_slope_no_mot_duration_store);
static DEVICE_ATTR(slope_no_mot_threshold, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_slope_no_mot_threshold_show,
bma2x2_slope_no_mot_threshold_store);
static DEVICE_ATTR(high_g_duration, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_high_g_duration_show, bma2x2_high_g_duration_store);
static DEVICE_ATTR(high_g_threshold, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_high_g_threshold_show, bma2x2_high_g_threshold_store);
static DEVICE_ATTR(low_g_duration, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_low_g_duration_show, bma2x2_low_g_duration_store);
static DEVICE_ATTR(low_g_threshold, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_low_g_threshold_show, bma2x2_low_g_threshold_store);
static DEVICE_ATTR(tap_duration, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_tap_duration_show, bma2x2_tap_duration_store);
static DEVICE_ATTR(tap_threshold, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_tap_threshold_show, bma2x2_tap_threshold_store);
static DEVICE_ATTR(tap_quiet, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_tap_quiet_show, bma2x2_tap_quiet_store);
static DEVICE_ATTR(tap_shock, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_tap_shock_show, bma2x2_tap_shock_store);
static DEVICE_ATTR(tap_samp, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_tap_samp_show, bma2x2_tap_samp_store);
static DEVICE_ATTR(orient_mode, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_orient_mode_show, bma2x2_orient_mode_store);
static DEVICE_ATTR(orient_blocking, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_orient_blocking_show, bma2x2_orient_blocking_store);
static DEVICE_ATTR(orient_hyst, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_orient_hyst_show, bma2x2_orient_hyst_store);
static DEVICE_ATTR(orient_theta, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_orient_theta_show, bma2x2_orient_theta_store);
static DEVICE_ATTR(flat_theta, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_flat_theta_show, bma2x2_flat_theta_store);
static DEVICE_ATTR(flat_hold_time, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_flat_hold_time_show, bma2x2_flat_hold_time_store);
static DEVICE_ATTR(selftest, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_selftest_show, bma2x2_selftest_store);
static DEVICE_ATTR(softreset, S_IWUSR,
NULL, bma2x2_softreset_store);
static DEVICE_ATTR(temperature, S_IRUSR|S_IRGRP,
bma2x2_temperature_show, NULL);
static DEVICE_ATTR(place, S_IRUSR|S_IRGRP,
bma2x2_place_show, NULL);
#ifdef CONFIG_SIG_MOTION
static DEVICE_ATTR(en_sig_motion, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_en_sig_motion_show, bma2x2_en_sig_motion_store);
#endif
#ifdef CONFIG_DOUBLE_TAP
static DEVICE_ATTR(tap_time_period, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_tap_time_period_show, bma2x2_tap_time_period_store);
static DEVICE_ATTR(en_double_tap, S_IRUSR|S_IRGRP|S_IWUSR,
bma2x2_en_double_tap_show, bma2x2_en_double_tap_store);
#endif
static struct attribute *bma2x2_attributes[] = {
&dev_attr_range.attr,
&dev_attr_bandwidth.attr,
&dev_attr_op_mode.attr,
&dev_attr_value.attr,
&dev_attr_value_cache.attr,
&dev_attr_delay.attr,
&dev_attr_enable.attr,
&dev_attr_SleepDur.attr,
&dev_attr_reg.attr,
&dev_attr_fast_calibration_x.attr,
&dev_attr_fast_calibration_y.attr,
&dev_attr_fast_calibration_z.attr,
&dev_attr_fifo_mode.attr,
&dev_attr_fifo_framecount.attr,
&dev_attr_fifo_trig.attr,
&dev_attr_fifo_trig_src.attr,
&dev_attr_fifo_data_sel.attr,
&dev_attr_fifo_data_frame.attr,
&dev_attr_chip_id.attr,
&dev_attr_offset_x.attr,
&dev_attr_offset_y.attr,
&dev_attr_offset_z.attr,
&dev_attr_enable_int.attr,
&dev_attr_int_mode.attr,
&dev_attr_slope_duration.attr,
&dev_attr_slope_threshold.attr,
&dev_attr_slope_no_mot_duration.attr,
&dev_attr_slope_no_mot_threshold.attr,
&dev_attr_high_g_duration.attr,
&dev_attr_high_g_threshold.attr,
&dev_attr_low_g_duration.attr,
&dev_attr_low_g_threshold.attr,
&dev_attr_tap_threshold.attr,
&dev_attr_tap_duration.attr,
&dev_attr_tap_quiet.attr,
&dev_attr_tap_shock.attr,
&dev_attr_tap_samp.attr,
&dev_attr_orient_mode.attr,
&dev_attr_orient_blocking.attr,
&dev_attr_orient_hyst.attr,
&dev_attr_orient_theta.attr,
&dev_attr_flat_theta.attr,
&dev_attr_flat_hold_time.attr,
&dev_attr_selftest.attr,
&dev_attr_softreset.attr,
&dev_attr_temperature.attr,
&dev_attr_place.attr,
#ifdef CONFIG_SIG_MOTION
&dev_attr_en_sig_motion.attr,
#endif
#ifdef CONFIG_DOUBLE_TAP
&dev_attr_en_double_tap.attr,
#endif
NULL
};
static struct attribute_group bma2x2_attribute_group = {
.attrs = bma2x2_attributes
};
#ifdef CONFIG_SIG_MOTION
static struct attribute *bma2x2_sig_motion_attributes[] = {
&dev_attr_slope_duration.attr,
&dev_attr_slope_threshold.attr,
&dev_attr_en_sig_motion.attr,
NULL
};
static struct attribute_group bma2x2_sig_motion_attribute_group = {
.attrs = bma2x2_sig_motion_attributes
};
#endif
#ifdef CONFIG_DOUBLE_TAP
static struct attribute *bma2x2_double_tap_attributes[] = {
&dev_attr_tap_threshold.attr,
&dev_attr_tap_duration.attr,
&dev_attr_tap_quiet.attr,
&dev_attr_tap_shock.attr,
&dev_attr_tap_samp.attr,
&dev_attr_tap_time_period.attr,
&dev_attr_en_double_tap.attr,
NULL
};
static struct attribute_group bma2x2_double_tap_attribute_group = {
.attrs = bma2x2_double_tap_attributes
};
#endif
#if defined(BMA2X2_ENABLE_INT1) || defined(BMA2X2_ENABLE_INT2)
unsigned char *orient[] = {"upward looking portrait upright",
"upward looking portrait upside-down",
"upward looking landscape left",
"upward looking landscape right",
"downward looking portrait upright",
"downward looking portrait upside-down",
"downward looking landscape left",
"downward looking landscape right"};
static void bma2x2_high_g_interrupt_handle(struct bma2x2_data *bma2x2)
{
unsigned char first_value = 0;
unsigned char sign_value = 0;
int i;
for (i = 0; i < 3; i++) {
bma2x2_get_HIGH_first(bma2x2->bma2x2_client, i, &first_value);
if (first_value == 1) {
bma2x2_get_HIGH_sign(bma2x2->bma2x2_client,
&sign_value);
if (sign_value == 1) {
if (i == 0)
input_report_rel(bma2x2->dev_interrupt,
HIGH_G_INTERRUPT,
HIGH_G_INTERRUPT_X_N);
if (i == 1)
input_report_rel(bma2x2->dev_interrupt,
HIGH_G_INTERRUPT,
HIGH_G_INTERRUPT_Y_N);
if (i == 2)
input_report_rel(bma2x2->dev_interrupt,
HIGH_G_INTERRUPT,
HIGH_G_INTERRUPT_Z_N);
} else {
if (i == 0)
input_report_rel(bma2x2->dev_interrupt,
HIGH_G_INTERRUPT,
HIGH_G_INTERRUPT_X);
if (i == 1)
input_report_rel(bma2x2->dev_interrupt,
HIGH_G_INTERRUPT,
HIGH_G_INTERRUPT_Y);
if (i == 2)
input_report_rel(bma2x2->dev_interrupt,
HIGH_G_INTERRUPT,
HIGH_G_INTERRUPT_Z);
}
}
ISR_INFO(&bma2x2->bma2x2_client->dev,
"High G interrupt happened,exis is %d,"
"first is %d,sign is %d\n", i,
first_value, sign_value);
}
}
#ifndef CONFIG_SIG_MOTION
static void bma2x2_slope_interrupt_handle(struct bma2x2_data *bma2x2)
{
unsigned char first_value = 0;
unsigned char sign_value = 0;
int i;
for (i = 0; i < 3; i++) {
bma2x2_get_slope_first(bma2x2->bma2x2_client, i, &first_value);
if (first_value == 1) {
bma2x2_get_slope_sign(bma2x2->bma2x2_client,
&sign_value);
if (sign_value == 1) {
if (i == 0)
input_report_rel(bma2x2->dev_interrupt,
SLOP_INTERRUPT,
SLOPE_INTERRUPT_X_N);
if (i == 1)
input_report_rel(bma2x2->dev_interrupt,
SLOP_INTERRUPT,
SLOPE_INTERRUPT_Y_N);
if (i == 2)
input_report_rel(bma2x2->dev_interrupt,
SLOP_INTERRUPT,
SLOPE_INTERRUPT_Z_N);
} else {
if (i == 0)
input_report_rel(bma2x2->dev_interrupt,
SLOP_INTERRUPT,
SLOPE_INTERRUPT_X);
if (i == 1)
input_report_rel(bma2x2->dev_interrupt,
SLOP_INTERRUPT,
SLOPE_INTERRUPT_Y);
if (i == 2)
input_report_rel(bma2x2->dev_interrupt,
SLOP_INTERRUPT,
SLOPE_INTERRUPT_Z);
}
}
ISR_INFO(&bma2x2->bma2x2_client->dev,
"Slop interrupt happened,exis is %d,"
"first is %d,sign is %d\n", i,
first_value, sign_value);
}
}
#endif
#ifdef CONFIG_BMA_ENABLE_NEWDATA_INT
static void bma2x2_read_new_data(struct bma2x2_data *bma2x2)
{
struct bma2x2acc value;
bma2x2_report_axis_data(bma2x2, &value);
mutex_lock(&bma2x2->value_mutex);
bma2x2->value = value;
mutex_unlock(&bma2x2->value_mutex);
return;
}
static int bma2x2_data_ready_handle(struct bma2x2_data *bma2x2)
{
int ret;
unsigned char status = 0;
ret = bma2x2_get_interruptstatus2(bma2x2->bma2x2_client, &status);
if (ret) {
dev_err(&bma2x2->bma2x2_client->dev,
"read interrupt status2 err, err=%d\n", ret);
return -EIO;
}
if ((status & 0x80) == 0x80) {
bma2x2_read_new_data(bma2x2);
return 0;
}
if (status != 0) {
dev_dbg(&bma2x2->bma2x2_client->dev,
"Interrupt flag is detected, state2 =0x%x\n",
status);
return -EAGAIN;
}
/* Check if any other interrupt is triggered. */
ret = bma2x2_get_interruptstatus1(bma2x2->bma2x2_client,
&status);
if (ret) {
dev_err(&bma2x2->bma2x2_client->dev,
"read interrupt status1 err, err=%d\n", ret);
return -EIO;
}
/*
* Read new data if no other interrupt is triggered.
* BMA2x2 data ready flag will be cleared if new data acquisition
* is started, sometimes we cannot get that flag.
*/
if (status == 0) {
bma2x2_read_new_data(bma2x2);
return 0;
}
dev_dbg(&bma2x2->bma2x2_client->dev,
"Data ready int is not detected, state1 =0x%x\n", status);
return -EAGAIN;
}
#else
static int bma2x2_data_ready_handle(struct bma2x2_data *bma2x2)
{
return -EAGAIN;
}
#endif
static void bma2x2_irq_work_func(struct work_struct *work)
{
struct bma2x2_data *bma2x2 = container_of((struct work_struct *)work,
struct bma2x2_data, irq_work);
#ifdef CONFIG_DOUBLE_TAP
struct i2c_client *client = bma2x2->bma2x2_client;
#endif
unsigned char status = 0;
unsigned char first_value = 0;
unsigned char sign_value = 0;
if (bma2x2_data_ready_handle(bma2x2) != -EAGAIN)
return;
bma2x2_get_interruptstatus1(bma2x2->bma2x2_client, &status);
ISR_INFO(&bma2x2->bma2x2_client->dev,
"bma2x2_irq_work_func, status = 0x%x, ret=%d\n", status);
#ifdef CONFIG_SIG_MOTION
if (status & 0x04) {
if (atomic_read(&bma2x2->en_sig_motion) == 1) {
ISR_INFO(&bma2x2->bma2x2_client->dev,
"Significant motion interrupt happened\n");
/* close sig sensor,
it will be open again if APP wants */
bma2x2_set_en_sig_motion(bma2x2, 0);
input_report_rel(bma2x2->dev_interrupt,
SLOP_INTERRUPT, 1);
input_sync(bma2x2->dev_interrupt);
}
}
#endif
#ifdef CONFIG_DOUBLE_TAP
if (status & 0x20) {
if (atomic_read(&bma2x2->en_double_tap) == 1) {
ISR_INFO(&bma2x2->bma2x2_client->dev,
"single tap interrupt happened\n");
bma2x2_set_Int_Enable(client, 8, 0);
if (bma2x2->tap_times == 0) {
mod_timer(&bma2x2->tap_timer, jiffies +
msecs_to_jiffies(bma2x2->tap_time_period));
bma2x2->tap_times = 1;
} else {
/* only double tap is judged */
ISR_INFO(&bma2x2->bma2x2_client->dev,
"double tap\n");
mutex_lock(&bma2x2->tap_mutex);
bma2x2->tap_times = 0;
del_timer(&bma2x2->tap_timer);
mutex_unlock(&bma2x2->tap_mutex);
input_report_rel(bma2x2->dev_interrupt,
DOUBLE_TAP_INTERRUPT,
DOUBLE_TAP_INTERRUPT_HAPPENED);
input_sync(bma2x2->dev_interrupt);
}
bma2x2_set_Int_Enable(client, 8, 1);
}
}
#endif
switch (status) {
case 0x01:
ISR_INFO(&bma2x2->bma2x2_client->dev,
"Low G interrupt happened\n");
input_report_rel(bma2x2->dev_interrupt, LOW_G_INTERRUPT,
LOW_G_INTERRUPT_HAPPENED);
break;
case 0x02:
bma2x2_high_g_interrupt_handle(bma2x2);
break;
#ifndef CONFIG_SIG_MOTION
case 0x04:
bma2x2_slope_interrupt_handle(bma2x2);
break;
#endif
case 0x08:
ISR_INFO(&bma2x2->bma2x2_client->dev,
"slow/ no motion interrupt happened\n");
input_report_rel(bma2x2->dev_interrupt,
SLOW_NO_MOTION_INTERRUPT,
SLOW_NO_MOTION_INTERRUPT_HAPPENED);
break;
#ifndef CONFIG_DOUBLE_TAP
case 0x10:
ISR_INFO(&bma2x2->bma2x2_client->dev,
"double tap interrupt happened\n");
input_report_rel(bma2x2->dev_interrupt,
DOUBLE_TAP_INTERRUPT,
DOUBLE_TAP_INTERRUPT_HAPPENED);
break;
case 0x20:
ISR_INFO(&bma2x2->bma2x2_client->dev,
"single tap interrupt happened\n");
input_report_rel(bma2x2->dev_interrupt,
SINGLE_TAP_INTERRUPT,
SINGLE_TAP_INTERRUPT_HAPPENED);
break;
#endif
case 0x40:
bma2x2_get_orient_status(bma2x2->bma2x2_client,
&first_value);
ISR_INFO(&bma2x2->bma2x2_client->dev,
"orient interrupt happened,%s\n",
orient[first_value]);
if (first_value == 0)
input_report_abs(bma2x2->dev_interrupt,
ORIENT_INTERRUPT,
UPWARD_PORTRAIT_UP_INTERRUPT_HAPPENED);
else if (first_value == 1)
input_report_abs(bma2x2->dev_interrupt,
ORIENT_INTERRUPT,
UPWARD_PORTRAIT_DOWN_INTERRUPT_HAPPENED);
else if (first_value == 2)
input_report_abs(bma2x2->dev_interrupt,
ORIENT_INTERRUPT,
UPWARD_LANDSCAPE_LEFT_INTERRUPT_HAPPENED);
else if (first_value == 3)
input_report_abs(bma2x2->dev_interrupt,
ORIENT_INTERRUPT,
UPWARD_LANDSCAPE_RIGHT_INTERRUPT_HAPPENED);
else if (first_value == 4)
input_report_abs(bma2x2->dev_interrupt,
ORIENT_INTERRUPT,
DOWNWARD_PORTRAIT_UP_INTERRUPT_HAPPENED);
else if (first_value == 5)
input_report_abs(bma2x2->dev_interrupt,
ORIENT_INTERRUPT,
DOWNWARD_PORTRAIT_DOWN_INTERRUPT_HAPPENED);
else if (first_value == 6)
input_report_abs(bma2x2->dev_interrupt,
ORIENT_INTERRUPT,
DOWNWARD_LANDSCAPE_LEFT_INTERRUPT_HAPPENED);
else if (first_value == 7)
input_report_abs(bma2x2->dev_interrupt,
ORIENT_INTERRUPT,
DOWNWARD_LANDSCAPE_RIGHT_INTERRUPT_HAPPENED);
break;
case 0x80:
bma2x2_get_orient_flat_status(bma2x2->bma2x2_client,
&sign_value);
ISR_INFO(&bma2x2->bma2x2_client->dev,
"flat interrupt happened,flat status is %d\n",
sign_value);
if (sign_value == 1) {
input_report_abs(bma2x2->dev_interrupt,
FLAT_INTERRUPT,
FLAT_INTERRUPT_TURE_HAPPENED);
} else {
input_report_abs(bma2x2->dev_interrupt,
FLAT_INTERRUPT,
FLAT_INTERRUPT_FALSE_HAPPENED);
}
break;
default:
break;
}
}
static irqreturn_t bma2x2_irq_handler(int irq, void *handle)
{
struct bma2x2_data *data = handle;
if (data == NULL)
return IRQ_HANDLED;
if (data->bma2x2_client == NULL)
return IRQ_HANDLED;
queue_work(data->data_wq, &data->irq_work);
return IRQ_HANDLED;
}
#else
static void bma2x2_irq_work_func(struct work_struct *work)
{
struct bma2x2_data *bma2x2 = container_of((struct work_struct *)work,
struct bma2x2_data, irq_work);
dev_dbg(&bma2x2->bma2x2_client->dev,
"Interrupt feature is not enabled!\n");
return;
}
static irqreturn_t bma2x2_irq_handler(int irq, void *handle)
{
struct bma2x2_data *bma2x2 = handle;
dev_dbg(&bma2x2->bma2x2_client->dev,
"Interrupt feature is not enabled!\n");
return IRQ_HANDLED;
}
#endif /* defined(BMA2X2_ENABLE_INT1)||defined(BMA2X2_ENABLE_INT2) */
static int bma2x2_power_ctl(struct bma2x2_data *data, bool on)
{
int ret = 0;
int err = 0;
if (!on && data->power_enabled) {
ret = regulator_disable(data->vdd);
if (ret) {
dev_err(&data->bma2x2_client->dev,
"Regulator vdd disable failed ret=%d\n", ret);
return ret;
}
ret = regulator_disable(data->vio);
if (ret) {
dev_err(&data->bma2x2_client->dev,
"Regulator vio disable failed ret=%d\n", ret);
err = regulator_enable(data->vdd);
return ret;
}
data->power_enabled = on;
} else if (on && !data->power_enabled) {
ret = regulator_enable(data->vdd);
if (ret) {
dev_err(&data->bma2x2_client->dev,
"Regulator vdd enable failed ret=%d\n", ret);
return ret;
}
ret = regulator_enable(data->vio);
if (ret) {
dev_err(&data->bma2x2_client->dev,
"Regulator vio enable failed ret=%d\n", ret);
err = regulator_disable(data->vdd);
return ret;
}
data->power_enabled = on;
} else {
dev_info(&data->bma2x2_client->dev,
"Power on=%d. enabled=%d\n",
on, data->power_enabled);
}
return ret;
}
static int bma2x2_power_init(struct bma2x2_data *data)
{
int ret;
data->vdd = regulator_get(&data->bma2x2_client->dev, "vdd");
if (IS_ERR(data->vdd)) {
ret = PTR_ERR(data->vdd);
dev_err(&data->bma2x2_client->dev,
"Regulator get failed vdd ret=%d\n", ret);
return ret;
}
if (regulator_count_voltages(data->vdd) > 0) {
ret = regulator_set_voltage(data->vdd,
BMA2x2_VDD_MIN_UV,
BMA2x2_VDD_MAX_UV);
if (ret) {
dev_err(&data->bma2x2_client->dev,
"Regulator set failed vdd ret=%d\n",
ret);
goto reg_vdd_put;
}
}
data->vio = regulator_get(&data->bma2x2_client->dev, "vio");
if (IS_ERR(data->vio)) {
ret = PTR_ERR(data->vio);
dev_err(&data->bma2x2_client->dev,
"Regulator get failed vio ret=%d\n", ret);
goto reg_vdd_set;
}
if (regulator_count_voltages(data->vio) > 0) {
ret = regulator_set_voltage(data->vio,
BMA2x2_VIO_MIN_UV,
BMA2x2_VIO_MAX_UV);
if (ret) {
dev_err(&data->bma2x2_client->dev,
"Regulator set failed vio ret=%d\n", ret);
goto reg_vio_put;
}
}
return 0;
reg_vio_put:
regulator_put(data->vio);
reg_vdd_set:
if (regulator_count_voltages(data->vdd) > 0)
regulator_set_voltage(data->vdd, 0, BMA2x2_VDD_MAX_UV);
reg_vdd_put:
regulator_put(data->vdd);
return ret;
}
static int bma2x2_power_deinit(struct bma2x2_data *data)
{
if (regulator_count_voltages(data->vdd) > 0)
regulator_set_voltage(data->vdd,
0, BMA2x2_VDD_MAX_UV);
regulator_put(data->vdd);
if (regulator_count_voltages(data->vio) > 0)
regulator_set_voltage(data->vio,
0, BMA2x2_VIO_MAX_UV);
regulator_put(data->vio);
return 0;
}
#ifdef CONFIG_OF
static int bma2x2_parse_dt(struct device *dev,
struct bma2x2_platform_data *pdata)
{
struct device_node *np = dev->of_node;
u32 temp_val;
int rc;
rc = of_property_read_u32(np, "bosch,init-interval", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read init-interval\n");
return rc;
} else {
pdata->poll_interval = temp_val;
}
rc = of_property_read_u32(np, "bosch,place", &temp_val);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read sensor place paramater\n");
return rc;
}
if (temp_val > 7 || temp_val < 0) {
dev_err(dev, "Invalid place parameter, use default value 0\n");
pdata->place = 0;
} else {
pdata->place = temp_val;
}
pdata->int_en = of_property_read_bool(np, "bosch,use-interrupt");
pdata->use_int2 = of_property_read_bool(np, "bosch,use-int2");
pdata->gpio_int1 = of_get_named_gpio_flags(dev->of_node,
"bosch,gpio-int1", 0, &pdata->int1_flag);
pdata->gpio_int2 = of_get_named_gpio_flags(dev->of_node,
"bosch,gpio-int2", 0, &pdata->int2_flag);
return 0;
}
#else
static int bma2x2_parse_dt(struct device *dev,
struct bma2x2_platform_data *pdata)
{
return -EINVAL;
}
#endif
#ifdef CONFIG_DOUBLE_TAP
static void bma2x2_double_tap_disable(struct bma2x2_data *data)
{
if (data->g_sensor_dev_doubletap) {
sysfs_remove_group(&data->g_sensor_dev_doubletap->kobj,
&bma2x2_double_tap_attribute_group);
device_destroy(data->g_sensor_dev_doubletap);
class_destroy(data->g_sensor_class_doubletap);
}
return;
}
#else
static void bma2x2_double_tap_disable(struct bma2x2_data *data)
{
return;
}
#endif
#ifdef CONFIG_SIG_MOTION
static void bma2x2_sig_motion_disable(struct bma2x2_data *data)
{
if (data->g_sensor_dev) {
sysfs_remove_group(&data->g_sensor_dev->kobj,
&bma2x2_sig_motion_attribute_group);
device_destroy(data->g_sensor_dev);
class_destroy(data->g_sensor_class);
}
return;
}
#else
static void bma2x2_sig_motion_disable(struct bma2x2_data *data)
{
return;
}
#endif
static int bma2x2_open_init(struct i2c_client *client,
struct bma2x2_data *data)
{
int err;
err = bma2x2_set_bandwidth(client, data->bandwidth);
if (err < 0) {
dev_err(&client->dev, "init bandwidth error\n");
return err;
}
err = bma2x2_set_range(client, data->range);
if (err < 0) {
dev_err(&client->dev, "init bandwidth error\n");
return err;
}
return 0;
}
static int bma2x2_get_interrupt_gpio(const struct bma2x2_data *data,
const unsigned int gpio)
{
struct i2c_client *client = data->bma2x2_client;
int err;
if (!gpio_is_valid(gpio)) {
dev_err(&client->dev,
"gpio(%d) is invalid,\n", gpio);
return -EINVAL;
}
err = gpio_request(gpio, "bma2x2_gpio_int");
if (err) {
dev_err(&client->dev,
"Unable to request gpio %d, err=%d\n",
gpio, err);
return err;
}
err = gpio_direction_input(gpio);
if (err) {
dev_err(&client->dev,
"Unable to set gpio direction %d, err=%d\n",
gpio, err);
gpio_free(gpio);
return err;
}
client->irq = gpio_to_irq(gpio);
dev_dbg(&client->dev, "Interrupt gpio=%d, irq=%d\n", gpio, client->irq);
return 0;
}
static int bma2x2_pinctrl_init(struct bma2x2_data *data)
{
struct i2c_client *client = data->bma2x2_client;
struct bma2x2_pinctrl_data *pctrl_data;
struct pinctrl *pctrl;
int ret = 0;
pctrl = devm_pinctrl_get(&client->dev);
if (IS_ERR_OR_NULL(pctrl)) {
ret = PTR_ERR(pctrl);
dev_err(&client->dev,
"Failed to get pin pinctrl, err:%d\n", ret);
goto exit;
}
pctrl_data = devm_kzalloc(&client->dev,
sizeof(*pctrl_data), GFP_KERNEL);
if (!pctrl_data) {
dev_err(&client->dev, "No memory for pinctrl data\n");
ret = -ENOMEM;
goto exit;
}
pctrl_data->pctrl = pctrl;
pctrl_data->pins_default = pinctrl_lookup_state(pctrl, "default");
if (IS_ERR_OR_NULL(pctrl_data->pins_default)) {
ret = PTR_ERR(pctrl_data->pins_default);
dev_err(&client->dev,
"Could not get default pinstate, err:%d\n", ret);
goto exit;
}
/* "sleep" state is optional to compatible with old config */
pctrl_data->pins_sleep = pinctrl_lookup_state(pctrl, "sleep");
if (IS_ERR_OR_NULL(pctrl_data->pins_sleep)) {
dev_info(&client->dev,
"Could not get sleep pinstate, err:%ld\n",
PTR_ERR(pctrl_data->pins_sleep));
pctrl_data->pins_sleep = NULL;
}
data->pctrl_data = pctrl_data;
exit:
return ret;
}
static void bma2x2_pinctrl_state(struct bma2x2_data *data,
bool active)
{
struct device dev = data->bma2x2_client->dev;
int ret;
if (!data->pctrl_data)
return;
if (active) {
ret = pinctrl_select_state(data->pctrl_data->pctrl,
data->pctrl_data->pins_default);
if (ret)
dev_info(&dev,
"Select default pinstate err:%d\n", ret);
} else {
if (!data->pctrl_data->pins_sleep) {
dev_dbg(&dev, "Pinstate 'sleep' is not defined\n");
} else {
ret = pinctrl_select_state(data->pctrl_data->pctrl,
data->pctrl_data->pins_sleep);
if (ret)
dev_info(&dev, "Select sleep pinstate err:%d\n",
ret);
}
}
dev_dbg(&dev, "Select pinctrl state=%d\n", active);
}
static int bma2x2_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int err = 0;
struct bma2x2_data *data;
struct input_dev *dev;
struct bst_dev *dev_acc;
struct bma2x2_platform_data *pdata;
struct input_dev *dev_interrupt;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "i2c_check_functionality error\n");
err = -EPERM;
goto exit;
}
data = kzalloc(sizeof(struct bma2x2_data), GFP_KERNEL);
if (!data) {
err = -ENOMEM;
goto exit;
}
if (client->dev.of_node) {
pdata = devm_kzalloc(&client->dev,
sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_err(&client->dev, "Failed to allcated memory\n");
err = -ENOMEM;
goto kfree_exit;
}
err = bma2x2_parse_dt(&client->dev, pdata);
if (err) {
dev_err(&client->dev, "Failed to parse device tree\n");
err = -EINVAL;
goto pdata_free_exit;
}
} else {
pdata = client->dev.platform_data;
dev_err(&client->dev, "Use platform data\n");
}
if (!pdata) {
dev_err(&client->dev, "Cannot get device platform data\n");
err = -EINVAL;
goto kfree_exit;
}
data->pdata = pdata;
i2c_set_clientdata(client, data);
data->bma2x2_client = client;
err = bma2x2_power_init(data);
if (err) {
dev_err(&client->dev, "Failed to get sensor regulators\n");
err = -EINVAL;
goto free_i2c_clientdata_exit;
}
err = bma2x2_power_ctl(data, true);
if (err) {
dev_err(&client->dev, "Failed to enable sensor power\n");
err = -EINVAL;
goto deinit_power_exit;
}
RESET_DELAY();
if (bma2x2_soft_reset(client) < 0) {
dev_err(&client->dev,
"i2c bus write error, pls check HW connection\n");
err = -EINVAL;
goto disable_power_exit;
}
RESET_DELAY();
/* read and check chip id */
if (bma2x2_check_chip_id(client, data) < 0) {
err = -EINVAL;
goto disable_power_exit;
}
mutex_init(&data->value_mutex);
mutex_init(&data->mode_mutex);
mutex_init(&data->enable_mutex);
data->bandwidth = BMA2X2_BW_SET;
data->range = BMA2X2_RANGE_SET;
data->sensitivity = bosch_sensor_range_map[0];
err = bma2x2_open_init(client, data);
if (err < 0) {
err = -EINVAL;
goto disable_power_exit;
}
err = bma2x2_pinctrl_init(data);
if (err) {
dev_err(&client->dev,
"Failed to init pinctrl err=%d\n", err);
err = -EINVAL;
goto disable_power_exit;
}
if (pdata->int_en) {
/* check interrupt feature enable state */
if ((pdata->use_int2 && (!BMA2x2_IS_INT2_ENABLED())) ||
(!pdata->use_int2 && (!BMA2x2_IS_INT1_ENABLED()))) {
dev_err(&client->dev,
"Interrupt support is not enabled, int1=%d, int2=%d use_int2=%d\n",
BMA2x2_IS_INT1_ENABLED(),
BMA2x2_IS_INT2_ENABLED(),
pdata->use_int2);
err = -EINVAL;
goto disable_power_exit;
}
if (pdata->use_int2) {
data->int_flag = pdata->int2_flag;
err = bma2x2_get_interrupt_gpio(data,
pdata->gpio_int2);
} else {
data->int_flag = pdata->int1_flag;
err = bma2x2_get_interrupt_gpio(data,
pdata->gpio_int1);
}
if (err) {
dev_err(&client->dev,
"Failed to get interrupt gpio, err=%d\n",
err);
err = -EINVAL;
goto set_pinctrl_sleep;
}
data->IRQ = client->irq;
if (!data->int_flag)
data->int_flag = IRQF_TRIGGER_FALLING | IRQF_ONESHOT;
dev_dbg(&client->dev, "IRQ=%d, use_int2=%d, int_flag=0x%x\n",
data->IRQ, pdata->use_int2, data->int_flag);
err = request_irq(data->IRQ, bma2x2_irq_handler,
data->int_flag, "bma2x2", data);
if (err) {
dev_err(&client->dev, "Could not request irq\n");
goto free_interrupt_gpio;
}
disable_irq(data->IRQ);
INIT_WORK(&data->irq_work, bma2x2_irq_work_func);
} else {
INIT_DELAYED_WORK(&data->work, bma2x2_work_func);
}
data->data_wq = create_freezable_workqueue("bma2x2_data_work");
if (!data->data_wq) {
dev_err(&client->dev, "Cannot get create workqueue!\n");
goto free_irq_exit;
}
atomic_set(&data->delay, POLL_DEFAULT_INTERVAL_MS);
atomic_set(&data->enable, 0);
dev = devm_input_allocate_device(&client->dev);
if (!dev) {
dev_err(&client->dev,
"Cannot allocate input device\n");
err = -ENOMEM;
goto destroy_workqueue_exit;
}
dev_interrupt = devm_input_allocate_device(&client->dev);
if (!dev_interrupt) {
dev_err(&client->dev,
"Cannot allocate input interrupt device\n");
err = -ENOMEM;
goto destroy_workqueue_exit;
}
/* only value events reported */
dev->name = SENSOR_NAME;
dev->id.bustype = BUS_I2C;
input_set_capability(dev, EV_ABS, ABS_MISC);
input_set_abs_params(dev, ABS_X, ABSMIN, ABSMAX, 0, 0);
input_set_abs_params(dev, ABS_Y, ABSMIN, ABSMAX, 0, 0);
input_set_abs_params(dev, ABS_Z, ABSMIN, ABSMAX, 0, 0);
input_set_drvdata(dev, data);
err = input_register_device(dev);
if (err < 0) {
dev_err(&client->dev,
"Cannot register input device\n");
goto free_irq_exit;
}
/* all interrupt generated events are moved to interrupt input devices*/
dev_interrupt->name = "bma_interrupt";
dev_interrupt->id.bustype = BUS_I2C;
input_set_capability(dev_interrupt, EV_REL,
SLOW_NO_MOTION_INTERRUPT);
input_set_capability(dev_interrupt, EV_REL,
LOW_G_INTERRUPT);
input_set_capability(dev_interrupt, EV_REL,
HIGH_G_INTERRUPT);
input_set_capability(dev_interrupt, EV_REL,
SLOP_INTERRUPT);
input_set_capability(dev_interrupt, EV_REL,
DOUBLE_TAP_INTERRUPT);
input_set_capability(dev_interrupt, EV_REL,
SINGLE_TAP_INTERRUPT);
input_set_capability(dev_interrupt, EV_ABS,
ORIENT_INTERRUPT);
input_set_capability(dev_interrupt, EV_ABS,
FLAT_INTERRUPT);
input_set_drvdata(dev_interrupt, data);
err = input_register_device(dev_interrupt);
if (err < 0) {
dev_err(&client->dev,
"Cannot register input interrupt device\n");
goto free_irq_exit;
}
data->dev_interrupt = dev_interrupt;
data->input = dev;
#ifdef CONFIG_SIG_MOTION
data->g_sensor_class = class_create(THIS_MODULE, "sig_sensor");
if (IS_ERR(data->g_sensor_class)) {
err = PTR_ERR(data->g_sensor_class);
data->g_sensor_class = NULL;
dev_err(&client->dev, "could not allocate g_sensor_class\n");
goto free_irq_exit;
}
data->g_sensor_dev = device_create(data->g_sensor_class,
NULL, 0, "%s", "g_sensor");
if (unlikely(IS_ERR(data->g_sensor_dev))) {
err = PTR_ERR(data->g_sensor_dev);
data->g_sensor_dev = NULL;
dev_err(&client->dev, "could not allocate g_sensor_dev\n");
goto destroy_g_sensor_class_exit;
}
dev_set_drvdata(data->g_sensor_dev, data);
err = sysfs_create_group(&data->g_sensor_dev->kobj,
&bma2x2_sig_motion_attribute_group);
if (err < 0) {
dev_err(&client->dev,
"could not create sysfs for sig motion sensor\n");
goto free_g_sensor_dev_exit;
}
#endif
#ifdef CONFIG_DOUBLE_TAP
data->g_sensor_class_doubletap =
class_create(THIS_MODULE, "dtap_sensor");
if (IS_ERR(data->g_sensor_class_doubletap)) {
err = PTR_ERR(data->g_sensor_class_doubletap);
data->g_sensor_class_doubletap = NULL;
dev_err(&client->dev, "could not allocate g_sensor_class_doubletap\n");
goto remove_sig_motion_sysfs_exit;
}
data->g_sensor_dev_doubletap = device_create(
data->g_sensor_class_doubletap,
NULL, 0, "%s", "g_sensor");
if (unlikely(IS_ERR(data->g_sensor_dev_doubletap))) {
err = PTR_ERR(data->g_sensor_dev_doubletap);
data->g_sensor_dev_doubletap = NULL;
dev_err(&client->dev, "could not allocate g_sensor_dev_doubletap\n");
goto destroy_dtap_class_exit;
}
dev_set_drvdata(data->g_sensor_dev_doubletap, data);
err = sysfs_create_group(&data->g_sensor_dev_doubletap->kobj,
&bma2x2_double_tap_attribute_group);
if (err < 0) {
dev_err(&client->dev,
"could not create sysfs for double tap sensor\n");
goto destroy_dtap_dev_exit;
}
#endif
err = sysfs_create_group(&data->input->dev.kobj,
&bma2x2_attribute_group);
if (err < 0) {
dev_err(&client->dev,
"Cannot create sysfs for bma2x2\n");
goto remove_dtap_sysfs_exit;
}
dev_acc = bst_allocate_device();
if (!dev_acc) {
dev_err(&client->dev,
"Cannot allocate bst device\n");
err = -ENOMEM;
goto remove_bma2x2_sysfs_exit;
}
dev_acc->name = ACC_NAME;
bst_set_drvdata(dev_acc, data);
err = bst_register_device(dev_acc);
if (err < 0) {
dev_err(&client->dev,
"Cannot register bst device\n");
goto bst_free_acc_exit;
}
data->bst_acc = dev_acc;
err = sysfs_create_group(&data->bst_acc->dev.kobj,
&bma2x2_attribute_group);
if (err < 0) {
dev_err(&client->dev,
"Cannot create sysfs for bst_acc.\n");
goto bst_free_exit;
}
#ifdef CONFIG_HAS_EARLYSUSPEND
data->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1;
data->early_suspend.suspend = bma2x2_early_suspend;
data->early_suspend.resume = bma2x2_late_resume;
register_early_suspend(&data->early_suspend);
#endif
data->ref_count = 0;
data->fifo_datasel = 0;
data->fifo_count = 0;
#ifdef CONFIG_SIG_MOTION
atomic_set(&data->en_sig_motion, 0);
#endif
#ifdef CONFIG_DOUBLE_TAP
atomic_set(&data->en_double_tap, 0);
data->tap_times = 0;
data->tap_time_period = DEFAULT_TAP_JUDGE_PERIOD;
mutex_init(&data->tap_mutex);
setup_timer(&data->tap_timer, bma2x2_tap_timeout_handle,
(unsigned long)data);
#endif
data->cdev = sensors_cdev;
data->cdev.min_delay = POLL_INTERVAL_MIN_MS * 1000;
data->cdev.delay_msec = pdata->poll_interval;
data->cdev.sensors_enable = bma2x2_cdev_enable;
data->cdev.sensors_poll_delay = bma2x2_cdev_poll_delay;
data->cdev.sensors_self_test = bma2x2_self_calibration_xyz;
data->cdev.resolution = sensor_type_map[data->chip_type].resolution;
if (pdata->int_en)
data->cdev.max_delay = BMA_INT_MAX_DELAY;
err = sensors_classdev_register(&client->dev, &data->cdev);
if (err) {
dev_err(&client->dev, "create class device file failed!\n");
err = -EINVAL;
goto remove_bst_acc_sysfs_exit;
}
dev_notice(&client->dev, "BMA2x2 driver probe successfully");
bma2x2_pinctrl_state(data, false);
bma2x2_power_ctl(data, false);
return 0;
remove_bst_acc_sysfs_exit:
sysfs_remove_group(&data->bst_acc->dev.kobj,
&bma2x2_attribute_group);
bst_free_exit:
bst_unregister_device(dev_acc);
bst_free_acc_exit:
bst_free_device(dev_acc);
remove_bma2x2_sysfs_exit:
sysfs_remove_group(&data->input->dev.kobj,
&bma2x2_attribute_group);
remove_dtap_sysfs_exit:
#ifdef CONFIG_DOUBLE_TAP
sysfs_remove_group(&data->g_sensor_dev_doubletap->kobj,
&bma2x2_double_tap_attribute_group);
destroy_dtap_dev_exit:
device_destroy(data->g_sensor_dev_doubletap);
destroy_dtap_class_exit:
class_destroy(data->g_sensor_class_doubletap);
remove_sig_motion_sysfs_exit:
#endif
#ifdef CONFIG_SIG_MOTION
sysfs_remove_group(&data->g_sensor_dev->kobj,
&bma2x2_sig_motion_attribute_group);
free_g_sensor_dev_exit:
device_destroy(data->g_sensor_dev);
destroy_g_sensor_class_exit:
class_destroy(data->g_sensor_class);
#endif
destroy_workqueue_exit:
destroy_workqueue(data->data_wq);
free_irq_exit:
free_interrupt_gpio:
if (pdata->int_en) {
if (pdata->use_int2)
gpio_free(pdata->gpio_int2);
else
gpio_free(pdata->gpio_int1);
}
set_pinctrl_sleep:
if (pdata->int_en)
bma2x2_pinctrl_state(data, false);
disable_power_exit:
bma2x2_power_ctl(data, false);
deinit_power_exit:
bma2x2_power_deinit(data);
free_i2c_clientdata_exit:
i2c_set_clientdata(client, NULL);
pdata_free_exit:
if (pdata && (client->dev.of_node))
devm_kfree(&client->dev, pdata);
data->pdata = NULL;
kfree_exit:
kfree(data);
exit:
return err;
}
#ifdef CONFIG_HAS_EARLYSUSPEND
static void bma2x2_early_suspend(struct early_suspend *h)
{
struct bma2x2_data *data =
container_of(h, struct bma2x2_data, early_suspend);
mutex_lock(&data->enable_mutex);
if (atomic_read(&data->enable) == 1) {
bma2x2_set_mode(data->bma2x2_client, BMA2X2_MODE_SUSPEND);
if (!data->pdata->int_en)
cancel_delayed_work_sync(&data->work);
}
mutex_unlock(&data->enable_mutex);
}
static void bma2x2_late_resume(struct early_suspend *h)
{
struct bma2x2_data *data =
container_of(h, struct bma2x2_data, early_suspend);
mutex_lock(&data->enable_mutex);
if (atomic_read(&data->enable) == 1) {
bma2x2_set_mode(data->bma2x2_client, BMA2X2_MODE_NORMAL);
if (!data->pdata->int_en)
queue_delayed_work(data->data_wq,
&data->work,
msecs_to_jiffies(atomic_read(&data->delay)));
}
mutex_unlock(&data->enable_mutex);
}
#endif
static int bma2x2_remove(struct i2c_client *client)
{
struct bma2x2_data *data = i2c_get_clientdata(client);
sensors_classdev_unregister(&data->cdev);
#ifdef CONFIG_HAS_EARLYSUSPEND
unregister_early_suspend(&data->early_suspend);
#endif
if (data->bst_acc) {
bst_unregister_device(data->bst_acc);
bst_free_device(data->bst_acc);
}
bma2x2_double_tap_disable(data);
bma2x2_sig_motion_disable(data);
if (data->input)
sysfs_remove_group(&data->input->dev.kobj,
&bma2x2_attribute_group);
destroy_workqueue(data->data_wq);
bma2x2_set_enable(&client->dev, 0);
bma2x2_power_deinit(data);
i2c_set_clientdata(client, NULL);
if (data->pdata && (client->dev.of_node))
devm_kfree(&client->dev, data->pdata);
data->pdata = NULL;
kfree(data);
return 0;
}
void bma2x2_shutdown(struct i2c_client *client)
{
struct bma2x2_data *data = i2c_get_clientdata(client);
mutex_lock(&data->enable_mutex);
bma2x2_set_mode(data->bma2x2_client, BMA2X2_MODE_DEEP_SUSPEND);
mutex_unlock(&data->enable_mutex);
}
static int bma2x2_store_state(struct i2c_client *client,
struct bma2x2_data *data)
{
int err;
err = bma2x2_get_bandwidth(client, &(data->bandwidth));
if (err < 0) {
dev_err(&client->dev, "get state bandwidth failed\n");
return err;
}
err = bma2x2_get_range(client, &(data->range));
if (err < 0) {
dev_err(&client->dev, "get state range failed\n");
return err;
}
return err;
}
#ifdef CONFIG_PM
static int bma2x2_suspend(struct i2c_client *client, pm_message_t mesg)
{
struct bma2x2_data *data = i2c_get_clientdata(client);
data->suspend_state.powerEn = bma2x2_is_power_enabled(data);
bma2x2_set_enable(&client->dev, 0);
return 0;
}
static int bma2x2_resume(struct i2c_client *client)
{
struct bma2x2_data *data = i2c_get_clientdata(client);
if (data->suspend_state.powerEn)
bma2x2_set_enable(&client->dev, 1);
return 0;
}
#else
#define bma2x2_suspend NULL
#define bma2x2_resume NULL
#endif /* CONFIG_PM */
static const struct i2c_device_id bma2x2_id[] = {
{ SENSOR_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, bma2x2_id);
static const struct of_device_id bma2x2_of_match[] = {
{ .compatible = "bosch,bma2x2", },
{ },
};
static struct i2c_driver bma2x2_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
.of_match_table = bma2x2_of_match,
},
.suspend = bma2x2_suspend,
.resume = bma2x2_resume,
.id_table = bma2x2_id,
.probe = bma2x2_probe,
.remove = bma2x2_remove,
.shutdown = bma2x2_shutdown,
};
static int __init BMA2X2_init(void)
{
return i2c_add_driver(&bma2x2_driver);
}
static void __exit BMA2X2_exit(void)
{
i2c_del_driver(&bma2x2_driver);
}
MODULE_AUTHOR("contact@bosch-sensortec.com");
MODULE_DESCRIPTION("BMA2X2 ACCELEROMETER SENSOR DRIVER");
MODULE_LICENSE("GPL v2");
module_init(BMA2X2_init);
module_exit(BMA2X2_exit);