blob: 12e26c683cf65b72f5b5f138b296e27e4f2ad3f9 [file] [log] [blame]
/**
* eCryptfs: Linux filesystem encryption layer
* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/string.h>
#include <linux/ecryptfs.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include "ecryptfs_kernel.h"
static DEFINE_MUTEX(events_mutex);
struct ecryptfs_events *events_ptr = NULL;
static int handle;
void ecryptfs_free_events(void)
{
mutex_lock(&events_mutex);
if (events_ptr != NULL) {
kfree(events_ptr);
events_ptr = NULL;
}
mutex_unlock(&events_mutex);
}
/**
* Register to ecryptfs events, by passing callback
* functions to be called upon events occurence.
* The function returns a handle to be passed
* to unregister function.
*/
int ecryptfs_register_to_events(const struct ecryptfs_events *ops)
{
int ret_value = 0;
if (!ops)
return -EINVAL;
mutex_lock(&events_mutex);
if (events_ptr != NULL) {
ecryptfs_printk(KERN_ERR,
"already registered!\n");
ret_value = -EPERM;
goto out;
}
events_ptr =
kzalloc(sizeof(struct ecryptfs_events), GFP_KERNEL);
if (!events_ptr) {
ecryptfs_printk(KERN_ERR, "malloc failure\n");
ret_value = -ENOMEM;
goto out;
}
/* copy the callbacks */
events_ptr->open_cb = ops->open_cb;
events_ptr->release_cb = ops->release_cb;
events_ptr->encrypt_cb = ops->encrypt_cb;
events_ptr->decrypt_cb = ops->decrypt_cb;
events_ptr->is_cipher_supported_cb =
ops->is_cipher_supported_cb;
events_ptr->is_hw_crypt_cb = ops->is_hw_crypt_cb;
events_ptr->get_salt_key_size_cb = ops->get_salt_key_size_cb;
get_random_bytes(&handle, sizeof(handle));
ret_value = handle;
out:
mutex_unlock(&events_mutex);
return ret_value;
}
/**
* Unregister from ecryptfs events.
*/
int ecryptfs_unregister_from_events(int user_handle)
{
int ret_value = 0;
mutex_lock(&events_mutex);
if (!events_ptr) {
ret_value = -EINVAL;
goto out;
}
if (user_handle != handle) {
ret_value = ECRYPTFS_INVALID_EVENTS_HANDLE;
goto out;
}
kfree(events_ptr);
events_ptr = NULL;
out:
mutex_unlock(&events_mutex);
return ret_value;
}
/**
* This function decides whether the passed file offset
* belongs to ecryptfs metadata or not.
* The caller must pass ecryptfs data, which was received in one
* of the callback invocations.
*/
bool ecryptfs_is_page_in_metadata(const void *data, pgoff_t offset)
{
struct ecryptfs_crypt_stat *stat = NULL;
bool ret = true;
if (!data) {
ecryptfs_printk(KERN_ERR, "ecryptfs_is_page_in_metadata: invalid data parameter\n");
ret = false;
goto end;
}
stat = (struct ecryptfs_crypt_stat *)data;
if (stat->flags & ECRYPTFS_METADATA_IN_XATTR) {
ret = false;
goto end;
}
if (offset >= (stat->metadata_size/PAGE_CACHE_SIZE)) {
ret = false;
goto end;
}
end:
return ret;
}
/**
* Given two ecryptfs data, the function
* decides whether they are equal.
*/
inline bool ecryptfs_is_data_equal(const void *data1, const void *data2)
{
/* pointer comparison*/
return data1 == data2;
}
/**
* Given ecryptfs data, the function
* returns appropriate key size.
*/
size_t ecryptfs_get_key_size(const void *data)
{
struct ecryptfs_crypt_stat *stat = NULL;
if (!data)
return 0;
stat = (struct ecryptfs_crypt_stat *)data;
return stat->key_size;
}
/**
* Given ecryptfs data, the function
* returns appropriate salt size.
*
* !!! crypt_stat cipher name and mode must be initialized
*/
size_t ecryptfs_get_salt_size(const void *data)
{
if (!data) {
ecryptfs_printk(KERN_ERR,
"ecryptfs_get_salt_size: invalid data parameter\n");
return 0;
}
return ecryptfs_get_salt_size_for_cipher(data);
}
/**
* Given ecryptfs data and cipher string, the function
* returns true if provided cipher and the one in ecryptfs match.
*/
bool ecryptfs_cipher_match(const void *data,
const unsigned char *cipher, size_t cipher_size)
{
unsigned char final[2*ECRYPTFS_MAX_CIPHER_NAME_SIZE+1];
const unsigned char *ecryptfs_cipher = NULL;
struct ecryptfs_crypt_stat *stat = NULL;
if (!data || !cipher) {
ecryptfs_printk(KERN_ERR,
"ecryptfs_get_cipher: invalid data parameter\n");
return false;
}
if (!cipher_size || cipher_size > sizeof(final)) {
ecryptfs_printk(KERN_ERR,
"ecryptfs_get_cipher: cipher_size\n");
return false;
}
stat = (struct ecryptfs_crypt_stat *)data;
ecryptfs_cipher = ecryptfs_get_full_cipher(stat->cipher,
stat->cipher_mode,
final, sizeof(final));
if (!ecryptfs_cipher) {
ecryptfs_printk(KERN_ERR,
"ecryptfs_get_cipher: internal error while parsing cipher\n");
return false;
}
if (strcmp(ecryptfs_cipher, cipher)) {
if (ecryptfs_verbosity > 0)
ecryptfs_dump_cipher(stat);
return false;
}
return true;
}
/**
* Given ecryptfs data, the function
* returns file encryption key.
*/
const unsigned char *ecryptfs_get_key(const void *data)
{
struct ecryptfs_crypt_stat *stat = NULL;
if (!data) {
ecryptfs_printk(KERN_ERR,
"ecryptfs_get_key: invalid data parameter\n");
return NULL;
}
stat = (struct ecryptfs_crypt_stat *)data;
return stat->key;
}
/**
* Given ecryptfs data, the function
* returns file encryption salt.
*/
const unsigned char *ecryptfs_get_salt(const void *data)
{
struct ecryptfs_crypt_stat *stat = NULL;
if (!data) {
ecryptfs_printk(KERN_ERR,
"ecryptfs_get_salt: invalid data parameter\n");
return NULL;
}
stat = (struct ecryptfs_crypt_stat *)data;
return stat->key + ecryptfs_get_salt_size(data);
}
/**
* Returns ecryptfs events pointer
*/
inline struct ecryptfs_events *get_events(void)
{
return events_ptr;
}
/**
* If external crypto module requires salt in addition to key,
* we store it as part of key array (if there is enough space)
* Checks whether a salt key can fit into array allocated for
* regular key
*/
bool ecryptfs_check_space_for_salt(const size_t key_size,
const size_t salt_size)
{
if ((salt_size + key_size) > ECRYPTFS_MAX_KEY_BYTES)
return false;
return true;
}
/*
* If there is salt that is used by external crypto module, it is stored
* in the same array where regular key is. Salt is going to be used by
* external crypto module only, so for all internal crypto operations salt
* should be ignored.
*
* Get key size in cases where it is going to be used for data encryption
* or for all other general purposes
*/
size_t ecryptfs_get_key_size_to_enc_data(
const struct ecryptfs_crypt_stat *crypt_stat)
{
if (!crypt_stat)
return 0;
return crypt_stat->key_size;
}
/*
* If there is salt that is used by external crypto module, it is stored
* in the same array where regular key is. Salt is going to be used by
* external crypto module only, but we still need to save and restore it
* (in encrypted form) as part of ecryptfs header along with the regular
* key.
*
* Get key size in cases where it is going to be stored persistently
*
* !!! crypt_stat cipher name and mode must be initialized
*/
size_t ecryptfs_get_key_size_to_store_key(
const struct ecryptfs_crypt_stat *crypt_stat)
{
size_t salt_size = 0;
if (!crypt_stat)
return 0;
salt_size = ecryptfs_get_salt_size(crypt_stat);
if (!ecryptfs_check_space_for_salt(crypt_stat->key_size, salt_size)) {
ecryptfs_printk(KERN_WARNING,
"ecryptfs_get_key_size_to_store_key: not enough space for salt\n");
return crypt_stat->key_size;
}
return crypt_stat->key_size + salt_size;
}
/*
* If there is salt that is used by external crypto module, it is stored
* in the same array where regular key is. Salt is going to be used by
* external crypto module only, but we still need to save and restore it
* (in encrypted form) as part of ecryptfs header along with the regular
* key.
*
* Get key size in cases where it is going to be restored from storage
*
* !!! crypt_stat cipher name and mode must be initialized
*/
size_t ecryptfs_get_key_size_to_restore_key(size_t stored_key_size,
const struct ecryptfs_crypt_stat *crypt_stat)
{
size_t salt_size = 0;
if (!crypt_stat)
return 0;
salt_size = ecryptfs_get_salt_size_for_cipher(crypt_stat);
if (salt_size >= stored_key_size) {
ecryptfs_printk(KERN_WARNING,
"ecryptfs_get_key_size_to_restore_key: salt %zu >= stred size %zu\n",
salt_size, stored_key_size);
return stored_key_size;
}
return stored_key_size - salt_size;
}
/**
* Given crypt_stat, the function returns appropriate salt size.
*/
size_t ecryptfs_get_salt_size_for_cipher(
const struct ecryptfs_crypt_stat *crypt_stat)
{
if (!get_events() || !(get_events()->get_salt_key_size_cb))
return 0;
return get_events()->get_salt_key_size_cb(crypt_stat);
}
/**
* Given mount_crypt_stat, the function returns appropriate salt size.
*/
size_t ecryptfs_get_salt_size_for_cipher_mount(
const struct ecryptfs_mount_crypt_stat *crypt_stat)
{
if (!get_events() || !(get_events()->get_salt_key_size_cb))
return 0;
return get_events()->get_salt_key_size_cb(crypt_stat);
}