blob: a63d01700414ce8180a2add0fe1d0d52c179842a [file] [log] [blame]
/* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/printk.h>
#include <linux/ratelimit.h>
#include <linux/debugfs.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/kernel.h>
#include <linux/gpio.h>
#include <linux/spmi.h>
#include <linux/of_gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/mfd/wcd9xxx/core.h>
#include <linux/qdsp6v2/apr.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/sched.h>
#include <sound/q6afe-v2.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/tlv.h>
#include <sound/q6core.h>
#include <soc/qcom/subsystem_notif.h>
#include "msm8x16-wcd.h"
#include "wcd-mbhc-v2.h"
#include "msm8916-wcd-irq.h"
#include "msm8x16_wcd_registers.h"
#define MSM8X16_WCD_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000)
#define MSM8X16_WCD_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
SNDRV_PCM_FMTBIT_S24_LE |\
SNDRV_PCM_FMTBIT_S24_3LE)
#define NUM_INTERPOLATORS 3
#define BITS_PER_REG 8
#define MSM8X16_WCD_TX_PORT_NUMBER 4
#define MSM8X16_WCD_I2S_MASTER_MODE_MASK 0x08
#define MSM8X16_DIGITAL_CODEC_BASE_ADDR 0x771C000
#define TOMBAK_CORE_0_SPMI_ADDR 0xf000
#define TOMBAK_CORE_1_SPMI_ADDR 0xf100
#define PMIC_SLAVE_ID_0 0
#define PMIC_SLAVE_ID_1 1
#define PMIC_MBG_OK 0x2C08
#define PMIC_LDO7_EN_CTL 0x4646
#define MASK_MSB_BIT 0x80
#define CODEC_DT_MAX_PROP_SIZE 40
#define MSM8X16_DIGITAL_CODEC_REG_SIZE 0x400
#define MAX_ON_DEMAND_SUPPLY_NAME_LENGTH 64
#define MCLK_RATE_9P6MHZ 9600000
#define MCLK_RATE_12P288MHZ 12288000
#define BUS_DOWN 1
/*
*50 Milliseconds sufficient for DSP bring up in the modem
* after Sub System Restart
*/
#define ADSP_STATE_READY_TIMEOUT_MS 50
#define HPHL_PA_DISABLE (0x01 << 1)
#define HPHR_PA_DISABLE (0x01 << 2)
#define EAR_PA_DISABLE (0x01 << 3)
#define SPKR_PA_DISABLE (0x01 << 4)
enum {
BOOST_SWITCH = 0,
BOOST_ALWAYS,
BYPASS_ALWAYS,
BOOST_ON_FOREVER,
};
#define EAR_PMD 0
#define EAR_PMU 1
#define SPK_PMD 2
#define SPK_PMU 3
#define MICBIAS_DEFAULT_VAL 1800000
#define MICBIAS_MIN_VAL 1600000
#define MICBIAS_STEP_SIZE 50000
#define DEFAULT_BOOST_VOLTAGE 5000
#define MIN_BOOST_VOLTAGE 4000
#define MAX_BOOST_VOLTAGE 5550
#define BOOST_VOLTAGE_STEP 50
#define MSM8X16_WCD_MBHC_BTN_COARSE_ADJ 100 /* in mV */
#define MSM8X16_WCD_MBHC_BTN_FINE_ADJ 12 /* in mV */
#define VOLTAGE_CONVERTER(value, min_value, step_size)\
((value - min_value)/step_size)
enum {
AIF1_PB = 0,
AIF1_CAP,
AIF2_VIFEED,
NUM_CODEC_DAIS,
};
enum {
RX_MIX1_INP_SEL_ZERO = 0,
RX_MIX1_INP_SEL_IIR1,
RX_MIX1_INP_SEL_IIR2,
RX_MIX1_INP_SEL_RX1,
RX_MIX1_INP_SEL_RX2,
RX_MIX1_INP_SEL_RX3,
};
static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
static const DECLARE_TLV_DB_SCALE(analog_gain, 0, 25, 1);
static struct snd_soc_dai_driver msm8x16_wcd_i2s_dai[];
/* By default enable the internal speaker boost */
static bool spkr_boost_en = true;
#define MSM8X16_WCD_ACQUIRE_LOCK(x) \
mutex_lock_nested(&x, SINGLE_DEPTH_NESTING)
#define MSM8X16_WCD_RELEASE_LOCK(x) mutex_unlock(&x)
/* Codec supports 2 IIR filters */
enum {
IIR1 = 0,
IIR2,
IIR_MAX,
};
/* Codec supports 5 bands */
enum {
BAND1 = 0,
BAND2,
BAND3,
BAND4,
BAND5,
BAND_MAX,
};
struct hpf_work {
struct msm8x16_wcd_priv *msm8x16_wcd;
u32 decimator;
u8 tx_hpf_cut_of_freq;
struct delayed_work dwork;
};
static struct hpf_work tx_hpf_work[NUM_DECIMATORS];
static char on_demand_supply_name[][MAX_ON_DEMAND_SUPPLY_NAME_LENGTH] = {
"cdc-vdd-mic-bias",
};
static unsigned long rx_digital_gain_reg[] = {
MSM8X16_WCD_A_CDC_RX1_VOL_CTL_B2_CTL,
MSM8X16_WCD_A_CDC_RX2_VOL_CTL_B2_CTL,
MSM8X16_WCD_A_CDC_RX3_VOL_CTL_B2_CTL,
};
static unsigned long tx_digital_gain_reg[] = {
MSM8X16_WCD_A_CDC_TX1_VOL_CTL_GAIN,
MSM8X16_WCD_A_CDC_TX2_VOL_CTL_GAIN,
};
enum {
MSM8X16_WCD_SPMI_DIGITAL = 0,
MSM8X16_WCD_SPMI_ANALOG,
MAX_MSM8X16_WCD_DEVICE
};
static struct wcd_mbhc_register
wcd_mbhc_registers[WCD_MBHC_REG_FUNC_MAX] = {
WCD_MBHC_REGISTER("WCD_MBHC_L_DET_EN",
MSM8X16_WCD_A_ANALOG_MBHC_DET_CTL_1, 0x80, 7, 0),
WCD_MBHC_REGISTER("WCD_MBHC_GND_DET_EN",
MSM8X16_WCD_A_ANALOG_MBHC_DET_CTL_1, 0x40, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MECH_DETECTION_TYPE",
MSM8X16_WCD_A_ANALOG_MBHC_DET_CTL_1, 0x20, 5, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MIC_CLAMP_CTL",
MSM8X16_WCD_A_ANALOG_MBHC_DET_CTL_1, 0x18, 3, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ELECT_DETECTION_TYPE",
MSM8X16_WCD_A_ANALOG_MBHC_DET_CTL_1, 0x01, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_CTRL",
MSM8X16_WCD_A_ANALOG_MBHC_DET_CTL_2, 0xC0, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_COMP_CTRL",
MSM8X16_WCD_A_ANALOG_MBHC_DET_CTL_2, 0x20, 5, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PLUG_TYPE",
MSM8X16_WCD_A_ANALOG_MBHC_DET_CTL_2, 0x10, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_GND_PLUG_TYPE",
MSM8X16_WCD_A_ANALOG_MBHC_DET_CTL_2, 0x08, 3, 0),
WCD_MBHC_REGISTER("WCD_MBHC_SW_HPH_LP_100K_TO_GND",
MSM8X16_WCD_A_ANALOG_MBHC_DET_CTL_2, 0x01, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ELECT_SCHMT_ISRC",
MSM8X16_WCD_A_ANALOG_MBHC_DET_CTL_2, 0x06, 1, 0),
WCD_MBHC_REGISTER("WCD_MBHC_FSM_EN",
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL, 0x80, 7, 0),
WCD_MBHC_REGISTER("WCD_MBHC_INSREM_DBNC",
MSM8X16_WCD_A_ANALOG_MBHC_DBNC_TIMER, 0xF0, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_BTN_DBNC",
MSM8X16_WCD_A_ANALOG_MBHC_DBNC_TIMER, 0x0C, 2, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HS_VREF",
MSM8X16_WCD_A_ANALOG_MBHC_BTN3_CTL, 0x03, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HS_COMP_RESULT",
MSM8X16_WCD_A_ANALOG_MBHC_ZDET_ELECT_RESULT, 0x01,
0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MIC_SCHMT_RESULT",
MSM8X16_WCD_A_ANALOG_MBHC_ZDET_ELECT_RESULT, 0x02,
1, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHL_SCHMT_RESULT",
MSM8X16_WCD_A_ANALOG_MBHC_ZDET_ELECT_RESULT, 0x08,
3, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHR_SCHMT_RESULT",
MSM8X16_WCD_A_ANALOG_MBHC_ZDET_ELECT_RESULT, 0x04,
2, 0),
WCD_MBHC_REGISTER("WCD_MBHC_OCP_FSM_EN",
MSM8X16_WCD_A_ANALOG_RX_COM_OCP_CTL, 0x10, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_BTN_RESULT",
MSM8X16_WCD_A_ANALOG_MBHC_BTN_RESULT, 0xFF, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_BTN_ISRC_CTL",
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL, 0x70, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ELECT_RESULT",
MSM8X16_WCD_A_ANALOG_MBHC_ZDET_ELECT_RESULT, 0xFF,
0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MICB_CTRL",
MSM8X16_WCD_A_ANALOG_MICB_2_EN, 0xC0, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPH_CNP_WG_TIME",
MSM8X16_WCD_A_ANALOG_RX_HPH_CNP_WG_TIME, 0xFC, 2, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHR_PA_EN",
MSM8X16_WCD_A_ANALOG_RX_HPH_CNP_EN, 0x10, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PA_EN",
MSM8X16_WCD_A_ANALOG_RX_HPH_CNP_EN, 0x20, 5, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPH_PA_EN",
MSM8X16_WCD_A_ANALOG_RX_HPH_CNP_EN, 0x30, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_SWCH_LEVEL_REMOVE",
MSM8X16_WCD_A_ANALOG_MBHC_ZDET_ELECT_RESULT,
0x10, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MOISTURE_VREF",
0, 0, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_PULLDOWN_CTRL",
MSM8X16_WCD_A_ANALOG_MICB_2_EN, 0x20, 5, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ANC_DET_EN",
0, 0, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_FSM_STATUS",
0, 0, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MUX_CTL",
0, 0, 0, 0),
};
struct msm8x16_wcd_spmi {
struct spmi_device *spmi;
int base;
};
/* Multiply gain_adj and offset by 1000 and 100 to avoid float arithmetic */
static const struct wcd_imped_i_ref imped_i_ref[] = {
{I_h4_UA, 8, 800, 9000, 10000},
{I_pt5_UA, 10, 100, 990, 4600},
{I_14_UA, 17, 14, 1050, 700},
{I_l4_UA, 10, 4, 1165, 110},
{I_1_UA, 0, 1, 1200, 65},
};
static const struct wcd_mbhc_intr intr_ids = {
.mbhc_sw_intr = MSM8X16_WCD_IRQ_MBHC_HS_DET,
.mbhc_btn_press_intr = MSM8X16_WCD_IRQ_MBHC_PRESS,
.mbhc_btn_release_intr = MSM8X16_WCD_IRQ_MBHC_RELEASE,
.mbhc_hs_ins_intr = MSM8X16_WCD_IRQ_MBHC_INSREM_DET1,
.mbhc_hs_rem_intr = MSM8X16_WCD_IRQ_MBHC_INSREM_DET,
.hph_left_ocp = MSM8X16_WCD_IRQ_HPHL_OCP,
.hph_right_ocp = MSM8X16_WCD_IRQ_HPHR_OCP,
};
static int msm8x16_wcd_dt_parse_vreg_info(struct device *dev,
struct msm8x16_wcd_regulator *vreg,
const char *vreg_name, bool ondemand);
static struct msm8x16_wcd_pdata *msm8x16_wcd_populate_dt_pdata(
struct device *dev);
static int msm8x16_wcd_enable_ext_mb_source(struct snd_soc_codec *codec,
bool turn_on);
static void msm8x16_trim_btn_reg(struct snd_soc_codec *codec);
static void msm8x16_wcd_set_micb_v(struct snd_soc_codec *codec);
static void msm8x16_wcd_set_boost_v(struct snd_soc_codec *codec);
static void msm8x16_wcd_set_auto_zeroing(struct snd_soc_codec *codec,
bool enable);
static void msm8x16_wcd_configure_cap(struct snd_soc_codec *codec,
bool micbias1, bool micbias2);
static bool msm8x16_wcd_use_mb(struct snd_soc_codec *codec);
struct msm8x16_wcd_spmi msm8x16_wcd_modules[MAX_MSM8X16_WCD_DEVICE];
static void *adsp_state_notifier;
static struct snd_soc_codec *registered_codec;
static int get_codec_version(struct msm8x16_wcd_priv *msm8x16_wcd)
{
if (msm8x16_wcd->codec_version == DIANGU)
return DIANGU;
else if (msm8x16_wcd->codec_version == CAJON_2_0)
return CAJON_2_0;
else if (msm8x16_wcd->codec_version == CAJON)
return CAJON;
else if (msm8x16_wcd->codec_version == CONGA)
return CONGA;
else if (msm8x16_wcd->pmic_rev == TOMBAK_2_0)
return TOMBAK_2_0;
else if (msm8x16_wcd->pmic_rev == TOMBAK_1_0)
return TOMBAK_1_0;
pr_err("%s: unsupported codec version\n", __func__);
return UNSUPPORTED;
}
static void wcd_mbhc_meas_imped(struct snd_soc_codec *codec,
s16 *impedance_l, s16 *impedance_r)
{
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
if ((msm8x16_wcd->imped_det_pin == WCD_MBHC_DET_BOTH) ||
(msm8x16_wcd->imped_det_pin == WCD_MBHC_DET_HPHL)) {
/* Enable ZDET_L_MEAS_EN */
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL,
0x08, 0x08);
/* Wait for 2ms for measurement to complete */
usleep_range(2000, 2100);
/* Read Left impedance value from Result1 */
*impedance_l = snd_soc_read(codec,
MSM8X16_WCD_A_ANALOG_MBHC_BTN_RESULT);
/* Enable ZDET_R_MEAS_EN */
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL,
0x08, 0x00);
}
if ((msm8x16_wcd->imped_det_pin == WCD_MBHC_DET_BOTH) ||
(msm8x16_wcd->imped_det_pin == WCD_MBHC_DET_HPHR)) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL,
0x04, 0x04);
/* Wait for 2ms for measurement to complete */
usleep_range(2000, 2100);
/* Read Right impedance value from Result1 */
*impedance_r = snd_soc_read(codec,
MSM8X16_WCD_A_ANALOG_MBHC_BTN_RESULT);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL,
0x04, 0x00);
}
}
static void msm8x16_set_ref_current(struct snd_soc_codec *codec,
enum wcd_curr_ref curr_ref)
{
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
pr_debug("%s: curr_ref: %d\n", __func__, curr_ref);
if (get_codec_version(msm8x16_wcd) < CAJON)
pr_debug("%s: Setting ref current not required\n", __func__);
msm8x16_wcd->imped_i_ref = imped_i_ref[curr_ref];
switch (curr_ref) {
case I_h4_UA:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MICB_2_EN,
0x07, 0x01);
break;
case I_pt5_UA:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MICB_2_EN,
0x07, 0x04);
break;
case I_14_UA:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MICB_2_EN,
0x07, 0x03);
break;
case I_l4_UA:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MICB_2_EN,
0x07, 0x01);
break;
case I_1_UA:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MICB_2_EN,
0x07, 0x00);
break;
default:
pr_debug("%s: No ref current set\n", __func__);
break;
}
}
static bool msm8x16_adj_ref_current(struct snd_soc_codec *codec,
s16 *impedance_l, s16 *impedance_r)
{
int i = 2;
s16 compare_imp = 0;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
if (msm8x16_wcd->imped_det_pin == WCD_MBHC_DET_HPHR)
compare_imp = *impedance_r;
else
compare_imp = *impedance_l;
if (get_codec_version(msm8x16_wcd) < CAJON) {
pr_debug("%s: Reference current adjustment not required\n",
__func__);
return false;
}
while (compare_imp < imped_i_ref[i].min_val) {
msm8x16_set_ref_current(codec,
imped_i_ref[++i].curr_ref);
wcd_mbhc_meas_imped(codec,
impedance_l, impedance_r);
compare_imp = (msm8x16_wcd->imped_det_pin == WCD_MBHC_DET_HPHR)
? *impedance_r : *impedance_l;
if (i >= I_1_UA)
break;
}
return true;
}
void msm8x16_wcd_spk_ext_pa_cb(
int (*codec_spk_ext_pa)(struct snd_soc_codec *codec,
int enable), struct snd_soc_codec *codec)
{
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
pr_debug("%s: Enter\n", __func__);
msm8x16_wcd->codec_spk_ext_pa_cb = codec_spk_ext_pa;
}
void msm8x16_wcd_hph_comp_cb(
int (*codec_hph_comp_gpio)(bool enable), struct snd_soc_codec *codec)
{
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
pr_debug("%s: Enter\n", __func__);
msm8x16_wcd->codec_hph_comp_gpio = codec_hph_comp_gpio;
}
static void msm8x16_wcd_compute_impedance(struct snd_soc_codec *codec, s16 l,
s16 r, uint32_t *zl, uint32_t *zr, bool high)
{
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
uint32_t rl = 0, rr = 0;
struct wcd_imped_i_ref R = msm8x16_wcd->imped_i_ref;
int codec_ver = get_codec_version(msm8x16_wcd);
switch (codec_ver) {
case TOMBAK_1_0:
case TOMBAK_2_0:
case CONGA:
if (high) {
pr_debug("%s: This plug has high range impedance\n",
__func__);
rl = (uint32_t)(((100 * (l * 400 - 200))/96) - 230);
rr = (uint32_t)(((100 * (r * 400 - 200))/96) - 230);
} else {
pr_debug("%s: This plug has low range impedance\n",
__func__);
rl = (uint32_t)(((1000 * (l * 2 - 1))/1165) - (13/10));
rr = (uint32_t)(((1000 * (r * 2 - 1))/1165) - (13/10));
}
break;
case CAJON:
case CAJON_2_0:
case DIANGU:
if (msm8x16_wcd->imped_det_pin == WCD_MBHC_DET_HPHL) {
rr = (uint32_t)(((DEFAULT_MULTIPLIER * (10 * r - 5)) -
(DEFAULT_OFFSET * DEFAULT_GAIN))/DEFAULT_GAIN);
rl = (uint32_t)(((10000 * (R.multiplier * (10 * l - 5)))
- R.offset * R.gain_adj)/(R.gain_adj * 100));
} else if (msm8x16_wcd->imped_det_pin == WCD_MBHC_DET_HPHR) {
rr = (uint32_t)(((10000 * (R.multiplier * (10 * r - 5)))
- R.offset * R.gain_adj)/(R.gain_adj * 100));
rl = (uint32_t)(((DEFAULT_MULTIPLIER * (10 * l - 5))-
(DEFAULT_OFFSET * DEFAULT_GAIN))/DEFAULT_GAIN);
} else if (msm8x16_wcd->imped_det_pin == WCD_MBHC_DET_NONE) {
rr = (uint32_t)(((DEFAULT_MULTIPLIER * (10 * r - 5)) -
(DEFAULT_OFFSET * DEFAULT_GAIN))/DEFAULT_GAIN);
rl = (uint32_t)(((DEFAULT_MULTIPLIER * (10 * l - 5))-
(DEFAULT_OFFSET * DEFAULT_GAIN))/DEFAULT_GAIN);
} else {
rr = (uint32_t)(((10000 * (R.multiplier * (10 * r - 5)))
- R.offset * R.gain_adj)/(R.gain_adj * 100));
rl = (uint32_t)(((10000 * (R.multiplier * (10 * l - 5)))
- R.offset * R.gain_adj)/(R.gain_adj * 100));
}
break;
default:
pr_debug("%s: No codec mentioned\n", __func__);
break;
}
*zl = rl;
*zr = rr;
}
static struct firmware_cal *msm8x16_wcd_get_hwdep_fw_cal(
struct snd_soc_codec *codec,
enum wcd_cal_type type)
{
struct msm8x16_wcd_priv *msm8x16_wcd;
struct firmware_cal *hwdep_cal;
if (!codec) {
pr_err("%s: NULL codec pointer\n", __func__);
return NULL;
}
msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
hwdep_cal = wcdcal_get_fw_cal(msm8x16_wcd->fw_data, type);
if (!hwdep_cal) {
dev_err(codec->dev, "%s: cal not sent by %d\n",
__func__, type);
return NULL;
}
return hwdep_cal;
}
static void wcd9xxx_spmi_irq_control(struct snd_soc_codec *codec,
int irq, bool enable)
{
if (enable)
wcd9xxx_spmi_enable_irq(irq);
else
wcd9xxx_spmi_disable_irq(irq);
}
static void msm8x16_mbhc_clk_setup(struct snd_soc_codec *codec,
bool enable)
{
if (enable)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x08, 0x08);
else
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x08, 0x00);
}
static int msm8x16_mbhc_map_btn_code_to_num(struct snd_soc_codec *codec)
{
int btn_code;
int btn;
btn_code = snd_soc_read(codec, MSM8X16_WCD_A_ANALOG_MBHC_BTN_RESULT);
switch (btn_code) {
case 0:
btn = 0;
break;
case 1:
btn = 1;
break;
case 3:
btn = 2;
break;
case 7:
btn = 3;
break;
case 15:
btn = 4;
break;
default:
btn = -EINVAL;
break;
};
return btn;
}
static bool msm8x16_spmi_lock_sleep(struct wcd_mbhc *mbhc, bool lock)
{
if (lock)
return wcd9xxx_spmi_lock_sleep();
wcd9xxx_spmi_unlock_sleep();
return 0;
}
static bool msm8x16_wcd_micb_en_status(struct wcd_mbhc *mbhc, int micb_num)
{
if (micb_num == MIC_BIAS_1)
return (snd_soc_read(mbhc->codec,
MSM8X16_WCD_A_ANALOG_MICB_1_EN) &
0x80);
if (micb_num == MIC_BIAS_2)
return (snd_soc_read(mbhc->codec,
MSM8X16_WCD_A_ANALOG_MICB_2_EN) &
0x80);
return false;
}
static void msm8x16_wcd_enable_master_bias(struct snd_soc_codec *codec,
bool enable)
{
if (enable)
snd_soc_update_bits(codec, MSM8X16_WCD_A_ANALOG_MASTER_BIAS_CTL,
0x30, 0x30);
else
snd_soc_update_bits(codec, MSM8X16_WCD_A_ANALOG_MASTER_BIAS_CTL,
0x30, 0x00);
}
static void msm8x16_wcd_mbhc_common_micb_ctrl(struct snd_soc_codec *codec,
int event, bool enable)
{
u16 reg;
u8 mask;
u8 val;
switch (event) {
case MBHC_COMMON_MICB_PRECHARGE:
reg = MSM8X16_WCD_A_ANALOG_MICB_1_CTL;
mask = 0x60;
val = (enable ? 0x60 : 0x00);
break;
case MBHC_COMMON_MICB_SET_VAL:
reg = MSM8X16_WCD_A_ANALOG_MICB_1_VAL;
mask = 0xFF;
val = (enable ? 0xC0 : 0x00);
break;
case MBHC_COMMON_MICB_TAIL_CURR:
reg = MSM8X16_WCD_A_ANALOG_MICB_1_EN;
mask = 0x04;
val = (enable ? 0x04 : 0x00);
break;
default:
pr_err("%s: Invalid event received\n", __func__);
return;
};
snd_soc_update_bits(codec, reg, mask, val);
}
static void msm8x16_wcd_mbhc_internal_micbias_ctrl(struct snd_soc_codec *codec,
int micbias_num, bool enable)
{
if (micbias_num == 1) {
if (enable)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MICB_1_INT_RBIAS,
0x10, 0x10);
else
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MICB_1_INT_RBIAS,
0x10, 0x00);
}
}
static bool msm8x16_wcd_mbhc_hph_pa_on_status(struct snd_soc_codec *codec)
{
return (snd_soc_read(codec, MSM8X16_WCD_A_ANALOG_RX_HPH_CNP_EN) &
0x30) ? true : false;
}
static void msm8x16_wcd_mbhc_program_btn_thr(struct snd_soc_codec *codec,
s16 *btn_low, s16 *btn_high,
int num_btn, bool is_micbias)
{
int i;
u32 course, fine, reg_val;
u16 reg_addr = MSM8X16_WCD_A_ANALOG_MBHC_BTN0_ZDETL_CTL;
s16 *btn_voltage;
btn_voltage = ((is_micbias) ? btn_high : btn_low);
for (i = 0; i < num_btn; i++) {
course = (btn_voltage[i] / MSM8X16_WCD_MBHC_BTN_COARSE_ADJ);
fine = ((btn_voltage[i] % MSM8X16_WCD_MBHC_BTN_COARSE_ADJ) /
MSM8X16_WCD_MBHC_BTN_FINE_ADJ);
reg_val = (course << 5) | (fine << 2);
snd_soc_update_bits(codec, reg_addr, 0xFC, reg_val);
pr_debug("%s: course: %d fine: %d reg_addr: %x reg_val: %x\n",
__func__, course, fine, reg_addr, reg_val);
reg_addr++;
}
}
static void msm8x16_wcd_mbhc_calc_impedance(struct wcd_mbhc *mbhc, uint32_t *zl,
uint32_t *zr)
{
struct snd_soc_codec *codec = mbhc->codec;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
s16 impedance_l, impedance_r;
s16 impedance_l_fixed;
s16 reg0, reg1, reg2, reg3, reg4;
bool high = false;
bool min_range_used = false;
WCD_MBHC_RSC_ASSERT_LOCKED(mbhc);
reg0 = snd_soc_read(codec, MSM8X16_WCD_A_ANALOG_MBHC_DBNC_TIMER);
reg1 = snd_soc_read(codec, MSM8X16_WCD_A_ANALOG_MBHC_BTN2_ZDETH_CTL);
reg2 = snd_soc_read(codec, MSM8X16_WCD_A_ANALOG_MBHC_DET_CTL_2);
reg3 = snd_soc_read(codec, MSM8X16_WCD_A_ANALOG_MICB_2_EN);
reg4 = snd_soc_read(codec, MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL);
msm8x16_wcd->imped_det_pin = WCD_MBHC_DET_BOTH;
mbhc->hph_type = WCD_MBHC_HPH_NONE;
/* disable FSM and micbias and enable pullup*/
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL,
0x80, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MICB_2_EN,
0xA5, 0x25);
/*
* Enable legacy electrical detection current sources
* and disable fast ramp and enable manual switching
* of extra capacitance
*/
pr_debug("%s: Setup for impedance det\n", __func__);
msm8x16_set_ref_current(codec, I_h4_UA);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_DET_CTL_2,
0x06, 0x02);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_DBNC_TIMER,
0x02, 0x02);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_BTN2_ZDETH_CTL,
0x02, 0x00);
pr_debug("%s: Start performing impedance detection\n",
__func__);
wcd_mbhc_meas_imped(codec, &impedance_l, &impedance_r);
if (impedance_l > 2 || impedance_r > 2) {
high = true;
if (!mbhc->mbhc_cfg->mono_stero_detection) {
/* Set ZDET_CHG to 0 to discharge ramp */
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL,
0x02, 0x00);
/* wait 40ms for the discharge ramp to complete */
usleep_range(40000, 40100);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_BTN0_ZDETL_CTL,
0x03, 0x00);
msm8x16_wcd->imped_det_pin = (impedance_l > 2 &&
impedance_r > 2) ?
WCD_MBHC_DET_NONE :
((impedance_l > 2) ?
WCD_MBHC_DET_HPHR :
WCD_MBHC_DET_HPHL);
if (msm8x16_wcd->imped_det_pin == WCD_MBHC_DET_NONE)
goto exit;
} else {
if (get_codec_version(msm8x16_wcd) >= CAJON) {
if (impedance_l == 63 && impedance_r == 63) {
pr_debug("%s: HPHL and HPHR are floating\n",
__func__);
msm8x16_wcd->imped_det_pin =
WCD_MBHC_DET_NONE;
mbhc->hph_type = WCD_MBHC_HPH_NONE;
} else if (impedance_l == 63
&& impedance_r < 63) {
pr_debug("%s: Mono HS with HPHL floating\n",
__func__);
msm8x16_wcd->imped_det_pin =
WCD_MBHC_DET_HPHR;
mbhc->hph_type = WCD_MBHC_HPH_MONO;
} else if (impedance_r == 63 &&
impedance_l < 63) {
pr_debug("%s: Mono HS with HPHR floating\n",
__func__);
msm8x16_wcd->imped_det_pin =
WCD_MBHC_DET_HPHL;
mbhc->hph_type = WCD_MBHC_HPH_MONO;
} else if (impedance_l > 3 && impedance_r > 3 &&
(impedance_l == impedance_r)) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_DET_CTL_2,
0x06, 0x06);
wcd_mbhc_meas_imped(codec, &impedance_l,
&impedance_r);
if (impedance_r == impedance_l)
pr_debug("%s: Mono Headset\n",
__func__);
msm8x16_wcd->imped_det_pin =
WCD_MBHC_DET_NONE;
mbhc->hph_type =
WCD_MBHC_HPH_MONO;
} else {
pr_debug("%s: STEREO headset is found\n",
__func__);
msm8x16_wcd->imped_det_pin =
WCD_MBHC_DET_BOTH;
mbhc->hph_type = WCD_MBHC_HPH_STEREO;
}
}
}
}
msm8x16_set_ref_current(codec, I_pt5_UA);
msm8x16_set_ref_current(codec, I_14_UA);
/* Enable RAMP_L , RAMP_R & ZDET_CHG*/
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_BTN0_ZDETL_CTL,
0x03, 0x03);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL,
0x02, 0x02);
/* wait for 50msec for the HW to apply ramp on HPHL and HPHR */
usleep_range(50000, 50100);
/* Enable ZDET_DISCHG_CAP_CTL to add extra capacitance */
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL,
0x01, 0x01);
/* wait for 5msec for the voltage to get stable */
usleep_range(5000, 5100);
wcd_mbhc_meas_imped(codec, &impedance_l, &impedance_r);
min_range_used = msm8x16_adj_ref_current(codec,
&impedance_l, &impedance_r);
if (!mbhc->mbhc_cfg->mono_stero_detection) {
/* Set ZDET_CHG to 0 to discharge ramp */
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL,
0x02, 0x00);
/* wait for 40msec for the capacitor to discharge */
usleep_range(40000, 40100);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_BTN0_ZDETL_CTL,
0x03, 0x00);
goto exit;
}
/* we are setting ref current to the minimun range or the measured
* value larger than the minimum value, so min_range_used is true.
* If the headset is mono headset with either HPHL or HPHR floating
* then we have already done the mono stereo detection and do not
* need to continue further.
*/
if (!min_range_used ||
msm8x16_wcd->imped_det_pin == WCD_MBHC_DET_HPHL ||
msm8x16_wcd->imped_det_pin == WCD_MBHC_DET_HPHR)
goto exit;
/* Disable Set ZDET_CONN_RAMP_L and enable ZDET_CONN_FIXED_L */
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_BTN0_ZDETL_CTL,
0x02, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_BTN1_ZDETM_CTL,
0x02, 0x02);
/* Set ZDET_CHG to 0 */
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL,
0x02, 0x00);
/* wait for 40msec for the capacitor to discharge */
usleep_range(40000, 40100);
/* Set ZDET_CONN_RAMP_R to 0 */
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_BTN0_ZDETL_CTL,
0x01, 0x00);
/* Enable ZDET_L_MEAS_EN */
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL,
0x08, 0x08);
/* wait for 2msec for the HW to compute left inpedance value */
usleep_range(2000, 2100);
/* Read Left impedance value from Result1 */
impedance_l_fixed = snd_soc_read(codec,
MSM8X16_WCD_A_ANALOG_MBHC_BTN_RESULT);
/* Disable ZDET_L_MEAS_EN */
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL,
0x08, 0x00);
/*
* Assume impedance_l is L1, impedance_l_fixed is L2.
* If the following condition is met, we can take this
* headset as mono one with impedance of L2.
* Otherwise, take it as stereo with impedance of L1.
* Condition:
* abs[(L2-0.5L1)/(L2+0.5L1)] < abs [(L2-L1)/(L2+L1)]
*/
if ((abs(impedance_l_fixed - impedance_l/2) *
(impedance_l_fixed + impedance_l)) >=
(abs(impedance_l_fixed - impedance_l) *
(impedance_l_fixed + impedance_l/2))) {
pr_debug("%s: STEREO plug type detected\n",
__func__);
mbhc->hph_type = WCD_MBHC_HPH_STEREO;
} else {
pr_debug("%s: MONO plug type detected\n",
__func__);
mbhc->hph_type = WCD_MBHC_HPH_MONO;
impedance_l = impedance_l_fixed;
}
/* Enable ZDET_CHG */
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL,
0x02, 0x02);
/* wait for 10msec for the capacitor to charge */
usleep_range(10000, 10100);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_BTN0_ZDETL_CTL,
0x02, 0x02);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_BTN1_ZDETM_CTL,
0x02, 0x00);
/* Set ZDET_CHG to 0 to discharge HPHL */
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL,
0x02, 0x00);
/* wait for 40msec for the capacitor to discharge */
usleep_range(40000, 40100);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MBHC_BTN0_ZDETL_CTL,
0x02, 0x00);
exit:
snd_soc_write(codec, MSM8X16_WCD_A_ANALOG_MBHC_FSM_CTL, reg4);
snd_soc_write(codec, MSM8X16_WCD_A_ANALOG_MICB_2_EN, reg3);
snd_soc_write(codec, MSM8X16_WCD_A_ANALOG_MBHC_BTN2_ZDETH_CTL, reg1);
snd_soc_write(codec, MSM8X16_WCD_A_ANALOG_MBHC_DBNC_TIMER, reg0);
snd_soc_write(codec, MSM8X16_WCD_A_ANALOG_MBHC_DET_CTL_2, reg2);
msm8x16_wcd_compute_impedance(codec, impedance_l, impedance_r,
zl, zr, high);
pr_debug("%s: RL %d ohm, RR %d ohm\n", __func__, *zl, *zr);
pr_debug("%s: Impedance detection completed\n", __func__);
}
static int msm8x16_register_notifier(struct snd_soc_codec *codec,
struct notifier_block *nblock,
bool enable)
{
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
if (enable)
return blocking_notifier_chain_register(&msm8x16_wcd->notifier,
nblock);
return blocking_notifier_chain_unregister(
&msm8x16_wcd->notifier, nblock);
}
static int msm8x16_wcd_request_irq(struct snd_soc_codec *codec,
int irq, irq_handler_t handler,
const char *name, void *data)
{
return wcd9xxx_spmi_request_irq(irq, handler, name, data);
}
static int msm8x16_wcd_free_irq(struct snd_soc_codec *codec,
int irq, void *data)
{
return wcd9xxx_spmi_free_irq(irq, data);
}
static const struct wcd_mbhc_cb mbhc_cb = {
.enable_mb_source = msm8x16_wcd_enable_ext_mb_source,
.trim_btn_reg = msm8x16_trim_btn_reg,
.compute_impedance = msm8x16_wcd_mbhc_calc_impedance,
.set_micbias_value = msm8x16_wcd_set_micb_v,
.set_auto_zeroing = msm8x16_wcd_set_auto_zeroing,
.get_hwdep_fw_cal = msm8x16_wcd_get_hwdep_fw_cal,
.set_cap_mode = msm8x16_wcd_configure_cap,
.register_notifier = msm8x16_register_notifier,
.request_irq = msm8x16_wcd_request_irq,
.irq_control = wcd9xxx_spmi_irq_control,
.free_irq = msm8x16_wcd_free_irq,
.clk_setup = msm8x16_mbhc_clk_setup,
.map_btn_code_to_num = msm8x16_mbhc_map_btn_code_to_num,
.lock_sleep = msm8x16_spmi_lock_sleep,
.micbias_enable_status = msm8x16_wcd_micb_en_status,
.mbhc_bias = msm8x16_wcd_enable_master_bias,
.mbhc_common_micb_ctrl = msm8x16_wcd_mbhc_common_micb_ctrl,
.micb_internal = msm8x16_wcd_mbhc_internal_micbias_ctrl,
.hph_pa_on_status = msm8x16_wcd_mbhc_hph_pa_on_status,
.set_btn_thr = msm8x16_wcd_mbhc_program_btn_thr,
.extn_use_mb = msm8x16_wcd_use_mb,
};
static const uint32_t wcd_imped_val[] = {4, 8, 12, 13, 16,
20, 24, 28, 32,
36, 40, 44, 48};
void msm8x16_notifier_call(struct snd_soc_codec *codec,
const enum wcd_notify_event event)
{
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
pr_debug("%s: notifier call event %d\n", __func__, event);
blocking_notifier_call_chain(&msm8x16_wcd->notifier, event,
&msm8x16_wcd->mbhc);
}
static int get_spmi_msm8x16_wcd_device_info(u16 *reg,
struct msm8x16_wcd_spmi **msm8x16_wcd)
{
int rtn = 0;
int value = ((*reg & 0x0f00) >> 8) & 0x000f;
*reg = *reg - (value * 0x100);
switch (value) {
case 0:
case 1:
*msm8x16_wcd = &msm8x16_wcd_modules[value];
break;
default:
rtn = -EINVAL;
break;
}
return rtn;
}
static int msm8x16_wcd_ahb_write_device(struct msm8x16_wcd *msm8x16_wcd,
u16 reg, u8 *value, u32 bytes)
{
u32 temp = ((u32)(*value)) & 0x000000FF;
u16 offset = (reg - 0x0200) & 0x03FF;
bool q6_state = false;
q6_state = q6core_is_adsp_ready();
if (q6_state != true) {
pr_debug("%s: q6 not ready %d\n", __func__, q6_state);
return 0;
}
pr_debug("%s: DSP is ready %d\n", __func__, q6_state);
iowrite32(temp, msm8x16_wcd->dig_base + offset);
return 0;
}
static int msm8x16_wcd_ahb_read_device(struct msm8x16_wcd *msm8x16_wcd,
u16 reg, u32 bytes, u8 *value)
{
u32 temp;
u16 offset = (reg - 0x0200) & 0x03FF;
bool q6_state = false;
q6_state = q6core_is_adsp_ready();
if (q6_state != true) {
pr_debug("%s: q6 not ready %d\n", __func__, q6_state);
return 0;
}
pr_debug("%s: DSP is ready %d\n", __func__, q6_state);
temp = ioread32(msm8x16_wcd->dig_base + offset);
*value = (u8)temp;
return 0;
}
static int msm8x16_wcd_spmi_write_device(u16 reg, u8 *value, u32 bytes)
{
int ret;
struct msm8x16_wcd_spmi *wcd = NULL;
ret = get_spmi_msm8x16_wcd_device_info(&reg, &wcd);
if (ret) {
pr_err("%s: Invalid register address\n", __func__);
return ret;
}
if (wcd == NULL) {
pr_err("%s: Failed to get device info\n", __func__);
return -ENODEV;
}
ret = spmi_ext_register_writel(wcd->spmi->ctrl, wcd->spmi->sid,
wcd->base + reg, value, bytes);
if (ret)
pr_err_ratelimited("Unable to write to addr=%x, ret(%d)\n",
reg, ret);
/* Try again if the write fails */
if (ret != 0) {
usleep_range(10, 11);
ret = spmi_ext_register_writel(wcd->spmi->ctrl, wcd->spmi->sid,
wcd->base + reg, value, 1);
if (ret != 0) {
pr_err_ratelimited("failed to write the device\n");
return ret;
}
}
pr_debug("write sucess register = %x val = %x\n", reg, *value);
return 0;
}
int msm8x16_wcd_spmi_read_device(u16 reg, u32 bytes, u8 *dest)
{
int ret = 0;
struct msm8x16_wcd_spmi *wcd = NULL;
ret = get_spmi_msm8x16_wcd_device_info(&reg, &wcd);
if (ret) {
pr_err("%s: Invalid register address\n", __func__);
return ret;
}
if (wcd == NULL) {
pr_err("%s: Failed to get device info\n", __func__);
return -ENODEV;
}
ret = spmi_ext_register_readl(wcd->spmi->ctrl, wcd->spmi->sid,
wcd->base + reg, dest, bytes);
if (ret != 0) {
pr_err("failed to read the device\n");
return ret;
}
pr_debug("%s: reg 0x%x = 0x%x\n", __func__, reg, *dest);
return 0;
}
int msm8x16_wcd_spmi_read(unsigned short reg, int bytes, void *dest)
{
return msm8x16_wcd_spmi_read_device(reg, bytes, dest);
}
int msm8x16_wcd_spmi_write(unsigned short reg, int bytes, void *src)
{
return msm8x16_wcd_spmi_write_device(reg, src, bytes);
}
static int __msm8x16_wcd_reg_read(struct snd_soc_codec *codec,
unsigned short reg)
{
int ret = -EINVAL;
u8 temp = 0;
struct msm8x16_wcd *msm8x16_wcd = codec->control_data;
struct msm8916_asoc_mach_data *pdata = NULL;
pr_debug("%s reg = %x\n", __func__, reg);
mutex_lock(&msm8x16_wcd->io_lock);
pdata = snd_soc_card_get_drvdata(codec->component.card);
if (MSM8X16_WCD_IS_TOMBAK_REG(reg))
ret = msm8x16_wcd_spmi_read(reg, 1, &temp);
else if (MSM8X16_WCD_IS_DIGITAL_REG(reg)) {
mutex_lock(&pdata->cdc_mclk_mutex);
if (atomic_read(&pdata->mclk_enabled) == false) {
if (pdata->afe_clk_ver == AFE_CLK_VERSION_V1) {
pdata->digital_cdc_clk.clk_val =
pdata->mclk_freq;
ret = afe_set_digital_codec_core_clock(
AFE_PORT_ID_PRIMARY_MI2S_RX,
&pdata->digital_cdc_clk);
} else {
pdata->digital_cdc_core_clk.enable = 1;
ret = afe_set_lpass_clock_v2(
AFE_PORT_ID_PRIMARY_MI2S_RX,
&pdata->digital_cdc_core_clk);
}
if (ret < 0) {
pr_err("failed to enable the MCLK\n");
goto err;
}
pr_debug("enabled digital codec core clk\n");
ret = msm8x16_wcd_ahb_read_device(
msm8x16_wcd, reg, 1, &temp);
atomic_set(&pdata->mclk_enabled, true);
schedule_delayed_work(&pdata->disable_mclk_work, 50);
err:
mutex_unlock(&pdata->cdc_mclk_mutex);
mutex_unlock(&msm8x16_wcd->io_lock);
return temp;
}
ret = msm8x16_wcd_ahb_read_device(msm8x16_wcd, reg, 1, &temp);
mutex_unlock(&pdata->cdc_mclk_mutex);
}
mutex_unlock(&msm8x16_wcd->io_lock);
if (ret < 0) {
dev_err_ratelimited(msm8x16_wcd->dev,
"%s: codec read failed for reg 0x%x\n",
__func__, reg);
return ret;
}
dev_dbg(msm8x16_wcd->dev, "Read 0x%02x from 0x%x\n", temp, reg);
return temp;
}
static int __msm8x16_wcd_reg_write(struct snd_soc_codec *codec,
unsigned short reg, u8 val)
{
int ret = -EINVAL;
struct msm8x16_wcd *msm8x16_wcd = codec->control_data;
struct msm8916_asoc_mach_data *pdata = NULL;
mutex_lock(&msm8x16_wcd->io_lock);
pdata = snd_soc_card_get_drvdata(codec->component.card);
if (MSM8X16_WCD_IS_TOMBAK_REG(reg))
ret = msm8x16_wcd_spmi_write(reg, 1, &val);
else if (MSM8X16_WCD_IS_DIGITAL_REG(reg)) {
mutex_lock(&pdata->cdc_mclk_mutex);
if (atomic_read(&pdata->mclk_enabled) == false) {
pr_debug("enable MCLK for AHB write\n");
if (pdata->afe_clk_ver == AFE_CLK_VERSION_V1) {
pdata->digital_cdc_clk.clk_val =
pdata->mclk_freq;
ret = afe_set_digital_codec_core_clock(
AFE_PORT_ID_PRIMARY_MI2S_RX,
&pdata->digital_cdc_clk);
} else {
pdata->digital_cdc_core_clk.enable = 1;
ret = afe_set_lpass_clock_v2(
AFE_PORT_ID_PRIMARY_MI2S_RX,
&pdata->digital_cdc_core_clk);
}
if (ret < 0) {
pr_err("failed to enable the MCLK\n");
ret = 0;
goto err;
}
pr_debug("enabled digital codec core clk\n");
ret = msm8x16_wcd_ahb_write_device(
msm8x16_wcd, reg, &val, 1);
atomic_set(&pdata->mclk_enabled, true);
schedule_delayed_work(&pdata->disable_mclk_work, 50);
err:
mutex_unlock(&pdata->cdc_mclk_mutex);
mutex_unlock(&msm8x16_wcd->io_lock);
return ret;
}
ret = msm8x16_wcd_ahb_write_device(msm8x16_wcd, reg, &val, 1);
mutex_unlock(&pdata->cdc_mclk_mutex);
}
mutex_unlock(&msm8x16_wcd->io_lock);
return ret;
}
static int msm8x16_wcd_volatile(struct snd_soc_codec *codec, unsigned int reg)
{
dev_dbg(codec->dev, "%s: reg 0x%x\n", __func__, reg);
return msm8x16_wcd_reg_readonly[reg];
}
static int msm8x16_wcd_readable(struct snd_soc_codec *ssc, unsigned int reg)
{
return msm8x16_wcd_reg_readable[reg];
}
static int msm8x16_wcd_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
int ret;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s: Write from reg 0x%x val 0x%x\n",
__func__, reg, value);
if (reg == SND_SOC_NOPM)
return 0;
BUG_ON(reg > MSM8X16_WCD_MAX_REGISTER);
if (!msm8x16_wcd_volatile(codec, reg)) {
ret = snd_soc_cache_write(codec, reg, value);
if (ret != 0)
dev_err_ratelimited(codec->dev, "Cache write to %x failed: %d\n",
reg, ret);
}
if (unlikely(test_bit(BUS_DOWN, &msm8x16_wcd->status_mask))) {
pr_err_ratelimited("write 0x%02x while offline\n",
reg);
return -ENODEV;
}
return __msm8x16_wcd_reg_write(codec, reg, (u8)value);
}
static unsigned int msm8x16_wcd_read(struct snd_soc_codec *codec,
unsigned int reg)
{
unsigned int val;
int ret;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
if (reg == SND_SOC_NOPM)
return 0;
BUG_ON(reg > MSM8X16_WCD_MAX_REGISTER);
if (!msm8x16_wcd_volatile(codec, reg) &&
msm8x16_wcd_readable(codec, reg) &&
reg < codec->driver->reg_cache_size) {
ret = snd_soc_cache_read(codec, reg, &val);
if (ret >= 0)
return val;
dev_err_ratelimited(codec->dev, "Cache read from %x failed: %d\n",
reg, ret);
}
if (unlikely(test_bit(BUS_DOWN, &msm8x16_wcd->status_mask))) {
pr_err_ratelimited("write 0x%02x while offline\n",
reg);
return -ENODEV;
}
val = __msm8x16_wcd_reg_read(codec, reg);
/*
* If register is 0x16 or 0x116 return read value as 0, so that
* SW can disable only the required interrupts. Which will
* ensure other interrupts are not effected.
*/
if ((reg == MSM8X16_WCD_A_DIGITAL_INT_EN_CLR) ||
(reg == MSM8X16_WCD_A_ANALOG_INT_EN_CLR))
val = 0;
dev_dbg(codec->dev, "%s: Read from reg 0x%x val 0x%x\n",
__func__, reg, val);
return val;
}
static void msm8x16_wcd_boost_on(struct snd_soc_codec *codec)
{
int ret;
u8 dest;
struct msm8x16_wcd_spmi *wcd = &msm8x16_wcd_modules[0];
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
ret = spmi_ext_register_readl(wcd->spmi->ctrl, PMIC_SLAVE_ID_1,
PMIC_LDO7_EN_CTL, &dest, 1);
if (ret != 0) {
pr_err("%s: failed to read the device:%d\n", __func__, ret);
return;
}
pr_debug("%s: LDO state: 0x%x\n", __func__, dest);
if ((dest & MASK_MSB_BIT) == 0) {
pr_err("LDO7 not enabled return!\n");
return;
}
ret = spmi_ext_register_readl(wcd->spmi->ctrl, PMIC_SLAVE_ID_0,
PMIC_MBG_OK, &dest, 1);
if (ret != 0) {
pr_err("%s: failed to read the device:%d\n", __func__, ret);
return;
}
pr_debug("%s: PMIC BG state: 0x%x\n", __func__, dest);
if ((dest & MASK_MSB_BIT) == 0) {
pr_err("PMIC MBG not ON, enable codec hw_en MB bit again\n");
snd_soc_write(codec,
MSM8X16_WCD_A_ANALOG_MASTER_BIAS_CTL, 0x30);
/* Allow 1ms for PMIC MBG state to be updated */
usleep_range(CODEC_DELAY_1_MS, CODEC_DELAY_1_1_MS);
ret = spmi_ext_register_readl(wcd->spmi->ctrl, PMIC_SLAVE_ID_0,
PMIC_MBG_OK, &dest, 1);
if (ret != 0) {
pr_err("%s: failed to read the device:%d\n",
__func__, ret);
return;
}
if ((dest & MASK_MSB_BIT) == 0) {
pr_err("PMIC MBG still not ON after retry return!\n");
return;
}
}
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_PERPH_RESET_CTL3,
0x0F, 0x0F);
snd_soc_write(codec,
MSM8X16_WCD_A_ANALOG_SEC_ACCESS,
0xA5);
snd_soc_write(codec,
MSM8X16_WCD_A_ANALOG_PERPH_RESET_CTL3,
0x0F);
snd_soc_write(codec,
MSM8X16_WCD_A_ANALOG_MASTER_BIAS_CTL,
0x30);
if (get_codec_version(msm8x16_wcd) < CAJON_2_0) {
snd_soc_write(codec,
MSM8X16_WCD_A_ANALOG_CURRENT_LIMIT,
0x82);
} else {
snd_soc_write(codec,
MSM8X16_WCD_A_ANALOG_CURRENT_LIMIT,
0xA2);
}
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_DRV_CTL,
0x69, 0x69);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_DRV_DBG,
0x01, 0x01);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SLOPE_COMP_IP_ZERO,
0x88, 0x88);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_DAC_CTL,
0x03, 0x03);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_OCP_CTL,
0xE1, 0xE1);
if (get_codec_version(msm8x16_wcd) < CAJON_2_0) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x20, 0x20);
usleep_range(CODEC_DELAY_1_MS, CODEC_DELAY_1_1_MS);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BOOST_EN_CTL,
0xDF, 0xDF);
usleep_range(CODEC_DELAY_1_MS, CODEC_DELAY_1_1_MS);
} else {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BOOST_EN_CTL,
0x40, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x20, 0x20);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BOOST_EN_CTL,
0x80, 0x80);
usleep_range(500, 510);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BOOST_EN_CTL,
0x40, 0x40);
usleep_range(500, 510);
}
}
static void msm8x16_wcd_boost_off(struct snd_soc_codec *codec)
{
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BOOST_EN_CTL,
0xDF, 0x5F);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x20, 0x00);
}
static void msm8x16_wcd_bypass_on(struct snd_soc_codec *codec)
{
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
if (get_codec_version(msm8x16_wcd) < CAJON_2_0) {
snd_soc_write(codec,
MSM8X16_WCD_A_ANALOG_SEC_ACCESS,
0xA5);
snd_soc_write(codec,
MSM8X16_WCD_A_ANALOG_PERPH_RESET_CTL3,
0x07);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BYPASS_MODE,
0x02, 0x02);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BYPASS_MODE,
0x01, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BYPASS_MODE,
0x40, 0x40);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BYPASS_MODE,
0x80, 0x80);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BOOST_EN_CTL,
0xDF, 0xDF);
} else {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x20, 0x20);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BYPASS_MODE,
0x20, 0x20);
}
}
static void msm8x16_wcd_bypass_off(struct snd_soc_codec *codec)
{
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
if (get_codec_version(msm8x16_wcd) < CAJON_2_0) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BOOST_EN_CTL,
0x80, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BYPASS_MODE,
0x80, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BYPASS_MODE,
0x02, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BYPASS_MODE,
0x40, 0x00);
} else {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_BYPASS_MODE,
0x20, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x20, 0x00);
}
}
static void msm8x16_wcd_boost_mode_sequence(struct snd_soc_codec *codec,
int flag)
{
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
if (flag == EAR_PMU) {
switch (msm8x16_wcd->boost_option) {
case BOOST_SWITCH:
if (msm8x16_wcd->ear_pa_boost_set) {
msm8x16_wcd_boost_off(codec);
msm8x16_wcd_bypass_on(codec);
}
break;
case BOOST_ALWAYS:
msm8x16_wcd_boost_on(codec);
break;
case BYPASS_ALWAYS:
msm8x16_wcd_bypass_on(codec);
break;
case BOOST_ON_FOREVER:
msm8x16_wcd_boost_on(codec);
break;
default:
pr_err("%s: invalid boost option: %d\n", __func__,
msm8x16_wcd->boost_option);
break;
}
} else if (flag == EAR_PMD) {
switch (msm8x16_wcd->boost_option) {
case BOOST_SWITCH:
if (msm8x16_wcd->ear_pa_boost_set)
msm8x16_wcd_bypass_off(codec);
break;
case BOOST_ALWAYS:
msm8x16_wcd_boost_off(codec);
/* 80ms for EAR boost to settle down */
msleep(80);
break;
case BYPASS_ALWAYS:
/* nothing to do as bypass on always */
break;
case BOOST_ON_FOREVER:
/* nothing to do as boost on forever */
break;
default:
pr_err("%s: invalid boost option: %d\n", __func__,
msm8x16_wcd->boost_option);
break;
}
} else if (flag == SPK_PMU) {
switch (msm8x16_wcd->boost_option) {
case BOOST_SWITCH:
if (msm8x16_wcd->spk_boost_set) {
msm8x16_wcd_bypass_off(codec);
msm8x16_wcd_boost_on(codec);
}
break;
case BOOST_ALWAYS:
msm8x16_wcd_boost_on(codec);
break;
case BYPASS_ALWAYS:
msm8x16_wcd_bypass_on(codec);
break;
case BOOST_ON_FOREVER:
msm8x16_wcd_boost_on(codec);
break;
default:
pr_err("%s: invalid boost option: %d\n", __func__,
msm8x16_wcd->boost_option);
break;
}
} else if (flag == SPK_PMD) {
switch (msm8x16_wcd->boost_option) {
case BOOST_SWITCH:
if (msm8x16_wcd->spk_boost_set) {
msm8x16_wcd_boost_off(codec);
/*
* Add 40 ms sleep for the spk
* boost to settle down
*/
msleep(40);
}
break;
case BOOST_ALWAYS:
msm8x16_wcd_boost_off(codec);
/*
* Add 40 ms sleep for the spk
* boost to settle down
*/
msleep(40);
break;
case BYPASS_ALWAYS:
/* nothing to do as bypass on always */
break;
case BOOST_ON_FOREVER:
/* nothing to do as boost on forever */
break;
default:
pr_err("%s: invalid boost option: %d\n", __func__,
msm8x16_wcd->boost_option);
break;
}
}
}
static int msm8x16_wcd_dt_parse_vreg_info(struct device *dev,
struct msm8x16_wcd_regulator *vreg, const char *vreg_name,
bool ondemand)
{
int len, ret = 0;
const __be32 *prop;
char prop_name[CODEC_DT_MAX_PROP_SIZE];
struct device_node *regnode = NULL;
u32 prop_val;
snprintf(prop_name, CODEC_DT_MAX_PROP_SIZE, "%s-supply",
vreg_name);
regnode = of_parse_phandle(dev->of_node, prop_name, 0);
if (!regnode) {
dev_err(dev, "Looking up %s property in node %s failed\n",
prop_name, dev->of_node->full_name);
return -ENODEV;
}
dev_dbg(dev, "Looking up %s property in node %s\n",
prop_name, dev->of_node->full_name);
vreg->name = vreg_name;
vreg->ondemand = ondemand;
snprintf(prop_name, CODEC_DT_MAX_PROP_SIZE,
"qcom,%s-voltage", vreg_name);
prop = of_get_property(dev->of_node, prop_name, &len);
if (!prop || (len != (2 * sizeof(__be32)))) {
dev_err(dev, "%s %s property\n",
prop ? "invalid format" : "no", prop_name);
return -EINVAL;
}
vreg->min_uv = be32_to_cpup(&prop[0]);
vreg->max_uv = be32_to_cpup(&prop[1]);
snprintf(prop_name, CODEC_DT_MAX_PROP_SIZE,
"qcom,%s-current", vreg_name);
ret = of_property_read_u32(dev->of_node, prop_name, &prop_val);
if (ret) {
dev_err(dev, "Looking up %s property in node %s failed",
prop_name, dev->of_node->full_name);
return -EFAULT;
}
vreg->optimum_ua = prop_val;
dev_dbg(dev, "%s: vol=[%d %d]uV, curr=[%d]uA, ond %d\n\n", vreg->name,
vreg->min_uv, vreg->max_uv, vreg->optimum_ua, vreg->ondemand);
return 0;
}
static void msm8x16_wcd_dt_parse_boost_info(struct snd_soc_codec *codec)
{
struct msm8x16_wcd_priv *msm8x16_wcd_priv =
snd_soc_codec_get_drvdata(codec);
const char *prop_name = "qcom,cdc-boost-voltage";
int boost_voltage, ret;
ret = of_property_read_u32(codec->dev->of_node, prop_name,
&boost_voltage);
if (ret) {
dev_dbg(codec->dev, "Looking up %s property in node %s failed\n",
prop_name, codec->dev->of_node->full_name);
boost_voltage = DEFAULT_BOOST_VOLTAGE;
}
if (boost_voltage < MIN_BOOST_VOLTAGE ||
boost_voltage > MAX_BOOST_VOLTAGE) {
dev_err(codec->dev,
"Incorrect boost voltage. Reverting to default\n");
boost_voltage = DEFAULT_BOOST_VOLTAGE;
}
msm8x16_wcd_priv->boost_voltage =
VOLTAGE_CONVERTER(boost_voltage, MIN_BOOST_VOLTAGE,
BOOST_VOLTAGE_STEP);
dev_dbg(codec->dev, "Boost voltage value is: %d\n",
boost_voltage);
}
static void msm8x16_wcd_dt_parse_micbias_info(struct device *dev,
struct wcd9xxx_micbias_setting *micbias)
{
const char *prop_name = "qcom,cdc-micbias-cfilt-mv";
int ret;
ret = of_property_read_u32(dev->of_node, prop_name,
&micbias->cfilt1_mv);
if (ret) {
dev_dbg(dev, "Looking up %s property in node %s failed",
prop_name, dev->of_node->full_name);
micbias->cfilt1_mv = MICBIAS_DEFAULT_VAL;
}
}
static struct msm8x16_wcd_pdata *msm8x16_wcd_populate_dt_pdata(
struct device *dev)
{
struct msm8x16_wcd_pdata *pdata;
int ret, static_cnt, ond_cnt, idx, i;
const char *name = NULL;
const char *static_prop_name = "qcom,cdc-static-supplies";
const char *ond_prop_name = "qcom,cdc-on-demand-supplies";
const char *addr_prop_name = "qcom,dig-cdc-base-addr";
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return NULL;
static_cnt = of_property_count_strings(dev->of_node, static_prop_name);
if (IS_ERR_VALUE(static_cnt)) {
dev_err(dev, "%s: Failed to get static supplies %d\n", __func__,
static_cnt);
ret = -EINVAL;
goto err;
}
/* On-demand supply list is an optional property */
ond_cnt = of_property_count_strings(dev->of_node, ond_prop_name);
if (IS_ERR_VALUE(ond_cnt))
ond_cnt = 0;
BUG_ON(static_cnt <= 0 || ond_cnt < 0);
if ((static_cnt + ond_cnt) > ARRAY_SIZE(pdata->regulator)) {
dev_err(dev, "%s: Num of supplies %u > max supported %zd\n",
__func__, (static_cnt + ond_cnt),
ARRAY_SIZE(pdata->regulator));
ret = -EINVAL;
goto err;
}
for (idx = 0; idx < static_cnt; idx++) {
ret = of_property_read_string_index(dev->of_node,
static_prop_name, idx,
&name);
if (ret) {
dev_err(dev, "%s: of read string %s idx %d error %d\n",
__func__, static_prop_name, idx, ret);
goto err;
}
dev_dbg(dev, "%s: Found static cdc supply %s\n", __func__,
name);
ret = msm8x16_wcd_dt_parse_vreg_info(dev,
&pdata->regulator[idx],
name, false);
if (ret) {
dev_err(dev, "%s:err parsing vreg for %s idx %d\n",
__func__, name, idx);
goto err;
}
}
for (i = 0; i < ond_cnt; i++, idx++) {
ret = of_property_read_string_index(dev->of_node, ond_prop_name,
i, &name);
if (ret) {
dev_err(dev, "%s: err parsing on_demand for %s idx %d\n",
__func__, ond_prop_name, i);
goto err;
}
dev_dbg(dev, "%s: Found on-demand cdc supply %s\n", __func__,
name);
ret = msm8x16_wcd_dt_parse_vreg_info(dev,
&pdata->regulator[idx],
name, true);
if (ret) {
dev_err(dev, "%s: err parsing vreg on_demand for %s idx %d\n",
__func__, name, idx);
goto err;
}
}
msm8x16_wcd_dt_parse_micbias_info(dev, &pdata->micbias);
ret = of_property_read_u32(dev->of_node, addr_prop_name,
&pdata->dig_cdc_addr);
if (ret) {
dev_dbg(dev, "%s: could not find %s entry in dt\n",
__func__, addr_prop_name);
pdata->dig_cdc_addr = MSM8X16_DIGITAL_CODEC_BASE_ADDR;
}
return pdata;
err:
devm_kfree(dev, pdata);
dev_err(dev, "%s: Failed to populate DT data ret = %d\n",
__func__, ret);
return NULL;
}
static int msm8x16_wcd_codec_enable_on_demand_supply(
struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
int ret = 0;
struct snd_soc_codec *codec = w->codec;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
struct on_demand_supply *supply;
if (w->shift >= ON_DEMAND_SUPPLIES_MAX) {
dev_err(codec->dev, "%s: error index > MAX Demand supplies",
__func__);
ret = -EINVAL;
goto out;
}
dev_dbg(codec->dev, "%s: supply: %s event: %d ref: %d\n",
__func__, on_demand_supply_name[w->shift], event,
atomic_read(&msm8x16_wcd->on_demand_list[w->shift].ref));
supply = &msm8x16_wcd->on_demand_list[w->shift];
WARN_ONCE(!supply->supply, "%s isn't defined\n",
on_demand_supply_name[w->shift]);
if (!supply->supply) {
dev_err(codec->dev, "%s: err supply not present ond for %d",
__func__, w->shift);
goto out;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (atomic_inc_return(&supply->ref) == 1)
ret = regulator_enable(supply->supply);
if (ret)
dev_err(codec->dev, "%s: Failed to enable %s\n",
__func__,
on_demand_supply_name[w->shift]);
break;
case SND_SOC_DAPM_POST_PMD:
if (atomic_read(&supply->ref) == 0) {
dev_dbg(codec->dev, "%s: %s supply has been disabled.\n",
__func__, on_demand_supply_name[w->shift]);
goto out;
}
if (atomic_dec_return(&supply->ref) == 0)
ret = regulator_disable(supply->supply);
if (ret)
dev_err(codec->dev, "%s: Failed to disable %s\n",
__func__,
on_demand_supply_name[w->shift]);
break;
default:
break;
}
out:
return ret;
}
static int msm8x16_wcd_codec_enable_clock_block(struct snd_soc_codec *codec,
int enable)
{
struct msm8916_asoc_mach_data *pdata = NULL;
pdata = snd_soc_card_get_drvdata(codec->component.card);
if (enable) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_CLK_MCLK_CTL, 0x01, 0x01);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_CLK_PDM_CTL, 0x03, 0x03);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MASTER_BIAS_CTL, 0x30, 0x30);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_RST_CTL, 0x80, 0x80);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_TOP_CLK_CTL, 0x0C, 0x0C);
if (pdata->mclk_freq == MCLK_RATE_12P288MHZ)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_TOP_CTL, 0x01, 0x00);
else if (pdata->mclk_freq == MCLK_RATE_9P6MHZ)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_TOP_CTL, 0x01, 0x01);
} else {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_TOP_CLK_CTL, 0x0C, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_CLK_PDM_CTL, 0x03, 0x00);
}
return 0;
}
static int msm8x16_wcd_codec_enable_charge_pump(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s: event = %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
msm8x16_wcd_codec_enable_clock_block(codec, 1);
if (!(strcmp(w->name, "EAR CP"))) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x80, 0x80);
msm8x16_wcd_boost_mode_sequence(codec, EAR_PMU);
} else if (get_codec_version(msm8x16_wcd) == DIANGU) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x80, 0x80);
} else {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0xC0, 0xC0);
}
break;
case SND_SOC_DAPM_POST_PMU:
usleep_range(CODEC_DELAY_1_MS, CODEC_DELAY_1_1_MS);
break;
case SND_SOC_DAPM_POST_PMD:
usleep_range(CODEC_DELAY_1_MS, CODEC_DELAY_1_1_MS);
if (!(strcmp(w->name, "EAR CP"))) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x80, 0x00);
if (msm8x16_wcd->boost_option != BOOST_ALWAYS) {
dev_dbg(codec->dev,
"%s: boost_option:%d, tear down ear\n",
__func__, msm8x16_wcd->boost_option);
msm8x16_wcd_boost_mode_sequence(codec, EAR_PMD);
}
/*
* Reset pa select bit from ear to hph after ear pa
* is disabled and HPH DAC disable to reduce ear
* turn off pop and avoid HPH pop in concurrency
*/
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_EAR_CTL, 0x80, 0x00);
} else {
if (get_codec_version(msm8x16_wcd) < DIANGU)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x40, 0x00);
if (msm8x16_wcd->rx_bias_count == 0)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x80, 0x00);
dev_dbg(codec->dev, "%s: rx_bias_count = %d\n",
__func__, msm8x16_wcd->rx_bias_count);
}
break;
}
return 0;
}
static int msm8x16_wcd_ear_pa_boost_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
ucontrol->value.integer.value[0] =
(msm8x16_wcd->ear_pa_boost_set ? 1 : 0);
dev_dbg(codec->dev, "%s: msm8x16_wcd->ear_pa_boost_set = %d\n",
__func__, msm8x16_wcd->ear_pa_boost_set);
return 0;
}
static int msm8x16_wcd_ear_pa_boost_set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
__func__, ucontrol->value.integer.value[0]);
msm8x16_wcd->ear_pa_boost_set =
(ucontrol->value.integer.value[0] ? true : false);
return 0;
}
static int msm8x16_wcd_pa_gain_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u8 ear_pa_gain;
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
ear_pa_gain = snd_soc_read(codec, MSM8X16_WCD_A_ANALOG_RX_EAR_CTL);
ear_pa_gain = (ear_pa_gain >> 5) & 0x1;
if (ear_pa_gain == 0x00) {
ucontrol->value.integer.value[0] = 0;
} else if (ear_pa_gain == 0x01) {
ucontrol->value.integer.value[0] = 1;
} else {
dev_err(codec->dev, "%s: ERROR: Unsupported Ear Gain = 0x%x\n",
__func__, ear_pa_gain);
return -EINVAL;
}
ucontrol->value.integer.value[0] = ear_pa_gain;
dev_dbg(codec->dev, "%s: ear_pa_gain = 0x%x\n", __func__, ear_pa_gain);
return 0;
}
static int msm8x16_wcd_loopback_mode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8916_asoc_mach_data *pdata = NULL;
pdata = snd_soc_card_get_drvdata(codec->component.card);
dev_dbg(codec->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
__func__, ucontrol->value.integer.value[0]);
return pdata->lb_mode;
}
static int msm8x16_wcd_loopback_mode_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8916_asoc_mach_data *pdata = NULL;
pdata = snd_soc_card_get_drvdata(codec->component.card);
dev_dbg(codec->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
__func__, ucontrol->value.integer.value[0]);
switch (ucontrol->value.integer.value[0]) {
case 0:
pdata->lb_mode = false;
break;
case 1:
pdata->lb_mode = true;
break;
default:
return -EINVAL;
}
return 0;
}
static int msm8x16_wcd_pa_gain_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u8 ear_pa_gain;
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
dev_dbg(codec->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
__func__, ucontrol->value.integer.value[0]);
switch (ucontrol->value.integer.value[0]) {
case 0:
ear_pa_gain = 0x00;
break;
case 1:
ear_pa_gain = 0x20;
break;
default:
return -EINVAL;
}
snd_soc_update_bits(codec, MSM8X16_WCD_A_ANALOG_RX_EAR_CTL,
0x20, ear_pa_gain);
return 0;
}
static int msm8x16_wcd_hph_mode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
if (msm8x16_wcd->hph_mode == NORMAL_MODE) {
ucontrol->value.integer.value[0] = 0;
} else if (msm8x16_wcd->hph_mode == HD2_MODE) {
ucontrol->value.integer.value[0] = 1;
} else {
dev_err(codec->dev, "%s: ERROR: Default HPH Mode= %d\n",
__func__, msm8x16_wcd->hph_mode);
}
dev_dbg(codec->dev, "%s: msm8x16_wcd->hph_mode = %d\n", __func__,
msm8x16_wcd->hph_mode);
return 0;
}
static int msm8x16_wcd_hph_mode_set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
__func__, ucontrol->value.integer.value[0]);
switch (ucontrol->value.integer.value[0]) {
case 0:
msm8x16_wcd->hph_mode = NORMAL_MODE;
break;
case 1:
if (get_codec_version(msm8x16_wcd) >= DIANGU)
msm8x16_wcd->hph_mode = HD2_MODE;
break;
default:
msm8x16_wcd->hph_mode = NORMAL_MODE;
break;
}
dev_dbg(codec->dev, "%s: msm8x16_wcd->hph_mode_set = %d\n",
__func__, msm8x16_wcd->hph_mode);
return 0;
}
static int msm8x16_wcd_boost_option_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
if (msm8x16_wcd->boost_option == BOOST_SWITCH) {
ucontrol->value.integer.value[0] = 0;
} else if (msm8x16_wcd->boost_option == BOOST_ALWAYS) {
ucontrol->value.integer.value[0] = 1;
} else if (msm8x16_wcd->boost_option == BYPASS_ALWAYS) {
ucontrol->value.integer.value[0] = 2;
} else if (msm8x16_wcd->boost_option == BOOST_ON_FOREVER) {
ucontrol->value.integer.value[0] = 3;
} else {
dev_err(codec->dev, "%s: ERROR: Unsupported Boost option= %d\n",
__func__, msm8x16_wcd->boost_option);
return -EINVAL;
}
dev_dbg(codec->dev, "%s: msm8x16_wcd->boost_option = %d\n", __func__,
msm8x16_wcd->boost_option);
return 0;
}
static int msm8x16_wcd_boost_option_set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
__func__, ucontrol->value.integer.value[0]);
switch (ucontrol->value.integer.value[0]) {
case 0:
msm8x16_wcd->boost_option = BOOST_SWITCH;
break;
case 1:
msm8x16_wcd->boost_option = BOOST_ALWAYS;
break;
case 2:
msm8x16_wcd->boost_option = BYPASS_ALWAYS;
msm8x16_wcd_bypass_on(codec);
break;
case 3:
msm8x16_wcd->boost_option = BOOST_ON_FOREVER;
msm8x16_wcd_boost_on(codec);
break;
default:
pr_err("%s: invalid boost option: %d\n", __func__,
msm8x16_wcd->boost_option);
return -EINVAL;
}
dev_dbg(codec->dev, "%s: msm8x16_wcd->boost_option_set = %d\n",
__func__, msm8x16_wcd->boost_option);
return 0;
}
static int msm8x16_wcd_spk_boost_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
if (msm8x16_wcd->spk_boost_set == false) {
ucontrol->value.integer.value[0] = 0;
} else if (msm8x16_wcd->spk_boost_set == true) {
ucontrol->value.integer.value[0] = 1;
} else {
dev_err(codec->dev, "%s: ERROR: Unsupported Speaker Boost = %d\n",
__func__, msm8x16_wcd->spk_boost_set);
return -EINVAL;
}
dev_dbg(codec->dev, "%s: msm8x16_wcd->spk_boost_set = %d\n", __func__,
msm8x16_wcd->spk_boost_set);
return 0;
}
static int msm8x16_wcd_spk_boost_set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
__func__, ucontrol->value.integer.value[0]);
switch (ucontrol->value.integer.value[0]) {
case 0:
msm8x16_wcd->spk_boost_set = false;
break;
case 1:
msm8x16_wcd->spk_boost_set = true;
break;
default:
return -EINVAL;
}
dev_dbg(codec->dev, "%s: msm8x16_wcd->spk_boost_set = %d\n",
__func__, msm8x16_wcd->spk_boost_set);
return 0;
}
static int msm8x16_wcd_ext_spk_boost_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
if (msm8x16_wcd->ext_spk_boost_set == false)
ucontrol->value.integer.value[0] = 0;
else
ucontrol->value.integer.value[0] = 1;
dev_dbg(codec->dev, "%s: msm8x16_wcd->ext_spk_boost_set = %d\n",
__func__, msm8x16_wcd->ext_spk_boost_set);
return 0;
}
static int msm8x16_wcd_ext_spk_boost_set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
__func__, ucontrol->value.integer.value[0]);
switch (ucontrol->value.integer.value[0]) {
case 0:
msm8x16_wcd->ext_spk_boost_set = false;
break;
case 1:
msm8x16_wcd->ext_spk_boost_set = true;
break;
default:
return -EINVAL;
}
dev_dbg(codec->dev, "%s: msm8x16_wcd->spk_boost_set = %d\n",
__func__, msm8x16_wcd->spk_boost_set);
return 0;
}
static int msm8x16_wcd_get_iir_enable_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
ucontrol->value.integer.value[0] =
(snd_soc_read(codec,
(MSM8X16_WCD_A_CDC_IIR1_CTL + 64 * iir_idx)) &
(1 << band_idx)) != 0;
dev_dbg(codec->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[0]);
return 0;
}
static int msm8x16_wcd_put_iir_enable_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
int value = ucontrol->value.integer.value[0];
/* Mask first 5 bits, 6-8 are reserved */
snd_soc_update_bits(codec,
(MSM8X16_WCD_A_CDC_IIR1_CTL + 64 * iir_idx),
(1 << band_idx), (value << band_idx));
dev_dbg(codec->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
iir_idx, band_idx,
((snd_soc_read(codec,
(MSM8X16_WCD_A_CDC_IIR1_CTL + 64 * iir_idx)) &
(1 << band_idx)) != 0));
return 0;
}
static uint32_t get_iir_band_coeff(struct snd_soc_codec *codec,
int iir_idx, int band_idx,
int coeff_idx)
{
uint32_t value = 0;
/* Address does not automatically update if reading */
snd_soc_write(codec,
(MSM8X16_WCD_A_CDC_IIR1_COEF_B1_CTL + 64 * iir_idx),
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t)) & 0x7F);
value |= snd_soc_read(codec,
(MSM8X16_WCD_A_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx));
snd_soc_write(codec,
(MSM8X16_WCD_A_CDC_IIR1_COEF_B1_CTL + 64 * iir_idx),
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t) + 1) & 0x7F);
value |= (snd_soc_read(codec,
(MSM8X16_WCD_A_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx)) << 8);
snd_soc_write(codec,
(MSM8X16_WCD_A_CDC_IIR1_COEF_B1_CTL + 64 * iir_idx),
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t) + 2) & 0x7F);
value |= (snd_soc_read(codec,
(MSM8X16_WCD_A_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx)) << 16);
snd_soc_write(codec,
(MSM8X16_WCD_A_CDC_IIR1_COEF_B1_CTL + 64 * iir_idx),
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t) + 3) & 0x7F);
/* Mask bits top 2 bits since they are reserved */
value |= ((snd_soc_read(codec, (MSM8X16_WCD_A_CDC_IIR1_COEF_B2_CTL
+ 64 * iir_idx)) & 0x3f) << 24);
return value;
}
static int msm8x16_wcd_get_iir_band_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
ucontrol->value.integer.value[0] =
get_iir_band_coeff(codec, iir_idx, band_idx, 0);
ucontrol->value.integer.value[1] =
get_iir_band_coeff(codec, iir_idx, band_idx, 1);
ucontrol->value.integer.value[2] =
get_iir_band_coeff(codec, iir_idx, band_idx, 2);
ucontrol->value.integer.value[3] =
get_iir_band_coeff(codec, iir_idx, band_idx, 3);
ucontrol->value.integer.value[4] =
get_iir_band_coeff(codec, iir_idx, band_idx, 4);
dev_dbg(codec->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
"%s: IIR #%d band #%d b1 = 0x%x\n"
"%s: IIR #%d band #%d b2 = 0x%x\n"
"%s: IIR #%d band #%d a1 = 0x%x\n"
"%s: IIR #%d band #%d a2 = 0x%x\n",
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[0],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[1],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[2],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[3],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[4]);
return 0;
}
static void set_iir_band_coeff(struct snd_soc_codec *codec,
int iir_idx, int band_idx,
uint32_t value)
{
snd_soc_write(codec,
(MSM8X16_WCD_A_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx),
(value & 0xFF));
snd_soc_write(codec,
(MSM8X16_WCD_A_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx),
(value >> 8) & 0xFF);
snd_soc_write(codec,
(MSM8X16_WCD_A_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx),
(value >> 16) & 0xFF);
/* Mask top 2 bits, 7-8 are reserved */
snd_soc_write(codec,
(MSM8X16_WCD_A_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx),
(value >> 24) & 0x3F);
}
static int msm8x16_wcd_put_iir_band_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
/* Mask top bit it is reserved */
/* Updates addr automatically for each B2 write */
snd_soc_write(codec,
(MSM8X16_WCD_A_CDC_IIR1_COEF_B1_CTL + 64 * iir_idx),
(band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
set_iir_band_coeff(codec, iir_idx, band_idx,
ucontrol->value.integer.value[0]);
set_iir_band_coeff(codec, iir_idx, band_idx,
ucontrol->value.integer.value[1]);
set_iir_band_coeff(codec, iir_idx, band_idx,
ucontrol->value.integer.value[2]);
set_iir_band_coeff(codec, iir_idx, band_idx,
ucontrol->value.integer.value[3]);
set_iir_band_coeff(codec, iir_idx, band_idx,
ucontrol->value.integer.value[4]);
dev_dbg(codec->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
"%s: IIR #%d band #%d b1 = 0x%x\n"
"%s: IIR #%d band #%d b2 = 0x%x\n"
"%s: IIR #%d band #%d a1 = 0x%x\n"
"%s: IIR #%d band #%d a2 = 0x%x\n",
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 0),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 1),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 2),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 3),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 4));
return 0;
}
static int msm8x16_wcd_compander_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
int comp_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int rx_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
dev_dbg(codec->dev, "%s: msm8x16_wcd->comp[%d]_enabled[%d] = %d\n",
__func__, comp_idx, rx_idx,
msm8x16_wcd->comp_enabled[rx_idx]);
ucontrol->value.integer.value[0] = msm8x16_wcd->comp_enabled[rx_idx];
dev_dbg(codec->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
__func__, ucontrol->value.integer.value[0]);
return 0;
}
static int msm8x16_wcd_compander_set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
int comp_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int rx_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
int value = ucontrol->value.integer.value[0];
dev_dbg(codec->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
__func__, ucontrol->value.integer.value[0]);
if (get_codec_version(msm8x16_wcd) >= DIANGU) {
if (!value)
msm8x16_wcd->comp_enabled[rx_idx] = 0;
else
msm8x16_wcd->comp_enabled[rx_idx] = comp_idx;
}
dev_dbg(codec->dev, "%s: msm8x16_wcd->comp[%d]_enabled[%d] = %d\n",
__func__, comp_idx, rx_idx,
msm8x16_wcd->comp_enabled[rx_idx]);
return 0;
}
static const char * const msm8x16_wcd_loopback_mode_ctrl_text[] = {
"DISABLE", "ENABLE"};
static const struct soc_enum msm8x16_wcd_loopback_mode_ctl_enum[] = {
SOC_ENUM_SINGLE_EXT(2, msm8x16_wcd_loopback_mode_ctrl_text),
};
static const char * const msm8x16_wcd_ear_pa_boost_ctrl_text[] = {
"DISABLE", "ENABLE"};
static const struct soc_enum msm8x16_wcd_ear_pa_boost_ctl_enum[] = {
SOC_ENUM_SINGLE_EXT(2, msm8x16_wcd_ear_pa_boost_ctrl_text),
};
static const char * const msm8x16_wcd_ear_pa_gain_text[] = {
"POS_1P5_DB", "POS_6_DB"};
static const struct soc_enum msm8x16_wcd_ear_pa_gain_enum[] = {
SOC_ENUM_SINGLE_EXT(2, msm8x16_wcd_ear_pa_gain_text),
};
static const char * const msm8x16_wcd_boost_option_ctrl_text[] = {
"BOOST_SWITCH", "BOOST_ALWAYS", "BYPASS_ALWAYS",
"BOOST_ON_FOREVER"};
static const struct soc_enum msm8x16_wcd_boost_option_ctl_enum[] = {
SOC_ENUM_SINGLE_EXT(4, msm8x16_wcd_boost_option_ctrl_text),
};
static const char * const msm8x16_wcd_spk_boost_ctrl_text[] = {
"DISABLE", "ENABLE"};
static const struct soc_enum msm8x16_wcd_spk_boost_ctl_enum[] = {
SOC_ENUM_SINGLE_EXT(2, msm8x16_wcd_spk_boost_ctrl_text),
};
static const char * const msm8x16_wcd_ext_spk_boost_ctrl_text[] = {
"DISABLE", "ENABLE"};
static const struct soc_enum msm8x16_wcd_ext_spk_boost_ctl_enum[] = {
SOC_ENUM_SINGLE_EXT(2, msm8x16_wcd_ext_spk_boost_ctrl_text),
};
static const char * const msm8x16_wcd_hph_mode_ctrl_text[] = {
"NORMAL", "HD2"};
static const struct soc_enum msm8x16_wcd_hph_mode_ctl_enum[] = {
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(msm8x16_wcd_hph_mode_ctrl_text),
msm8x16_wcd_hph_mode_ctrl_text),
};
/*cut of frequency for high pass filter*/
static const char * const cf_text[] = {
"MIN_3DB_4Hz", "MIN_3DB_75Hz", "MIN_3DB_150Hz"
};
static const struct soc_enum cf_dec1_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_TX1_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_dec2_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_TX2_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_rxmix1_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_RX1_B4_CTL, 0, 3, cf_text);
static const struct soc_enum cf_rxmix2_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_RX2_B4_CTL, 0, 3, cf_text);
static const struct soc_enum cf_rxmix3_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_RX3_B4_CTL, 0, 3, cf_text);
static const struct snd_kcontrol_new msm8x16_wcd_snd_controls[] = {
SOC_ENUM_EXT("RX HPH Mode", msm8x16_wcd_hph_mode_ctl_enum[0],
msm8x16_wcd_hph_mode_get, msm8x16_wcd_hph_mode_set),
SOC_ENUM_EXT("Boost Option", msm8x16_wcd_boost_option_ctl_enum[0],
msm8x16_wcd_boost_option_get, msm8x16_wcd_boost_option_set),
SOC_ENUM_EXT("EAR PA Boost", msm8x16_wcd_ear_pa_boost_ctl_enum[0],
msm8x16_wcd_ear_pa_boost_get, msm8x16_wcd_ear_pa_boost_set),
SOC_ENUM_EXT("EAR PA Gain", msm8x16_wcd_ear_pa_gain_enum[0],
msm8x16_wcd_pa_gain_get, msm8x16_wcd_pa_gain_put),
SOC_ENUM_EXT("Speaker Boost", msm8x16_wcd_spk_boost_ctl_enum[0],
msm8x16_wcd_spk_boost_get, msm8x16_wcd_spk_boost_set),
SOC_ENUM_EXT("Ext Spk Boost", msm8x16_wcd_ext_spk_boost_ctl_enum[0],
msm8x16_wcd_ext_spk_boost_get, msm8x16_wcd_ext_spk_boost_set),
SOC_ENUM_EXT("LOOPBACK Mode", msm8x16_wcd_loopback_mode_ctl_enum[0],
msm8x16_wcd_loopback_mode_get, msm8x16_wcd_loopback_mode_put),
SOC_SINGLE_TLV("ADC1 Volume", MSM8X16_WCD_A_ANALOG_TX_1_EN, 3,
8, 0, analog_gain),
SOC_SINGLE_TLV("ADC2 Volume", MSM8X16_WCD_A_ANALOG_TX_2_EN, 3,
8, 0, analog_gain),
SOC_SINGLE_TLV("ADC3 Volume", MSM8X16_WCD_A_ANALOG_TX_3_EN, 3,
8, 0, analog_gain),
SOC_SINGLE_SX_TLV("RX1 Digital Volume",
MSM8X16_WCD_A_CDC_RX1_VOL_CTL_B2_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("RX2 Digital Volume",
MSM8X16_WCD_A_CDC_RX2_VOL_CTL_B2_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("RX3 Digital Volume",
MSM8X16_WCD_A_CDC_RX3_VOL_CTL_B2_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("DEC1 Volume",
MSM8X16_WCD_A_CDC_TX1_VOL_CTL_GAIN,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("DEC2 Volume",
MSM8X16_WCD_A_CDC_TX2_VOL_CTL_GAIN,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("IIR1 INP1 Volume",
MSM8X16_WCD_A_CDC_IIR1_GAIN_B1_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("IIR1 INP2 Volume",
MSM8X16_WCD_A_CDC_IIR1_GAIN_B2_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("IIR1 INP3 Volume",
MSM8X16_WCD_A_CDC_IIR1_GAIN_B3_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("IIR1 INP4 Volume",
MSM8X16_WCD_A_CDC_IIR1_GAIN_B4_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("IIR2 INP1 Volume",
MSM8X16_WCD_A_CDC_IIR2_GAIN_B1_CTL,
0, -84, 40, digital_gain),
SOC_ENUM("TX1 HPF cut off", cf_dec1_enum),
SOC_ENUM("TX2 HPF cut off", cf_dec2_enum),
SOC_SINGLE("TX1 HPF Switch",
MSM8X16_WCD_A_CDC_TX1_MUX_CTL, 3, 1, 0),
SOC_SINGLE("TX2 HPF Switch",
MSM8X16_WCD_A_CDC_TX2_MUX_CTL, 3, 1, 0),
SOC_SINGLE("RX1 HPF Switch",
MSM8X16_WCD_A_CDC_RX1_B5_CTL, 2, 1, 0),
SOC_SINGLE("RX2 HPF Switch",
MSM8X16_WCD_A_CDC_RX2_B5_CTL, 2, 1, 0),
SOC_SINGLE("RX3 HPF Switch",
MSM8X16_WCD_A_CDC_RX3_B5_CTL, 2, 1, 0),
SOC_ENUM("RX1 HPF cut off", cf_rxmix1_enum),
SOC_ENUM("RX2 HPF cut off", cf_rxmix2_enum),
SOC_ENUM("RX3 HPF cut off", cf_rxmix3_enum),
SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0,
msm8x16_wcd_get_iir_enable_audio_mixer,
msm8x16_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0,
msm8x16_wcd_get_iir_enable_audio_mixer,
msm8x16_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0,
msm8x16_wcd_get_iir_enable_audio_mixer,
msm8x16_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0,
msm8x16_wcd_get_iir_enable_audio_mixer,
msm8x16_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0,
msm8x16_wcd_get_iir_enable_audio_mixer,
msm8x16_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band1", IIR2, BAND1, 1, 0,
msm8x16_wcd_get_iir_enable_audio_mixer,
msm8x16_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band2", IIR2, BAND2, 1, 0,
msm8x16_wcd_get_iir_enable_audio_mixer,
msm8x16_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band3", IIR2, BAND3, 1, 0,
msm8x16_wcd_get_iir_enable_audio_mixer,
msm8x16_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band4", IIR2, BAND4, 1, 0,
msm8x16_wcd_get_iir_enable_audio_mixer,
msm8x16_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band5", IIR2, BAND5, 1, 0,
msm8x16_wcd_get_iir_enable_audio_mixer,
msm8x16_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band1", IIR1, BAND1, 255, 0, 5,
msm8x16_wcd_get_iir_band_audio_mixer,
msm8x16_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band2", IIR1, BAND2, 255, 0, 5,
msm8x16_wcd_get_iir_band_audio_mixer,
msm8x16_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band3", IIR1, BAND3, 255, 0, 5,
msm8x16_wcd_get_iir_band_audio_mixer,
msm8x16_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band4", IIR1, BAND4, 255, 0, 5,
msm8x16_wcd_get_iir_band_audio_mixer,
msm8x16_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band5", IIR1, BAND5, 255, 0, 5,
msm8x16_wcd_get_iir_band_audio_mixer,
msm8x16_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band1", IIR2, BAND1, 255, 0, 5,
msm8x16_wcd_get_iir_band_audio_mixer,
msm8x16_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band2", IIR2, BAND2, 255, 0, 5,
msm8x16_wcd_get_iir_band_audio_mixer,
msm8x16_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band3", IIR2, BAND3, 255, 0, 5,
msm8x16_wcd_get_iir_band_audio_mixer,
msm8x16_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band4", IIR2, BAND4, 255, 0, 5,
msm8x16_wcd_get_iir_band_audio_mixer,
msm8x16_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band5", IIR2, BAND5, 255, 0, 5,
msm8x16_wcd_get_iir_band_audio_mixer,
msm8x16_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_EXT("COMP0 RX1", COMPANDER_1, MSM8X16_WCD_RX1, 1, 0,
msm8x16_wcd_compander_get, msm8x16_wcd_compander_set),
SOC_SINGLE_EXT("COMP0 RX2", COMPANDER_1, MSM8X16_WCD_RX2, 1, 0,
msm8x16_wcd_compander_get, msm8x16_wcd_compander_set),
};
static int tombak_hph_impedance_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int ret;
uint32_t zl, zr;
bool hphr;
struct soc_multi_mixer_control *mc;
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8x16_wcd_priv *priv = snd_soc_codec_get_drvdata(codec);
mc = (struct soc_multi_mixer_control *)(kcontrol->private_value);
hphr = mc->shift;
ret = wcd_mbhc_get_impedance(&priv->mbhc, &zl, &zr);
if (ret)
pr_debug("%s: Failed to get mbhc imped", __func__);
pr_debug("%s: zl %u, zr %u\n", __func__, zl, zr);
ucontrol->value.integer.value[0] = hphr ? zr : zl;
return 0;
}
static const struct snd_kcontrol_new impedance_detect_controls[] = {
SOC_SINGLE_EXT("HPHL Impedance", 0, 0, UINT_MAX, 0,
tombak_hph_impedance_get, NULL),
SOC_SINGLE_EXT("HPHR Impedance", 0, 1, UINT_MAX, 0,
tombak_hph_impedance_get, NULL),
};
static int tombak_get_hph_type(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm8x16_wcd_priv *priv = snd_soc_codec_get_drvdata(codec);
struct wcd_mbhc *mbhc;
if (!priv) {
pr_debug("%s: msm8x16-wcd private data is NULL\n",
__func__);
return -EINVAL;
}
mbhc = &priv->mbhc;
if (!mbhc) {
pr_debug("%s: mbhc not initialized\n", __func__);
return -EINVAL;
}
ucontrol->value.integer.value[0] = (u32) mbhc->hph_type;
pr_debug("%s: hph_type = %u\n", __func__, mbhc->hph_type);
return 0;
}
static const struct snd_kcontrol_new hph_type_detect_controls[] = {
SOC_SINGLE_EXT("HPH Type", 0, 0, UINT_MAX, 0,
tombak_get_hph_type, NULL),
};
static const char * const rx_mix1_text[] = {
"ZERO", "IIR1", "IIR2", "RX1", "RX2", "RX3"
};
static const char * const rx_mix2_text[] = {
"ZERO", "IIR1", "IIR2"
};
static const char * const dec_mux_text[] = {
"ZERO", "ADC1", "ADC2", "ADC3", "DMIC1", "DMIC2"
};
static const char * const dec3_mux_text[] = {
"ZERO", "DMIC3"
};
static const char * const dec4_mux_text[] = {
"ZERO", "DMIC4"
};
static const char * const adc2_mux_text[] = {
"ZERO", "INP2", "INP3"
};
static const char * const ext_spk_text[] = {
"Off", "On"
};
static const char * const wsa_spk_text[] = {
"ZERO", "WSA"
};
static const char * const rdac2_mux_text[] = {
"ZERO", "RX2", "RX1"
};
static const char * const iir_inp1_text[] = {
"ZERO", "DEC1", "DEC2", "RX1", "RX2", "RX3"
};
static const struct soc_enum adc2_enum =
SOC_ENUM_SINGLE(SND_SOC_NOPM, 0,
ARRAY_SIZE(adc2_mux_text), adc2_mux_text);
static const struct soc_enum ext_spk_enum =
SOC_ENUM_SINGLE(SND_SOC_NOPM, 0,
ARRAY_SIZE(ext_spk_text), ext_spk_text);
static const struct soc_enum wsa_spk_enum =
SOC_ENUM_SINGLE(SND_SOC_NOPM, 0,
ARRAY_SIZE(wsa_spk_text), wsa_spk_text);
/* RX1 MIX1 */
static const struct soc_enum rx_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_CONN_RX1_B1_CTL,
0, 6, rx_mix1_text);
static const struct soc_enum rx_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_CONN_RX1_B1_CTL,
3, 6, rx_mix1_text);
static const struct soc_enum rx_mix1_inp3_chain_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_CONN_RX1_B2_CTL,
0, 6, rx_mix1_text);
/* RX1 MIX2 */
static const struct soc_enum rx_mix2_inp1_chain_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_CONN_RX1_B3_CTL,
0, 3, rx_mix2_text);
/* RX2 MIX1 */
static const struct soc_enum rx2_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_CONN_RX2_B1_CTL,
0, 6, rx_mix1_text);
static const struct soc_enum rx2_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_CONN_RX2_B1_CTL,
3, 6, rx_mix1_text);
static const struct soc_enum rx2_mix1_inp3_chain_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_CONN_RX2_B1_CTL,
0, 6, rx_mix1_text);
/* RX2 MIX2 */
static const struct soc_enum rx2_mix2_inp1_chain_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_CONN_RX2_B3_CTL,
0, 3, rx_mix2_text);
/* RX3 MIX1 */
static const struct soc_enum rx3_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_CONN_RX3_B1_CTL,
0, 6, rx_mix1_text);
static const struct soc_enum rx3_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_CONN_RX3_B1_CTL,
3, 6, rx_mix1_text);
static const struct soc_enum rx3_mix1_inp3_chain_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_CONN_RX3_B1_CTL,
0, 6, rx_mix1_text);
/* DEC */
static const struct soc_enum dec1_mux_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_CONN_TX_B1_CTL,
0, 6, dec_mux_text);
static const struct soc_enum dec2_mux_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_CONN_TX_B1_CTL,
3, 6, dec_mux_text);
static const struct soc_enum dec3_mux_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_TX3_MUX_CTL, 0,
ARRAY_SIZE(dec3_mux_text), dec3_mux_text);
static const struct soc_enum dec4_mux_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_TX4_MUX_CTL, 0,
ARRAY_SIZE(dec4_mux_text), dec4_mux_text);
static const struct soc_enum rdac2_mux_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_DIGITAL_CDC_CONN_HPHR_DAC_CTL,
0, 3, rdac2_mux_text);
static const struct soc_enum iir1_inp1_mux_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_CONN_EQ1_B1_CTL,
0, 6, iir_inp1_text);
static const struct soc_enum iir2_inp1_mux_enum =
SOC_ENUM_SINGLE(MSM8X16_WCD_A_CDC_CONN_EQ2_B1_CTL,
0, 6, iir_inp1_text);
static const struct snd_kcontrol_new ext_spk_mux =
SOC_DAPM_ENUM("Ext Spk Switch Mux", ext_spk_enum);
static const struct snd_kcontrol_new rx_mix1_inp1_mux =
SOC_DAPM_ENUM("RX1 MIX1 INP1 Mux", rx_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx_mix1_inp2_mux =
SOC_DAPM_ENUM("RX1 MIX1 INP2 Mux", rx_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx_mix1_inp3_mux =
SOC_DAPM_ENUM("RX1 MIX1 INP3 Mux", rx_mix1_inp3_chain_enum);
static const struct snd_kcontrol_new rx2_mix1_inp1_mux =
SOC_DAPM_ENUM("RX2 MIX1 INP1 Mux", rx2_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx2_mix1_inp2_mux =
SOC_DAPM_ENUM("RX2 MIX1 INP2 Mux", rx2_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx2_mix1_inp3_mux =
SOC_DAPM_ENUM("RX2 MIX1 INP3 Mux", rx2_mix1_inp3_chain_enum);
static const struct snd_kcontrol_new rx3_mix1_inp1_mux =
SOC_DAPM_ENUM("RX3 MIX1 INP1 Mux", rx3_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx3_mix1_inp2_mux =
SOC_DAPM_ENUM("RX3 MIX1 INP2 Mux", rx3_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx3_mix1_inp3_mux =
SOC_DAPM_ENUM("RX3 MIX1 INP3 Mux", rx3_mix1_inp3_chain_enum);
static const struct snd_kcontrol_new rx1_mix2_inp1_mux =
SOC_DAPM_ENUM("RX1 MIX2 INP1 Mux", rx_mix2_inp1_chain_enum);
static const struct snd_kcontrol_new rx2_mix2_inp1_mux =
SOC_DAPM_ENUM("RX2 MIX2 INP1 Mux", rx2_mix2_inp1_chain_enum);
static const struct snd_kcontrol_new tx_adc2_mux =
SOC_DAPM_ENUM("ADC2 MUX Mux", adc2_enum);
static int msm8x16_wcd_put_dec_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dapm_widget_list *wlist =
dapm_kcontrol_get_wlist(kcontrol);
struct snd_soc_dapm_widget *w = wlist->widgets[0];
struct snd_soc_codec *codec = w->codec;
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int dec_mux, decimator;
char *dec_name = NULL;
char *widget_name = NULL;
char *temp;
u16 tx_mux_ctl_reg;
u8 adc_dmic_sel = 0x0;
int ret = 0;
char *dec_num;
if (ucontrol->value.enumerated.item[0] > e->items) {
dev_err(codec->dev, "%s: Invalid enum value: %d\n",
__func__, ucontrol->value.enumerated.item[0]);
return -EINVAL;
}
dec_mux = ucontrol->value.enumerated.item[0];
widget_name = kstrndup(w->name, 15, GFP_KERNEL);
if (!widget_name) {
dev_err(codec->dev, "%s: failed to copy string\n",
__func__);
return -ENOMEM;
}
temp = widget_name;
dec_name = strsep(&widget_name, " ");
widget_name = temp;
if (!dec_name) {
dev_err(codec->dev, "%s: Invalid decimator = %s\n",
__func__, w->name);
ret = -EINVAL;
goto out;
}
dec_num = strpbrk(dec_name, "12");
if (dec_num == NULL) {
dev_err(codec->dev, "%s: Invalid DEC selected\n", __func__);
ret = -EINVAL;
goto out;
}
ret = kstrtouint(dec_num, 10, &decimator);
if (ret < 0) {
dev_err(codec->dev, "%s: Invalid decimator = %s\n",
__func__, dec_name);
ret = -EINVAL;
goto out;
}
dev_dbg(w->dapm->dev, "%s(): widget = %s decimator = %u dec_mux = %u\n"
, __func__, w->name, decimator, dec_mux);
switch (decimator) {
case 1:
case 2:
if ((dec_mux == 4) || (dec_mux == 5))
adc_dmic_sel = 0x1;
else
adc_dmic_sel = 0x0;
break;
default:
dev_err(codec->dev, "%s: Invalid Decimator = %u\n",
__func__, decimator);
ret = -EINVAL;
goto out;
}
tx_mux_ctl_reg =
MSM8X16_WCD_A_CDC_TX1_MUX_CTL + 32 * (decimator - 1);
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x1, adc_dmic_sel);
ret = snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
out:
kfree(widget_name);
return ret;
}
#define MSM8X16_WCD_DEC_ENUM(xname, xenum) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_soc_info_enum_double, \
.get = snd_soc_dapm_get_enum_double, \
.put = msm8x16_wcd_put_dec_enum, \
.private_value = (unsigned long)&xenum }
static const struct snd_kcontrol_new dec1_mux =
MSM8X16_WCD_DEC_ENUM("DEC1 MUX Mux", dec1_mux_enum);
static const struct snd_kcontrol_new dec2_mux =
MSM8X16_WCD_DEC_ENUM("DEC2 MUX Mux", dec2_mux_enum);
static const struct snd_kcontrol_new dec3_mux =
SOC_DAPM_ENUM("DEC3 MUX Mux", dec3_mux_enum);
static const struct snd_kcontrol_new dec4_mux =
SOC_DAPM_ENUM("DEC4 MUX Mux", dec4_mux_enum);
static const struct snd_kcontrol_new rdac2_mux =
SOC_DAPM_ENUM("RDAC2 MUX Mux", rdac2_mux_enum);
static const struct snd_kcontrol_new iir1_inp1_mux =
SOC_DAPM_ENUM("IIR1 INP1 Mux", iir1_inp1_mux_enum);
static const char * const ear_text[] = {
"ZERO", "Switch",
};
static const struct soc_enum ear_enum =
SOC_ENUM_SINGLE(SND_SOC_NOPM, 0, ARRAY_SIZE(ear_text), ear_text);
static const struct snd_kcontrol_new ear_pa_mux[] = {
SOC_DAPM_ENUM("EAR_S", ear_enum)
};
static const struct snd_kcontrol_new wsa_spk_mux[] = {
SOC_DAPM_ENUM("WSA Spk Switch", wsa_spk_enum)
};
static const struct snd_kcontrol_new iir2_inp1_mux =
SOC_DAPM_ENUM("IIR2 INP1 Mux", iir2_inp1_mux_enum);
static const char * const hph_text[] = {
"ZERO", "Switch",
};
static const struct soc_enum hph_enum =
SOC_ENUM_SINGLE(SND_SOC_NOPM, 0, ARRAY_SIZE(hph_text), hph_text);
static const struct snd_kcontrol_new hphl_mux[] = {
SOC_DAPM_ENUM("HPHL", hph_enum)
};
static const struct snd_kcontrol_new hphr_mux[] = {
SOC_DAPM_ENUM("HPHR", hph_enum)
};
static const struct snd_kcontrol_new spkr_mux[] = {
SOC_DAPM_ENUM("SPK", hph_enum)
};
static const char * const lo_text[] = {
"ZERO", "Switch",
};
static const struct soc_enum lo_enum =
SOC_ENUM_SINGLE(SND_SOC_NOPM, 0, ARRAY_SIZE(hph_text), hph_text);
static const struct snd_kcontrol_new lo_mux[] = {
SOC_DAPM_ENUM("LINE_OUT", lo_enum)
};
static void msm8x16_wcd_codec_enable_adc_block(struct snd_soc_codec *codec,
int enable)
{
struct msm8x16_wcd_priv *wcd8x16 = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s %d\n", __func__, enable);
if (enable) {
wcd8x16->adc_count++;
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_ANA_CLK_CTL,
0x20, 0x20);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x10, 0x10);
} else {
wcd8x16->adc_count--;
if (!wcd8x16->adc_count) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x10, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_ANA_CLK_CTL,
0x20, 0x0);
}
}
}
static int msm8x16_wcd_codec_enable_adc(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
u16 adc_reg;
u8 init_bit_shift;
dev_dbg(codec->dev, "%s %d\n", __func__, event);
adc_reg = MSM8X16_WCD_A_ANALOG_TX_1_2_TEST_CTL_2;
if (w->reg == MSM8X16_WCD_A_ANALOG_TX_1_EN)
init_bit_shift = 5;
else if ((w->reg == MSM8X16_WCD_A_ANALOG_TX_2_EN) ||
(w->reg == MSM8X16_WCD_A_ANALOG_TX_3_EN))
init_bit_shift = 4;
else {
dev_err(codec->dev, "%s: Error, invalid adc register\n",
__func__);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
msm8x16_wcd_codec_enable_adc_block(codec, 1);
if (w->reg == MSM8X16_WCD_A_ANALOG_TX_2_EN)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MICB_1_CTL, 0x02, 0x02);
/*
* Add delay of 10 ms to give sufficient time for the voltage
* to shoot up and settle so that the txfe init does not
* happen when the input voltage is changing too much.
*/
usleep_range(10000, 10010);
snd_soc_update_bits(codec, adc_reg, 1 << init_bit_shift,
1 << init_bit_shift);
if (w->reg == MSM8X16_WCD_A_ANALOG_TX_1_EN)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_CONN_TX1_CTL,
0x03, 0x00);
else if ((w->reg == MSM8X16_WCD_A_ANALOG_TX_2_EN) ||
(w->reg == MSM8X16_WCD_A_ANALOG_TX_3_EN))
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_CONN_TX2_CTL,
0x03, 0x00);
usleep_range(CODEC_DELAY_1_MS, CODEC_DELAY_1_1_MS);
break;
case SND_SOC_DAPM_POST_PMU:
/*
* Add delay of 12 ms before deasserting the init
* to reduce the tx pop
*/
usleep_range(12000, 12010);
snd_soc_update_bits(codec, adc_reg, 1 << init_bit_shift, 0x00);
usleep_range(CODEC_DELAY_1_MS, CODEC_DELAY_1_1_MS);
break;
case SND_SOC_DAPM_POST_PMD:
msm8x16_wcd_codec_enable_adc_block(codec, 0);
if (w->reg == MSM8X16_WCD_A_ANALOG_TX_2_EN)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MICB_1_CTL, 0x02, 0x00);
if (w->reg == MSM8X16_WCD_A_ANALOG_TX_1_EN)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_CONN_TX1_CTL,
0x03, 0x02);
else if ((w->reg == MSM8X16_WCD_A_ANALOG_TX_2_EN) ||
(w->reg == MSM8X16_WCD_A_ANALOG_TX_3_EN))
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_CONN_TX2_CTL,
0x03, 0x02);
break;
}
return 0;
}
static int msm8x16_wcd_codec_enable_spk_pa(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(w->codec->dev, "%s %d %s\n", __func__, event, w->name);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_ANA_CLK_CTL, 0x10, 0x10);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_PWRSTG_CTL, 0x01, 0x01);
switch (msm8x16_wcd->boost_option) {
case BOOST_SWITCH:
if (!msm8x16_wcd->spk_boost_set)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_DAC_CTL,
0x10, 0x10);
break;
case BOOST_ALWAYS:
case BOOST_ON_FOREVER:
break;
case BYPASS_ALWAYS:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_DAC_CTL,
0x10, 0x10);
break;
default:
pr_err("%s: invalid boost option: %d\n", __func__,
msm8x16_wcd->boost_option);
break;
}
usleep_range(CODEC_DELAY_1_MS, CODEC_DELAY_1_1_MS);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_PWRSTG_CTL, 0xE0, 0xE0);
if (get_codec_version(msm8x16_wcd) != TOMBAK_1_0)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_EAR_CTL, 0x01, 0x01);
break;
case SND_SOC_DAPM_POST_PMU:
usleep_range(CODEC_DELAY_1_MS, CODEC_DELAY_1_1_MS);
switch (msm8x16_wcd->boost_option) {
case BOOST_SWITCH:
if (msm8x16_wcd->spk_boost_set)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_DRV_CTL,
0xEF, 0xEF);
else
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_DAC_CTL,
0x10, 0x00);
break;
case BOOST_ALWAYS:
case BOOST_ON_FOREVER:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_DRV_CTL,
0xEF, 0xEF);
break;
case BYPASS_ALWAYS:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_DAC_CTL, 0x10, 0x00);
break;
default:
pr_err("%s: invalid boost option: %d\n", __func__,
msm8x16_wcd->boost_option);
break;
}
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX3_B6_CTL, 0x01, 0x00);
snd_soc_update_bits(codec, w->reg, 0x80, 0x80);
break;
case SND_SOC_DAPM_PRE_PMD:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX3_B6_CTL, 0x01, 0x01);
msm8x16_wcd->mute_mask |= SPKR_PA_DISABLE;
/*
* Add 1 ms sleep for the mute to take effect
*/
usleep_range(CODEC_DELAY_1_MS, CODEC_DELAY_1_1_MS);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_DAC_CTL, 0x10, 0x10);
if (get_codec_version(msm8x16_wcd) < CAJON_2_0)
msm8x16_wcd_boost_mode_sequence(codec, SPK_PMD);
snd_soc_update_bits(codec, w->reg, 0x80, 0x00);
switch (msm8x16_wcd->boost_option) {
case BOOST_SWITCH:
if (msm8x16_wcd->spk_boost_set)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_DRV_CTL,
0xEF, 0x69);
break;
case BOOST_ALWAYS:
case BOOST_ON_FOREVER:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_DRV_CTL,
0xEF, 0x69);
break;
case BYPASS_ALWAYS:
break;
default:
pr_err("%s: invalid boost option: %d\n", __func__,
msm8x16_wcd->boost_option);
break;
}
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_PWRSTG_CTL, 0xE0, 0x00);
usleep_range(CODEC_DELAY_1_MS, CODEC_DELAY_1_1_MS);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_PWRSTG_CTL, 0x01, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_DAC_CTL, 0x10, 0x00);
if (get_codec_version(msm8x16_wcd) != TOMBAK_1_0)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_EAR_CTL, 0x01, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_ANA_CLK_CTL, 0x10, 0x00);
if (get_codec_version(msm8x16_wcd) >= CAJON_2_0)
msm8x16_wcd_boost_mode_sequence(codec, SPK_PMD);
break;
}
return 0;
}
static int msm8x16_wcd_codec_enable_dig_clk(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
struct msm8916_asoc_mach_data *pdata = NULL;
pdata = snd_soc_card_get_drvdata(codec->component.card);
dev_dbg(w->codec->dev, "%s event %d w->name %s\n", __func__,
event, w->name);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
msm8x16_wcd_codec_enable_clock_block(codec, 1);
snd_soc_update_bits(codec, w->reg, 0x80, 0x80);
msm8x16_wcd_boost_mode_sequence(codec, SPK_PMU);
break;
case SND_SOC_DAPM_POST_PMD:
if (msm8x16_wcd->rx_bias_count == 0)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x80, 0x00);
}
return 0;
}
static int msm8x16_wcd_codec_enable_dmic(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
u8 dmic_clk_en;
u16 dmic_clk_reg;
s32 *dmic_clk_cnt;
unsigned int dmic;
int ret;
char *dec_num = strpbrk(w->name, "12");
if (dec_num == NULL) {
dev_err(codec->dev, "%s: Invalid DMIC\n", __func__);
return -EINVAL;
}
ret = kstrtouint(dec_num, 10, &dmic);
if (ret < 0) {
dev_err(codec->dev,
"%s: Invalid DMIC line on the codec\n", __func__);
return -EINVAL;
}
switch (dmic) {
case 1:
case 2:
dmic_clk_en = 0x01;
dmic_clk_cnt = &(msm8x16_wcd->dmic_1_2_clk_cnt);
dmic_clk_reg = MSM8X16_WCD_A_CDC_CLK_DMIC_B1_CTL;
dev_dbg(codec->dev,
"%s() event %d DMIC%d dmic_1_2_clk_cnt %d\n",
__func__, event, dmic, *dmic_clk_cnt);
break;
default:
dev_err(codec->dev, "%s: Invalid DMIC Selection\n", __func__);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
(*dmic_clk_cnt)++;
if (*dmic_clk_cnt == 1) {
snd_soc_update_bits(codec, dmic_clk_reg,
0x0E, 0x02);
snd_soc_update_bits(codec, dmic_clk_reg,
dmic_clk_en, dmic_clk_en);
}
if (dmic == 1)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_TX1_DMIC_CTL, 0x07, 0x01);
if (dmic == 2)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_TX2_DMIC_CTL, 0x07, 0x01);
break;
case SND_SOC_DAPM_POST_PMD:
(*dmic_clk_cnt)--;
if (*dmic_clk_cnt == 0)
snd_soc_update_bits(codec, dmic_clk_reg,
dmic_clk_en, 0);
break;
}
return 0;
}
static bool msm8x16_wcd_use_mb(struct snd_soc_codec *codec)
{
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
if (get_codec_version(msm8x16_wcd) < CAJON)
return true;
else
return false;
}
static void msm8x16_wcd_set_auto_zeroing(struct snd_soc_codec *codec,
bool enable)
{
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
if (get_codec_version(msm8x16_wcd) < CONGA) {
if (enable)
/*
* Set autozeroing for special headset detection and
* buttons to work.
*/
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MICB_2_EN,
0x18, 0x10);
else
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MICB_2_EN,
0x18, 0x00);
} else {
pr_debug("%s: Auto Zeroing is not required from CONGA\n",
__func__);
}
}
static void msm8x16_trim_btn_reg(struct snd_soc_codec *codec)
{
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
if (get_codec_version(msm8x16_wcd) == TOMBAK_1_0) {
pr_debug("%s: This device needs to be trimmed\n", __func__);
/*
* Calculate the trim value for each device used
* till is comes in production by hardware team
*/
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SEC_ACCESS,
0xA5, 0xA5);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_TRIM_CTRL2,
0xFF, 0x30);
} else {
pr_debug("%s: This device is trimmed at ATE\n", __func__);
}
}
static int msm8x16_wcd_enable_ext_mb_source(struct snd_soc_codec *codec,
bool turn_on)
{
int ret = 0;
static int count;
dev_dbg(codec->dev, "%s turn_on: %d count: %d\n", __func__, turn_on,
count);
if (turn_on) {
if (!count) {
ret = snd_soc_dapm_force_enable_pin(&codec->dapm,
"MICBIAS_REGULATOR");
snd_soc_dapm_sync(&codec->dapm);
}
count++;
} else {
if (count > 0)
count--;
if (!count) {
ret = snd_soc_dapm_disable_pin(&codec->dapm,
"MICBIAS_REGULATOR");
snd_soc_dapm_sync(&codec->dapm);
}
}
if (ret)
dev_err(codec->dev, "%s: Failed to %s external micbias source\n",
__func__, turn_on ? "enable" : "disabled");
else
dev_dbg(codec->dev, "%s: %s external micbias source\n",
__func__, turn_on ? "Enabled" : "Disabled");
return ret;
}
static int msm8x16_wcd_codec_enable_micbias(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x16_wcd_priv *msm8x16_wcd =
snd_soc_codec_get_drvdata(codec);
u16 micb_int_reg;
char *internal1_text = "Internal1";
char *internal2_text = "Internal2";
char *internal3_text = "Internal3";
char *external2_text = "External2";
char *external_text = "External";
bool micbias2;
dev_dbg(codec->dev, "%s %d\n", __func__, event);
switch (w->reg) {
case MSM8X16_WCD_A_ANALOG_MICB_1_EN:
case MSM8X16_WCD_A_ANALOG_MICB_2_EN:
micb_int_reg = MSM8X16_WCD_A_ANALOG_MICB_1_INT_RBIAS;
break;
default:
dev_err(codec->dev,
"%s: Error, invalid micbias register 0x%x\n",
__func__, w->reg);
return -EINVAL;
}
micbias2 = (snd_soc_read(codec, MSM8X16_WCD_A_ANALOG_MICB_2_EN) & 0x80);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (strnstr(w->name, internal1_text, strlen(w->name))) {
if (get_codec_version(msm8x16_wcd) >= CAJON)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_TX_1_2_ATEST_CTL_2,
0x02, 0x02);
snd_soc_update_bits(codec, micb_int_reg, 0x80, 0x80);
} else if (strnstr(w->name, internal2_text, strlen(w->name))) {
snd_soc_update_bits(codec, micb_int_reg, 0x10, 0x10);
snd_soc_update_bits(codec, w->reg, 0x60, 0x00);
} else if (strnstr(w->name, internal3_text, strlen(w->name))) {
snd_soc_update_bits(codec, micb_int_reg, 0x2, 0x2);
/*
* update MSM8X16_WCD_A_ANALOG_TX_1_2_ATEST_CTL_2
* for external bias only, not for external2.
*/
} else if (!strnstr(w->name, external2_text, strlen(w->name)) &&
strnstr(w->name, external_text,
strlen(w->name))) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_TX_1_2_ATEST_CTL_2,
0x02, 0x02);
}
if (!strnstr(w->name, external_text, strlen(w->name)))
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MICB_1_EN, 0x05, 0x04);
if (w->reg == MSM8X16_WCD_A_ANALOG_MICB_1_EN)
msm8x16_wcd_configure_cap(codec, true, micbias2);
break;
case SND_SOC_DAPM_POST_PMU:
if (get_codec_version(msm8x16_wcd) <= TOMBAK_2_0)
usleep_range(20000, 20100);
if (strnstr(w->name, internal1_text, strlen(w->name))) {
snd_soc_update_bits(codec, micb_int_reg, 0x40, 0x40);
} else if (strnstr(w->name, internal2_text, strlen(w->name))) {
snd_soc_update_bits(codec, micb_int_reg, 0x08, 0x08);
msm8x16_notifier_call(codec,
WCD_EVENT_POST_MICBIAS_2_ON);
} else if (strnstr(w->name, internal3_text, 30)) {
snd_soc_update_bits(codec, micb_int_reg, 0x01, 0x01);
} else if (strnstr(w->name, external2_text, strlen(w->name))) {
msm8x16_notifier_call(codec,
WCD_EVENT_POST_MICBIAS_2_ON);
}
break;
case SND_SOC_DAPM_POST_PMD:
if (strnstr(w->name, internal1_text, strlen(w->name))) {
snd_soc_update_bits(codec, micb_int_reg, 0xC0, 0x40);
} else if (strnstr(w->name, internal2_text, strlen(w->name))) {
msm8x16_notifier_call(codec,
WCD_EVENT_POST_MICBIAS_2_OFF);
} else if (strnstr(w->name, internal3_text, 30)) {
snd_soc_update_bits(codec, micb_int_reg, 0x2, 0x0);
} else if (strnstr(w->name, external2_text, strlen(w->name))) {
/*
* send micbias turn off event to mbhc driver and then
* break, as no need to set MICB_1_EN register.
*/
msm8x16_notifier_call(codec,
WCD_EVENT_POST_MICBIAS_2_OFF);
break;
}
if (w->reg == MSM8X16_WCD_A_ANALOG_MICB_1_EN)
msm8x16_wcd_configure_cap(codec, false, micbias2);
break;
}
return 0;
}
static void tx_hpf_corner_freq_callback(struct work_struct *work)
{
struct delayed_work *hpf_delayed_work;
struct hpf_work *hpf_work;
struct msm8x16_wcd_priv *msm8x16_wcd;
struct snd_soc_codec *codec;
u16 tx_mux_ctl_reg;
u8 hpf_cut_of_freq;
hpf_delayed_work = to_delayed_work(work);
hpf_work = container_of(hpf_delayed_work, struct hpf_work, dwork);
msm8x16_wcd = hpf_work->msm8x16_wcd;
codec = hpf_work->msm8x16_wcd->codec;
hpf_cut_of_freq = hpf_work->tx_hpf_cut_of_freq;
tx_mux_ctl_reg = MSM8X16_WCD_A_CDC_TX1_MUX_CTL +
(hpf_work->decimator - 1) * 32;
dev_dbg(codec->dev, "%s(): decimator %u hpf_cut_of_freq 0x%x\n",
__func__, hpf_work->decimator, (unsigned int)hpf_cut_of_freq);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_TX_1_2_TXFE_CLKDIV, 0xFF, 0x51);
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x30, hpf_cut_of_freq << 4);
}
#define TX_MUX_CTL_CUT_OFF_FREQ_MASK 0x30
#define CF_MIN_3DB_4HZ 0x0
#define CF_MIN_3DB_75HZ 0x1
#define CF_MIN_3DB_150HZ 0x2
static int msm8x16_wcd_codec_set_iir_gain(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
int value = 0, reg;
switch (event) {
case SND_SOC_DAPM_POST_PMU:
if (w->shift == 0)
reg = MSM8X16_WCD_A_CDC_IIR1_GAIN_B1_CTL;
else if (w->shift == 1)
reg = MSM8X16_WCD_A_CDC_IIR2_GAIN_B1_CTL;
value = snd_soc_read(codec, reg);
snd_soc_write(codec, reg, value);
break;
default:
pr_err("%s: event = %d not expected\n", __func__, event);
}
return 0;
}
static int msm8x16_wcd_codec_enable_dec(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8916_asoc_mach_data *pdata = NULL;
unsigned int decimator;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
char *dec_name = NULL;
char *widget_name = NULL;
char *temp;
int ret = 0, i;
u16 dec_reset_reg, tx_vol_ctl_reg, tx_mux_ctl_reg;
u8 dec_hpf_cut_of_freq;
int offset;
char *dec_num;
pdata = snd_soc_card_get_drvdata(codec->component.card);
dev_dbg(codec->dev, "%s %d\n", __func__, event);
widget_name = kstrndup(w->name, 15, GFP_KERNEL);
if (!widget_name)
return -ENOMEM;
temp = widget_name;
dec_name = strsep(&widget_name, " ");
widget_name = temp;
if (!dec_name) {
dev_err(codec->dev,
"%s: Invalid decimator = %s\n", __func__, w->name);
ret = -EINVAL;
goto out;
}
dec_num = strpbrk(dec_name, "1234");
if (dec_num == NULL) {
dev_err(codec->dev, "%s: Invalid Decimator\n", __func__);
ret = -EINVAL;
goto out;
}
ret = kstrtouint(dec_num, 10, &decimator);
if (ret < 0) {
dev_err(codec->dev,
"%s: Invalid decimator = %s\n", __func__, dec_name);
ret = -EINVAL;
goto out;
}
dev_dbg(codec->dev,
"%s(): widget = %s dec_name = %s decimator = %u\n", __func__,
w->name, dec_name, decimator);
if (w->reg == MSM8X16_WCD_A_CDC_CLK_TX_CLK_EN_B1_CTL) {
dec_reset_reg = MSM8X16_WCD_A_CDC_CLK_TX_RESET_B1_CTL;
offset = 0;
} else {
dev_err(codec->dev, "%s: Error, incorrect dec\n", __func__);
ret = -EINVAL;
goto out;
}
tx_vol_ctl_reg = MSM8X16_WCD_A_CDC_TX1_VOL_CTL_CFG +
32 * (decimator - 1);
tx_mux_ctl_reg = MSM8X16_WCD_A_CDC_TX1_MUX_CTL +
32 * (decimator - 1);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (decimator == 3 || decimator == 4) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_CLK_WSA_VI_B1_CTL,
0xFF, 0x5);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_TX1_DMIC_CTL +
(decimator - 1) * 0x20, 0x7, 0x2);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_TX1_DMIC_CTL +
(decimator - 1) * 0x20, 0x7, 0x2);
}
/* Enableable TX digital mute */
snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x01);
for (i = 0; i < NUM_DECIMATORS; i++) {
if (decimator == i + 1)
msm8x16_wcd->dec_active[i] = true;
}
dec_hpf_cut_of_freq = snd_soc_read(codec, tx_mux_ctl_reg);
dec_hpf_cut_of_freq = (dec_hpf_cut_of_freq & 0x30) >> 4;
tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq =
dec_hpf_cut_of_freq;
if (dec_hpf_cut_of_freq != CF_MIN_3DB_150HZ) {
/* set cut of freq to CF_MIN_3DB_150HZ (0x1); */
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x30,
CF_MIN_3DB_150HZ << 4);
}
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_TX_1_2_TXFE_CLKDIV,
0xFF, 0x42);
break;
case SND_SOC_DAPM_POST_PMU:
/* enable HPF */
snd_soc_update_bits(codec, tx_mux_ctl_reg , 0x08, 0x00);
if (tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq !=
CF_MIN_3DB_150HZ) {
schedule_delayed_work(&tx_hpf_work[decimator - 1].dwork,
msecs_to_jiffies(300));
}
/* apply the digital gain after the decimator is enabled*/
if ((w->shift) < ARRAY_SIZE(tx_digital_gain_reg))
snd_soc_write(codec,
tx_digital_gain_reg[w->shift + offset],
snd_soc_read(codec,
tx_digital_gain_reg[w->shift + offset])
);
if (pdata->lb_mode) {
pr_debug("%s: loopback mode unmute the DEC\n",
__func__);
snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x00);
}
break;
case SND_SOC_DAPM_PRE_PMD:
snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x01);
msleep(20);
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x08, 0x08);
cancel_delayed_work_sync(&tx_hpf_work[decimator - 1].dwork);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift,
1 << w->shift);
snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift, 0x0);
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x08, 0x08);
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x30,
(tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq) << 4);
snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x00);
for (i = 0; i < NUM_DECIMATORS; i++) {
if (decimator == i + 1)
msm8x16_wcd->dec_active[i] = false;
}
if (decimator == 3 || decimator == 4) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_CLK_WSA_VI_B1_CTL,
0xFF, 0x0);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_TX1_DMIC_CTL +
(decimator - 1) * 0x20, 0x7, 0x0);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_TX1_DMIC_CTL +
(decimator - 1) * 0x20, 0x7, 0x0);
}
break;
}
out:
kfree(widget_name);
return ret;
}
static int msm89xx_wcd_codec_enable_vdd_spkr(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
int ret = 0;
if (!msm8x16_wcd->ext_spk_boost_set) {
dev_dbg(codec->dev, "%s: ext_boost not supported/disabled\n",
__func__);
return 0;
}
dev_dbg(codec->dev, "%s: %s %d\n", __func__, w->name, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (msm8x16_wcd->spkdrv_reg) {
ret = regulator_enable(msm8x16_wcd->spkdrv_reg);
if (ret)
dev_err(codec->dev,
"%s Failed to enable spkdrv reg %s\n",
__func__, MSM89XX_VDD_SPKDRV_NAME);
}
break;
case SND_SOC_DAPM_POST_PMD:
if (msm8x16_wcd->spkdrv_reg) {
ret = regulator_disable(msm8x16_wcd->spkdrv_reg);
if (ret)
dev_err(codec->dev,
"%s: Failed to disable spkdrv_reg %s\n",
__func__, MSM89XX_VDD_SPKDRV_NAME);
}
break;
}
return 0;
}
static int msm8x16_wcd_codec_config_compander(struct snd_soc_codec *codec,
int interp_n, int event)
{
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s: event %d shift %d, enabled %d\n",
__func__, event, interp_n,
msm8x16_wcd->comp_enabled[interp_n]);
/* compander is not enabled */
if (!msm8x16_wcd->comp_enabled[interp_n])
return 0;
switch (msm8x16_wcd->comp_enabled[interp_n]) {
case COMPANDER_1:
if (SND_SOC_DAPM_EVENT_ON(event)) {
/* Enable Compander Clock */
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_COMP0_B2_CTL, 0x0F, 0x09);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_CLK_RX_B2_CTL, 0x01, 0x01);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_COMP0_B1_CTL,
1 << interp_n, 1 << interp_n);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_COMP0_B3_CTL, 0xFF, 0x01);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_COMP0_B2_CTL, 0xF0, 0x50);
/* add sleep for compander to settle */
usleep_range(1000, 1100);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_COMP0_B3_CTL, 0xFF, 0x28);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_COMP0_B2_CTL, 0xF0, 0xB0);
/* Enable Compander GPIO */
if (msm8x16_wcd->codec_hph_comp_gpio)
msm8x16_wcd->codec_hph_comp_gpio(1);
} else if (SND_SOC_DAPM_EVENT_OFF(event)) {
/* Disable Compander GPIO */
if (msm8x16_wcd->codec_hph_comp_gpio)
msm8x16_wcd->codec_hph_comp_gpio(0);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_COMP0_B2_CTL, 0x0F, 0x05);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_COMP0_B1_CTL,
1 << interp_n, 0);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_CLK_RX_B2_CTL, 0x01, 0x00);
}
break;
default:
dev_dbg(codec->dev, "%s: Invalid compander %d\n", __func__,
msm8x16_wcd->comp_enabled[interp_n]);
break;
};
return 0;
}
static int msm8x16_wcd_codec_enable_interpolator(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s %d %s\n", __func__, event, w->name);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
msm8x16_wcd_codec_config_compander(codec, w->shift, event);
/* apply the digital gain after the interpolator is enabled*/
if ((w->shift) < ARRAY_SIZE(rx_digital_gain_reg))
snd_soc_write(codec,
rx_digital_gain_reg[w->shift],
snd_soc_read(codec,
rx_digital_gain_reg[w->shift])
);
break;
case SND_SOC_DAPM_POST_PMD:
msm8x16_wcd_codec_config_compander(codec, w->shift, event);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_CLK_RX_RESET_CTL,
1 << w->shift, 1 << w->shift);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_CLK_RX_RESET_CTL,
1 << w->shift, 0x0);
/*
* disable the mute enabled during the PMD of this device
*/
if ((w->shift == 0) &&
(msm8x16_wcd->mute_mask & HPHL_PA_DISABLE)) {
pr_debug("disabling HPHL mute\n");
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX1_B6_CTL, 0x01, 0x00);
if (get_codec_version(msm8x16_wcd) >= CAJON)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_BIAS_CNP,
0xF0, 0x20);
msm8x16_wcd->mute_mask &= ~(HPHL_PA_DISABLE);
} else if ((w->shift == 1) &&
(msm8x16_wcd->mute_mask & HPHR_PA_DISABLE)) {
pr_debug("disabling HPHR mute\n");
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX2_B6_CTL, 0x01, 0x00);
if (get_codec_version(msm8x16_wcd) >= CAJON)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_BIAS_CNP,
0xF0, 0x20);
msm8x16_wcd->mute_mask &= ~(HPHR_PA_DISABLE);
} else if ((w->shift == 2) &&
(msm8x16_wcd->mute_mask & SPKR_PA_DISABLE)) {
pr_debug("disabling SPKR mute\n");
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX3_B6_CTL, 0x01, 0x00);
msm8x16_wcd->mute_mask &= ~(SPKR_PA_DISABLE);
} else if ((w->shift == 0) &&
(msm8x16_wcd->mute_mask & EAR_PA_DISABLE)) {
pr_debug("disabling EAR mute\n");
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX1_B6_CTL, 0x01, 0x00);
msm8x16_wcd->mute_mask &= ~(EAR_PA_DISABLE);
}
}
return 0;
}
/* The register address is the same as other codec so it can use resmgr */
static int msm8x16_wcd_codec_enable_rx_bias(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
msm8x16_wcd->rx_bias_count++;
if (msm8x16_wcd->rx_bias_count == 1) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_COM_BIAS_DAC,
0x80, 0x80);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_COM_BIAS_DAC,
0x01, 0x01);
}
break;
case SND_SOC_DAPM_POST_PMD:
msm8x16_wcd->rx_bias_count--;
if (msm8x16_wcd->rx_bias_count == 0) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_COM_BIAS_DAC,
0x01, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_COM_BIAS_DAC,
0x80, 0x00);
}
break;
}
dev_dbg(codec->dev, "%s rx_bias_count = %d\n",
__func__, msm8x16_wcd->rx_bias_count);
return 0;
}
static uint32_t wcd_get_impedance_value(uint32_t imped)
{
int i;
for (i = 0; i < ARRAY_SIZE(wcd_imped_val) - 1; i++) {
if (imped >= wcd_imped_val[i] &&
imped < wcd_imped_val[i + 1])
break;
}
pr_debug("%s: selected impedance value = %d\n",
__func__, wcd_imped_val[i]);
return wcd_imped_val[i];
}
void wcd_imped_config(struct snd_soc_codec *codec,
uint32_t imped, bool set_gain)
{
uint32_t value;
int codec_version;
struct msm8x16_wcd_priv *msm8x16_wcd =
snd_soc_codec_get_drvdata(codec);
value = wcd_get_impedance_value(imped);
if (value < wcd_imped_val[0]) {
pr_debug("%s, detected impedance is less than 4 Ohm\n",
__func__);
return;
}
if (value >= wcd_imped_val[ARRAY_SIZE(wcd_imped_val) - 1]) {
pr_err("%s, invalid imped, greater than 48 Ohm\n = %d\n",
__func__, value);
return;
}
codec_version = get_codec_version(msm8x16_wcd);
if (set_gain) {
switch (codec_version) {
case TOMBAK_1_0:
case TOMBAK_2_0:
case CONGA:
/*
* For 32Ohm load and higher loads, Set 0x19E
* bit 5 to 1 (POS_6_DB_DI). For loads lower
* than 32Ohm (such as 16Ohm load), Set 0x19E
* bit 5 to 0 (POS_1P5_DB_DI)
*/
if (value >= 32)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_EAR_CTL,
0x20, 0x20);
else
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_EAR_CTL,
0x20, 0x00);
break;
case CAJON:
case CAJON_2_0:
case DIANGU:
if (value >= 13) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_EAR_CTL,
0x20, 0x20);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_NCP_VCTRL,
0x07, 0x07);
} else {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_EAR_CTL,
0x20, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_NCP_VCTRL,
0x07, 0x04);
}
break;
}
} else {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_EAR_CTL,
0x20, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_NCP_VCTRL,
0x07, 0x04);
}
pr_debug("%s: Exit\n", __func__);
}
static int msm8x16_wcd_hphl_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
uint32_t impedl, impedr;
struct snd_soc_codec *codec = w->codec;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
int ret;
dev_dbg(codec->dev, "%s %s %d\n", __func__, w->name, event);
ret = wcd_mbhc_get_impedance(&msm8x16_wcd->mbhc,
&impedl, &impedr);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (get_codec_version(msm8x16_wcd) > CAJON)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_CNP_EN,
0x08, 0x08);
if (get_codec_version(msm8x16_wcd) == CAJON ||
get_codec_version(msm8x16_wcd) == CAJON_2_0) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_L_TEST,
0x80, 0x80);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_R_TEST,
0x80, 0x80);
}
if (get_codec_version(msm8x16_wcd) > CAJON)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_CNP_EN,
0x08, 0x00);
if (HD2_MODE == msm8x16_wcd->hph_mode) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX1_B3_CTL, 0x1C, 0x14);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX1_B4_CTL, 0x18, 0x10);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX1_B3_CTL, 0x80, 0x80);
}
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_L_PA_DAC_CTL, 0x02, 0x02);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL, 0x01, 0x01);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_ANA_CLK_CTL, 0x02, 0x02);
if (!ret)
wcd_imped_config(codec, impedl, true);
else
dev_dbg(codec->dev, "Failed to get mbhc impedance %d\n",
ret);
break;
case SND_SOC_DAPM_POST_PMU:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_L_PA_DAC_CTL, 0x02, 0x00);
break;
case SND_SOC_DAPM_POST_PMD:
wcd_imped_config(codec, impedl, false);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_ANA_CLK_CTL, 0x02, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL, 0x01, 0x00);
if (HD2_MODE == msm8x16_wcd->hph_mode) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX1_B3_CTL, 0x1C, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX1_B4_CTL, 0x18, 0xFF);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX1_B3_CTL, 0x80, 0x00);
}
break;
}
return 0;
}
static int msm8x16_wcd_lo_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
dev_dbg(codec->dev, "%s %s %d\n", __func__, w->name, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_ANA_CLK_CTL, 0x10, 0x10);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_LO_EN_CTL, 0x20, 0x20);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_LO_EN_CTL, 0x80, 0x80);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_LO_DAC_CTL, 0x08, 0x08);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_LO_DAC_CTL, 0x40, 0x40);
break;
case SND_SOC_DAPM_POST_PMU:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_LO_DAC_CTL, 0x80, 0x80);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_LO_DAC_CTL, 0x08, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_LO_EN_CTL, 0x40, 0x40);
break;
case SND_SOC_DAPM_POST_PMD:
usleep_range(20000, 20100);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_LO_DAC_CTL, 0x80, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_LO_DAC_CTL, 0x40, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_LO_DAC_CTL, 0x08, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_LO_EN_CTL, 0x80, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_LO_EN_CTL, 0x40, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_LO_EN_CTL, 0x20, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_ANA_CLK_CTL, 0x10, 0x00);
break;
}
return 0;
}
static int msm8x16_wcd_hphr_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s %s %d\n", __func__, w->name, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (HD2_MODE == msm8x16_wcd->hph_mode) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX2_B3_CTL, 0x1C, 0x14);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX2_B4_CTL, 0x18, 0x10);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX2_B3_CTL, 0x80, 0x80);
}
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_R_PA_DAC_CTL, 0x02, 0x02);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL, 0x02, 0x02);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_ANA_CLK_CTL, 0x01, 0x01);
break;
case SND_SOC_DAPM_POST_PMU:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_R_PA_DAC_CTL, 0x02, 0x00);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_ANA_CLK_CTL, 0x01, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL, 0x02, 0x00);
if (HD2_MODE == msm8x16_wcd->hph_mode) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX2_B3_CTL, 0x1C, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX2_B4_CTL, 0x18, 0xFF);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX2_B3_CTL, 0x80, 0x00);
}
break;
}
return 0;
}
static int msm8x16_wcd_hph_pa_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s: %s event = %d\n", __func__, w->name, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (w->shift == 5)
msm8x16_notifier_call(codec,
WCD_EVENT_PRE_HPHL_PA_ON);
else if (w->shift == 4)
msm8x16_notifier_call(codec,
WCD_EVENT_PRE_HPHR_PA_ON);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_NCP_FBCTRL, 0x20, 0x20);
break;
case SND_SOC_DAPM_POST_PMU:
usleep_range(7000, 7100);
if (w->shift == 5) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_L_TEST, 0x04, 0x04);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX1_B6_CTL, 0x01, 0x00);
} else if (w->shift == 4) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_R_TEST, 0x04, 0x04);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX2_B6_CTL, 0x01, 0x00);
}
break;
case SND_SOC_DAPM_PRE_PMD:
if (w->shift == 5) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX1_B6_CTL, 0x01, 0x01);
msleep(20);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_L_TEST, 0x04, 0x00);
msm8x16_wcd->mute_mask |= HPHL_PA_DISABLE;
msm8x16_notifier_call(codec,
WCD_EVENT_PRE_HPHL_PA_OFF);
} else if (w->shift == 4) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX2_B6_CTL, 0x01, 0x01);
msleep(20);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_R_TEST, 0x04, 0x00);
msm8x16_wcd->mute_mask |= HPHR_PA_DISABLE;
msm8x16_notifier_call(codec,
WCD_EVENT_PRE_HPHR_PA_OFF);
}
if (get_codec_version(msm8x16_wcd) >= CAJON) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_BIAS_CNP,
0xF0, 0x30);
}
break;
case SND_SOC_DAPM_POST_PMD:
if (w->shift == 5) {
clear_bit(WCD_MBHC_HPHL_PA_OFF_ACK,
&msm8x16_wcd->mbhc.hph_pa_dac_state);
msm8x16_notifier_call(codec,
WCD_EVENT_POST_HPHL_PA_OFF);
} else if (w->shift == 4) {
clear_bit(WCD_MBHC_HPHR_PA_OFF_ACK,
&msm8x16_wcd->mbhc.hph_pa_dac_state);
msm8x16_notifier_call(codec,
WCD_EVENT_POST_HPHR_PA_OFF);
}
usleep_range(4000, 4100);
usleep_range(CODEC_DELAY_1_MS, CODEC_DELAY_1_1_MS);
dev_dbg(codec->dev,
"%s: sleep 10 ms after %s PA disable.\n", __func__,
w->name);
usleep_range(10000, 10100);
break;
}
return 0;
}
static const struct snd_soc_dapm_route audio_map[] = {
{"RX_I2S_CLK", NULL, "CDC_CONN"},
{"I2S RX1", NULL, "RX_I2S_CLK"},
{"I2S RX2", NULL, "RX_I2S_CLK"},
{"I2S RX3", NULL, "RX_I2S_CLK"},
{"I2S TX1", NULL, "TX_I2S_CLK"},
{"I2S TX2", NULL, "TX_I2S_CLK"},
{"AIF2 VI", NULL, "TX_I2S_CLK"},
{"I2S TX1", NULL, "DEC1 MUX"},
{"I2S TX2", NULL, "DEC2 MUX"},
{"AIF2 VI", NULL, "DEC3 MUX"},
{"AIF2 VI", NULL, "DEC4 MUX"},
/* RDAC Connections */
{"HPHR DAC", NULL, "RDAC2 MUX"},
{"RDAC2 MUX", "RX1", "RX1 CHAIN"},
{"RDAC2 MUX", "RX2", "RX2 CHAIN"},
/* WSA */
{"WSA_SPK OUT", NULL, "WSA Spk Switch"},
{"WSA Spk Switch", "WSA", "EAR PA"},
/* Earpiece (RX MIX1) */
{"EAR", NULL, "EAR_S"},
{"EAR_S", "Switch", "EAR PA"},
{"EAR PA", NULL, "RX_BIAS"},
{"EAR PA", NULL, "HPHL DAC"},
{"EAR PA", NULL, "HPHR DAC"},
{"EAR PA", NULL, "EAR CP"},
/* Headset (RX MIX1 and RX MIX2) */
{"HEADPHONE", NULL, "HPHL PA"},
{"HEADPHONE", NULL, "HPHR PA"},
{"Ext Spk", NULL, "Ext Spk Switch"},
{"Ext Spk Switch", "On", "HPHL PA"},
{"Ext Spk Switch", "On", "HPHR PA"},
{"HPHL PA", NULL, "HPHL"},
{"HPHR PA", NULL, "HPHR"},
{"HPHL", "Switch", "HPHL DAC"},
{"HPHR", "Switch", "HPHR DAC"},
{"HPHL PA", NULL, "CP"},
{"HPHL PA", NULL, "RX_BIAS"},
{"HPHR PA", NULL, "CP"},
{"HPHR PA", NULL, "RX_BIAS"},
{"HPHL DAC", NULL, "RX1 CHAIN"},
{"SPK_OUT", NULL, "SPK PA"},
{"SPK PA", NULL, "SPK_RX_BIAS"},
{"SPK PA", NULL, "SPK"},
{"SPK", "Switch", "SPK DAC"},
{"SPK DAC", NULL, "RX3 CHAIN"},
{"SPK DAC", NULL, "VDD_SPKDRV"},
/* lineout */
{"LINEOUT", NULL, "LINEOUT PA"},
{"LINEOUT PA", NULL, "SPK_RX_BIAS"},
{"LINEOUT PA", NULL, "LINE_OUT"},
{"LINE_OUT", "Switch", "LINEOUT DAC"},
{"LINEOUT DAC", NULL, "RX3 CHAIN"},
/* lineout to WSA */
{"WSA_SPK OUT", NULL, "LINEOUT PA"},
{"RX1 CHAIN", NULL, "RX1 CLK"},
{"RX2 CHAIN", NULL, "RX2 CLK"},
{"RX3 CHAIN", NULL, "RX3 CLK"},
{"RX1 CHAIN", NULL, "RX1 MIX2"},
{"RX2 CHAIN", NULL, "RX2 MIX2"},
{"RX3 CHAIN", NULL, "RX3 MIX1"},
{"RX1 MIX1", NULL, "RX1 MIX1 INP1"},
{"RX1 MIX1", NULL, "RX1 MIX1 INP2"},
{"RX1 MIX1", NULL, "RX1 MIX1 INP3"},
{"RX2 MIX1", NULL, "RX2 MIX1 INP1"},
{"RX2 MIX1", NULL, "RX2 MIX1 INP2"},
{"RX3 MIX1", NULL, "RX3 MIX1 INP1"},
{"RX3 MIX1", NULL, "RX3 MIX1 INP2"},
{"RX1 MIX2", NULL, "RX1 MIX1"},
{"RX1 MIX2", NULL, "RX1 MIX2 INP1"},
{"RX2 MIX2", NULL, "RX2 MIX1"},
{"RX2 MIX2", NULL, "RX2 MIX2 INP1"},
{"RX1 MIX1 INP1", "RX1", "I2S RX1"},
{"RX1 MIX1 INP1", "RX2", "I2S RX2"},
{"RX1 MIX1 INP1", "RX3", "I2S RX3"},
{"RX1 MIX1 INP1", "IIR1", "IIR1"},
{"RX1 MIX1 INP1", "IIR2", "IIR2"},
{"RX1 MIX1 INP2", "RX1", "I2S RX1"},
{"RX1 MIX1 INP2", "RX2", "I2S RX2"},
{"RX1 MIX1 INP2", "RX3", "I2S RX3"},
{"RX1 MIX1 INP2", "IIR1", "IIR1"},
{"RX1 MIX1 INP2", "IIR2", "IIR2"},
{"RX1 MIX1 INP3", "RX1", "I2S RX1"},
{"RX1 MIX1 INP3", "RX2", "I2S RX2"},
{"RX1 MIX1 INP3", "RX3", "I2S RX3"},
{"RX2 MIX1 INP1", "RX1", "I2S RX1"},
{"RX2 MIX1 INP1", "RX2", "I2S RX2"},
{"RX2 MIX1 INP1", "RX3", "I2S RX3"},
{"RX2 MIX1 INP1", "IIR1", "IIR1"},
{"RX2 MIX1 INP1", "IIR2", "IIR2"},
{"RX2 MIX1 INP2", "RX1", "I2S RX1"},
{"RX2 MIX1 INP2", "RX2", "I2S RX2"},
{"RX2 MIX1 INP2", "RX3", "I2S RX3"},
{"RX2 MIX1 INP2", "IIR1", "IIR1"},
{"RX2 MIX1 INP2", "IIR2", "IIR2"},
{"RX3 MIX1 INP1", "RX1", "I2S RX1"},
{"RX3 MIX1 INP1", "RX2", "I2S RX2"},
{"RX3 MIX1 INP1", "RX3", "I2S RX3"},
{"RX3 MIX1 INP1", "IIR1", "IIR1"},
{"RX3 MIX1 INP1", "IIR2", "IIR2"},
{"RX3 MIX1 INP2", "RX1", "I2S RX1"},
{"RX3 MIX1 INP2", "RX2", "I2S RX2"},
{"RX3 MIX1 INP2", "RX3", "I2S RX3"},
{"RX3 MIX1 INP2", "IIR1", "IIR1"},
{"RX3 MIX1 INP2", "IIR2", "IIR2"},
{"RX1 MIX2 INP1", "IIR1", "IIR1"},
{"RX2 MIX2 INP1", "IIR1", "IIR1"},
{"RX1 MIX2 INP1", "IIR2", "IIR2"},
{"RX2 MIX2 INP1", "IIR2", "IIR2"},
/* Decimator Inputs */
{"DEC1 MUX", "DMIC1", "DMIC1"},
{"DEC1 MUX", "DMIC2", "DMIC2"},
{"DEC1 MUX", "ADC1", "ADC1"},
{"DEC1 MUX", "ADC2", "ADC2"},
{"DEC1 MUX", "ADC3", "ADC3"},
{"DEC1 MUX", NULL, "CDC_CONN"},
{"DEC2 MUX", "DMIC1", "DMIC1"},
{"DEC2 MUX", "DMIC2", "DMIC2"},
{"DEC2 MUX", "ADC1", "ADC1"},
{"DEC2 MUX", "ADC2", "ADC2"},
{"DEC2 MUX", "ADC3", "ADC3"},
{"DEC2 MUX", NULL, "CDC_CONN"},
{"DEC3 MUX", "DMIC3", "DMIC3"},
{"DEC4 MUX", "DMIC4", "DMIC4"},
{"DEC3 MUX", NULL, "CDC_CONN"},
{"DEC4 MUX", NULL, "CDC_CONN"},
/* ADC Connections */
{"ADC2", NULL, "ADC2 MUX"},
{"ADC3", NULL, "ADC2 MUX"},
{"ADC2 MUX", "INP2", "ADC2_INP2"},
{"ADC2 MUX", "INP3", "ADC2_INP3"},
{"ADC1", NULL, "AMIC1"},
{"ADC2_INP2", NULL, "AMIC2"},
{"ADC2_INP3", NULL, "AMIC3"},
/* TODO: Fix this */
{"IIR1", NULL, "IIR1 INP1 MUX"},
{"IIR1 INP1 MUX", "DEC1", "DEC1 MUX"},
{"IIR1 INP1 MUX", "DEC2", "DEC2 MUX"},
{"IIR2", NULL, "IIR2 INP1 MUX"},
{"IIR2 INP1 MUX", "DEC1", "DEC1 MUX"},
{"IIR2 INP1 MUX", "DEC2", "DEC2 MUX"},
{"MIC BIAS Internal1", NULL, "INT_LDO_H"},
{"MIC BIAS Internal2", NULL, "INT_LDO_H"},
{"MIC BIAS External", NULL, "INT_LDO_H"},
{"MIC BIAS External2", NULL, "INT_LDO_H"},
{"MIC BIAS Internal1", NULL, "MICBIAS_REGULATOR"},
{"MIC BIAS Internal2", NULL, "MICBIAS_REGULATOR"},
{"MIC BIAS External", NULL, "MICBIAS_REGULATOR"},
{"MIC BIAS External2", NULL, "MICBIAS_REGULATOR"},
};
static int msm8x16_wcd_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct msm8x16_wcd_priv *msm8x16_wcd =
snd_soc_codec_get_drvdata(dai->codec);
dev_dbg(dai->codec->dev, "%s(): substream = %s stream = %d\n",
__func__,
substream->name, substream->stream);
/*
* If status_mask is BU_DOWN it means SSR is not complete.
* So retun error.
*/
if (test_bit(BUS_DOWN, &msm8x16_wcd->status_mask)) {
dev_err(dai->codec->dev, "Error, Device is not up post SSR\n");
return -EINVAL;
}
return 0;
}
static void msm8x16_wcd_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
dev_dbg(dai->codec->dev,
"%s(): substream = %s stream = %d\n" , __func__,
substream->name, substream->stream);
}
int msm8x16_wcd_mclk_enable(struct snd_soc_codec *codec,
int mclk_enable, bool dapm)
{
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s: mclk_enable = %u, dapm = %d\n",
__func__, mclk_enable, dapm);
if (mclk_enable) {
msm8x16_wcd->mclk_enabled = true;
msm8x16_wcd_codec_enable_clock_block(codec, 1);
} else {
if (!msm8x16_wcd->mclk_enabled) {
dev_err(codec->dev, "Error, MCLK already diabled\n");
return -EINVAL;
}
msm8x16_wcd->mclk_enabled = false;
msm8x16_wcd_codec_enable_clock_block(codec, 0);
}
return 0;
}
static int msm8x16_wcd_set_dai_sysclk(struct snd_soc_dai *dai,
int clk_id, unsigned int freq, int dir)
{
dev_dbg(dai->codec->dev, "%s\n", __func__);
return 0;
}
static int msm8x16_wcd_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
dev_dbg(dai->codec->dev, "%s\n", __func__);
return 0;
}
static int msm8x16_wcd_set_channel_map(struct snd_soc_dai *dai,
unsigned int tx_num, unsigned int *tx_slot,
unsigned int rx_num, unsigned int *rx_slot)
{
dev_dbg(dai->codec->dev, "%s\n", __func__);
return 0;
}
static int msm8x16_wcd_get_channel_map(struct snd_soc_dai *dai,
unsigned int *tx_num, unsigned int *tx_slot,
unsigned int *rx_num, unsigned int *rx_slot)
{
dev_dbg(dai->codec->dev, "%s\n", __func__);
return 0;
}
static int msm8x16_wcd_set_interpolator_rate(struct snd_soc_dai *dai,
u8 rx_fs_rate_reg_val, u32 sample_rate)
{
snd_soc_update_bits(dai->codec,
MSM8X16_WCD_A_CDC_RX1_B5_CTL, 0xF0, rx_fs_rate_reg_val);
snd_soc_update_bits(dai->codec,
MSM8X16_WCD_A_CDC_RX2_B5_CTL, 0xF0, rx_fs_rate_reg_val);
return 0;
}
static int msm8x16_wcd_set_decimator_rate(struct snd_soc_dai *dai,
u8 tx_fs_rate_reg_val, u32 sample_rate)
{
return 0;
}
static int msm8x16_wcd_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
u8 tx_fs_rate, rx_fs_rate, rx_clk_fs_rate;
int ret;
dev_dbg(dai->codec->dev,
"%s: dai_name = %s DAI-ID %x rate %d num_ch %d format %d\n",
__func__, dai->name, dai->id, params_rate(params),
params_channels(params), params_format(params));
switch (params_rate(params)) {
case 8000:
tx_fs_rate = 0x00;
rx_fs_rate = 0x00;
rx_clk_fs_rate = 0x00;
break;
case 16000:
tx_fs_rate = 0x20;
rx_fs_rate = 0x20;
rx_clk_fs_rate = 0x01;
break;
case 32000:
tx_fs_rate = 0x40;
rx_fs_rate = 0x40;
rx_clk_fs_rate = 0x02;
break;
case 48000:
tx_fs_rate = 0x60;
rx_fs_rate = 0x60;
rx_clk_fs_rate = 0x03;
break;
case 96000:
tx_fs_rate = 0x80;
rx_fs_rate = 0x80;
rx_clk_fs_rate = 0x04;
break;
case 192000:
tx_fs_rate = 0xA0;
rx_fs_rate = 0xA0;
rx_clk_fs_rate = 0x05;
break;
default:
dev_err(dai->codec->dev,
"%s: Invalid sampling rate %d\n", __func__,
params_rate(params));
return -EINVAL;
}
snd_soc_update_bits(dai->codec,
MSM8X16_WCD_A_CDC_CLK_RX_I2S_CTL, 0x0F, rx_clk_fs_rate);
switch (substream->stream) {
case SNDRV_PCM_STREAM_CAPTURE:
ret = msm8x16_wcd_set_decimator_rate(dai, tx_fs_rate,
params_rate(params));
if (ret < 0) {
dev_err(dai->codec->dev,
"%s: set decimator rate failed %d\n", __func__,
ret);
return ret;
}
break;
case SNDRV_PCM_STREAM_PLAYBACK:
ret = msm8x16_wcd_set_interpolator_rate(dai, rx_fs_rate,
params_rate(params));
if (ret < 0) {
dev_err(dai->codec->dev,
"%s: set decimator rate failed %d\n", __func__,
ret);
return ret;
}
break;
default:
dev_err(dai->codec->dev,
"%s: Invalid stream type %d\n", __func__,
substream->stream);
return -EINVAL;
}
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
snd_soc_update_bits(dai->codec,
MSM8X16_WCD_A_CDC_CLK_RX_I2S_CTL, 0x20, 0x20);
break;
case SNDRV_PCM_FORMAT_S24_LE:
case SNDRV_PCM_FORMAT_S24_3LE:
snd_soc_update_bits(dai->codec,
MSM8X16_WCD_A_CDC_CLK_RX_I2S_CTL, 0x20, 0x00);
break;
default:
dev_err(dai->codec->dev, "%s: wrong format selected\n",
__func__);
return -EINVAL;
}
return 0;
}
int msm8x16_wcd_digital_mute(struct snd_soc_dai *dai, int mute)
{
struct snd_soc_codec *codec = NULL;
u16 tx_vol_ctl_reg = 0;
u8 decimator = 0, i;
struct msm8x16_wcd_priv *msm8x16_wcd;
pr_debug("%s: Digital Mute val = %d\n", __func__, mute);
if (!dai || !dai->codec) {
pr_err("%s: Invalid params\n", __func__);
return -EINVAL;
}
codec = dai->codec;
msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
if ((dai->id != AIF1_CAP) && (dai->id != AIF2_VIFEED)) {
dev_dbg(codec->dev, "%s: Not capture use case skip\n",
__func__);
return 0;
}
mute = (mute) ? 1 : 0;
if (!mute) {
/*
* 15 ms is an emperical value for the mute time
* that was arrived by checking the pop level
* to be inaudible
*/
usleep_range(15000, 15010);
}
for (i = 0; i < NUM_DECIMATORS; i++) {
if (msm8x16_wcd->dec_active[i])
decimator = i + 1;
if (decimator && decimator <= NUM_DECIMATORS) {
/* mute/unmute decimators corresponding to Tx DAI's */
if (dai->id == AIF2_VIFEED && decimator > 2) {
tx_vol_ctl_reg =
MSM8X16_WCD_A_CDC_TX1_VOL_CTL_CFG +
32 * (decimator - 1);
snd_soc_update_bits(codec, tx_vol_ctl_reg,
0x01, mute);
} else if (dai->id == AIF1_CAP && decimator < 3) {
tx_vol_ctl_reg =
MSM8X16_WCD_A_CDC_TX1_VOL_CTL_CFG +
32 * (decimator - 1);
snd_soc_update_bits(codec, tx_vol_ctl_reg,
0x01, mute);
}
}
decimator = 0;
}
return 0;
}
static struct snd_soc_dai_ops msm8x16_wcd_dai_ops = {
.startup = msm8x16_wcd_startup,
.shutdown = msm8x16_wcd_shutdown,
.hw_params = msm8x16_wcd_hw_params,
.set_sysclk = msm8x16_wcd_set_dai_sysclk,
.set_fmt = msm8x16_wcd_set_dai_fmt,
.set_channel_map = msm8x16_wcd_set_channel_map,
.get_channel_map = msm8x16_wcd_get_channel_map,
.digital_mute = msm8x16_wcd_digital_mute,
};
static struct snd_soc_dai_driver msm8x16_wcd_i2s_dai[] = {
{
.name = "msm8x16_wcd_i2s_rx1",
.id = AIF1_PB,
.playback = {
.stream_name = "AIF1 Playback",
.rates = MSM8X16_WCD_RATES,
.formats = MSM8X16_WCD_FORMATS,
.rate_max = 192000,
.rate_min = 8000,
.channels_min = 1,
.channels_max = 3,
},
.ops = &msm8x16_wcd_dai_ops,
},
{
.name = "msm8x16_wcd_i2s_tx1",
.id = AIF1_CAP,
.capture = {
.stream_name = "AIF1 Capture",
.rates = MSM8X16_WCD_RATES,
.formats = MSM8X16_WCD_FORMATS,
.rate_max = 192000,
.rate_min = 8000,
.channels_min = 1,
.channels_max = 4,
},
.ops = &msm8x16_wcd_dai_ops,
},
{
.name = "cajon_vifeedback",
.id = AIF2_VIFEED,
.capture = {
.stream_name = "VIfeed",
.rates = MSM8X16_WCD_RATES,
.formats = MSM8X16_WCD_FORMATS,
.rate_max = 48000,
.rate_min = 48000,
.channels_min = 2,
.channels_max = 2,
},
.ops = &msm8x16_wcd_dai_ops,
},
};
static int msm8x16_wcd_codec_enable_rx_chain(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
switch (event) {
case SND_SOC_DAPM_POST_PMU:
dev_dbg(w->codec->dev,
"%s: PMU:Sleeping 20ms after disabling mute\n",
__func__);
break;
case SND_SOC_DAPM_POST_PMD:
dev_dbg(w->codec->dev,
"%s: PMD:Sleeping 20ms after disabling mute\n",
__func__);
snd_soc_update_bits(codec, w->reg,
1 << w->shift, 0x00);
msleep(20);
break;
}
return 0;
}
static int msm8x16_wcd_codec_enable_lo_pa(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
dev_dbg(w->codec->dev, "%s: %d %s\n", __func__, event, w->name);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX3_B6_CTL, 0x01, 0x00);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX3_B6_CTL, 0x01, 0x00);
break;
}
return 0;
}
static int msm8x16_wcd_codec_enable_spk_ext_pa(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s: %s event = %d\n", __func__, w->name, event);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
dev_dbg(w->codec->dev,
"%s: enable external speaker PA\n", __func__);
if (msm8x16_wcd->codec_spk_ext_pa_cb)
msm8x16_wcd->codec_spk_ext_pa_cb(codec, 1);
break;
case SND_SOC_DAPM_PRE_PMD:
dev_dbg(w->codec->dev,
"%s: enable external speaker PA\n", __func__);
if (msm8x16_wcd->codec_spk_ext_pa_cb)
msm8x16_wcd->codec_spk_ext_pa_cb(codec, 0);
break;
}
return 0;
}
static int msm8x16_wcd_codec_enable_ear_pa(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
dev_dbg(w->codec->dev,
"%s: Sleeping 20ms after select EAR PA\n",
__func__);
snd_soc_update_bits(codec, MSM8X16_WCD_A_ANALOG_RX_EAR_CTL,
0x80, 0x80);
if (get_codec_version(msm8x16_wcd) < CONGA)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_CNP_WG_TIME, 0xFF, 0x2A);
if (get_codec_version(msm8x16_wcd) >= DIANGU) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_COM_BIAS_DAC, 0x08, 0x00);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_L_TEST, 0x04, 0x04);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_R_TEST, 0x04, 0x04);
}
break;
case SND_SOC_DAPM_POST_PMU:
dev_dbg(w->codec->dev,
"%s: Sleeping 20ms after enabling EAR PA\n",
__func__);
snd_soc_update_bits(codec, MSM8X16_WCD_A_ANALOG_RX_EAR_CTL,
0x40, 0x40);
usleep_range(7000, 7100);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX1_B6_CTL, 0x01, 0x00);
break;
case SND_SOC_DAPM_PRE_PMD:
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_RX1_B6_CTL, 0x01, 0x01);
msleep(20);
msm8x16_wcd->mute_mask |= EAR_PA_DISABLE;
if (msm8x16_wcd->boost_option == BOOST_ALWAYS) {
dev_dbg(w->codec->dev,
"%s: boost_option:%d, tear down ear\n",
__func__, msm8x16_wcd->boost_option);
msm8x16_wcd_boost_mode_sequence(codec, EAR_PMD);
}
if (get_codec_version(msm8x16_wcd) >= DIANGU) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_L_TEST, 0x04, 0x0);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_R_TEST, 0x04, 0x0);
}
break;
case SND_SOC_DAPM_POST_PMD:
dev_dbg(w->codec->dev,
"%s: Sleeping 7ms after disabling EAR PA\n",
__func__);
snd_soc_update_bits(codec, MSM8X16_WCD_A_ANALOG_RX_EAR_CTL,
0x40, 0x00);
usleep_range(7000, 7100);
if (get_codec_version(msm8x16_wcd) < CONGA)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_CNP_WG_TIME, 0xFF, 0x16);
if (get_codec_version(msm8x16_wcd) >= DIANGU)
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_COM_BIAS_DAC, 0x08, 0x08);
break;
}
return 0;
}
static const struct snd_soc_dapm_widget msm8x16_wcd_dapm_widgets[] = {
/*RX stuff */
SND_SOC_DAPM_OUTPUT("EAR"),
SND_SOC_DAPM_OUTPUT("WSA_SPK OUT"),
SND_SOC_DAPM_PGA_E("EAR PA", SND_SOC_NOPM,
0, 0, NULL, 0, msm8x16_wcd_codec_enable_ear_pa,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX("EAR_S", SND_SOC_NOPM, 0, 0,
ear_pa_mux),
SND_SOC_DAPM_MUX("WSA Spk Switch", SND_SOC_NOPM, 0, 0,
wsa_spk_mux),
SND_SOC_DAPM_AIF_IN("I2S RX1", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("I2S RX2", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("I2S RX3", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_SUPPLY("INT_LDO_H", SND_SOC_NOPM, 1, 0, NULL, 0),
SND_SOC_DAPM_SPK("Ext Spk", msm8x16_wcd_codec_enable_spk_ext_pa),
SND_SOC_DAPM_OUTPUT("HEADPHONE"),
SND_SOC_DAPM_PGA_E("HPHL PA", MSM8X16_WCD_A_ANALOG_RX_HPH_CNP_EN,
5, 0, NULL, 0,
msm8x16_wcd_hph_pa_event, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX("HPHL", SND_SOC_NOPM, 0, 0,
hphl_mux),
SND_SOC_DAPM_MIXER_E("HPHL DAC",
MSM8X16_WCD_A_ANALOG_RX_HPH_L_PA_DAC_CTL, 3, 0, NULL,
0, msm8x16_wcd_hphl_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("HPHR PA", MSM8X16_WCD_A_ANALOG_RX_HPH_CNP_EN,
4, 0, NULL, 0,
msm8x16_wcd_hph_pa_event, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX("HPHR", SND_SOC_NOPM, 0, 0,
hphr_mux),
SND_SOC_DAPM_MIXER_E("HPHR DAC",
MSM8X16_WCD_A_ANALOG_RX_HPH_R_PA_DAC_CTL, 3, 0, NULL,
0, msm8x16_wcd_hphr_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX("SPK", SND_SOC_NOPM, 0, 0,
spkr_mux),
SND_SOC_DAPM_DAC("SPK DAC", NULL,
MSM8X16_WCD_A_ANALOG_SPKR_DAC_CTL, 7, 0),
SND_SOC_DAPM_MUX("LINE_OUT",
SND_SOC_NOPM, 0, 0, lo_mux),
SND_SOC_DAPM_DAC_E("LINEOUT DAC", NULL,
SND_SOC_NOPM, 0, 0, msm8x16_wcd_lo_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_POST_PMD),
/* Speaker */
SND_SOC_DAPM_OUTPUT("SPK_OUT"),
/* Lineout */
SND_SOC_DAPM_OUTPUT("LINEOUT"),
SND_SOC_DAPM_PGA_E("SPK PA", MSM8X16_WCD_A_ANALOG_SPKR_DRV_CTL,
6, 0 , NULL, 0, msm8x16_wcd_codec_enable_spk_pa,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("LINEOUT PA", MSM8X16_WCD_A_ANALOG_RX_LO_EN_CTL,
5, 0 , NULL, 0, msm8x16_wcd_codec_enable_lo_pa,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY("VDD_SPKDRV", SND_SOC_NOPM, 0, 0,
msm89xx_wcd_codec_enable_vdd_spkr,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX("Ext Spk Switch", SND_SOC_NOPM, 0, 0,
&ext_spk_mux),
SND_SOC_DAPM_MIXER("RX1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER("RX2 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER_E("RX1 MIX2",
MSM8X16_WCD_A_CDC_CLK_RX_B1_CTL, MSM8X16_WCD_RX1, 0, NULL,
0, msm8x16_wcd_codec_enable_interpolator,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER_E("RX2 MIX2",
MSM8X16_WCD_A_CDC_CLK_RX_B1_CTL, MSM8X16_WCD_RX2, 0, NULL,
0, msm8x16_wcd_codec_enable_interpolator,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER_E("RX3 MIX1",
MSM8X16_WCD_A_CDC_CLK_RX_B1_CTL, MSM8X16_WCD_RX3, 0, NULL,
0, msm8x16_wcd_codec_enable_interpolator,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY("RX1 CLK", MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("RX2 CLK", MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
1, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("RX3 CLK", MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
2, 0, msm8x16_wcd_codec_enable_dig_clk, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER_E("RX1 CHAIN", MSM8X16_WCD_A_CDC_RX1_B6_CTL, 0, 0,
NULL, 0,
msm8x16_wcd_codec_enable_rx_chain,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER_E("RX2 CHAIN", MSM8X16_WCD_A_CDC_RX2_B6_CTL, 0, 0,
NULL, 0,
msm8x16_wcd_codec_enable_rx_chain,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER_E("RX3 CHAIN", MSM8X16_WCD_A_CDC_RX3_B6_CTL, 0, 0,
NULL, 0,
msm8x16_wcd_codec_enable_rx_chain,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX("RX1 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX1 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX1 MIX1 INP3", SND_SOC_NOPM, 0, 0,
&rx_mix1_inp3_mux),
SND_SOC_DAPM_MUX("RX2 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx2_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX2 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx2_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX2 MIX1 INP3", SND_SOC_NOPM, 0, 0,
&rx2_mix1_inp3_mux),
SND_SOC_DAPM_MUX("RX3 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx3_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX3 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx3_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX3 MIX1 INP3", SND_SOC_NOPM, 0, 0,
&rx3_mix1_inp3_mux),
SND_SOC_DAPM_MUX("RX1 MIX2 INP1", SND_SOC_NOPM, 0, 0,
&rx1_mix2_inp1_mux),
SND_SOC_DAPM_MUX("RX2 MIX2 INP1", SND_SOC_NOPM, 0, 0,
&rx2_mix2_inp1_mux),
SND_SOC_DAPM_SUPPLY("MICBIAS_REGULATOR", SND_SOC_NOPM,
ON_DEMAND_MICBIAS, 0,
msm8x16_wcd_codec_enable_on_demand_supply,
SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY("CP", MSM8X16_WCD_A_ANALOG_NCP_EN, 0, 0,
msm8x16_wcd_codec_enable_charge_pump, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY("EAR CP", MSM8X16_WCD_A_ANALOG_NCP_EN, 4, 0,
msm8x16_wcd_codec_enable_charge_pump, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY_S("RX_BIAS", 1, SND_SOC_NOPM,
0, 0, msm8x16_wcd_codec_enable_rx_bias,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY_S("SPK_RX_BIAS", 1, SND_SOC_NOPM, 0, 0,
msm8x16_wcd_codec_enable_rx_bias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
/* TX */
SND_SOC_DAPM_SUPPLY_S("CDC_CONN", -2, MSM8X16_WCD_A_CDC_CLK_OTHR_CTL,
2, 0, NULL, 0),
SND_SOC_DAPM_INPUT("AMIC1"),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS Internal1",
MSM8X16_WCD_A_ANALOG_MICB_1_EN, 7, 0,
msm8x16_wcd_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS Internal2",
MSM8X16_WCD_A_ANALOG_MICB_2_EN, 7, 0,
msm8x16_wcd_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS Internal3",
MSM8X16_WCD_A_ANALOG_MICB_1_EN, 7, 0,
msm8x16_wcd_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("ADC1", NULL, MSM8X16_WCD_A_ANALOG_TX_1_EN, 7, 0,
msm8x16_wcd_codec_enable_adc, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("ADC2_INP2",
NULL, MSM8X16_WCD_A_ANALOG_TX_2_EN, 7, 0,
msm8x16_wcd_codec_enable_adc, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("ADC2_INP3",
NULL, MSM8X16_WCD_A_ANALOG_TX_3_EN, 7, 0,
msm8x16_wcd_codec_enable_adc, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER("ADC2", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER("ADC3", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MUX("ADC2 MUX", SND_SOC_NOPM, 0, 0,
&tx_adc2_mux),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS External",
MSM8X16_WCD_A_ANALOG_MICB_1_EN, 7, 0,
msm8x16_wcd_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS External2",
MSM8X16_WCD_A_ANALOG_MICB_2_EN, 7, 0,
msm8x16_wcd_codec_enable_micbias, SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_INPUT("AMIC3"),
SND_SOC_DAPM_MUX_E("DEC1 MUX",
MSM8X16_WCD_A_CDC_CLK_TX_CLK_EN_B1_CTL, 0, 0,
&dec1_mux, msm8x16_wcd_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX_E("DEC2 MUX",
MSM8X16_WCD_A_CDC_CLK_TX_CLK_EN_B1_CTL, 1, 0,
&dec2_mux, msm8x16_wcd_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX_E("DEC3 MUX",
MSM8X16_WCD_A_CDC_CLK_TX_CLK_EN_B1_CTL, 2, 0,
&dec3_mux, msm8x16_wcd_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX_E("DEC4 MUX",
MSM8X16_WCD_A_CDC_CLK_TX_CLK_EN_B1_CTL, 3, 0,
&dec4_mux, msm8x16_wcd_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX("RDAC2 MUX", SND_SOC_NOPM, 0, 0, &rdac2_mux),
SND_SOC_DAPM_INPUT("AMIC2"),
SND_SOC_DAPM_AIF_OUT("I2S TX1", "AIF1 Capture", 0, SND_SOC_NOPM,
0, 0),
SND_SOC_DAPM_AIF_OUT("I2S TX2", "AIF1 Capture", 0, SND_SOC_NOPM,
0, 0),
SND_SOC_DAPM_AIF_OUT("I2S TX3", "AIF1 Capture", 0, SND_SOC_NOPM,
0, 0),
SND_SOC_DAPM_AIF_OUT("AIF2 VI", "VIfeed", 0, SND_SOC_NOPM,
0, 0),
/* Digital Mic Inputs */
SND_SOC_DAPM_ADC_E("DMIC1", NULL, SND_SOC_NOPM, 0, 0,
msm8x16_wcd_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("DMIC2", NULL, SND_SOC_NOPM, 0, 0,
msm8x16_wcd_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_INPUT("DMIC3"),
SND_SOC_DAPM_INPUT("DMIC4"),
/* Sidetone */
SND_SOC_DAPM_MUX("IIR1 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir1_inp1_mux),
SND_SOC_DAPM_PGA_E("IIR1", MSM8X16_WCD_A_CDC_CLK_SD_CTL, 0, 0, NULL, 0,
msm8x16_wcd_codec_set_iir_gain, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_MUX("IIR2 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir2_inp1_mux),
SND_SOC_DAPM_PGA_E("IIR2", MSM8X16_WCD_A_CDC_CLK_SD_CTL, 1, 0, NULL, 0,
msm8x16_wcd_codec_set_iir_gain, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_SUPPLY("RX_I2S_CLK",
MSM8X16_WCD_A_CDC_CLK_RX_I2S_CTL, 4, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("TX_I2S_CLK",
MSM8X16_WCD_A_CDC_CLK_TX_I2S_CTL, 4, 0,
NULL, 0),
};
static const struct msm8x16_wcd_reg_mask_val msm8x16_wcd_reg_defaults[] = {
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_DAC_CTL, 0x03),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_CURRENT_LIMIT, 0x82),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_OCP_CTL, 0xE1),
};
static const struct msm8x16_wcd_reg_mask_val msm8x16_wcd_reg_defaults_2_0[] = {
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_DIGITAL_SEC_ACCESS, 0xA5),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_DIGITAL_PERPH_RESET_CTL3, 0x0F),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_TX_1_2_OPAMP_BIAS, 0x4F),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_NCP_FBCTRL, 0x28),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_DRV_CTL, 0x69),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_DRV_DBG, 0x01),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_BOOST_EN_CTL, 0x5F),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SLOPE_COMP_IP_ZERO, 0x88),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SEC_ACCESS, 0xA5),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_PERPH_RESET_CTL3, 0x0F),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_CURRENT_LIMIT, 0x82),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_DAC_CTL, 0x03),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_OCP_CTL, 0xE1),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_DIGITAL_CDC_RST_CTL, 0x80),
};
static const struct msm8x16_wcd_reg_mask_val msm8909_wcd_reg_defaults[] = {
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_DIGITAL_SEC_ACCESS, 0xA5),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_DIGITAL_PERPH_RESET_CTL3, 0x0F),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SEC_ACCESS, 0xA5),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_PERPH_RESET_CTL3, 0x0F),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_TX_1_2_OPAMP_BIAS, 0x4C),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_NCP_FBCTRL, 0x28),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_DRV_CTL, 0x69),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_DRV_DBG, 0x01),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_PERPH_SUBTYPE, 0x0A),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_DAC_CTL, 0x03),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_OCP_CTL, 0xE1),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_DIGITAL_CDC_RST_CTL, 0x80),
};
static const struct msm8x16_wcd_reg_mask_val cajon_wcd_reg_defaults[] = {
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_DIGITAL_SEC_ACCESS, 0xA5),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_DIGITAL_PERPH_RESET_CTL3, 0x0F),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SEC_ACCESS, 0xA5),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_PERPH_RESET_CTL3, 0x0F),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_TX_1_2_OPAMP_BIAS, 0x4C),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_CURRENT_LIMIT, 0x82),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_NCP_FBCTRL, 0xA8),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_NCP_VCTRL, 0xA4),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_ANA_BIAS_SET, 0x41),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_DRV_CTL, 0x69),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_DRV_DBG, 0x01),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_OCP_CTL, 0xE1),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_DAC_CTL, 0x03),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_RX_HPH_BIAS_PA, 0xFA),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_DIGITAL_CDC_RST_CTL, 0x80),
};
static const struct msm8x16_wcd_reg_mask_val cajon2p0_wcd_reg_defaults[] = {
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_DIGITAL_SEC_ACCESS, 0xA5),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_DIGITAL_PERPH_RESET_CTL3, 0x0F),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SEC_ACCESS, 0xA5),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_PERPH_RESET_CTL3, 0x0F),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_TX_1_2_OPAMP_BIAS, 0x4C),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_CURRENT_LIMIT, 0xA2),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_NCP_FBCTRL, 0xA8),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_NCP_VCTRL, 0xA4),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_ANA_BIAS_SET, 0x41),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_DRV_CTL, 0x69),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_DRV_DBG, 0x01),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_OCP_CTL, 0xE1),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_SPKR_DAC_CTL, 0x03),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_RX_EAR_STATUS, 0x10),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_BYPASS_MODE, 0x18),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_ANALOG_RX_HPH_BIAS_PA, 0xFA),
MSM8X16_WCD_REG_VAL(MSM8X16_WCD_A_DIGITAL_CDC_RST_CTL, 0x80),
};
static void msm8x16_wcd_update_reg_defaults(struct snd_soc_codec *codec)
{
u32 i, version;
struct msm8x16_wcd_priv *msm8x16_wcd = snd_soc_codec_get_drvdata(codec);
version = get_codec_version(msm8x16_wcd);
if (version == TOMBAK_1_0) {
for (i = 0; i < ARRAY_SIZE(msm8x16_wcd_reg_defaults); i++)
snd_soc_write(codec, msm8x16_wcd_reg_defaults[i].reg,
msm8x16_wcd_reg_defaults[i].val);
} else if (version == TOMBAK_2_0) {
for (i = 0; i < ARRAY_SIZE(msm8x16_wcd_reg_defaults_2_0); i++)
snd_soc_write(codec,
msm8x16_wcd_reg_defaults_2_0[i].reg,
msm8x16_wcd_reg_defaults_2_0[i].val);
} else if (version == CONGA) {
for (i = 0; i < ARRAY_SIZE(msm8909_wcd_reg_defaults); i++)
snd_soc_write(codec,
msm8909_wcd_reg_defaults[i].reg,
msm8909_wcd_reg_defaults[i].val);
} else if (version == CAJON) {
for (i = 0; i < ARRAY_SIZE(cajon_wcd_reg_defaults); i++)
snd_soc_write(codec,
cajon_wcd_reg_defaults[i].reg,
cajon_wcd_reg_defaults[i].val);
} else if (version == CAJON_2_0 || version == DIANGU) {
for (i = 0; i < ARRAY_SIZE(cajon2p0_wcd_reg_defaults); i++)
snd_soc_write(codec,
cajon2p0_wcd_reg_defaults[i].reg,
cajon2p0_wcd_reg_defaults[i].val);
}
}
static const struct msm8x16_wcd_reg_mask_val
msm8x16_wcd_codec_reg_init_val[] = {
/* Initialize current threshold to 350MA
* number of wait and run cycles to 4096
*/
{MSM8X16_WCD_A_ANALOG_RX_COM_OCP_CTL, 0xFF, 0x12},
{MSM8X16_WCD_A_ANALOG_RX_COM_OCP_COUNT, 0xFF, 0xFF},
};
static void msm8x16_wcd_codec_init_reg(struct snd_soc_codec *codec)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(msm8x16_wcd_codec_reg_init_val); i++)
snd_soc_update_bits(codec,
msm8x16_wcd_codec_reg_init_val[i].reg,
msm8x16_wcd_codec_reg_init_val[i].mask,
msm8x16_wcd_codec_reg_init_val[i].val);
}
static int msm8x16_wcd_bringup(struct snd_soc_codec *codec)
{
snd_soc_write(codec,
MSM8X16_WCD_A_DIGITAL_SEC_ACCESS,
0xA5);
snd_soc_write(codec, MSM8X16_WCD_A_DIGITAL_PERPH_RESET_CTL4, 0x01);
snd_soc_write(codec,
MSM8X16_WCD_A_ANALOG_SEC_ACCESS,
0xA5);
snd_soc_write(codec, MSM8X16_WCD_A_ANALOG_PERPH_RESET_CTL4, 0x01);
snd_soc_write(codec,
MSM8X16_WCD_A_DIGITAL_SEC_ACCESS,
0xA5);
snd_soc_write(codec, MSM8X16_WCD_A_DIGITAL_PERPH_RESET_CTL4, 0x00);
snd_soc_write(codec,
MSM8X16_WCD_A_ANALOG_SEC_ACCESS,
0xA5);
snd_soc_write(codec, MSM8X16_WCD_A_ANALOG_PERPH_RESET_CTL4, 0x00);
return 0;
}
static struct regulator *wcd8x16_wcd_codec_find_regulator(
const struct msm8x16_wcd *msm8x16,
const char *name)
{
int i;
for (i = 0; i < msm8x16->num_of_supplies; i++) {
if (msm8x16->supplies[i].supply &&
!strcmp(msm8x16->supplies[i].supply, name))
return msm8x16->supplies[i].consumer;
}
dev_err(msm8x16->dev, "Error: regulator not found:%s\n"
, name);
return NULL;
}
static int msm8x16_wcd_device_down(struct snd_soc_codec *codec)
{
struct msm8916_asoc_mach_data *pdata = NULL;
struct msm8x16_wcd_priv *msm8x16_wcd_priv =
snd_soc_codec_get_drvdata(codec);
int i;
pdata = snd_soc_card_get_drvdata(codec->component.card);
dev_dbg(codec->dev, "%s: device down!\n", __func__);
msm8x16_wcd_write(codec,
MSM8X16_WCD_A_ANALOG_TX_1_EN, 0x3);
msm8x16_wcd_write(codec,
MSM8X16_WCD_A_ANALOG_TX_2_EN, 0x3);
if (msm8x16_wcd_priv->boost_option == BOOST_ON_FOREVER) {
if ((snd_soc_read(codec, MSM8X16_WCD_A_ANALOG_SPKR_DRV_CTL)
& 0x80) == 0) {
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_CLK_MCLK_CTL, 0x01, 0x01);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_CDC_CLK_PDM_CTL, 0x03, 0x03);
snd_soc_write(codec,
MSM8X16_WCD_A_ANALOG_MASTER_BIAS_CTL, 0x30);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_RST_CTL, 0x80, 0x80);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_TOP_CLK_CTL,
0x0C, 0x0C);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_DIG_CLK_CTL,
0x84, 0x84);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_DIGITAL_CDC_ANA_CLK_CTL,
0x10, 0x10);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_PWRSTG_CTL,
0x1F, 0x1F);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_COM_BIAS_DAC,
0x90, 0x90);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_RX_EAR_CTL,
0xFF, 0xFF);
usleep_range(20, 21);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_PWRSTG_CTL,
0xFF, 0xFF);
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_SPKR_DRV_CTL,
0xE9, 0xE9);
}
}
msm8x16_wcd_boost_off(codec);
msm8x16_wcd_priv->hph_mode = NORMAL_MODE;
for (i = 0; i < MSM8X16_WCD_RX_MAX; i++)
msm8x16_wcd_priv->comp_enabled[i] = COMPANDER_NONE;
/* 40ms to allow boost to discharge */
msleep(40);
/* Disable PA to avoid pop during codec bring up */
snd_soc_update_bits(codec, MSM8X16_WCD_A_ANALOG_RX_HPH_CNP_EN,
0x30, 0x00);
snd_soc_update_bits(codec, MSM8X16_WCD_A_ANALOG_SPKR_DRV_CTL,
0x80, 0x00);
msm8x16_wcd_write(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_L_PA_DAC_CTL, 0x20);
msm8x16_wcd_write(codec,
MSM8X16_WCD_A_ANALOG_RX_HPH_R_PA_DAC_CTL, 0x20);
msm8x16_wcd_write(codec,
MSM8X16_WCD_A_ANALOG_RX_EAR_CTL, 0x12);
msm8x16_wcd_write(codec,
MSM8X16_WCD_A_ANALOG_SPKR_DAC_CTL, 0x93);
msm8x16_wcd_bringup(codec);
atomic_set(&pdata->mclk_enabled, false);
set_bit(BUS_DOWN, &msm8x16_wcd_priv->status_mask);
snd_soc_card_change_online_state(codec->component.card, 0);
return 0;
}
static int msm8x16_wcd_device_up(struct snd_soc_codec *codec)
{
struct msm8x16_wcd_priv *msm8x16_wcd_priv =
snd_soc_codec_get_drvdata(codec);
int ret = 0;
dev_dbg(codec->dev, "%s: device up!\n", __func__);
mutex_lock(&codec->mutex);
clear_bit(BUS_DOWN, &msm8x16_wcd_priv->status_mask);
snd_soc_card_change_online_state(codec->component.card, 1);
/* delay is required to make sure sound card state updated */
usleep_range(5000, 5100);
msm8x16_wcd_codec_init_reg(codec);
msm8x16_wcd_update_reg_defaults(codec);
codec->cache_sync = true;
snd_soc_cache_sync(codec);
codec->cache_sync = false;
msm8x16_wcd_write(codec, MSM8X16_WCD_A_DIGITAL_INT_EN_SET,
MSM8X16_WCD_A_DIGITAL_INT_EN_SET__POR);
msm8x16_wcd_write(codec, MSM8X16_WCD_A_DIGITAL_INT_EN_CLR,
MSM8X16_WCD_A_DIGITAL_INT_EN_CLR__POR);
msm8x16_wcd_set_boost_v(codec);
msm8x16_wcd_set_micb_v(codec);
if (msm8x16_wcd_priv->boost_option == BOOST_ON_FOREVER)
msm8x16_wcd_boost_on(codec);
else if (msm8x16_wcd_priv->boost_option == BYPASS_ALWAYS)
msm8x16_wcd_bypass_on(codec);
msm8x16_wcd_configure_cap(codec, false, false);
wcd_mbhc_stop(&msm8x16_wcd_priv->mbhc);
wcd_mbhc_deinit(&msm8x16_wcd_priv->mbhc);
ret = wcd_mbhc_init(&msm8x16_wcd_priv->mbhc, codec, &mbhc_cb, &intr_ids,
wcd_mbhc_registers, true);
if (ret)
dev_err(codec->dev, "%s: mbhc initialization failed\n",
__func__);
else
wcd_mbhc_start(&msm8x16_wcd_priv->mbhc,
msm8x16_wcd_priv->mbhc.mbhc_cfg);
mutex_unlock(&codec->mutex);
return 0;
}
static int adsp_state_callback(struct notifier_block *nb, unsigned long value,
void *priv)
{
bool timedout;
unsigned long timeout;
if (value == SUBSYS_BEFORE_SHUTDOWN)
msm8x16_wcd_device_down(registered_codec);
else if (value == SUBSYS_AFTER_POWERUP) {
dev_dbg(registered_codec->dev,
"ADSP is about to power up. bring up codec\n");
if (!q6core_is_adsp_ready()) {
dev_dbg(registered_codec->dev,
"ADSP isn't ready\n");
timeout = jiffies +
msecs_to_jiffies(ADSP_STATE_READY_TIMEOUT_MS);
while (!(timedout = time_after(jiffies, timeout))) {
if (!q6core_is_adsp_ready()) {
dev_dbg(registered_codec->dev,
"ADSP isn't ready\n");
} else {
dev_dbg(registered_codec->dev,
"ADSP is ready\n");
break;
}
}
} else {
dev_dbg(registered_codec->dev,
"%s: DSP is ready\n", __func__);
}
msm8x16_wcd_device_up(registered_codec);
}
return NOTIFY_OK;
}
static struct notifier_block adsp_state_notifier_block = {
.notifier_call = adsp_state_callback,
.priority = -INT_MAX,
};
int msm8x16_wcd_hs_detect(struct snd_soc_codec *codec,
struct wcd_mbhc_config *mbhc_cfg)
{
struct msm8x16_wcd_priv *msm8x16_wcd_priv =
snd_soc_codec_get_drvdata(codec);
return wcd_mbhc_start(&msm8x16_wcd_priv->mbhc, mbhc_cfg);
}
EXPORT_SYMBOL(msm8x16_wcd_hs_detect);
void msm8x16_wcd_hs_detect_exit(struct snd_soc_codec *codec)
{
struct msm8x16_wcd_priv *msm8x16_wcd_priv =
snd_soc_codec_get_drvdata(codec);
wcd_mbhc_stop(&msm8x16_wcd_priv->mbhc);
}
EXPORT_SYMBOL(msm8x16_wcd_hs_detect_exit);
void msm8x16_update_int_spk_boost(bool enable)
{
pr_debug("%s: enable = %d\n", __func__, enable);
spkr_boost_en = enable;
}
EXPORT_SYMBOL(msm8x16_update_int_spk_boost);
static void msm8x16_wcd_set_micb_v(struct snd_soc_codec *codec)
{
struct msm8x16_wcd *msm8x16 = codec->control_data;
struct msm8x16_wcd_pdata *pdata = msm8x16->dev->platform_data;
u8 reg_val;
reg_val = VOLTAGE_CONVERTER(pdata->micbias.cfilt1_mv, MICBIAS_MIN_VAL,
MICBIAS_STEP_SIZE);
dev_dbg(codec->dev, "cfilt1_mv %d reg_val %x\n",
(u32)pdata->micbias.cfilt1_mv, reg_val);
snd_soc_update_bits(codec, MSM8X16_WCD_A_ANALOG_MICB_1_VAL,
0xF8, (reg_val << 3));
}
static void msm8x16_wcd_set_boost_v(struct snd_soc_codec *codec)
{
struct msm8x16_wcd_priv *msm8x16_wcd_priv =
snd_soc_codec_get_drvdata(codec);
snd_soc_update_bits(codec, MSM8X16_WCD_A_ANALOG_OUTPUT_VOLTAGE,
0x1F, msm8x16_wcd_priv->boost_voltage);
}
static void msm8x16_wcd_configure_cap(struct snd_soc_codec *codec,
bool micbias1, bool micbias2)
{
struct msm8916_asoc_mach_data *pdata = NULL;
pdata = snd_soc_card_get_drvdata(codec->component.card);
pr_debug("\n %s: micbias1 %x micbias2 = %d\n", __func__, micbias1,
micbias2);
if (micbias1 && micbias2) {
if ((pdata->micbias1_cap_mode
== MICBIAS_EXT_BYP_CAP) ||
(pdata->micbias2_cap_mode
== MICBIAS_EXT_BYP_CAP))
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MICB_1_EN,
0x40, (MICBIAS_EXT_BYP_CAP << 6));
else
snd_soc_update_bits(codec,
MSM8X16_WCD_A_ANALOG_MICB_1_EN,
0x40, (MICBIAS_NO_EXT_BYP_CAP << 6));
} else if (micbias2) {
snd_soc_update_bits(codec, MSM8X16_WCD_A_ANALOG_MICB_1_EN,
0x40, (pdata->micbias2_cap_mode << 6));
} else if (micbias1) {
snd_soc_update_bits(codec, MSM8X16_WCD_A_ANALOG_MICB_1_EN,
0x40, (pdata->micbias1_cap_mode << 6));
} else {
snd_soc_update_bits(codec, MSM8X16_WCD_A_ANALOG_MICB_1_EN,
0x40, 0x00);
}
}
static int msm8x16_wcd_codec_probe(struct snd_soc_codec *codec)
{
struct msm8x16_wcd_priv *msm8x16_wcd_priv;
struct msm8x16_wcd *msm8x16_wcd;
struct msm8x16_wcd_pdata *pdata;
int i, ret;
dev_dbg(codec->dev, "%s()\n", __func__);
msm8x16_wcd_priv = kzalloc(sizeof(struct msm8x16_wcd_priv), GFP_KERNEL);
if (!msm8x16_wcd_priv)
return -ENOMEM;
for (i = 0; i < NUM_DECIMATORS; i++) {
tx_hpf_work[i].msm8x16_wcd = msm8x16_wcd_priv;
tx_hpf_work[i].decimator = i + 1;
INIT_DELAYED_WORK(&tx_hpf_work[i].dwork,
tx_hpf_corner_freq_callback);
}
codec->control_data = dev_get_drvdata(codec->dev);
snd_soc_codec_set_drvdata(codec, msm8x16_wcd_priv);
msm8x16_wcd_priv->codec = codec;
/* codec resmgr module init */
msm8x16_wcd = codec->control_data;
pdata = msm8x16_wcd->dev->platform_data;
msm8x16_wcd->dig_base = ioremap(pdata->dig_cdc_addr,
MSM8X16_DIGITAL_CODEC_REG_SIZE);
if (msm8x16_wcd->dig_base == NULL) {
dev_err(codec->dev, "%s ioremap failed\n", __func__);
kfree(msm8x16_wcd_priv);
return -ENOMEM;
}
msm8x16_wcd_priv->spkdrv_reg =
wcd8x16_wcd_codec_find_regulator(codec->control_data,
MSM89XX_VDD_SPKDRV_NAME);
msm8x16_wcd_priv->pmic_rev = snd_soc_read(codec,
MSM8X16_WCD_A_DIGITAL_REVISION1);
msm8x16_wcd_priv->codec_version = snd_soc_read(codec,
MSM8X16_WCD_A_DIGITAL_PERPH_SUBTYPE);
if (msm8x16_wcd_priv->codec_version == CONGA) {
dev_dbg(codec->dev, "%s :Conga REV: %d\n", __func__,
msm8x16_wcd_priv->codec_version);
msm8x16_wcd_priv->ext_spk_boost_set = true;
} else {
dev_dbg(codec->dev, "%s :PMIC REV: %d\n", __func__,
msm8x16_wcd_priv->pmic_rev);
if (msm8x16_wcd_priv->pmic_rev == TOMBAK_1_0 &&
msm8x16_wcd_priv->codec_version == CAJON_2_0) {
msm8x16_wcd_priv->codec_version = DIANGU;
dev_dbg(codec->dev, "%s : Diangu detected\n",
__func__);
} else if (msm8x16_wcd_priv->pmic_rev == TOMBAK_1_0 &&
(snd_soc_read(codec, MSM8X16_WCD_A_ANALOG_NCP_FBCTRL)
& 0x80)) {
msm8x16_wcd_priv->codec_version = CAJON;
dev_dbg(codec->dev, "%s : Cajon detected\n", __func__);
} else if (msm8x16_wcd_priv->pmic_rev == TOMBAK_2_0 &&
(snd_soc_read(codec, MSM8X16_WCD_A_ANALOG_NCP_FBCTRL)
& 0x80)) {
msm8x16_wcd_priv->codec_version = CAJON_2_0;
dev_dbg(codec->dev, "%s : Cajon 2.0 detected\n",
__func__);
}
}
/*
* set to default boost option BOOST_SWITCH, user mixer path can change
* it to BOOST_ALWAYS or BOOST_BYPASS based on solution chosen.
*/
msm8x16_wcd_priv->boost_option = BOOST_SWITCH;
msm8x16_wcd_priv->hph_mode = NORMAL_MODE;
for (i = 0; i < MSM8X16_WCD_RX_MAX; i++)
msm8x16_wcd_priv->comp_enabled[i] = COMPANDER_NONE;
msm8x16_wcd_dt_parse_boost_info(codec);
msm8x16_wcd_set_boost_v(codec);
snd_soc_add_codec_controls(codec, impedance_detect_controls,
ARRAY_SIZE(impedance_detect_controls));
snd_soc_add_codec_controls(codec, hph_type_detect_controls,
ARRAY_SIZE(hph_type_detect_controls));
msm8x16_wcd_bringup(codec);
msm8x16_wcd_codec_init_reg(codec);
msm8x16_wcd_update_reg_defaults(codec);
wcd9xxx_spmi_set_codec(codec);
msm8x16_wcd_priv->on_demand_list[ON_DEMAND_MICBIAS].supply =
wcd8x16_wcd_codec_find_regulator(
codec->control_data,
on_demand_supply_name[ON_DEMAND_MICBIAS]);
atomic_set(&msm8x16_wcd_priv->on_demand_list[ON_DEMAND_MICBIAS].ref, 0);
BLOCKING_INIT_NOTIFIER_HEAD(&msm8x16_wcd_priv->notifier);
msm8x16_wcd_priv->fw_data = kzalloc(sizeof(*(msm8x16_wcd_priv->fw_data))
, GFP_KERNEL);
if (!msm8x16_wcd_priv->fw_data) {
iounmap(msm8x16_wcd->dig_base);
kfree(msm8x16_wcd_priv);
return -ENOMEM;
}
set_bit(WCD9XXX_MBHC_CAL, msm8x16_wcd_priv->fw_data->cal_bit);
ret = wcd_cal_create_hwdep(msm8x16_wcd_priv->fw_data,
WCD9XXX_CODEC_HWDEP_NODE, codec);
if (ret < 0) {
dev_err(codec->dev, "%s hwdep failed %d\n", __func__, ret);
iounmap(msm8x16_wcd->dig_base);
kfree(msm8x16_wcd_priv->fw_data);
kfree(msm8x16_wcd_priv);
return ret;
}
wcd_mbhc_init(&msm8x16_wcd_priv->mbhc, codec, &mbhc_cb, &intr_ids,
wcd_mbhc_registers, true);
msm8x16_wcd_priv->mclk_enabled = false;
msm8x16_wcd_priv->clock_active = false;
msm8x16_wcd_priv->config_mode_active = false;
/*Update speaker boost configuration*/
msm8x16_wcd_priv->spk_boost_set = spkr_boost_en;
pr_debug("%s: speaker boost configured = %d\n",
__func__, msm8x16_wcd_priv->spk_boost_set);
/* Set initial MICBIAS voltage level */
msm8x16_wcd_set_micb_v(codec);
/* Set initial cap mode */
msm8x16_wcd_configure_cap(codec, false, false);
registered_codec = codec;
adsp_state_notifier =
subsys_notif_register_notifier("adsp",
&adsp_state_notifier_block);
if (!adsp_state_notifier) {
dev_err(codec->dev, "Failed to register adsp state notifier\n");
iounmap(msm8x16_wcd->dig_base);
kfree(msm8x16_wcd_priv->fw_data);
kfree(msm8x16_wcd_priv);
registered_codec = NULL;
return -ENOMEM;
}
return 0;
}
static int msm8x16_wcd_codec_remove(struct snd_soc_codec *codec)
{
struct msm8x16_wcd_priv *msm8x16_wcd_priv =
snd_soc_codec_get_drvdata(codec);
struct msm8x16_wcd *msm8x16_wcd;
msm8x16_wcd = codec->control_data;
msm8x16_wcd_priv->spkdrv_reg = NULL;
msm8x16_wcd_priv->on_demand_list[ON_DEMAND_MICBIAS].supply = NULL;
atomic_set(&msm8x16_wcd_priv->on_demand_list[ON_DEMAND_MICBIAS].ref, 0);
iounmap(msm8x16_wcd->dig_base);
kfree(msm8x16_wcd_priv->fw_data);
kfree(msm8x16_wcd_priv);
return 0;
}
static int msm8x16_wcd_enable_static_supplies_to_optimum(
struct msm8x16_wcd *msm8x16,
struct msm8x16_wcd_pdata *pdata)
{
int i;
int ret = 0;
for (i = 0; i < msm8x16->num_of_supplies; i++) {
if (pdata->regulator[i].ondemand)
continue;
if (regulator_count_voltages(msm8x16->supplies[i].consumer) <=
0)
continue;
ret = regulator_set_voltage(msm8x16->supplies[i].consumer,
pdata->regulator[i].min_uv,
pdata->regulator[i].max_uv);
if (ret) {
dev_err(msm8x16->dev,
"Setting volt failed for regulator %s err %d\n",
msm8x16->supplies[i].supply, ret);
}
ret = regulator_set_optimum_mode(msm8x16->supplies[i].consumer,
pdata->regulator[i].optimum_ua);
dev_dbg(msm8x16->dev, "Regulator %s set optimum mode\n",
msm8x16->supplies[i].supply);
}
return ret;
}
static int msm8x16_wcd_disable_static_supplies_to_optimum(
struct msm8x16_wcd *msm8x16,
struct msm8x16_wcd_pdata *pdata)
{
int i;
int ret = 0;
for (i = 0; i < msm8x16->num_of_supplies; i++) {
if (pdata->regulator[i].ondemand)
continue;
if (regulator_count_voltages(msm8x16->supplies[i].consumer) <=
0)
continue;
regulator_set_voltage(msm8x16->supplies[i].consumer, 0,
pdata->regulator[i].max_uv);
regulator_set_optimum_mode(msm8x16->supplies[i].consumer, 0);
dev_dbg(msm8x16->dev, "Regulator %s set optimum mode\n",
msm8x16->supplies[i].supply);
}
return ret;
}
int msm8x16_wcd_suspend(struct snd_soc_codec *codec)
{
struct msm8916_asoc_mach_data *pdata = NULL;
struct msm8x16_wcd *msm8x16 = codec->control_data;
struct msm8x16_wcd_pdata *msm8x16_pdata = msm8x16->dev->platform_data;
pdata = snd_soc_card_get_drvdata(codec->component.card);
pr_debug("%s: mclk cnt = %d, mclk_enabled = %d\n",
__func__, atomic_read(&pdata->mclk_rsc_ref),
atomic_read(&pdata->mclk_enabled));
if (atomic_read(&pdata->mclk_enabled) == true) {
cancel_delayed_work_sync(
&pdata->disable_mclk_work);
mutex_lock(&pdata->cdc_mclk_mutex);
if (atomic_read(&pdata->mclk_enabled) == true) {
if (pdata->afe_clk_ver == AFE_CLK_VERSION_V1) {
pdata->digital_cdc_clk.clk_val = 0;
afe_set_digital_codec_core_clock(
AFE_PORT_ID_PRIMARY_MI2S_RX,
&pdata->digital_cdc_clk);
} else {
pdata->digital_cdc_core_clk.enable = 0;
afe_set_lpass_clock_v2(
AFE_PORT_ID_PRIMARY_MI2S_RX,
&pdata->digital_cdc_core_clk);
}
atomic_set(&pdata->mclk_enabled, false);
}
mutex_unlock(&pdata->cdc_mclk_mutex);
}
msm8x16_wcd_disable_static_supplies_to_optimum(msm8x16, msm8x16_pdata);
return 0;
}
int msm8x16_wcd_resume(struct snd_soc_codec *codec)
{
struct msm8916_asoc_mach_data *pdata = NULL;
struct msm8x16_wcd *msm8x16 = codec->control_data;
struct msm8x16_wcd_pdata *msm8x16_pdata = msm8x16->dev->platform_data;
pdata = snd_soc_card_get_drvdata(codec->component.card);
msm8x16_wcd_enable_static_supplies_to_optimum(msm8x16, msm8x16_pdata);
return 0;
}
static struct snd_soc_codec_driver soc_codec_dev_msm8x16_wcd = {
.probe = msm8x16_wcd_codec_probe,
.remove = msm8x16_wcd_codec_remove,
.read = msm8x16_wcd_read,
.write = msm8x16_wcd_write,
.suspend = msm8x16_wcd_suspend,
.resume = msm8x16_wcd_resume,
.readable_register = msm8x16_wcd_readable,
.volatile_register = msm8x16_wcd_volatile,
.reg_cache_size = MSM8X16_WCD_CACHE_SIZE,
.reg_cache_default = msm8x16_wcd_reset_reg_defaults,
.reg_word_size = 1,
.controls = msm8x16_wcd_snd_controls,
.num_controls = ARRAY_SIZE(msm8x16_wcd_snd_controls),
.dapm_widgets = msm8x16_wcd_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(msm8x16_wcd_dapm_widgets),
.dapm_routes = audio_map,
.num_dapm_routes = ARRAY_SIZE(audio_map),
};
static int msm8x16_wcd_init_supplies(struct msm8x16_wcd *msm8x16,
struct msm8x16_wcd_pdata *pdata)
{
int ret;
int i;
msm8x16->supplies = kzalloc(sizeof(struct regulator_bulk_data) *
ARRAY_SIZE(pdata->regulator),
GFP_KERNEL);
if (!msm8x16->supplies) {
ret = -ENOMEM;
goto err;
}
msm8x16->num_of_supplies = 0;
if (ARRAY_SIZE(pdata->regulator) > MAX_REGULATOR) {
dev_err(msm8x16->dev, "%s: Array Size out of bound\n",
__func__);
ret = -EINVAL;
goto err;
}
for (i = 0; i < ARRAY_SIZE(pdata->regulator); i++) {
if (pdata->regulator[i].name) {
msm8x16->supplies[i].supply = pdata->regulator[i].name;
msm8x16->num_of_supplies++;
}
}
ret = regulator_bulk_get(msm8x16->dev, msm8x16->num_of_supplies,
msm8x16->supplies);
if (ret != 0) {
dev_err(msm8x16->dev, "Failed to get supplies: err = %d\n",
ret);
goto err_supplies;
}
for (i = 0; i < msm8x16->num_of_supplies; i++) {
if (regulator_count_voltages(msm8x16->supplies[i].consumer) <=
0)
continue;
ret = regulator_set_voltage(msm8x16->supplies[i].consumer,
pdata->regulator[i].min_uv,
pdata->regulator[i].max_uv);
if (ret) {
dev_err(msm8x16->dev, "Setting regulator voltage failed for regulator %s err = %d\n",
msm8x16->supplies[i].supply, ret);
goto err_get;
}
ret = regulator_set_optimum_mode(msm8x16->supplies[i].consumer,
pdata->regulator[i].optimum_ua);
if (ret < 0) {
dev_err(msm8x16->dev, "Setting regulator optimum mode failed for regulator %s err = %d\n",
msm8x16->supplies[i].supply, ret);
goto err_get;
} else {
ret = 0;
}
}
return ret;
err_get:
regulator_bulk_free(msm8x16->num_of_supplies, msm8x16->supplies);
err_supplies:
kfree(msm8x16->supplies);
err:
return ret;
}
static int msm8x16_wcd_enable_static_supplies(struct msm8x16_wcd *msm8x16,
struct msm8x16_wcd_pdata *pdata)
{
int i;
int ret = 0;
for (i = 0; i < msm8x16->num_of_supplies; i++) {
if (pdata->regulator[i].ondemand)
continue;
ret = regulator_enable(msm8x16->supplies[i].consumer);
if (ret) {
dev_err(msm8x16->dev, "Failed to enable %s\n",
msm8x16->supplies[i].supply);
break;
}
dev_dbg(msm8x16->dev, "Enabled regulator %s\n",
msm8x16->supplies[i].supply);
}
while (ret && --i)
if (!pdata->regulator[i].ondemand)
regulator_disable(msm8x16->supplies[i].consumer);
return ret;
}
static void msm8x16_wcd_disable_supplies(struct msm8x16_wcd *msm8x16,
struct msm8x16_wcd_pdata *pdata)
{
int i;
regulator_bulk_disable(msm8x16->num_of_supplies,
msm8x16->supplies);
for (i = 0; i < msm8x16->num_of_supplies; i++) {
if (regulator_count_voltages(msm8x16->supplies[i].consumer) <=
0)
continue;
regulator_set_voltage(msm8x16->supplies[i].consumer, 0,
pdata->regulator[i].max_uv);
regulator_set_optimum_mode(msm8x16->supplies[i].consumer, 0);
}
regulator_bulk_free(msm8x16->num_of_supplies, msm8x16->supplies);
kfree(msm8x16->supplies);
}
static int msm8x16_wcd_device_init(struct msm8x16_wcd *msm8x16)
{
mutex_init(&msm8x16->io_lock);
return 0;
}
static int msm8x16_wcd_spmi_probe(struct spmi_device *spmi)
{
int ret = 0;
struct msm8x16_wcd *msm8x16 = NULL;
struct msm8x16_wcd_pdata *pdata;
struct resource *wcd_resource;
int adsp_state;
static int spmi_dev_registered_cnt;
dev_dbg(&spmi->dev, "%s(%d):slave ID = 0x%x\n",
__func__, __LINE__, spmi->sid);
adsp_state = apr_get_subsys_state();
if (adsp_state != APR_SUBSYS_LOADED) {
dev_dbg(&spmi->dev, "Adsp is not loaded yet %d\n",
adsp_state);
return -EPROBE_DEFER;
}
wcd_resource = spmi_get_resource(spmi, NULL, IORESOURCE_MEM, 0);
if (!wcd_resource) {
dev_err(&spmi->dev, "Unable to get Tombak base address\n");
return -ENXIO;
}
switch (wcd_resource->start) {
case TOMBAK_CORE_0_SPMI_ADDR:
msm8x16_wcd_modules[0].spmi = spmi;
msm8x16_wcd_modules[0].base = (spmi->sid << 16) +
wcd_resource->start;
wcd9xxx_spmi_set_dev(msm8x16_wcd_modules[0].spmi, 0);
device_init_wakeup(&spmi->dev, true);
break;
case TOMBAK_CORE_1_SPMI_ADDR:
msm8x16_wcd_modules[1].spmi = spmi;
msm8x16_wcd_modules[1].base = (spmi->sid << 16) +
wcd_resource->start;
wcd9xxx_spmi_set_dev(msm8x16_wcd_modules[1].spmi, 1);
if (wcd9xxx_spmi_irq_init()) {
dev_err(&spmi->dev,
"%s: irq initialization failed\n", __func__);
} else {
dev_dbg(&spmi->dev,
"%s: irq initialization passed\n", __func__);
}
spmi_dev_registered_cnt++;
goto register_codec;
default:
ret = -EINVAL;
goto rtn;
}
dev_dbg(&spmi->dev, "%s(%d):start addr = 0x%pa\n",
__func__, __LINE__, &wcd_resource->start);
if (wcd_resource->start != TOMBAK_CORE_0_SPMI_ADDR)
goto rtn;
if (spmi->dev.of_node) {
dev_dbg(&spmi->dev, "%s:Platform data from device tree\n",
__func__);
pdata = msm8x16_wcd_populate_dt_pdata(&spmi->dev);
spmi->dev.platform_data = pdata;
} else {
dev_dbg(&spmi->dev, "%s:Platform data from board file\n",
__func__);
pdata = spmi->dev.platform_data;
}
if (pdata == NULL) {
dev_err(&spmi->dev, "%s:Platform data failed to populate\n",
__func__);
goto rtn;
}
msm8x16 = kzalloc(sizeof(struct msm8x16_wcd), GFP_KERNEL);
if (msm8x16 == NULL) {
ret = -ENOMEM;
goto rtn;
}
msm8x16->dev = &spmi->dev;
msm8x16->read_dev = __msm8x16_wcd_reg_read;
msm8x16->write_dev = __msm8x16_wcd_reg_write;
ret = msm8x16_wcd_init_supplies(msm8x16, pdata);
if (ret) {
dev_err(&spmi->dev, "%s: Fail to enable Codec supplies\n",
__func__);
goto err_codec;
}
ret = msm8x16_wcd_enable_static_supplies(msm8x16, pdata);
if (ret) {
dev_err(&spmi->dev,
"%s: Fail to enable Codec pre-reset supplies\n",
__func__);
goto err_codec;
}
usleep_range(5, 6);
ret = msm8x16_wcd_device_init(msm8x16);
if (ret) {
dev_err(&spmi->dev,
"%s:msm8x16_wcd_device_init failed with error %d\n",
__func__, ret);
goto err_supplies;
}
dev_set_drvdata(&spmi->dev, msm8x16);
spmi_dev_registered_cnt++;
register_codec:
if ((spmi_dev_registered_cnt == MAX_MSM8X16_WCD_DEVICE) && (!ret)) {
if (msm8x16_wcd_modules[0].spmi) {
ret = snd_soc_register_codec(
&msm8x16_wcd_modules[0].spmi->dev,
&soc_codec_dev_msm8x16_wcd,
msm8x16_wcd_i2s_dai,
ARRAY_SIZE(msm8x16_wcd_i2s_dai));
if (ret) {
dev_err(&spmi->dev,
"%s:snd_soc_register_codec failed with error %d\n",
__func__, ret);
goto err_supplies;
}
}
}
return ret;
err_supplies:
msm8x16_wcd_disable_supplies(msm8x16, pdata);
err_codec:
kfree(msm8x16);
rtn:
return ret;
}
static void msm8x16_wcd_device_exit(struct msm8x16_wcd *msm8x16)
{
mutex_destroy(&msm8x16->io_lock);
kfree(msm8x16);
}
static int msm8x16_wcd_spmi_remove(struct spmi_device *spmi)
{
struct msm8x16_wcd *msm8x16 = dev_get_drvdata(&spmi->dev);
msm8x16_wcd_device_exit(msm8x16);
return 0;
}
#ifdef CONFIG_PM
static int msm8x16_wcd_spmi_resume(struct spmi_device *spmi)
{
struct resource *wcd_resource;
wcd_resource = spmi_get_resource(spmi, NULL, IORESOURCE_MEM, 0);
if (!wcd_resource) {
dev_err(&spmi->dev, "Unable to get CDC SPMI resource\n");
return -ENXIO;
}
if (wcd_resource->start == TOMBAK_CORE_0_SPMI_ADDR)
return wcd9xxx_spmi_resume();
return 0;
}
static int msm8x16_wcd_spmi_suspend(struct spmi_device *spmi,
pm_message_t pmesg)
{
struct resource *wcd_resource;
wcd_resource = spmi_get_resource(spmi, NULL, IORESOURCE_MEM, 0);
if (!wcd_resource) {
dev_err(&spmi->dev, "Unable to get CDC SPMI resource\n");
return -ENXIO;
}
if (wcd_resource->start == TOMBAK_CORE_0_SPMI_ADDR)
return wcd9xxx_spmi_suspend(pmesg);
return 0;
}
#endif
static struct spmi_device_id msm8x16_wcd_spmi_id_table[] = {
{"wcd-spmi", MSM8X16_WCD_SPMI_DIGITAL},
{"wcd-spmi", MSM8X16_WCD_SPMI_ANALOG},
{}
};
static struct of_device_id msm8x16_wcd_spmi_of_match[] = {
{ .compatible = "qcom,msm8x16_wcd_codec",},
{ },
};
static struct spmi_driver wcd_spmi_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "wcd-spmi-core",
.of_match_table = msm8x16_wcd_spmi_of_match
},
#ifdef CONFIG_PM
.suspend = msm8x16_wcd_spmi_suspend,
.resume = msm8x16_wcd_spmi_resume,
#endif
.id_table = msm8x16_wcd_spmi_id_table,
.probe = msm8x16_wcd_spmi_probe,
.remove = msm8x16_wcd_spmi_remove,
};
static int __init msm8x16_wcd_codec_init(void)
{
spmi_driver_register(&wcd_spmi_driver);
return 0;
}
late_initcall(msm8x16_wcd_codec_init);
static void __exit msm8x16_wcd_codec_exit(void)
{
spmi_driver_unregister(&wcd_spmi_driver);
}
module_exit(msm8x16_wcd_codec_exit);
MODULE_DESCRIPTION("MSM8x16 Audio codec driver");
MODULE_LICENSE("GPL v2");
MODULE_DEVICE_TABLE(of, msm8x16_wcd_spmi_id_table);