blob: b2b060b0cc289a24c48b7f3286cb53421a97e86c [file] [log] [blame]
/* Copyright (c) 2009-2016, Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/of_platform.h>
#include <linux/uaccess.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/pm_runtime.h>
#include <linux/suspend.h>
#include <linux/of.h>
#include <linux/dma-mapping.h>
#include <linux/clk/msm-clk.h>
#include <linux/pinctrl/consumer.h>
#include <linux/irqchip/msm-mpm-irq.h>
#include <soc/qcom/scm.h>
#include <linux/usb.h>
#include <linux/usb/otg.h>
#include <linux/usb/ulpi.h>
#include <linux/usb/gadget.h>
#include <linux/usb/hcd.h>
#include <linux/usb/msm_hsusb.h>
#include <linux/usb/msm_hsusb_hw.h>
#include <linux/usb/msm_ext_chg.h>
#include <linux/regulator/consumer.h>
#include <linux/qpnp/qpnp-adc.h>
#include <linux/msm-bus.h>
#define MSM_USB_BASE (motg->regs)
#define MSM_USB_PHY_CSR_BASE (motg->phy_csr_regs)
#define DRIVER_NAME "msm_otg"
#define CHG_RECHECK_DELAY (jiffies + msecs_to_jiffies(2000))
#define ULPI_IO_TIMEOUT_USEC (10 * 1000)
#define USB_PHY_3P3_VOL_MIN 3050000 /* uV */
#define USB_PHY_3P3_VOL_MAX 3300000 /* uV */
#define USB_PHY_3P3_HPM_LOAD 50000 /* uA */
#define USB_PHY_3P3_LPM_LOAD 4000 /* uA */
#define USB_PHY_1P8_VOL_MIN 1800000 /* uV */
#define USB_PHY_1P8_VOL_MAX 1800000 /* uV */
#define USB_PHY_1P8_HPM_LOAD 50000 /* uA */
#define USB_PHY_1P8_LPM_LOAD 4000 /* uA */
#define USB_PHY_VDD_DIG_VOL_NONE 0 /*uV */
#define USB_PHY_VDD_DIG_VOL_MIN 1045000 /* uV */
#define USB_PHY_VDD_DIG_VOL_MAX 1320000 /* uV */
#define USB_SUSPEND_DELAY_TIME (500 * HZ/1000) /* 500 msec */
#define USB_DEFAULT_SYSTEM_CLOCK 80000000 /* 80 MHz */
#define PM_QOS_SAMPLE_SEC 2
#define PM_QOS_THRESHOLD 400
enum msm_otg_phy_reg_mode {
USB_PHY_REG_OFF,
USB_PHY_REG_ON,
USB_PHY_REG_LPM_ON,
USB_PHY_REG_LPM_OFF,
USB_PHY_REG_3P3_ON,
USB_PHY_REG_3P3_OFF,
};
static char *override_phy_init;
module_param(override_phy_init, charp, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(override_phy_init,
"Override HSUSB PHY Init Settings");
unsigned int lpm_disconnect_thresh = 1000;
module_param(lpm_disconnect_thresh , uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(lpm_disconnect_thresh,
"Delay before entering LPM on USB disconnect");
static bool floated_charger_enable;
module_param(floated_charger_enable , bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(floated_charger_enable,
"Whether to enable floated charger");
/* by default debugging is enabled */
static unsigned int enable_dbg_log = 1;
module_param(enable_dbg_log, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(enable_dbg_log, "Debug buffer events");
/* Max current to be drawn for HVDCP charger */
static int hvdcp_max_current = IDEV_HVDCP_CHG_MAX;
module_param(hvdcp_max_current, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hvdcp_max_current, "max current drawn for HVDCP charger");
/* Max current to be drawn for DCP charger */
static int dcp_max_current = IDEV_CHG_MAX;
module_param(dcp_max_current, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dcp_max_current, "max current drawn for DCP charger");
static DECLARE_COMPLETION(pmic_vbus_init);
static struct msm_otg *the_msm_otg;
static bool debug_bus_voting_enabled;
static struct regulator *hsusb_3p3;
static struct regulator *hsusb_1p8;
static struct regulator *hsusb_vdd;
static struct regulator *vbus_otg;
static struct power_supply *psy;
static int vdd_val[VDD_VAL_MAX];
static u32 bus_freqs[USB_NOC_NUM_VOTE][USB_NUM_BUS_CLOCKS] /*bimc,snoc,pcnoc*/;
static char bus_clkname[USB_NUM_BUS_CLOCKS][20] = {"bimc_clk", "snoc_clk",
"pcnoc_clk"};
static bool bus_clk_rate_set;
static void dbg_inc(unsigned *idx)
{
*idx = (*idx + 1) & (DEBUG_MAX_MSG-1);
}
static void
msm_otg_dbg_log_event(struct usb_phy *phy, char *event, int d1, int d2)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
unsigned long flags;
unsigned long long t;
unsigned long nanosec;
if (!enable_dbg_log)
return;
write_lock_irqsave(&motg->dbg_lock, flags);
t = cpu_clock(smp_processor_id());
nanosec = do_div(t, 1000000000)/1000;
scnprintf(motg->buf[motg->dbg_idx], DEBUG_MSG_LEN,
"[%5lu.%06lu]: %s :%d:%d",
(unsigned long)t, nanosec, event, d1, d2);
motg->dbg_idx++;
motg->dbg_idx = motg->dbg_idx % DEBUG_MAX_MSG;
write_unlock_irqrestore(&motg->dbg_lock, flags);
}
static int msm_hsusb_ldo_init(struct msm_otg *motg, int init)
{
int rc = 0;
if (init) {
hsusb_3p3 = devm_regulator_get(motg->phy.dev, "HSUSB_3p3");
if (IS_ERR(hsusb_3p3)) {
dev_err(motg->phy.dev, "unable to get hsusb 3p3\n");
return PTR_ERR(hsusb_3p3);
}
rc = regulator_set_voltage(hsusb_3p3, USB_PHY_3P3_VOL_MIN,
USB_PHY_3P3_VOL_MAX);
if (rc) {
dev_err(motg->phy.dev, "unable to set voltage level for"
"hsusb 3p3\n");
return rc;
}
hsusb_1p8 = devm_regulator_get(motg->phy.dev, "HSUSB_1p8");
if (IS_ERR(hsusb_1p8)) {
dev_err(motg->phy.dev, "unable to get hsusb 1p8\n");
rc = PTR_ERR(hsusb_1p8);
goto put_3p3_lpm;
}
rc = regulator_set_voltage(hsusb_1p8, USB_PHY_1P8_VOL_MIN,
USB_PHY_1P8_VOL_MAX);
if (rc) {
dev_err(motg->phy.dev, "unable to set voltage level "
"for hsusb 1p8\n");
goto put_1p8;
}
return 0;
}
put_1p8:
regulator_set_voltage(hsusb_1p8, 0, USB_PHY_1P8_VOL_MAX);
put_3p3_lpm:
regulator_set_voltage(hsusb_3p3, 0, USB_PHY_3P3_VOL_MAX);
return rc;
}
static int msm_hsusb_config_vddcx(int high)
{
struct msm_otg *motg = the_msm_otg;
int max_vol = vdd_val[VDD_MAX];
int min_vol;
int ret;
min_vol = vdd_val[!!high];
ret = regulator_set_voltage(hsusb_vdd, min_vol, max_vol);
if (ret) {
pr_err("%s: unable to set the voltage for regulator "
"HSUSB_VDDCX\n", __func__);
return ret;
}
pr_debug("%s: min_vol:%d max_vol:%d\n", __func__, min_vol, max_vol);
msm_otg_dbg_log_event(&motg->phy, "CONFIG VDDCX", min_vol, max_vol);
return ret;
}
static int msm_hsusb_ldo_enable(struct msm_otg *motg,
enum msm_otg_phy_reg_mode mode)
{
int ret = 0;
if (IS_ERR(hsusb_1p8)) {
pr_err("%s: HSUSB_1p8 is not initialized\n", __func__);
return -ENODEV;
}
if (IS_ERR(hsusb_3p3)) {
pr_err("%s: HSUSB_3p3 is not initialized\n", __func__);
return -ENODEV;
}
switch (mode) {
case USB_PHY_REG_ON:
ret = regulator_set_optimum_mode(hsusb_1p8,
USB_PHY_1P8_HPM_LOAD);
if (ret < 0) {
pr_err("%s: Unable to set HPM of the regulator "
"HSUSB_1p8\n", __func__);
return ret;
}
ret = regulator_enable(hsusb_1p8);
if (ret) {
dev_err(motg->phy.dev, "%s: unable to enable the hsusb 1p8\n",
__func__);
regulator_set_optimum_mode(hsusb_1p8, 0);
return ret;
}
/* fall through */
case USB_PHY_REG_3P3_ON:
ret = regulator_set_optimum_mode(hsusb_3p3,
USB_PHY_3P3_HPM_LOAD);
if (ret < 0) {
pr_err("%s: Unable to set HPM of the regulator "
"HSUSB_3p3\n", __func__);
if (mode == USB_PHY_REG_ON) {
regulator_set_optimum_mode(hsusb_1p8, 0);
regulator_disable(hsusb_1p8);
}
return ret;
}
ret = regulator_enable(hsusb_3p3);
if (ret) {
dev_err(motg->phy.dev, "%s: unable to enable the hsusb 3p3\n",
__func__);
regulator_set_optimum_mode(hsusb_3p3, 0);
if (mode == USB_PHY_REG_ON) {
regulator_set_optimum_mode(hsusb_1p8, 0);
regulator_disable(hsusb_1p8);
}
return ret;
}
break;
case USB_PHY_REG_OFF:
ret = regulator_disable(hsusb_1p8);
if (ret) {
dev_err(motg->phy.dev, "%s: unable to disable the hsusb 1p8\n",
__func__);
return ret;
}
ret = regulator_set_optimum_mode(hsusb_1p8, 0);
if (ret < 0)
pr_err("%s: Unable to set LPM of the regulator "
"HSUSB_1p8\n", __func__);
/* fall through */
case USB_PHY_REG_3P3_OFF:
ret = regulator_disable(hsusb_3p3);
if (ret) {
dev_err(motg->phy.dev, "%s: unable to disable the hsusb 3p3\n",
__func__);
return ret;
}
ret = regulator_set_optimum_mode(hsusb_3p3, 0);
if (ret < 0)
pr_err("%s: Unable to set LPM of the regulator "
"HSUSB_3p3\n", __func__);
break;
case USB_PHY_REG_LPM_ON:
ret = regulator_set_optimum_mode(hsusb_1p8,
USB_PHY_1P8_LPM_LOAD);
if (ret < 0) {
pr_err("%s: Unable to set LPM of the regulator: HSUSB_1p8\n",
__func__);
return ret;
}
ret = regulator_set_optimum_mode(hsusb_3p3,
USB_PHY_3P3_LPM_LOAD);
if (ret < 0) {
pr_err("%s: Unable to set LPM of the regulator: HSUSB_3p3\n",
__func__);
regulator_set_optimum_mode(hsusb_1p8, USB_PHY_REG_ON);
return ret;
}
break;
case USB_PHY_REG_LPM_OFF:
ret = regulator_set_optimum_mode(hsusb_1p8,
USB_PHY_1P8_HPM_LOAD);
if (ret < 0) {
pr_err("%s: Unable to set HPM of the regulator: HSUSB_1p8\n",
__func__);
return ret;
}
ret = regulator_set_optimum_mode(hsusb_3p3,
USB_PHY_3P3_HPM_LOAD);
if (ret < 0) {
pr_err("%s: Unable to set HPM of the regulator: HSUSB_3p3\n",
__func__);
regulator_set_optimum_mode(hsusb_1p8, USB_PHY_REG_ON);
return ret;
}
break;
default:
pr_err("%s: Unsupported mode (%d).", __func__, mode);
return -ENOTSUPP;
}
pr_debug("%s: USB reg mode (%d) (OFF/HPM/LPM)\n", __func__, mode);
msm_otg_dbg_log_event(&motg->phy, "USB REG MODE", mode, ret);
return ret < 0 ? ret : 0;
}
static int ulpi_read(struct usb_phy *phy, u32 reg)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
int cnt = 0;
if (motg->pdata->emulation)
return 0;
if (motg->pdata->phy_type == QUSB_ULPI_PHY && reg > 0x3F) {
pr_debug("%s: ULPI vendor-specific reg 0x%02x not supported\n",
__func__, reg);
return 0;
}
/* initiate read operation */
writel_relaxed(ULPI_RUN | ULPI_READ | ULPI_ADDR(reg),
USB_ULPI_VIEWPORT);
/* wait for completion */
while (cnt < ULPI_IO_TIMEOUT_USEC) {
if (!(readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_RUN))
break;
udelay(1);
cnt++;
}
if (cnt >= ULPI_IO_TIMEOUT_USEC) {
dev_err(phy->dev, "ulpi_read: timeout %08x\n",
readl_relaxed(USB_ULPI_VIEWPORT));
dev_err(phy->dev, "PORTSC: %08x USBCMD: %08x\n",
readl_relaxed(USB_PORTSC), readl_relaxed(USB_USBCMD));
return -ETIMEDOUT;
}
return ULPI_DATA_READ(readl_relaxed(USB_ULPI_VIEWPORT));
}
static int ulpi_write(struct usb_phy *phy, u32 val, u32 reg)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
int cnt = 0;
if (motg->pdata->emulation)
return 0;
if (motg->pdata->phy_type == QUSB_ULPI_PHY && reg > 0x3F) {
pr_debug("%s: ULPI vendor-specific reg 0x%02x not supported\n",
__func__, reg);
return 0;
}
/* initiate write operation */
writel_relaxed(ULPI_RUN | ULPI_WRITE |
ULPI_ADDR(reg) | ULPI_DATA(val),
USB_ULPI_VIEWPORT);
/* wait for completion */
while (cnt < ULPI_IO_TIMEOUT_USEC) {
if (!(readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_RUN))
break;
udelay(1);
cnt++;
}
if (cnt >= ULPI_IO_TIMEOUT_USEC) {
dev_err(phy->dev, "ulpi_write: timeout\n");
dev_err(phy->dev, "PORTSC: %08x USBCMD: %08x\n",
readl_relaxed(USB_PORTSC), readl_relaxed(USB_USBCMD));
return -ETIMEDOUT;
}
return 0;
}
static struct usb_phy_io_ops msm_otg_io_ops = {
.read = ulpi_read,
.write = ulpi_write,
};
static void ulpi_init(struct msm_otg *motg)
{
struct msm_otg_platform_data *pdata = motg->pdata;
int aseq[10];
int *seq = NULL;
if (override_phy_init) {
pr_debug("%s(): HUSB PHY Init:%s\n", __func__,
override_phy_init);
get_options(override_phy_init, ARRAY_SIZE(aseq), aseq);
seq = &aseq[1];
} else {
seq = pdata->phy_init_seq;
}
if (!seq)
return;
while (seq[0] >= 0) {
if (override_phy_init)
pr_debug("ulpi: write 0x%02x to 0x%02x\n",
seq[0], seq[1]);
dev_vdbg(motg->phy.dev, "ulpi: write 0x%02x to 0x%02x\n",
seq[0], seq[1]);
msm_otg_dbg_log_event(&motg->phy, "ULPI WRITE", seq[0], seq[1]);
ulpi_write(&motg->phy, seq[0], seq[1]);
seq += 2;
}
}
static int msm_otg_phy_clk_reset(struct msm_otg *motg)
{
int ret;
if (!motg->phy_reset_clk)
return 0;
if (motg->sleep_clk)
clk_disable_unprepare(motg->sleep_clk);
if (motg->phy_csr_clk)
clk_disable_unprepare(motg->phy_csr_clk);
ret = clk_reset(motg->phy_reset_clk, CLK_RESET_ASSERT);
if (ret < 0) {
pr_err("phy_reset_clk assert failed %d\n", ret);
return ret;
}
/*
* As per databook, 10 usec delay is required between
* PHY POR assert and de-assert.
*/
usleep_range(10, 15);
ret = clk_reset(motg->phy_reset_clk, CLK_RESET_DEASSERT);
if (ret < 0) {
pr_err("phy_reset_clk de-assert failed %d\n", ret);
return ret;
}
/*
* As per databook, it takes 75 usec for PHY to stabilize
* after the reset.
*/
usleep_range(80, 100);
if (motg->phy_csr_clk)
clk_prepare_enable(motg->phy_csr_clk);
if (motg->sleep_clk)
clk_prepare_enable(motg->sleep_clk);
return 0;
}
static int msm_otg_link_clk_reset(struct msm_otg *motg, bool assert)
{
int ret;
if (assert) {
/* Using asynchronous block reset to the hardware */
dev_dbg(motg->phy.dev, "block_reset ASSERT\n");
clk_disable_unprepare(motg->pclk);
clk_disable_unprepare(motg->core_clk);
ret = clk_reset(motg->core_clk, CLK_RESET_ASSERT);
if (ret)
dev_err(motg->phy.dev, "usb hs_clk assert failed\n");
} else {
dev_dbg(motg->phy.dev, "block_reset DEASSERT\n");
ret = clk_reset(motg->core_clk, CLK_RESET_DEASSERT);
ndelay(200);
ret = clk_prepare_enable(motg->core_clk);
WARN(ret, "USB core_clk enable failed\n");
ret = clk_prepare_enable(motg->pclk);
WARN(ret, "USB pclk enable failed\n");
if (ret)
dev_err(motg->phy.dev, "usb hs_clk deassert failed\n");
}
return ret;
}
static int msm_otg_phy_reset(struct msm_otg *motg)
{
u32 val;
int ret;
struct msm_otg_platform_data *pdata = motg->pdata;
/*
* AHB2AHB Bypass mode shouldn't be enable before doing
* async clock reset. If it is enable, disable the same.
*/
val = readl_relaxed(USB_AHBMODE);
if (val & AHB2AHB_BYPASS) {
pr_err("%s(): AHB2AHB_BYPASS SET: AHBMODE:%x\n",
__func__, val);
val &= ~AHB2AHB_BYPASS_BIT_MASK;
writel_relaxed(val | AHB2AHB_BYPASS_CLEAR, USB_AHBMODE);
pr_err("%s(): AHBMODE: %x\n", __func__,
readl_relaxed(USB_AHBMODE));
}
ret = msm_otg_link_clk_reset(motg, 1);
if (ret)
return ret;
msm_otg_phy_clk_reset(motg);
/* wait for 1ms delay as suggested in HPG. */
usleep_range(1000, 1200);
ret = msm_otg_link_clk_reset(motg, 0);
if (ret)
return ret;
if (pdata && pdata->enable_sec_phy)
writel_relaxed(readl_relaxed(USB_PHY_CTRL2) | (1<<16),
USB_PHY_CTRL2);
val = readl_relaxed(USB_PORTSC) & ~PORTSC_PTS_MASK;
writel_relaxed(val | PORTSC_PTS_ULPI, USB_PORTSC);
dev_info(motg->phy.dev, "phy_reset: success\n");
msm_otg_dbg_log_event(&motg->phy, "PHY RESET SUCCESS",
motg->inputs, motg->phy.state);
return 0;
}
#define LINK_RESET_TIMEOUT_USEC (250 * 1000)
static int msm_otg_link_reset(struct msm_otg *motg)
{
int cnt = 0;
struct msm_otg_platform_data *pdata = motg->pdata;
writel_relaxed(USBCMD_RESET, USB_USBCMD);
while (cnt < LINK_RESET_TIMEOUT_USEC) {
if (!(readl_relaxed(USB_USBCMD) & USBCMD_RESET))
break;
udelay(1);
cnt++;
}
if (cnt >= LINK_RESET_TIMEOUT_USEC)
return -ETIMEDOUT;
/* select ULPI phy */
writel_relaxed(0x80000000, USB_PORTSC);
writel_relaxed(0x0, USB_AHBBURST);
writel_relaxed(0x08, USB_AHBMODE);
if (pdata && pdata->enable_sec_phy)
writel_relaxed(readl_relaxed(USB_PHY_CTRL2) | (1<<16),
USB_PHY_CTRL2);
return 0;
}
#define QUSB2PHY_PORT_POWERDOWN 0xB4
#define QUSB2PHY_PORT_UTMI_CTRL2 0xC4
static void msm_usb_phy_reset(struct msm_otg *motg)
{
u32 val;
int ret, *seq;
switch (motg->pdata->phy_type) {
case SNPS_PICO_PHY:
/* Assert USB PHY_PON */
val = readl_relaxed(motg->usb_phy_ctrl_reg);
val &= ~PHY_POR_BIT_MASK;
val |= PHY_POR_ASSERT;
writel_relaxed(val, motg->usb_phy_ctrl_reg);
/* wait for minimum 10 microseconds as
* suggested in HPG.
*/
usleep_range(10, 15);
/* Deassert USB PHY_PON */
val = readl_relaxed(motg->usb_phy_ctrl_reg);
val &= ~PHY_POR_BIT_MASK;
val |= PHY_POR_DEASSERT;
writel_relaxed(val, motg->usb_phy_ctrl_reg);
break;
case QUSB_ULPI_PHY:
ret = clk_reset(motg->phy_reset_clk, CLK_RESET_ASSERT);
if (ret) {
pr_err("phy_reset_clk assert failed %d\n", ret);
break;
}
/* need to delay 10us for PHY to reset */
usleep_range(10, 20);
ret = clk_reset(motg->phy_reset_clk, CLK_RESET_DEASSERT);
if (ret) {
pr_err("phy_reset_clk de-assert failed %d\n", ret);
break;
}
/* Ensure that RESET operation is completed. */
mb();
writel_relaxed(0x23,
motg->phy_csr_regs + QUSB2PHY_PORT_POWERDOWN);
writel_relaxed(0x0,
motg->phy_csr_regs + QUSB2PHY_PORT_UTMI_CTRL2);
/* Program tuning parameters for PHY */
seq = motg->pdata->phy_init_seq;
if (seq) {
while (seq[0] >= 0) {
writel_relaxed(seq[1],
motg->phy_csr_regs + seq[0]);
seq += 2;
}
}
/* ensure above writes are completed before re-enabling PHY */
wmb();
writel_relaxed(0x22,
motg->phy_csr_regs + QUSB2PHY_PORT_POWERDOWN);
break;
case SNPS_FEMTO_PHY:
if (!motg->phy_por_clk) {
pr_err("phy_por_clk missing\n");
break;
}
ret = clk_reset(motg->phy_por_clk, CLK_RESET_ASSERT);
if (ret) {
pr_err("phy_por_clk assert failed %d\n", ret);
break;
}
/*
* The Femto PHY is POR reset in the following scenarios.
*
* 1. After overriding the parameter registers.
* 2. Low power mode exit from PHY retention.
*
* Ensure that SIDDQ is cleared before bringing the PHY
* out of reset.
*
*/
val = readb_relaxed(USB_PHY_CSR_PHY_CTRL_COMMON0);
val &= ~SIDDQ;
writeb_relaxed(val, USB_PHY_CSR_PHY_CTRL_COMMON0);
/*
* As per databook, 10 usec delay is required between
* PHY POR assert and de-assert.
*/
usleep_range(10, 20);
ret = clk_reset(motg->phy_por_clk, CLK_RESET_DEASSERT);
if (ret) {
pr_err("phy_por_clk de-assert failed %d\n", ret);
break;
}
/*
* As per databook, it takes 75 usec for PHY to stabilize
* after the reset.
*/
usleep_range(80, 100);
break;
default:
break;
}
/* Ensure that RESET operation is completed. */
mb();
}
static int msm_otg_reset(struct usb_phy *phy)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
struct msm_otg_platform_data *pdata = motg->pdata;
int ret;
u32 val = 0;
u32 ulpi_val = 0;
msm_otg_dbg_log_event(&motg->phy, "USB RESET", phy->state,
get_pm_runtime_counter(phy->dev));
/*
* USB PHY and Link reset also reset the USB BAM.
* Thus perform reset operation only once to avoid
* USB BAM reset on other cases e.g. USB cable disconnections.
* If hardware reported error then it must be reset for recovery.
*/
if (motg->err_event_seen) {
dev_info(phy->dev, "performing USB h/w reset for recovery\n");
} else if (pdata->disable_reset_on_disconnect && motg->reset_counter) {
return 0;
}
motg->reset_counter++;
ret = msm_otg_phy_reset(motg);
if (ret) {
dev_err(phy->dev, "phy_reset failed\n");
return ret;
}
ret = msm_otg_link_reset(motg);
if (ret) {
dev_err(phy->dev, "link reset failed\n");
return ret;
}
msleep(100);
/* Reset USB PHY after performing USB Link RESET */
msm_usb_phy_reset(motg);
/* Program USB PHY Override registers. */
ulpi_init(motg);
/*
* It is required to reset USB PHY after programming
* the USB PHY Override registers to get the new
* values into effect.
*/
msm_usb_phy_reset(motg);
if (pdata->otg_control == OTG_PHY_CONTROL) {
val = readl_relaxed(USB_OTGSC);
if (pdata->mode == USB_OTG) {
ulpi_val = ULPI_INT_IDGRD | ULPI_INT_SESS_VALID;
val |= OTGSC_IDIE | OTGSC_BSVIE;
} else if (pdata->mode == USB_PERIPHERAL) {
ulpi_val = ULPI_INT_SESS_VALID;
val |= OTGSC_BSVIE;
}
writel_relaxed(val, USB_OTGSC);
ulpi_write(phy, ulpi_val, ULPI_USB_INT_EN_RISE);
ulpi_write(phy, ulpi_val, ULPI_USB_INT_EN_FALL);
} else if (pdata->otg_control == OTG_PMIC_CONTROL) {
ulpi_write(phy, OTG_COMP_DISABLE,
ULPI_SET(ULPI_PWR_CLK_MNG_REG));
if (motg->phy_irq)
writeb_relaxed(USB_PHY_ID_MASK,
USB2_PHY_USB_PHY_INTERRUPT_MASK1);
}
if (motg->caps & ALLOW_VDD_MIN_WITH_RETENTION_DISABLED)
writel_relaxed(readl_relaxed(USB_OTGSC) & ~(OTGSC_IDPU),
USB_OTGSC);
msm_otg_dbg_log_event(&motg->phy, "USB RESET DONE", phy->state,
get_pm_runtime_counter(phy->dev));
if (pdata->enable_axi_prefetch)
writel_relaxed(readl_relaxed(USB_HS_APF_CTRL) | (APF_CTRL_EN),
USB_HS_APF_CTRL);
/*
* Enable USB BAM if USB BAM is enabled already before block reset as
* block reset also resets USB BAM registers.
*/
if (test_bit(ID, &motg->inputs)) {
msm_usb_bam_enable(CI_CTRL,
phy->otg->gadget->bam2bam_func_enabled);
} else {
dev_dbg(phy->dev, "host mode BAM not enabled\n");
}
return 0;
}
static void msm_otg_kick_sm_work(struct msm_otg *motg)
{
if (atomic_read(&motg->in_lpm))
motg->resume_pending = true;
if (atomic_read(&motg->pm_suspended)) {
motg->sm_work_pending = true;
} else if (!motg->sm_work_pending) {
/* process event only if previous one is not pending */
queue_work(motg->otg_wq, &motg->sm_work);
}
}
/*
* UDC calls usb_phy_set_suspend() to notify during bus suspend/resume.
* Update relevant state-machine inputs and queue sm_work.
* LPM enter/exit doesn't happen directly from this routine.
*/
static int msm_otg_set_suspend(struct usb_phy *phy, int suspend)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
pr_debug("%s(%d) in %s state\n", __func__, suspend,
usb_otg_state_string(phy->state));
msm_otg_dbg_log_event(phy, "SET SUSPEND", suspend, phy->state);
if (!(motg->caps & ALLOW_LPM_ON_DEV_SUSPEND))
return 0;
if (suspend) {
/* called in suspend interrupt context */
pr_debug("peripheral bus suspend\n");
msm_otg_dbg_log_event(phy, "PERIPHERAL BUS SUSPEND",
motg->inputs, phy->state);
set_bit(A_BUS_SUSPEND, &motg->inputs);
} else {
/* host resume or remote-wakeup */
pr_debug("peripheral bus resume\n");
msm_otg_dbg_log_event(phy, "PERIPHERAL BUS RESUME",
motg->inputs, phy->state);
clear_bit(A_BUS_SUSPEND, &motg->inputs);
}
/* use kick_sm_work to handle race with pm_resume */
msm_otg_kick_sm_work(motg);
return 0;
}
static int msm_otg_bus_freq_set(struct msm_otg *motg, enum usb_noc_mode mode)
{
int i, ret;
long rate;
for (i = 0; i < USB_NUM_BUS_CLOCKS; i++) {
rate = bus_freqs[mode][i];
if (!rate) {
pr_debug("%s rate not available\n", bus_clkname[i]);
continue;
}
ret = clk_set_rate(motg->bus_clks[i], rate);
if (ret) {
pr_err("%s set rate failed: %d\n", bus_clkname[i], ret);
return ret;
}
pr_debug("%s set to %lu Hz\n", bus_clkname[i],
clk_get_rate(motg->bus_clks[i]));
msm_otg_dbg_log_event(&motg->phy, "OTG BUS FREQ SET", i, rate);
}
bus_clk_rate_set = true;
return 0;
}
static int msm_otg_bus_freq_get(struct msm_otg *motg)
{
struct device *dev = motg->phy.dev;
struct device_node *np = dev->of_node;
int len = 0, i, count = USB_NUM_BUS_CLOCKS;
if (!np)
return -EINVAL;
of_find_property(np, "qcom,bus-clk-rate", &len);
/* SVS requires extra set of frequencies for perf_mode sysfs node */
if (motg->default_noc_mode == USB_NOC_SVS_VOTE)
count *= 2;
if (!len || (len / sizeof(u32) != count)) {
pr_err("Invalid bus rate:%d %u\n", len, motg->default_noc_mode);
return -EINVAL;
}
of_property_read_u32_array(np, "qcom,bus-clk-rate", bus_freqs[0],
count);
for (i = 0; i < USB_NUM_BUS_CLOCKS; i++) {
if (bus_freqs[0][i] == 0) {
motg->bus_clks[i] = NULL;
pr_debug("%s not available\n", bus_clkname[i]);
continue;
}
motg->bus_clks[i] = devm_clk_get(dev, bus_clkname[i]);
if (IS_ERR(motg->bus_clks[i])) {
pr_err("%s get failed\n", bus_clkname[i]);
return PTR_ERR(motg->bus_clks[i]);
}
}
return 0;
}
static void msm_otg_bus_clks_enable(struct msm_otg *motg)
{
int i;
int ret;
if (!bus_clk_rate_set || motg->bus_clks_enabled)
return;
for (i = 0; i < USB_NUM_BUS_CLOCKS; i++) {
if (motg->bus_clks[i] == NULL)
continue;
ret = clk_prepare_enable(motg->bus_clks[i]);
if (ret) {
pr_err("%s enable rate failed: %d\n", bus_clkname[i],
ret);
goto err_clk_en;
}
}
motg->bus_clks_enabled = true;
return;
err_clk_en:
for (--i; i >= 0; --i) {
if (motg->bus_clks[i] != NULL)
clk_disable_unprepare(motg->bus_clks[i]);
}
}
static void msm_otg_bus_clks_disable(struct msm_otg *motg)
{
int i;
if (!bus_clk_rate_set || !motg->bus_clks_enabled)
return;
for (i = 0; i < USB_NUM_BUS_CLOCKS; i++) {
if (motg->bus_clks[i] != NULL)
clk_disable_unprepare(motg->bus_clks[i]);
}
motg->bus_clks_enabled = false;
}
static void msm_otg_bus_vote(struct msm_otg *motg, enum usb_bus_vote vote)
{
int ret;
struct msm_otg_platform_data *pdata = motg->pdata;
msm_otg_dbg_log_event(&motg->phy, "BUS VOTE", vote, motg->phy.state);
/* Check if target allows min_vote to be same as no_vote */
if (pdata->bus_scale_table &&
vote >= pdata->bus_scale_table->num_usecases)
vote = USB_NO_PERF_VOTE;
if (motg->bus_perf_client) {
ret = msm_bus_scale_client_update_request(
motg->bus_perf_client, vote);
if (ret)
dev_err(motg->phy.dev, "%s: Failed to vote (%d)\n"
"for bus bw %d\n", __func__, vote, ret);
}
if (vote == USB_MAX_PERF_VOTE)
msm_otg_bus_clks_enable(motg);
else
msm_otg_bus_clks_disable(motg);
}
static void msm_otg_enable_phy_hv_int(struct msm_otg *motg)
{
bool bsv_id_hv_int = false;
bool dp_dm_hv_int = false;
u32 val;
if (motg->pdata->otg_control == OTG_PHY_CONTROL ||
motg->phy_irq)
bsv_id_hv_int = true;
if (motg->host_bus_suspend || motg->device_bus_suspend)
dp_dm_hv_int = true;
if (!bsv_id_hv_int && !dp_dm_hv_int)
return;
switch (motg->pdata->phy_type) {
case SNPS_PICO_PHY:
val = readl_relaxed(motg->usb_phy_ctrl_reg);
if (bsv_id_hv_int)
val |= (PHY_IDHV_INTEN | PHY_OTGSESSVLDHV_INTEN);
if (dp_dm_hv_int)
val |= PHY_CLAMP_DPDMSE_EN;
writel_relaxed(val, motg->usb_phy_ctrl_reg);
break;
case SNPS_FEMTO_PHY:
if (bsv_id_hv_int) {
val = readb_relaxed(USB_PHY_CSR_PHY_CTRL1);
val |= ID_HV_CLAMP_EN_N;
writeb_relaxed(val, USB_PHY_CSR_PHY_CTRL1);
}
if (dp_dm_hv_int) {
val = readb_relaxed(USB_PHY_CSR_PHY_CTRL3);
val |= CLAMP_MPM_DPSE_DMSE_EN_N;
writeb_relaxed(val, USB_PHY_CSR_PHY_CTRL3);
}
default:
break;
}
pr_debug("%s: bsv_id_hv = %d dp_dm_hv_int = %d\n",
__func__, bsv_id_hv_int, dp_dm_hv_int);
msm_otg_dbg_log_event(&motg->phy, "PHY HV INTR ENABLED",
bsv_id_hv_int, dp_dm_hv_int);
}
static void msm_otg_disable_phy_hv_int(struct msm_otg *motg)
{
bool bsv_id_hv_int = false;
bool dp_dm_hv_int = false;
u32 val;
if (motg->pdata->otg_control == OTG_PHY_CONTROL ||
motg->phy_irq)
bsv_id_hv_int = true;
if (motg->host_bus_suspend || motg->device_bus_suspend)
dp_dm_hv_int = true;
if (!bsv_id_hv_int && !dp_dm_hv_int)
return;
switch (motg->pdata->phy_type) {
case SNPS_PICO_PHY:
val = readl_relaxed(motg->usb_phy_ctrl_reg);
if (bsv_id_hv_int)
val &= ~(PHY_IDHV_INTEN | PHY_OTGSESSVLDHV_INTEN);
if (dp_dm_hv_int)
val &= ~PHY_CLAMP_DPDMSE_EN;
writel_relaxed(val, motg->usb_phy_ctrl_reg);
break;
case SNPS_FEMTO_PHY:
if (bsv_id_hv_int) {
val = readb_relaxed(USB_PHY_CSR_PHY_CTRL1);
val &= ~ID_HV_CLAMP_EN_N;
writeb_relaxed(val, USB_PHY_CSR_PHY_CTRL1);
}
if (dp_dm_hv_int) {
val = readb_relaxed(USB_PHY_CSR_PHY_CTRL3);
val &= ~CLAMP_MPM_DPSE_DMSE_EN_N;
writeb_relaxed(val, USB_PHY_CSR_PHY_CTRL3);
}
break;
default:
break;
}
pr_debug("%s: bsv_id_hv = %d dp_dm_hv_int = %d\n",
__func__, bsv_id_hv_int, dp_dm_hv_int);
msm_otg_dbg_log_event(&motg->phy, "PHY HV INTR DISABLED",
bsv_id_hv_int, dp_dm_hv_int);
}
static void msm_otg_enter_phy_retention(struct msm_otg *motg)
{
u32 val;
switch (motg->pdata->phy_type) {
case SNPS_PICO_PHY:
val = readl_relaxed(motg->usb_phy_ctrl_reg);
val &= ~PHY_RETEN;
writel_relaxed(val, motg->usb_phy_ctrl_reg);
break;
case SNPS_FEMTO_PHY:
/* Retention is supported via SIDDQ */
val = readb_relaxed(USB_PHY_CSR_PHY_CTRL_COMMON0);
val |= SIDDQ;
writeb_relaxed(val, USB_PHY_CSR_PHY_CTRL_COMMON0);
break;
default:
break;
}
pr_debug("USB PHY is in retention\n");
msm_otg_dbg_log_event(&motg->phy, "USB PHY ENTER RETENTION",
motg->pdata->phy_type, 0);
}
static void msm_otg_exit_phy_retention(struct msm_otg *motg)
{
int val;
switch (motg->pdata->phy_type) {
case SNPS_PICO_PHY:
val = readl_relaxed(motg->usb_phy_ctrl_reg);
val |= PHY_RETEN;
writel_relaxed(val, motg->usb_phy_ctrl_reg);
break;
case SNPS_FEMTO_PHY:
/*
* It is required to do USB block reset to bring Femto PHY out
* of retention.
*/
msm_otg_reset(&motg->phy);
break;
default:
break;
}
pr_debug("USB PHY is exited from retention\n");
msm_otg_dbg_log_event(&motg->phy, "USB PHY EXIT RETENTION",
motg->pdata->phy_type, 0);
}
static void msm_id_status_w(struct work_struct *w);
static irqreturn_t msm_otg_phy_irq_handler(int irq, void *data)
{
struct msm_otg *motg = data;
msm_otg_dbg_log_event(&motg->phy, "PHY ID IRQ",
atomic_read(&motg->in_lpm), motg->phy.state);
if (atomic_read(&motg->in_lpm)) {
pr_debug("PHY ID IRQ in LPM\n");
motg->phy_irq_pending = true;
msm_otg_kick_sm_work(motg);
} else {
pr_debug("PHY ID IRQ outside LPM\n");
msm_id_status_w(&motg->id_status_work.work);
}
return IRQ_HANDLED;
}
#define PHY_SUSPEND_TIMEOUT_USEC (5 * 1000)
#define PHY_DEVICE_BUS_SUSPEND_TIMEOUT_USEC 100
#define PHY_RESUME_TIMEOUT_USEC (100 * 1000)
#define PHY_SUSPEND_RETRIES_MAX 3
static void msm_otg_set_vbus_state(int online);
static void msm_otg_perf_vote_update(struct msm_otg *motg, bool perf_mode);
#ifdef CONFIG_PM_SLEEP
static int msm_otg_suspend(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
struct usb_bus *bus = phy->otg->host;
struct msm_otg_platform_data *pdata = motg->pdata;
int cnt;
bool host_bus_suspend, device_bus_suspend, dcp, prop_charger;
bool floated_charger, sm_work_busy;
u32 cmd_val;
u32 portsc, config2;
u32 func_ctrl;
int phcd_retry_cnt = 0, ret;
unsigned phy_suspend_timeout;
cnt = 0;
msm_otg_dbg_log_event(phy, "LPM ENTER START",
motg->inputs, phy->state);
if (atomic_read(&motg->in_lpm))
return 0;
cancel_delayed_work_sync(&motg->perf_vote_work);
disable_irq(motg->irq);
if (motg->phy_irq)
disable_irq(motg->phy_irq);
lpm_start:
host_bus_suspend = phy->otg->host && !test_bit(ID, &motg->inputs);
device_bus_suspend = phy->otg->gadget && test_bit(ID, &motg->inputs) &&
test_bit(A_BUS_SUSPEND, &motg->inputs) &&
motg->caps & ALLOW_LPM_ON_DEV_SUSPEND;
if (host_bus_suspend)
msm_otg_perf_vote_update(motg, false);
/*
* Allow putting PHY into SIDDQ with wall charger connected in
* case of external charger detection.
*/
dcp = (motg->chg_type == USB_DCP_CHARGER) && !motg->is_ext_chg_dcp;
prop_charger = motg->chg_type == USB_PROPRIETARY_CHARGER;
floated_charger = motg->chg_type == USB_FLOATED_CHARGER;
/* !BSV, but its handling is in progress by otg sm_work */
sm_work_busy = !test_bit(B_SESS_VLD, &motg->inputs) &&
phy->state == OTG_STATE_B_PERIPHERAL;
/* Perform block reset to recover from UDC error events on disconnect */
if (motg->err_event_seen)
msm_otg_reset(phy);
/* Enable line state difference wakeup fix for only device and host
* bus suspend scenarios. Otherwise PHY can not be suspended when
* a charger that pulls DP/DM high is connected.
*/
config2 = readl_relaxed(USB_GENCONFIG2);
if (device_bus_suspend)
config2 |= GENCFG2_LINESTATE_DIFF_WAKEUP_EN;
else
config2 &= ~GENCFG2_LINESTATE_DIFF_WAKEUP_EN;
writel_relaxed(config2, USB_GENCONFIG2);
/*
* Abort suspend when,
* 1. charging detection in progress due to cable plug-in
* 2. host mode activation in progress due to Micro-A cable insertion
* 3. !BSV, but its handling is in progress by otg sm_work
* Don't abort suspend in case of dcp detected by PMIC
*/
if ((test_bit(B_SESS_VLD, &motg->inputs) && !device_bus_suspend &&
!dcp && !motg->is_ext_chg_dcp && !prop_charger &&
!floated_charger) || sm_work_busy) {
msm_otg_dbg_log_event(phy, "LPM ENTER ABORTED",
motg->inputs, motg->chg_type);
enable_irq(motg->irq);
if (motg->phy_irq)
enable_irq(motg->phy_irq);
return -EBUSY;
}
if (motg->caps & ALLOW_VDD_MIN_WITH_RETENTION_DISABLED) {
/* put the controller in non-driving mode */
func_ctrl = ulpi_read(phy, ULPI_FUNC_CTRL);
func_ctrl &= ~ULPI_FUNC_CTRL_OPMODE_MASK;
func_ctrl |= ULPI_FUNC_CTRL_OPMODE_NONDRIVING;
ulpi_write(phy, func_ctrl, ULPI_FUNC_CTRL);
ulpi_write(phy, ULPI_IFC_CTRL_AUTORESUME,
ULPI_CLR(ULPI_IFC_CTRL));
}
/*
* PHY suspend sequence as mentioned in the databook.
*
* Device bus suspend: The controller may abort PHY suspend if
* there is an incoming reset or resume from the host. If PHCD
* is not set within 100 usec. Abort the LPM sequence.
*
* Host bus suspend: If the peripheral is attached, PHY is already
* put into suspend along with the peripheral bus suspend. poll for
* PHCD upto 5 msec. If the peripheral is not attached i.e entering
* LPM with Micro-A cable, set the PHCD and poll for it for 5 msec.
*
* No cable connected: Set the PHCD to suspend the PHY. Poll for PHCD
* upto 5 msec.
*
* The controller aborts PHY suspend only in device bus suspend case.
* In other cases, it is observed that PHCD may not get set within
* the timeout. If so, set the PHCD again and poll for it before
* reset recovery.
*/
phcd_retry:
if (device_bus_suspend)
phy_suspend_timeout = PHY_DEVICE_BUS_SUSPEND_TIMEOUT_USEC;
else
phy_suspend_timeout = PHY_SUSPEND_TIMEOUT_USEC;
cnt = 0;
portsc = readl_relaxed(USB_PORTSC);
if (!(portsc & PORTSC_PHCD)) {
writel_relaxed(portsc | PORTSC_PHCD,
USB_PORTSC);
while (cnt < phy_suspend_timeout) {
if (readl_relaxed(USB_PORTSC) & PORTSC_PHCD)
break;
udelay(1);
cnt++;
}
}
if (cnt >= phy_suspend_timeout) {
if (phcd_retry_cnt > PHY_SUSPEND_RETRIES_MAX) {
msm_otg_dbg_log_event(phy, "PHY SUSPEND FAILED",
phcd_retry_cnt, phy->state);
dev_err(phy->dev, "PHY suspend failed\n");
ret = -EBUSY;
goto phy_suspend_fail;
}
if (device_bus_suspend) {
dev_dbg(phy->dev, "PHY suspend aborted\n");
ret = -EBUSY;
goto phy_suspend_fail;
} else {
if (phcd_retry_cnt++ < PHY_SUSPEND_RETRIES_MAX) {
dev_dbg(phy->dev, "PHY suspend retry\n");
goto phcd_retry;
} else {
dev_err(phy->dev, "reset attempt during PHY suspend\n");
phcd_retry_cnt++;
motg->reset_counter = 0;
msm_otg_reset(phy);
goto lpm_start;
}
}
}
/*
* PHY has capability to generate interrupt asynchronously in low
* power mode (LPM). This interrupt is level triggered. So USB IRQ
* line must be disabled till async interrupt enable bit is cleared
* in USBCMD register. Assert STP (ULPI interface STOP signal) to
* block data communication from PHY.
*
* PHY retention mode is disallowed while entering to LPM with wall
* charger connected. But PHY is put into suspend mode. Hence
* enable asynchronous interrupt to detect charger disconnection when
* PMIC notifications are unavailable.
*/
cmd_val = readl_relaxed(USB_USBCMD);
if (host_bus_suspend || device_bus_suspend ||
(motg->pdata->otg_control == OTG_PHY_CONTROL))
cmd_val |= ASYNC_INTR_CTRL | ULPI_STP_CTRL;
else
cmd_val |= ULPI_STP_CTRL;
writel_relaxed(cmd_val, USB_USBCMD);
/*
* BC1.2 spec mandates PD to enable VDP_SRC when charging from DCP.
* PHY retention and collapse can not happen with VDP_SRC enabled.
*/
/*
* We come here in 3 scenarios.
*
* (1) No cable connected (out of session):
* - BSV/ID HV interrupts are enabled for PHY based detection.
* - PHY is put in retention.
* - If allowed (PMIC based detection), PHY is power collapsed.
* - DVDD (CX/MX) minimization and XO shutdown are allowed.
* - The wakeup is through VBUS/ID interrupt from PHY/PMIC/user.
* (2) USB wall charger:
* - BSV/ID HV interrupts are enabled for PHY based detection.
* - For BC1.2 compliant charger, retention is not allowed to
* keep VDP_SRC on. XO shutdown is allowed.
* - The wakeup is through VBUS/ID interrupt from PHY/PMIC/user.
* (3) Device/Host Bus suspend (if LPM is enabled):
* - BSV/ID HV interrupts are enabled for PHY based detection.
* - D+/D- MPM pin are configured to wakeup from line state
* change through PHY HV interrupts. PHY HV interrupts are
* also enabled. If MPM pins are not available, retention and
* XO is not allowed.
* - PHY is put into retention only if a gpio is used to keep
* the D+ pull-up. ALLOW_BUS_SUSPEND_WITHOUT_REWORK capability
* is set means, PHY can enable D+ pull-up or D+/D- pull-down
* without any re-work and PHY should not be put into retention.
* - DVDD (CX/MX) minimization and XO shutdown is allowed if
* ALLOW_BUS_SUSPEND_WITHOUT_REWORK is set (PHY DVDD is supplied
* via PMIC LDO) or board level re-work is present.
* - The wakeup is through VBUS/ID interrupt from PHY/PMIC/user
* or USB link asynchronous interrupt for line state change.
*
*/
motg->host_bus_suspend = host_bus_suspend;
motg->device_bus_suspend = device_bus_suspend;
if (motg->caps & ALLOW_PHY_RETENTION && !device_bus_suspend && !dcp &&
(!host_bus_suspend || (motg->caps &
ALLOW_BUS_SUSPEND_WITHOUT_REWORK) ||
((motg->caps & ALLOW_HOST_PHY_RETENTION)
&& (pdata->dpdm_pulldown_added || !(portsc & PORTSC_CCS))))) {
msm_otg_enable_phy_hv_int(motg);
if ((!host_bus_suspend || !(motg->caps &
ALLOW_BUS_SUSPEND_WITHOUT_REWORK)) &&
!(motg->caps & ALLOW_VDD_MIN_WITH_RETENTION_DISABLED)) {
msm_otg_enter_phy_retention(motg);
motg->lpm_flags |= PHY_RETENTIONED;
}
} else if (device_bus_suspend && !dcp &&
(pdata->mpm_dpshv_int || pdata->mpm_dmshv_int)) {
/* DP DM HV interrupts are used for bus resume from XO off */
msm_otg_enable_phy_hv_int(motg);
if (motg->caps & ALLOW_PHY_RETENTION && pdata->vddmin_gpio) {
/*
* This is HW WA needed when PHY_CLAMP_DPDMSE_EN is
* enabled and we put the phy in retention mode.
* Without this WA, the async_irq will be fired right
* after suspending whithout any bus resume.
*/
config2 = readl_relaxed(USB_GENCONFIG2);
config2 &= ~GENCFG2_DPSE_DMSE_HV_INTR_EN;
writel_relaxed(config2, USB_GENCONFIG2);
msm_otg_enter_phy_retention(motg);
motg->lpm_flags |= PHY_RETENTIONED;
gpio_direction_output(pdata->vddmin_gpio, 1);
}
}
/* Ensure that above operation is completed before turning off clocks */
mb();
/* Consider clocks on workaround flag only in case of bus suspend */
if (!(phy->state == OTG_STATE_B_PERIPHERAL &&
test_bit(A_BUS_SUSPEND, &motg->inputs)) ||
!motg->pdata->core_clk_always_on_workaround) {
clk_disable_unprepare(motg->pclk);
clk_disable_unprepare(motg->core_clk);
if (motg->phy_csr_clk)
clk_disable_unprepare(motg->phy_csr_clk);
motg->lpm_flags |= CLOCKS_DOWN;
}
/* usb phy no more require TCXO clock, hence vote for TCXO disable */
if (!host_bus_suspend || (motg->caps &
ALLOW_BUS_SUSPEND_WITHOUT_REWORK) ||
((motg->caps & ALLOW_HOST_PHY_RETENTION) &&
(pdata->dpdm_pulldown_added || !(portsc & PORTSC_CCS)))) {
if (motg->xo_clk) {
clk_disable_unprepare(motg->xo_clk);
motg->lpm_flags |= XO_SHUTDOWN;
}
}
if (motg->caps & ALLOW_PHY_POWER_COLLAPSE &&
!host_bus_suspend && !dcp && !device_bus_suspend) {
msm_hsusb_ldo_enable(motg, USB_PHY_REG_OFF);
motg->lpm_flags |= PHY_PWR_COLLAPSED;
} else if (motg->caps & ALLOW_PHY_REGULATORS_LPM &&
!host_bus_suspend && !device_bus_suspend && !dcp) {
msm_hsusb_ldo_enable(motg, USB_PHY_REG_LPM_ON);
motg->lpm_flags |= PHY_REGULATORS_LPM;
}
if (motg->lpm_flags & PHY_RETENTIONED ||
(motg->caps & ALLOW_VDD_MIN_WITH_RETENTION_DISABLED)) {
msm_hsusb_config_vddcx(0);
}
if (device_may_wakeup(phy->dev)) {
if (host_bus_suspend || device_bus_suspend) {
enable_irq_wake(motg->async_irq);
enable_irq_wake(motg->irq);
}
if (motg->phy_irq)
enable_irq_wake(motg->phy_irq);
if (motg->pdata->pmic_id_irq)
enable_irq_wake(motg->pdata->pmic_id_irq);
if (motg->ext_id_irq)
enable_irq_wake(motg->ext_id_irq);
if (pdata->otg_control == OTG_PHY_CONTROL &&
pdata->mpm_otgsessvld_int)
msm_mpm_set_pin_wake(pdata->mpm_otgsessvld_int, 1);
if ((host_bus_suspend || device_bus_suspend) &&
pdata->mpm_dpshv_int)
msm_mpm_set_pin_wake(pdata->mpm_dpshv_int, 1);
if ((host_bus_suspend || device_bus_suspend) &&
pdata->mpm_dmshv_int)
msm_mpm_set_pin_wake(pdata->mpm_dmshv_int, 1);
}
if (bus)
clear_bit(HCD_FLAG_HW_ACCESSIBLE, &(bus_to_hcd(bus))->flags);
msm_otg_bus_vote(motg, USB_NO_PERF_VOTE);
atomic_set(&motg->in_lpm, 1);
/* Enable ASYNC IRQ during LPM */
enable_irq(motg->async_irq);
if (motg->phy_irq)
enable_irq(motg->phy_irq);
enable_irq(motg->irq);
wake_unlock(&motg->wlock);
dev_dbg(phy->dev, "LPM caps = %lu flags = %lu\n",
motg->caps, motg->lpm_flags);
dev_info(phy->dev, "USB in low power mode\n");
msm_otg_dbg_log_event(phy, "LPM ENTER DONE",
motg->caps, motg->lpm_flags);
if (motg->err_event_seen) {
motg->err_event_seen = false;
if (motg->vbus_state != test_bit(B_SESS_VLD, &motg->inputs))
msm_otg_set_vbus_state(motg->vbus_state);
if (motg->id_state != test_bit(ID, &motg->inputs))
msm_id_status_w(&motg->id_status_work.work);
}
return 0;
phy_suspend_fail:
enable_irq(motg->irq);
if (motg->phy_irq)
enable_irq(motg->phy_irq);
return ret;
}
static int msm_otg_resume(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
struct usb_bus *bus = phy->otg->host;
struct usb_hcd *hcd = bus_to_hcd(phy->otg->host);
struct msm_otg_platform_data *pdata = motg->pdata;
int cnt = 0;
unsigned temp;
unsigned ret;
u32 func_ctrl;
msm_otg_dbg_log_event(phy, "LPM EXIT START", motg->inputs, phy->state);
if (!atomic_read(&motg->in_lpm)) {
msm_otg_dbg_log_event(phy, "USB NOT IN LPM",
atomic_read(&motg->in_lpm), phy->state);
return 0;
}
disable_irq(motg->irq);
wake_lock(&motg->wlock);
/*
* If we are resuming from the device bus suspend, restore
* the max performance bus vote. Otherwise put a minimum
* bus vote to satisfy the requirement for enabling clocks.
*/
if (motg->device_bus_suspend && debug_bus_voting_enabled)
msm_otg_bus_vote(motg, USB_MAX_PERF_VOTE);
else
msm_otg_bus_vote(motg, USB_MIN_PERF_VOTE);
/* Vote for TCXO when waking up the phy */
if (motg->lpm_flags & XO_SHUTDOWN) {
if (motg->xo_clk)
clk_prepare_enable(motg->xo_clk);
motg->lpm_flags &= ~XO_SHUTDOWN;
}
if (motg->lpm_flags & CLOCKS_DOWN) {
if (motg->phy_csr_clk) {
ret = clk_prepare_enable(motg->phy_csr_clk);
WARN(ret, "USB phy_csr_clk enable failed\n");
}
ret = clk_prepare_enable(motg->core_clk);
WARN(ret, "USB core_clk enable failed\n");
ret = clk_prepare_enable(motg->pclk);
WARN(ret, "USB pclk enable failed\n");
motg->lpm_flags &= ~CLOCKS_DOWN;
}
if (motg->lpm_flags & PHY_PWR_COLLAPSED) {
msm_hsusb_ldo_enable(motg, USB_PHY_REG_ON);
motg->lpm_flags &= ~PHY_PWR_COLLAPSED;
} else if (motg->lpm_flags & PHY_REGULATORS_LPM) {
msm_hsusb_ldo_enable(motg, USB_PHY_REG_LPM_OFF);
motg->lpm_flags &= ~PHY_REGULATORS_LPM;
}
if (motg->lpm_flags & PHY_RETENTIONED ||
(motg->caps & ALLOW_VDD_MIN_WITH_RETENTION_DISABLED)) {
msm_hsusb_config_vddcx(1);
msm_otg_disable_phy_hv_int(motg);
msm_otg_exit_phy_retention(motg);
motg->lpm_flags &= ~PHY_RETENTIONED;
if (pdata->vddmin_gpio && motg->device_bus_suspend)
gpio_direction_input(pdata->vddmin_gpio);
} else if (motg->device_bus_suspend) {
msm_otg_disable_phy_hv_int(motg);
}
temp = readl_relaxed(USB_USBCMD);
temp &= ~ASYNC_INTR_CTRL;
temp &= ~ULPI_STP_CTRL;
writel_relaxed(temp, USB_USBCMD);
/*
* PHY comes out of low power mode (LPM) in case of wakeup
* from asynchronous interrupt.
*/
if (!(readl_relaxed(USB_PORTSC) & PORTSC_PHCD))
goto skip_phy_resume;
writel_relaxed(readl_relaxed(USB_PORTSC) & ~PORTSC_PHCD, USB_PORTSC);
while (cnt < PHY_RESUME_TIMEOUT_USEC) {
if (!(readl_relaxed(USB_PORTSC) & PORTSC_PHCD))
break;
udelay(1);
cnt++;
}
if (cnt >= PHY_RESUME_TIMEOUT_USEC) {
/*
* This is a fatal error. Reset the link and
* PHY. USB state can not be restored. Re-insertion
* of USB cable is the only way to get USB working.
*/
dev_err(phy->dev, "Unable to resume USB."
"Re-plugin the cable\n");
msm_otg_reset(phy);
}
skip_phy_resume:
if (motg->caps & ALLOW_VDD_MIN_WITH_RETENTION_DISABLED) {
/* put the controller in normal mode */
func_ctrl = ulpi_read(phy, ULPI_FUNC_CTRL);
func_ctrl &= ~ULPI_FUNC_CTRL_OPMODE_MASK;
func_ctrl |= ULPI_FUNC_CTRL_OPMODE_NORMAL;
ulpi_write(phy, func_ctrl, ULPI_FUNC_CTRL);
}
if (device_may_wakeup(phy->dev)) {
if (motg->host_bus_suspend || motg->device_bus_suspend) {
disable_irq_wake(motg->async_irq);
disable_irq_wake(motg->irq);
}
if (motg->phy_irq)
disable_irq_wake(motg->phy_irq);
if (motg->pdata->pmic_id_irq)
disable_irq_wake(motg->pdata->pmic_id_irq);
if (motg->ext_id_irq)
disable_irq_wake(motg->ext_id_irq);
if (pdata->otg_control == OTG_PHY_CONTROL &&
pdata->mpm_otgsessvld_int)
msm_mpm_set_pin_wake(pdata->mpm_otgsessvld_int, 0);
if ((motg->host_bus_suspend || motg->device_bus_suspend) &&
pdata->mpm_dpshv_int)
msm_mpm_set_pin_wake(pdata->mpm_dpshv_int, 0);
if ((motg->host_bus_suspend || motg->device_bus_suspend) &&
pdata->mpm_dmshv_int)
msm_mpm_set_pin_wake(pdata->mpm_dmshv_int, 0);
}
if (bus)
set_bit(HCD_FLAG_HW_ACCESSIBLE, &(bus_to_hcd(bus))->flags);
atomic_set(&motg->in_lpm, 0);
if (motg->async_int) {
/* Match the disable_irq call from ISR */
enable_irq(motg->async_int);
motg->async_int = 0;
}
enable_irq(motg->irq);
/* Enable ASYNC_IRQ only during LPM */
disable_irq(motg->async_irq);
if (motg->phy_irq_pending) {
motg->phy_irq_pending = false;
msm_id_status_w(&motg->id_status_work.work);
}
if (motg->host_bus_suspend) {
usb_hcd_resume_root_hub(hcd);
schedule_delayed_work(&motg->perf_vote_work,
msecs_to_jiffies(1000 * PM_QOS_SAMPLE_SEC));
}
dev_info(phy->dev, "USB exited from low power mode\n");
msm_otg_dbg_log_event(phy, "LPM EXIT DONE",
motg->caps, motg->lpm_flags);
return 0;
}
#endif
static void msm_otg_notify_host_mode(struct msm_otg *motg, bool host_mode)
{
if (!psy) {
pr_err("No USB power supply registered!\n");
return;
}
motg->host_mode = host_mode;
power_supply_changed(psy);
}
static int msm_otg_notify_chg_type(struct msm_otg *motg)
{
static int charger_type;
/*
* TODO
* Unify OTG driver charger types and power supply charger types
*/
if (charger_type == motg->chg_type)
return 0;
if (motg->chg_type == USB_SDP_CHARGER)
charger_type = POWER_SUPPLY_TYPE_USB;
else if (motg->chg_type == USB_CDP_CHARGER)
charger_type = POWER_SUPPLY_TYPE_USB_CDP;
else if (motg->chg_type == USB_DCP_CHARGER ||
motg->chg_type == USB_PROPRIETARY_CHARGER ||
motg->chg_type == USB_FLOATED_CHARGER)
charger_type = POWER_SUPPLY_TYPE_USB_DCP;
else
charger_type = POWER_SUPPLY_TYPE_UNKNOWN;
if (!psy) {
pr_err("No USB power supply registered!\n");
return -EINVAL;
}
pr_debug("setting usb power supply type %d\n", charger_type);
msm_otg_dbg_log_event(&motg->phy, "SET USB PWR SUPPLY TYPE",
motg->chg_type, charger_type);
power_supply_set_supply_type(psy, charger_type);
return 0;
}
static int msm_otg_notify_power_supply(struct msm_otg *motg, unsigned mA)
{
if (!psy) {
dev_dbg(motg->phy.dev, "no usb power supply registered\n");
goto psy_error;
}
if (motg->cur_power == 0 && mA > 2) {
/* Enable charging */
if (power_supply_set_online(psy, true))
goto psy_error;
if (power_supply_set_current_limit(psy, 1000*mA))
goto psy_error;
} else if (motg->cur_power >= 0 && (mA == 0 || mA == 2)) {
/* Disable charging */
if (power_supply_set_online(psy, false))
goto psy_error;
/* Set max current limit in uA */
if (power_supply_set_current_limit(psy, 1000*mA))
goto psy_error;
} else {
if (power_supply_set_online(psy, true))
goto psy_error;
/* Current has changed (100/2 --> 500) */
if (power_supply_set_current_limit(psy, 1000*mA))
goto psy_error;
}
power_supply_changed(psy);
return 0;
psy_error:
dev_dbg(motg->phy.dev, "power supply error when setting property\n");
return -ENXIO;
}
static void msm_otg_set_online_status(struct msm_otg *motg)
{
if (!psy) {
dev_dbg(motg->phy.dev, "no usb power supply registered\n");
return;
}
/* Set power supply online status to false */
if (power_supply_set_online(psy, false))
dev_dbg(motg->phy.dev, "error setting power supply property\n");
}
static void msm_otg_notify_charger(struct msm_otg *motg, unsigned mA)
{
struct usb_gadget *g = motg->phy.otg->gadget;
struct msm_otg_platform_data *pdata = motg->pdata;
if (g && g->is_a_peripheral)
return;
dev_dbg(motg->phy.dev, "Requested curr from USB = %u, max-type-c:%u\n",
mA, motg->typec_current_max);
/* Save bc1.2 max_curr if type-c charger later moves to diff mode */
motg->bc1p2_current_max = mA;
/*
* Limit type-c charger current to 500 for SDP charger to avoid more
* current drawn than 500 with Hosts that don't support type C due to
* non compliant type-c to standard A cables.
*/
if (pdata->enable_sdp_typec_current_limit &&
(motg->chg_type == USB_SDP_CHARGER) &&
motg->typec_current_max > 500)
motg->typec_current_max = 500;
/* Override mA if type-c charger used (use hvdcp/bc1.2 if it is 500) */
if (motg->typec_current_max > 500 && mA < motg->typec_current_max)
mA = motg->typec_current_max;
if (msm_otg_notify_chg_type(motg))
dev_err(motg->phy.dev,
"Failed notifying %d charger type to PMIC\n",
motg->chg_type);
/*
* This condition will be true when usb cable is disconnected
* during bootup before charger detection mechanism starts.
*/
if (motg->online && motg->cur_power == 0 && mA == 0)
msm_otg_set_online_status(motg);
if (motg->cur_power == mA)
return;
dev_info(motg->phy.dev, "Avail curr from USB = %u\n", mA);
msm_otg_dbg_log_event(&motg->phy, "AVAIL CURR FROM USB",
mA, motg->chg_type);
msm_otg_notify_power_supply(motg, mA);
motg->cur_power = mA;
}
static int msm_otg_set_power(struct usb_phy *phy, unsigned mA)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
/*
* Gadget driver uses set_power method to notify about the
* available current based on suspend/configured states.
*
* IDEV_CHG can be drawn irrespective of suspend/un-configured
* states when CDP/ACA is connected.
*/
if (motg->chg_type == USB_SDP_CHARGER)
msm_otg_notify_charger(motg, mA);
return 0;
}
static void msm_hsusb_vbus_power(struct msm_otg *motg, bool on);
static void msm_otg_perf_vote_update(struct msm_otg *motg, bool perf_mode)
{
static bool curr_perf_mode;
int ret, latency = motg->pm_qos_latency;
long clk_rate;
if (curr_perf_mode == perf_mode)
return;
if (perf_mode) {
if (latency)
pm_qos_update_request(&motg->pm_qos_req_dma, latency);
msm_otg_bus_vote(motg, USB_MAX_PERF_VOTE);
clk_rate = motg->core_clk_rate;
} else {
if (latency)
pm_qos_update_request(&motg->pm_qos_req_dma,
PM_QOS_DEFAULT_VALUE);
msm_otg_bus_vote(motg, USB_MIN_PERF_VOTE);
clk_rate = motg->core_clk_svs_rate;
}
if (clk_rate) {
ret = clk_set_rate(motg->core_clk, clk_rate);
if (ret)
dev_err(motg->phy.dev, "sys_clk set_rate fail:%d %ld\n",
ret, clk_rate);
}
curr_perf_mode = perf_mode;
pr_debug("%s: latency updated to: %d, core_freq to: %ld\n", __func__,
latency, clk_rate);
}
static void msm_otg_perf_vote_work(struct work_struct *w)
{
struct msm_otg *motg = container_of(w, struct msm_otg,
perf_vote_work.work);
unsigned curr_sample_int_count;
bool in_perf_mode = false;
curr_sample_int_count = motg->usb_irq_count;
motg->usb_irq_count = 0;
if (curr_sample_int_count >= PM_QOS_THRESHOLD)
in_perf_mode = true;
msm_otg_perf_vote_update(motg, in_perf_mode);
pr_debug("%s: in_perf_mode:%u, interrupts in last sample:%u\n",
__func__, in_perf_mode, curr_sample_int_count);
schedule_delayed_work(&motg->perf_vote_work,
msecs_to_jiffies(1000 * PM_QOS_SAMPLE_SEC));
}
static void msm_otg_start_host(struct usb_otg *otg, int on)
{
struct msm_otg *motg = container_of(otg->phy, struct msm_otg, phy);
struct msm_otg_platform_data *pdata = motg->pdata;
struct usb_hcd *hcd;
u32 val;
if (!otg->host)
return;
hcd = bus_to_hcd(otg->host);
msm_otg_dbg_log_event(&motg->phy, "PM RT: StartHost GET",
get_pm_runtime_counter(motg->phy.dev), 0);
pm_runtime_get_sync(otg->phy->dev);
if (on) {
dev_dbg(otg->phy->dev, "host on\n");
msm_otg_dbg_log_event(&motg->phy, "HOST ON",
motg->inputs, otg->phy->state);
msm_hsusb_vbus_power(motg, 1);
msm_otg_reset(&motg->phy);
if (pdata->otg_control == OTG_PHY_CONTROL)
ulpi_write(otg->phy, OTG_COMP_DISABLE,
ULPI_SET(ULPI_PWR_CLK_MNG_REG));
if (pdata->enable_axi_prefetch) {
val = readl_relaxed(USB_HS_APF_CTRL);
val &= ~APF_CTRL_EN;
writel_relaxed(val, USB_HS_APF_CTRL);
}
usb_add_hcd(hcd, hcd->irq, IRQF_SHARED);
#ifdef CONFIG_SMP
motg->pm_qos_req_dma.type = PM_QOS_REQ_AFFINE_IRQ;
motg->pm_qos_req_dma.irq = motg->irq;
#endif
pm_qos_add_request(&motg->pm_qos_req_dma,
PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
/* start in perf mode for better performance initially */
msm_otg_perf_vote_update(motg, true);
schedule_delayed_work(&motg->perf_vote_work,
msecs_to_jiffies(1000 * PM_QOS_SAMPLE_SEC));
} else {
dev_dbg(otg->phy->dev, "host off\n");
msm_otg_dbg_log_event(&motg->phy, "HOST OFF",
motg->inputs, otg->phy->state);
msm_hsusb_vbus_power(motg, 0);
cancel_delayed_work_sync(&motg->perf_vote_work);
msm_otg_perf_vote_update(motg, false);
pm_qos_remove_request(&motg->pm_qos_req_dma);
usb_remove_hcd(hcd);
msm_otg_reset(&motg->phy);
if (pdata->enable_axi_prefetch)
writel_relaxed(readl_relaxed(USB_HS_APF_CTRL)
| (APF_CTRL_EN), USB_HS_APF_CTRL);
/* HCD core reset all bits of PORTSC. select ULPI phy */
writel_relaxed(0x80000000, USB_PORTSC);
if (pdata->otg_control == OTG_PHY_CONTROL)
ulpi_write(otg->phy, OTG_COMP_DISABLE,
ULPI_CLR(ULPI_PWR_CLK_MNG_REG));
}
msm_otg_dbg_log_event(&motg->phy, "PM RT: StartHost PUT",
get_pm_runtime_counter(motg->phy.dev), 0);
pm_runtime_mark_last_busy(otg->phy->dev);
pm_runtime_put_autosuspend(otg->phy->dev);
}
static void msm_hsusb_vbus_power(struct msm_otg *motg, bool on)
{
int ret;
static bool vbus_is_on;
msm_otg_dbg_log_event(&motg->phy, "VBUS POWER", on, vbus_is_on);
if (vbus_is_on == on)
return;
if (motg->pdata->vbus_power) {
ret = motg->pdata->vbus_power(on);
if (!ret)
vbus_is_on = on;
return;
}
if (!vbus_otg) {
pr_err("vbus_otg is NULL.");
return;
}
/*
* if entering host mode tell the charger to not draw any current
* from usb before turning on the boost.
* if exiting host mode disable the boost before enabling to draw
* current from the source.
*/
if (on) {
msm_otg_notify_host_mode(motg, on);
ret = regulator_enable(vbus_otg);
if (ret) {
pr_err("unable to enable vbus_otg\n");
return;
}
vbus_is_on = true;
} else {
ret = regulator_disable(vbus_otg);
if (ret) {
pr_err("unable to disable vbus_otg\n");
return;
}
msm_otg_notify_host_mode(motg, on);
vbus_is_on = false;
}
}
static int msm_otg_set_host(struct usb_otg *otg, struct usb_bus *host)
{
struct msm_otg *motg = container_of(otg->phy, struct msm_otg, phy);
struct usb_hcd *hcd;
/*
* Fail host registration if this board can support
* only peripheral configuration.
*/
if (motg->pdata->mode == USB_PERIPHERAL) {
dev_info(otg->phy->dev, "Host mode is not supported\n");
return -ENODEV;
}
if (!motg->pdata->vbus_power && host) {
vbus_otg = devm_regulator_get(motg->phy.dev, "vbus_otg");
if (IS_ERR(vbus_otg)) {
msm_otg_dbg_log_event(&motg->phy,
"UNABLE TO GET VBUS_OTG",
otg->phy->state, 0);
pr_err("Unable to get vbus_otg\n");
return PTR_ERR(vbus_otg);
}
}
if (!host) {
if (otg->phy->state == OTG_STATE_A_HOST) {
msm_otg_start_host(otg, 0);
otg->host = NULL;
otg->phy->state = OTG_STATE_UNDEFINED;
queue_work(motg->otg_wq, &motg->sm_work);
} else {
otg->host = NULL;
}
return 0;
}
hcd = bus_to_hcd(host);
hcd->power_budget = motg->pdata->power_budget;
otg->host = host;
dev_dbg(otg->phy->dev, "host driver registered w/ tranceiver\n");
msm_otg_dbg_log_event(&motg->phy, "HOST DRIVER REGISTERED",
hcd->power_budget, motg->pdata->mode);
/*
* Kick the state machine work, if peripheral is not supported
* or peripheral is already registered with us.
*/
if (motg->pdata->mode == USB_HOST || otg->gadget)
queue_work(motg->otg_wq, &motg->sm_work);
return 0;
}
static void msm_otg_start_peripheral(struct usb_otg *otg, int on)
{
struct msm_otg *motg = container_of(otg->phy, struct msm_otg, phy);
struct msm_otg_platform_data *pdata = motg->pdata;
struct pinctrl_state *set_state;
int ret;
if (!otg->gadget)
return;
msm_otg_dbg_log_event(&motg->phy, "PM RT: StartPeri GET",
get_pm_runtime_counter(motg->phy.dev), 0);
pm_runtime_get_sync(otg->phy->dev);
if (on) {
dev_dbg(otg->phy->dev, "gadget on\n");
msm_otg_dbg_log_event(&motg->phy, "GADGET ON",
motg->inputs, otg->phy->state);
/* Configure BUS performance parameters for MAX bandwidth */
if (debug_bus_voting_enabled)
msm_otg_bus_vote(motg, USB_MAX_PERF_VOTE);
/* bump up usb core_clk to default */
clk_set_rate(motg->core_clk, motg->core_clk_rate);
usb_gadget_vbus_connect(otg->gadget);
/*
* Request VDD min gpio, if need to support VDD
* minimazation during peripheral bus suspend.
*/
if (pdata->vddmin_gpio) {
if (motg->phy_pinctrl) {
set_state =
pinctrl_lookup_state(motg->phy_pinctrl,
"hsusb_active");
if (IS_ERR(set_state)) {
pr_err("cannot get phy pinctrl active state\n");
} else {
pinctrl_select_state(motg->phy_pinctrl,
set_state);
}
}
ret = gpio_request(pdata->vddmin_gpio,
"MSM_OTG_VDD_MIN_GPIO");
if (ret < 0) {
dev_err(otg->phy->dev, "gpio req failed for vdd min:%d\n",
ret);
pdata->vddmin_gpio = 0;
}
}
} else {
dev_dbg(otg->phy->dev, "gadget off\n");
msm_otg_dbg_log_event(&motg->phy, "GADGET OFF",
motg->inputs, otg->phy->state);
usb_gadget_vbus_disconnect(otg->gadget);
clear_bit(A_BUS_SUSPEND, &motg->inputs);
/* Configure BUS performance parameters to default */
msm_otg_bus_vote(motg, USB_MIN_PERF_VOTE);
if (pdata->vddmin_gpio) {
gpio_free(pdata->vddmin_gpio);
if (motg->phy_pinctrl) {
set_state =
pinctrl_lookup_state(motg->phy_pinctrl,
"hsusb_sleep");
if (IS_ERR(set_state))
pr_err("cannot get phy pinctrl sleep state\n");
else
pinctrl_select_state(motg->phy_pinctrl,
set_state);
}
}
}
msm_otg_dbg_log_event(&motg->phy, "PM RT: StartPeri PUT",
get_pm_runtime_counter(motg->phy.dev), 0);
pm_runtime_mark_last_busy(otg->phy->dev);
pm_runtime_put_autosuspend(otg->phy->dev);
}
static int msm_otg_set_peripheral(struct usb_otg *otg,
struct usb_gadget *gadget)
{
struct msm_otg *motg = container_of(otg->phy, struct msm_otg, phy);
/*
* Fail peripheral registration if this board can support
* only host configuration.
*/
if (motg->pdata->mode == USB_HOST) {
dev_info(otg->phy->dev, "Peripheral mode is not supported\n");
return -ENODEV;
}
if (!gadget) {
if (otg->phy->state == OTG_STATE_B_PERIPHERAL) {
msm_otg_dbg_log_event(&motg->phy,
"PM RUNTIME: PERIPHERAL GET1",
get_pm_runtime_counter(otg->phy->dev), 0);
msm_otg_start_peripheral(otg, 0);
otg->gadget = NULL;
otg->phy->state = OTG_STATE_UNDEFINED;
queue_work(motg->otg_wq, &motg->sm_work);
} else {
otg->gadget = NULL;
}
return 0;
}
otg->gadget = gadget;
dev_dbg(otg->phy->dev, "peripheral driver registered w/ tranceiver\n");
msm_otg_dbg_log_event(&motg->phy, "PERIPHERAL DRIVER REGISTERED",
otg->phy->state, motg->pdata->mode);
/*
* Kick the state machine work, if host is not supported
* or host is already registered with us.
*/
if (motg->pdata->mode == USB_PERIPHERAL || otg->host)
queue_work(motg->otg_wq, &motg->sm_work);
return 0;
}
static bool msm_otg_read_pmic_id_state(struct msm_otg *motg)
{
unsigned long flags;
int id;
if (!motg->pdata->pmic_id_irq)
return -ENODEV;
local_irq_save(flags);
id = irq_read_line(motg->pdata->pmic_id_irq);
local_irq_restore(flags);
/*
* If we can not read ID line state for some reason, treat
* it as float. This would prevent MHL discovery and kicking
* host mode unnecessarily.
*/
return !!id;
}
static bool msm_otg_read_phy_id_state(struct msm_otg *motg)
{
u8 val;
/*
* clear the pending/outstanding interrupts and
* read the ID status from the SRC_STATUS register.
*/
writeb_relaxed(USB_PHY_ID_MASK, USB2_PHY_USB_PHY_INTERRUPT_CLEAR1);
writeb_relaxed(0x1, USB2_PHY_USB_PHY_IRQ_CMD);
/*
* Databook says 200 usec delay is required for
* clearing the interrupts.
*/
udelay(200);
writeb_relaxed(0x0, USB2_PHY_USB_PHY_IRQ_CMD);
val = readb_relaxed(USB2_PHY_USB_PHY_INTERRUPT_SRC_STATUS);
if (val & USB_PHY_IDDIG_1_0)
return false; /* ID is grounded */
else
return true;
}
static void msm_otg_chg_check_timer_func(unsigned long data)
{
struct msm_otg *motg = (struct msm_otg *) data;
struct usb_otg *otg = motg->phy.otg;
if (atomic_read(&motg->in_lpm) ||
!test_bit(B_SESS_VLD, &motg->inputs) ||
otg->phy->state != OTG_STATE_B_PERIPHERAL ||
otg->gadget->speed != USB_SPEED_UNKNOWN) {
dev_dbg(otg->phy->dev, "Nothing to do in chg_check_timer\n");
return;
}
if ((readl_relaxed(USB_PORTSC) & PORTSC_LS) == PORTSC_LS) {
dev_dbg(otg->phy->dev, "DCP is detected as SDP\n");
msm_otg_dbg_log_event(&motg->phy, "DCP IS DETECTED AS SDP",
otg->phy->state, 0);
set_bit(B_FALSE_SDP, &motg->inputs);
queue_work(motg->otg_wq, &motg->sm_work);
}
}
static bool msm_chg_check_secondary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
bool ret = false;
switch (motg->pdata->phy_type) {
case SNPS_PICO_PHY:
case SNPS_FEMTO_PHY:
chg_det = ulpi_read(phy, 0x87);
ret = chg_det & 1;
break;
default:
break;
}
return ret;
}
static void msm_chg_enable_secondary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
switch (motg->pdata->phy_type) {
case SNPS_PICO_PHY:
case SNPS_FEMTO_PHY:
/*
* Configure DM as current source, DP as current sink
* and enable battery charging comparators.
*/
ulpi_write(phy, 0x8, 0x85);
ulpi_write(phy, 0x2, 0x85);
ulpi_write(phy, 0x1, 0x85);
break;
default:
break;
}
}
static bool msm_chg_check_primary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
bool ret = false;
switch (motg->pdata->phy_type) {
case SNPS_PICO_PHY:
case SNPS_FEMTO_PHY:
chg_det = ulpi_read(phy, 0x87);
ret = chg_det & 1;
/* Turn off VDP_SRC */
ulpi_write(phy, 0x3, 0x86);
msleep(20);
break;
default:
break;
}
return ret;
}
static void msm_chg_enable_primary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
switch (motg->pdata->phy_type) {
case SNPS_PICO_PHY:
case SNPS_FEMTO_PHY:
/*
* Configure DP as current source, DM as current sink
* and enable battery charging comparators.
*/
ulpi_write(phy, 0x2, 0x85);
ulpi_write(phy, 0x1, 0x85);
break;
default:
break;
}
}
static bool msm_chg_check_dcd(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 line_state;
bool ret = false;
switch (motg->pdata->phy_type) {
case SNPS_PICO_PHY:
case SNPS_FEMTO_PHY:
line_state = ulpi_read(phy, 0x87);
ret = line_state & 2;
break;
default:
break;
}
return ret;
}
static void msm_chg_disable_dcd(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
switch (motg->pdata->phy_type) {
case SNPS_PICO_PHY:
ulpi_write(phy, 0x10, 0x86);
break;
case SNPS_FEMTO_PHY:
ulpi_write(phy, 0x10, 0x86);
/*
* Disable the Rdm_down after
* the DCD is completed.
*/
ulpi_write(phy, 0x04, 0x0C);
break;
default:
break;
}
}
static void msm_chg_enable_dcd(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
switch (motg->pdata->phy_type) {
case SNPS_PICO_PHY:
/* Data contact detection enable */
ulpi_write(phy, 0x10, 0x85);
break;
case SNPS_FEMTO_PHY:
/*
* Idp_src and Rdm_down are de-coupled
* on Femto PHY. If Idp_src alone is
* enabled, DCD timeout is observed with
* wall charger. But a genuine DCD timeout
* may be incorrectly interpreted. Also
* BC1.2 compliance testers expect Rdm_down
* to enabled during DCD. Enable Rdm_down
* explicitly before enabling the DCD.
*/
ulpi_write(phy, 0x04, 0x0B);
ulpi_write(phy, 0x10, 0x85);
break;
default:
break;
}
}
static void msm_chg_block_on(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 func_ctrl;
/* put the controller in non-driving mode */
func_ctrl = ulpi_read(phy, ULPI_FUNC_CTRL);
func_ctrl &= ~ULPI_FUNC_CTRL_OPMODE_MASK;
func_ctrl |= ULPI_FUNC_CTRL_OPMODE_NONDRIVING;
ulpi_write(phy, func_ctrl, ULPI_FUNC_CTRL);
switch (motg->pdata->phy_type) {
case SNPS_PICO_PHY:
case SNPS_FEMTO_PHY:
/* disable DP and DM pull down resistors */
ulpi_write(phy, 0x6, 0xC);
/* Clear charger detecting control bits */
ulpi_write(phy, 0x1F, 0x86);
/* Clear alt interrupt latch and enable bits */
ulpi_write(phy, 0x1F, 0x92);
ulpi_write(phy, 0x1F, 0x95);
udelay(100);
break;
default:
break;
}
}
static void msm_chg_block_off(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 func_ctrl;
switch (motg->pdata->phy_type) {
case SNPS_PICO_PHY:
case SNPS_FEMTO_PHY:
/* Clear charger detecting control bits */
ulpi_write(phy, 0x3F, 0x86);
/* Clear alt interrupt latch and enable bits */
ulpi_write(phy, 0x1F, 0x92);
ulpi_write(phy, 0x1F, 0x95);
/* re-enable DP and DM pull down resistors */
ulpi_write(phy, 0x6, 0xB);
break;
default:
break;
}
/* put the controller in normal mode */
func_ctrl = ulpi_read(phy, ULPI_FUNC_CTRL);
func_ctrl &= ~ULPI_FUNC_CTRL_OPMODE_MASK;
func_ctrl |= ULPI_FUNC_CTRL_OPMODE_NORMAL;
ulpi_write(phy, func_ctrl, ULPI_FUNC_CTRL);
}
static const char *chg_to_string(enum usb_chg_type chg_type)
{
switch (chg_type) {
case USB_SDP_CHARGER: return "USB_SDP_CHARGER";
case USB_DCP_CHARGER: return "USB_DCP_CHARGER";
case USB_CDP_CHARGER: return "USB_CDP_CHARGER";
case USB_PROPRIETARY_CHARGER: return "USB_PROPRIETARY_CHARGER";
case USB_FLOATED_CHARGER: return "USB_FLOATED_CHARGER";
default: return "INVALID_CHARGER";
}
}
#define MSM_CHG_DCD_TIMEOUT (750 * HZ/1000) /* 750 msec */
#define MSM_CHG_DCD_POLL_TIME (50 * HZ/1000) /* 50 msec */
#define MSM_CHG_PRIMARY_DET_TIME (50 * HZ/1000) /* TVDPSRC_ON */
#define MSM_CHG_SECONDARY_DET_TIME (50 * HZ/1000) /* TVDMSRC_ON */
static void msm_chg_detect_work(struct work_struct *w)
{
struct msm_otg *motg = container_of(w, struct msm_otg, chg_work.work);
struct usb_phy *phy = &motg->phy;
bool is_dcd = false, tmout, vout;
static bool dcd;
u32 line_state, dm_vlgc;
unsigned long delay;
dev_dbg(phy->dev, "chg detection work\n");
msm_otg_dbg_log_event(phy, "CHG DETECTION WORK",
motg->chg_state, get_pm_runtime_counter(phy->dev));
switch (motg->chg_state) {
case USB_CHG_STATE_UNDEFINED:
case USB_CHG_STATE_IN_PROGRESS:
msm_chg_block_on(motg);
msm_chg_enable_dcd(motg);
motg->chg_state = USB_CHG_STATE_WAIT_FOR_DCD;
motg->dcd_time = 0;
delay = MSM_CHG_DCD_POLL_TIME;
break;
case USB_CHG_STATE_WAIT_FOR_DCD:
is_dcd = msm_chg_check_dcd(motg);
motg->dcd_time += MSM_CHG_DCD_POLL_TIME;
tmout = motg->dcd_time >= MSM_CHG_DCD_TIMEOUT;
if (is_dcd || tmout) {
if (is_dcd)
dcd = true;
else
dcd = false;
msm_chg_disable_dcd(motg);
msm_chg_enable_primary_det(motg);
delay = MSM_CHG_PRIMARY_DET_TIME;
motg->chg_state = USB_CHG_STATE_DCD_DONE;
} else {
delay = MSM_CHG_DCD_POLL_TIME;
}
break;
case USB_CHG_STATE_DCD_DONE:
vout = msm_chg_check_primary_det(motg);
line_state = readl_relaxed(USB_PORTSC) & PORTSC_LS;
dm_vlgc = line_state & PORTSC_LS_DM;
if (vout && !dm_vlgc) { /* VDAT_REF < DM < VLGC */
if (line_state) { /* DP > VLGC */
motg->chg_type = USB_PROPRIETARY_CHARGER;
motg->chg_state = USB_CHG_STATE_DETECTED;
delay = 0;
} else {
msm_chg_enable_secondary_det(motg);
delay = MSM_CHG_SECONDARY_DET_TIME;
motg->chg_state = USB_CHG_STATE_PRIMARY_DONE;
}
} else { /* DM < VDAT_REF || DM > VLGC */
if (line_state) /* DP > VLGC or/and DM > VLGC */
motg->chg_type = USB_PROPRIETARY_CHARGER;
else if (!dcd && floated_charger_enable)
motg->chg_type = USB_FLOATED_CHARGER;
else
motg->chg_type = USB_SDP_CHARGER;
motg->chg_state = USB_CHG_STATE_DETECTED;
delay = 0;
}
break;
case USB_CHG_STATE_PRIMARY_DONE:
vout = msm_chg_check_secondary_det(motg);
if (vout)
motg->chg_type = USB_DCP_CHARGER;
else
motg->chg_type = USB_CDP_CHARGER;
motg->chg_state = USB_CHG_STATE_SECONDARY_DONE;
/* fall through */
case USB_CHG_STATE_SECONDARY_DONE:
motg->chg_state = USB_CHG_STATE_DETECTED;
case USB_CHG_STATE_DETECTED:
/*
* Notify the charger type to power supply
* owner as soon as we determine the charger.
*/
if (motg->chg_type == USB_DCP_CHARGER &&
motg->ext_chg_opened) {
init_completion(&motg->ext_chg_wait);
motg->ext_chg_active = DEFAULT;
}
msm_otg_notify_chg_type(motg);
msm_chg_block_off(motg);
/* Enable VDP_SRC in case of DCP charger */
if (motg->chg_type == USB_DCP_CHARGER)
ulpi_write(phy, 0x2, 0x85);
dev_dbg(phy->dev, "chg_type = %s\n",
chg_to_string(motg->chg_type));
msm_otg_dbg_log_event(phy, "CHG WORK PUT: CHG_TYPE",
motg->chg_type, get_pm_runtime_counter(phy->dev));
/* to match _get from sm_work before starting chg_det_work */
pm_runtime_mark_last_busy(phy->dev);
pm_runtime_put_autosuspend(phy->dev);
queue_work(motg->otg_wq, &motg->sm_work);
return;
default:
return;
}
msm_otg_dbg_log_event(phy, "CHG WORK: QUEUE", motg->chg_type, delay);
queue_delayed_work(motg->otg_wq, &motg->chg_work, delay);
}
#define VBUS_INIT_TIMEOUT msecs_to_jiffies(5000)
/*
* We support OTG, Peripheral only and Host only configurations. In case
* of OTG, mode switch (host-->peripheral/peripheral-->host) can happen
* via Id pin status or user request (debugfs). Id/BSV interrupts are not
* enabled when switch is controlled by user and default mode is supplied
* by board file, which can be changed by userspace later.
*/
static void msm_otg_init_sm(struct msm_otg *motg)
{
struct msm_otg_platform_data *pdata = motg->pdata;
u32 otgsc = readl_relaxed(USB_OTGSC);
int ret;
switch (pdata->mode) {
case USB_OTG:
if (pdata->otg_control == OTG_USER_CONTROL) {
if (pdata->default_mode == USB_HOST) {
clear_bit(ID, &motg->inputs);
} else if (pdata->default_mode == USB_PERIPHERAL) {
set_bit(ID, &motg->inputs);
set_bit(B_SESS_VLD, &motg->inputs);
} else {
set_bit(ID, &motg->inputs);
clear_bit(B_SESS_VLD, &motg->inputs);
}
} else if (pdata->otg_control == OTG_PHY_CONTROL) {
if (otgsc & OTGSC_ID)
set_bit(ID, &motg->inputs);
else
clear_bit(ID, &motg->inputs);
if (otgsc & OTGSC_BSV)
set_bit(B_SESS_VLD, &motg->inputs);
else
clear_bit(B_SESS_VLD, &motg->inputs);
} else if (pdata->otg_control == OTG_PMIC_CONTROL) {
if (pdata->pmic_id_irq) {
if (msm_otg_read_pmic_id_state(motg))
set_bit(ID, &motg->inputs);
else
clear_bit(ID, &motg->inputs);
} else if (motg->ext_id_irq) {
if (gpio_get_value(pdata->usb_id_gpio))
set_bit(ID, &motg->inputs);
else
clear_bit(ID, &motg->inputs);
} else if (motg->phy_irq) {
if (msm_otg_read_phy_id_state(motg))
set_bit(ID, &motg->inputs);
else
clear_bit(ID, &motg->inputs);
}
/*
* VBUS initial state is reported after PMIC
* driver initialization. Wait for it.
*/
ret = wait_for_completion_timeout(&pmic_vbus_init,
VBUS_INIT_TIMEOUT);
if (!ret) {
dev_dbg(motg->phy.dev, "%s: timeout waiting for PMIC VBUS\n",
__func__);
msm_otg_dbg_log_event(&motg->phy,
"PMIC VBUS WAIT TMOUT",
motg->inputs, motg->phy.state);
clear_bit(B_SESS_VLD, &motg->inputs);
pmic_vbus_init.done = 1;
}
}
break;
case USB_HOST:
clear_bit(ID, &motg->inputs);
break;
case USB_PERIPHERAL:
set_bit(ID, &motg->inputs);
if (pdata->otg_control == OTG_PHY_CONTROL) {
if (otgsc & OTGSC_BSV)
set_bit(B_SESS_VLD, &motg->inputs);
else
clear_bit(B_SESS_VLD, &motg->inputs);
} else if (pdata->otg_control == OTG_PMIC_CONTROL) {
/*
* VBUS initial state is reported after PMIC
* driver initialization. Wait for it.
*/
ret = wait_for_completion_timeout(&pmic_vbus_init,
VBUS_INIT_TIMEOUT);
if (!ret) {
dev_dbg(motg->phy.dev, "%s: timeout waiting for PMIC VBUS\n",
__func__);
msm_otg_dbg_log_event(&motg->phy,
"PMIC VBUS WAIT TMOUT",
motg->inputs, motg->phy.state);
clear_bit(B_SESS_VLD, &motg->inputs);
pmic_vbus_init.done = 1;
}
} else if (pdata->otg_control == OTG_USER_CONTROL) {
set_bit(ID, &motg->inputs);
set_bit(B_SESS_VLD, &motg->inputs);
}
break;
default:
break;
}
msm_otg_dbg_log_event(&motg->phy, "SM INIT", pdata->mode, motg->inputs);
if (motg->id_state != USB_ID_GROUND)
motg->id_state = (test_bit(ID, &motg->inputs)) ? USB_ID_FLOAT :
USB_ID_GROUND;
}
static void msm_otg_wait_for_ext_chg_done(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
unsigned long t;
/*
* Defer next cable connect event till external charger
* detection is completed.
*/
if (motg->ext_chg_active == ACTIVE) {
do_wait:
pr_debug("before msm_otg ext chg wait\n");
msm_otg_dbg_log_event(&motg->phy, "EXT CHG: WAIT", 0, 0);
t = wait_for_completion_timeout(&motg->ext_chg_wait,
msecs_to_jiffies(3000));
msm_otg_dbg_log_event(&motg->phy, "EXT CHG: DONE", t, 0);
if (!t)
pr_err("msm_otg ext chg wait timeout\n");
else if (motg->ext_chg_active == ACTIVE)
goto do_wait;
else
pr_debug("msm_otg ext chg wait done\n");
}
if (motg->ext_chg_opened) {
if (phy->flags & ENABLE_DP_MANUAL_PULLUP) {
ulpi_write(phy, ULPI_MISC_A_VBUSVLDEXT |
ULPI_MISC_A_VBUSVLDEXTSEL,
ULPI_CLR(ULPI_MISC_A));
}
/* clear charging register bits */
ulpi_write(phy, 0x3F, 0x86);
/* re-enable DP and DM pull-down resistors*/
ulpi_write(phy, 0x6, 0xB);
}
}
static void msm_otg_sm_work(struct work_struct *w)
{
struct msm_otg *motg = container_of(w, struct msm_otg, sm_work);
struct usb_otg *otg = motg->phy.otg;
struct device *dev = otg->phy->dev;
bool work = 0, dcp;
int ret;
pr_debug("%s work\n", usb_otg_state_string(otg->phy->state));
msm_otg_dbg_log_event(&motg->phy, "SM WORK:",
otg->phy->state, motg->inputs);
/* Just resume h/w if reqd, pm_count is handled based on state/inputs */
if (motg->resume_pending) {
pm_runtime_get_sync(otg->phy->dev);
if (atomic_read(&motg->in_lpm)) {
dev_err(dev, "SM WORK: USB is in LPM\n");
msm_otg_dbg_log_event(&motg->phy,
"SM WORK: USB IS IN LPM",
otg->phy->state, motg->inputs);
msm_otg_resume(motg);
}
motg->resume_pending = false;
pm_runtime_put_noidle(otg->phy->dev);
}
switch (otg->phy->state) {
case OTG_STATE_UNDEFINED:
pm_runtime_get_sync(otg->phy->dev);
msm_otg_reset(otg->phy);
/* Add child device only after block reset */
ret = of_platform_populate(motg->pdev->dev.of_node, NULL, NULL,
&motg->pdev->dev);
if (ret)
dev_dbg(&motg->pdev->dev, "failed to add BAM core\n");
msm_otg_init_sm(motg);
otg->phy->state = OTG_STATE_B_IDLE;
if (!test_bit(B_SESS_VLD, &motg->inputs) &&
test_bit(ID, &motg->inputs)) {
msm_otg_dbg_log_event(&motg->phy,
"PM RUNTIME: UNDEF PUT",
get_pm_runtime_counter(otg->phy->dev), 0);
pm_runtime_put_sync(otg->phy->dev);
break;
}
pm_runtime_put(otg->phy->dev);
/* FALL THROUGH */
case OTG_STATE_B_IDLE:
if (!test_bit(ID, &motg->inputs) && otg->host) {
pr_debug("!id\n");
msm_otg_dbg_log_event(&motg->phy, "!ID",
motg->inputs, otg->phy->state);
msm_otg_start_host(otg, 1);
otg->phy->state = OTG_STATE_A_HOST;
} else if (test_bit(B_SESS_VLD, &motg->inputs)) {
pr_debug("b_sess_vld\n");
msm_otg_dbg_log_event(&motg->phy, "B_SESS_VLD",
motg->inputs, otg->phy->state);
switch (motg->chg_state) {
case USB_CHG_STATE_UNDEFINED:
/* put at the end of chg_det or disconnect */
pm_runtime_get_sync(otg->phy->dev);
msm_otg_dbg_log_event(&motg->phy, "PM CHG GET",
get_pm_runtime_counter(dev), 0);
motg->chg_state = USB_CHG_STATE_IN_PROGRESS;
msm_chg_detect_work(&motg->chg_work.work);
break;
case USB_CHG_STATE_DETECTED:
switch (motg->chg_type) {
case USB_DCP_CHARGER:
/* fall through */
case USB_PROPRIETARY_CHARGER:
msm_otg_notify_charger(motg,
dcp_max_current);
if (!motg->is_ext_chg_dcp)
otg->phy->state =
OTG_STATE_B_CHARGER;
break;
case USB_FLOATED_CHARGER:
msm_otg_notify_charger(motg,
IDEV_CHG_MAX);
otg->phy->state = OTG_STATE_B_CHARGER;
break;
case USB_CDP_CHARGER:
msm_otg_notify_charger(motg,
IDEV_CHG_MAX);
/* fall through */
case USB_SDP_CHARGER:
pm_runtime_get_sync(otg->phy->dev);
msm_otg_start_peripheral(otg, 1);
otg->phy->state =
OTG_STATE_B_PERIPHERAL;
mod_timer(&motg->chg_check_timer,
CHG_RECHECK_DELAY);
break;
default:
break;
}
break;
default:
break;
}
} else {
pr_debug("chg_work cancel");
msm_otg_dbg_log_event(&motg->phy, "CHG_WORK CANCEL",
motg->inputs, otg->phy->state);
del_timer_sync(&motg->chg_check_timer);
clear_bit(B_FALSE_SDP, &motg->inputs);
cancel_delayed_work_sync(&motg->chg_work);
/*
* Find out whether chg_w couldn't start or finished.
* In both the cases, runtime ref_count vote is missing
*/
if (motg->chg_state == USB_CHG_STATE_UNDEFINED ||
motg->chg_state == USB_CHG_STATE_DETECTED) {
msm_otg_dbg_log_event(&motg->phy, "RT !CHG GET",
get_pm_runtime_counter(otg->phy->dev), 0);
pm_runtime_get_sync(dev);
}
dcp = (motg->chg_type == USB_DCP_CHARGER);
motg->chg_state = USB_CHG_STATE_UNDEFINED;
motg->chg_type = USB_INVALID_CHARGER;
msm_otg_notify_charger(motg, 0);
if (dcp) {
if (motg->ext_chg_active == DEFAULT)
motg->ext_chg_active = INACTIVE;
msm_otg_wait_for_ext_chg_done(motg);
/* Turn off VDP_SRC */
ulpi_write(otg->phy, 0x2, 0x86);
}
msm_chg_block_off(motg);
msm_otg_dbg_log_event(&motg->phy, "RT: CHG A PUT",
get_pm_runtime_counter(otg->phy->dev), 0);
/* Delay used only if autosuspend enabled */
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
}
break;
case OTG_STATE_B_PERIPHERAL:
if (test_bit(B_SESS_VLD, &motg->inputs) &&
test_bit(B_FALSE_SDP, &motg->inputs)) {
pr_debug("B_FALSE_SDP\n");
msm_otg_start_peripheral(otg, 0);
motg->chg_type = USB_DCP_CHARGER;
clear_bit(B_FALSE_SDP, &motg->inputs);
otg->phy->state = OTG_STATE_B_IDLE;
msm_otg_dbg_log_event(&motg->phy, "B_FALSE_SDP PUT",
get_pm_runtime_counter(dev), motg->inputs);
pm_runtime_put_sync(dev);
/* schedule work to update charging current */
work = 1;
} else if (!test_bit(B_SESS_VLD, &motg->inputs)) {
msm_otg_start_peripheral(otg, 0);
msm_otg_dbg_log_event(&motg->phy, "RT PM: B_PERI A PUT",
get_pm_runtime_counter(dev), 0);
/* _put for _get done on cable connect in B_IDLE */
pm_runtime_put_noidle(dev);
/* Schedule work to finish cable disconnect processing*/
otg->phy->state = OTG_STATE_B_IDLE;
work = 1;
} else if (test_bit(A_BUS_SUSPEND, &motg->inputs)) {
pr_debug("a_bus_suspend\n");
msm_otg_dbg_log_event(&motg->phy,
"BUS_SUSPEND: PM RT PUT",
get_pm_runtime_counter(dev), 0);
otg->phy->state = OTG_STATE_B_SUSPEND;
/* _get on connect in B_IDLE or host resume in B_SUSP */
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
}
break;
case OTG_STATE_B_SUSPEND:
if (!test_bit(B_SESS_VLD, &motg->inputs)) {
msm_otg_start_peripheral(otg, 0);
otg->phy->state = OTG_STATE_B_IDLE;
/* Schedule work to finish cable disconnect processing*/
work = 1;
} else if (!test_bit(A_BUS_SUSPEND, &motg->inputs)) {
pr_debug("!a_bus_suspend\n");
otg->phy->state = OTG_STATE_B_PERIPHERAL;
msm_otg_dbg_log_event(&motg->phy,
"BUS_RESUME: PM RT GET",
get_pm_runtime_counter(dev), 0);
pm_runtime_get_sync(dev);
}
break;
case OTG_STATE_B_CHARGER:
if (test_bit(B_SESS_VLD, &motg->inputs)) {
pr_debug("BSV set again\n");
msm_otg_dbg_log_event(&motg->phy, "BSV SET AGAIN",
motg->inputs, otg->phy->state);
} else if (!test_bit(B_SESS_VLD, &motg->inputs)) {
otg->phy->state = OTG_STATE_B_IDLE;
work = 1;
}
break;
case OTG_STATE_A_HOST:
if (test_bit(ID, &motg->inputs)) {
msm_otg_start_host(otg, 0);
otg->phy->state = OTG_STATE_B_IDLE;
work = 1;
}
break;
default:
break;
}
if (work)
queue_work(motg->otg_wq, &motg->sm_work);
}
static irqreturn_t msm_otg_irq(int irq, void *data)
{
struct msm_otg *motg = data;
struct usb_otg *otg = motg->phy.otg;
u32 otgsc = 0;
bool work = 0;
if (atomic_read(&motg->in_lpm)) {
pr_debug("OTG IRQ: %d in LPM\n", irq);
msm_otg_dbg_log_event(&motg->phy, "OTG IRQ IS IN LPM",
irq, otg->phy->state);
/*Ignore interrupt if one interrupt already seen in LPM*/
if (motg->async_int)
return IRQ_HANDLED;
disable_irq_nosync(irq);
motg->async_int = irq;
msm_otg_kick_sm_work(motg);
return IRQ_HANDLED;
}
motg->usb_irq_count++;
otgsc = readl_relaxed(USB_OTGSC);
if (!(otgsc & (OTGSC_IDIS | OTGSC_BSVIS)))
return IRQ_NONE;
if ((otgsc & OTGSC_IDIS) && (otgsc & OTGSC_IDIE)) {
if (otgsc & OTGSC_ID) {
dev_dbg(otg->phy->dev, "ID set\n");
msm_otg_dbg_log_event(&motg->phy, "ID SET",
motg->inputs, otg->phy->state);
set_bit(ID, &motg->inputs);
} else {
dev_dbg(otg->phy->dev, "ID clear\n");
msm_otg_dbg_log_event(&motg->phy, "ID CLEAR",
motg->inputs, otg->phy->state);
clear_bit(ID, &motg->inputs);
}
work = 1;
} else if ((otgsc & OTGSC_BSVIE) && (otgsc & OTGSC_BSVIS)) {
if (otgsc & OTGSC_BSV) {
dev_dbg(otg->phy->dev, "BSV set\n");
msm_otg_dbg_log_event(&motg->phy, "BSV SET",
motg->inputs, otg->phy->state);
set_bit(B_SESS_VLD, &motg->inputs);
} else {
dev_dbg(otg->phy->dev, "BSV clear\n");
msm_otg_dbg_log_event(&motg->phy, "BSV CLEAR",
motg->inputs, otg->phy->state);
clear_bit(B_SESS_VLD, &motg->inputs);
clear_bit(A_BUS_SUSPEND, &motg->inputs);
}
work = 1;
}
if (work)
queue_work(motg->otg_wq, &motg->sm_work);
writel_relaxed(otgsc, USB_OTGSC);
return IRQ_HANDLED;
}
static void msm_otg_set_vbus_state(int online)
{
struct msm_otg *motg = the_msm_otg;
static bool init;
motg->vbus_state = online;
if (motg->err_event_seen)
return;
if (online) {
pr_debug("PMIC: BSV set\n");
msm_otg_dbg_log_event(&motg->phy, "PMIC: BSV SET",
init, motg->inputs);
if (test_and_set_bit(B_SESS_VLD, &motg->inputs) && init)
return;
} else {
pr_debug("PMIC: BSV clear\n");
msm_otg_dbg_log_event(&motg->phy, "PMIC: BSV CLEAR",
init, motg->inputs);
if (!test_and_clear_bit(B_SESS_VLD, &motg->inputs) && init)
return;
}
/* do not queue state m/c work if id is grounded */
if (!test_bit(ID, &motg->inputs)) {
/*
* state machine work waits for initial VBUS
* completion in UNDEFINED state. Process
* the initial VBUS event in ID_GND state.
*/
if (init)
return;
}
if (!init) {
init = true;
if (pmic_vbus_init.done &&
test_bit(B_SESS_VLD, &motg->inputs)) {
pr_debug("PMIC: BSV came late\n");
msm_otg_dbg_log_event(&motg->phy, "PMIC: BSV CAME LATE",
init, motg->inputs);
goto out;
}
complete(&pmic_vbus_init);
pr_debug("PMIC: BSV init complete\n");
msm_otg_dbg_log_event(&motg->phy, "PMIC: BSV INIT COMPLETE",
init, motg->inputs);
return;
}
out:
if (motg->is_ext_chg_dcp) {
if (test_bit(B_SESS_VLD, &motg->inputs)) {
msm_otg_notify_charger(motg, IDEV_CHG_MAX);
} else {
motg->is_ext_chg_dcp = false;
motg->chg_state = USB_CHG_STATE_UNDEFINED;
motg->chg_type = USB_INVALID_CHARGER;
msm_otg_notify_charger(motg, 0);
}
return;
}
msm_otg_dbg_log_event(&motg->phy, "CHECK VBUS EVENT DURING SUSPEND",
atomic_read(&motg->pm_suspended),
motg->sm_work_pending);
msm_otg_kick_sm_work(motg);
}
static void msm_id_status_w(struct work_struct *w)
{
struct msm_otg *motg = container_of(w, struct msm_otg,
id_status_work.work);
int work = 0;
dev_dbg(motg->phy.dev, "ID status_w\n");
if (motg->pdata->pmic_id_irq)
motg->id_state = msm_otg_read_pmic_id_state(motg);
else if (motg->ext_id_irq)
motg->id_state = gpio_get_value(motg->pdata->usb_id_gpio);
else if (motg->phy_irq)
motg->id_state = msm_otg_read_phy_id_state(motg);
if (motg->err_event_seen)
return;
if (motg->id_state) {
if (gpio_is_valid(motg->pdata->switch_sel_gpio))
gpio_direction_input(motg->pdata->switch_sel_gpio);
if (!test_and_set_bit(ID, &motg->inputs)) {
pr_debug("ID set\n");
msm_otg_dbg_log_event(&motg->phy, "ID SET",
motg->inputs, motg->phy.state);
work = 1;
}
} else {
if (gpio_is_valid(motg->pdata->switch_sel_gpio))
gpio_direction_output(motg->pdata->switch_sel_gpio, 1);
if (test_and_clear_bit(ID, &motg->inputs)) {
pr_debug("ID clear\n");
msm_otg_dbg_log_event(&motg->phy, "ID CLEAR",
motg->inputs, motg->phy.state);
work = 1;
}
}
if (work && (motg->phy.state != OTG_STATE_UNDEFINED)) {
msm_otg_dbg_log_event(&motg->phy,
"CHECK ID EVENT DURING SUSPEND",
atomic_read(&motg->pm_suspended),
motg->sm_work_pending);
msm_otg_kick_sm_work(motg);
}
}
#define MSM_ID_STATUS_DELAY 5 /* 5msec */
static irqreturn_t msm_id_irq(int irq, void *data)
{
struct msm_otg *motg = data;
/*schedule delayed work for 5msec for ID line state to settle*/
queue_delayed_work(motg->otg_wq, &motg->id_status_work,
msecs_to_jiffies(MSM_ID_STATUS_DELAY));
return IRQ_HANDLED;
}
int msm_otg_pm_notify(struct notifier_block *notify_block,
unsigned long mode, void *unused)
{
struct msm_otg *motg = container_of(
notify_block, struct msm_otg, pm_notify);
dev_dbg(motg->phy.dev, "OTG PM notify:%lx, sm_pending:%u\n", mode,
motg->sm_work_pending);
msm_otg_dbg_log_event(&motg->phy, "PM NOTIFY",
mode, motg->sm_work_pending);
switch (mode) {
case PM_POST_SUSPEND:
/* OTG sm_work can be armed now */
atomic_set(&motg->pm_suspended, 0);
/* Handle any deferred wakeup events from USB during suspend */
if (motg->sm_work_pending) {
motg->sm_work_pending = false;
queue_work(motg->otg_wq, &motg->sm_work);
}
break;
default:
break;
}
return NOTIFY_OK;
}
static int msm_otg_mode_show(struct seq_file *s, void *unused)
{
struct msm_otg *motg = s->private;
struct usb_otg *otg = motg->phy.otg;
switch (otg->phy->state) {
case OTG_STATE_A_HOST:
seq_printf(s, "host\n");
break;
case OTG_STATE_B_IDLE:
case OTG_STATE_B_PERIPHERAL:
case OTG_STATE_B_SUSPEND:
seq_printf(s, "peripheral\n");
break;
default:
seq_printf(s, "none\n");
break;
}
return 0;
}
static int msm_otg_mode_open(struct inode *inode, struct file *file)
{
return single_open(file, msm_otg_mode_show, inode->i_private);
}
static ssize_t msm_otg_mode_write(struct file *file, const char __user *ubuf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct msm_otg *motg = s->private;
char buf[16];
struct usb_phy *phy = &motg->phy;
int status = count;
enum usb_mode_type req_mode;
memset(buf, 0x00, sizeof(buf));
if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count))) {
status = -EFAULT;
goto out;
}
if (!strncmp(buf, "host", 4)) {
req_mode = USB_HOST;
} else if (!strncmp(buf, "peripheral", 10)) {
req_mode = USB_PERIPHERAL;
} else if (!strncmp(buf, "none", 4)) {
req_mode = USB_NONE;
} else {
status = -EINVAL;
goto out;
}
switch (req_mode) {
case USB_NONE:
switch (phy->state) {
case OTG_STATE_A_HOST:
case OTG_STATE_B_PERIPHERAL:
case OTG_STATE_B_SUSPEND:
set_bit(ID, &motg->inputs);
clear_bit(B_SESS_VLD, &motg->inputs);
break;
default:
goto out;
}
break;
case USB_PERIPHERAL:
switch (phy->state) {
case OTG_STATE_B_IDLE:
case OTG_STATE_A_HOST:
set_bit(ID, &motg->inputs);
set_bit(B_SESS_VLD, &motg->inputs);
break;
default:
goto out;
}
break;
case USB_HOST:
switch (phy->state) {
case OTG_STATE_B_IDLE:
case OTG_STATE_B_PERIPHERAL:
case OTG_STATE_B_SUSPEND:
clear_bit(ID, &motg->inputs);
break;
default:
goto out;
}
break;
default:
goto out;
}
motg->id_state = (test_bit(ID, &motg->inputs)) ? USB_ID_FLOAT :
USB_ID_GROUND;
queue_work(motg->otg_wq, &motg->sm_work);
out:
return status;
}
const struct file_operations msm_otg_mode_fops = {
.open = msm_otg_mode_open,
.read = seq_read,
.write = msm_otg_mode_write,
.llseek = seq_lseek,
.release = single_release,
};
static int msm_otg_show_otg_state(struct seq_file *s, void *unused)
{
struct msm_otg *motg = s->private;
struct usb_phy *phy = &motg->phy;
seq_printf(s, "%s\n", usb_otg_state_string(phy->state));
return 0;
}
static int msm_otg_otg_state_open(struct inode *inode, struct file *file)
{
return single_open(file, msm_otg_show_otg_state, inode->i_private);
}
const struct file_operations msm_otg_state_fops = {
.open = msm_otg_otg_state_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int msm_otg_show_chg_type(struct seq_file *s, void *unused)
{
struct msm_otg *motg = s->private;
seq_printf(s, "%s\n", chg_to_string(motg->chg_type));
return 0;
}
static int msm_otg_chg_open(struct inode *inode, struct file *file)
{
return single_open(file, msm_otg_show_chg_type, inode->i_private);
}
const struct file_operations msm_otg_chg_fops = {
.open = msm_otg_chg_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int msm_otg_bus_show(struct seq_file *s, void *unused)
{
if (debug_bus_voting_enabled)
seq_printf(s, "enabled\n");
else
seq_printf(s, "disabled\n");
return 0;
}
static int msm_otg_bus_open(struct inode *inode, struct file *file)
{
return single_open(file, msm_otg_bus_show, inode->i_private);
}
static ssize_t msm_otg_bus_write(struct file *file, const char __user *ubuf,
size_t count, loff_t *ppos)
{
char buf[8];
struct seq_file *s = file->private_data;
struct msm_otg *motg = s->private;
memset(buf, 0x00, sizeof(buf));
if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count)))
return -EFAULT;
if (!strncmp(buf, "enable", 6)) {
/* Do not vote here. Let OTG statemachine decide when to vote */
debug_bus_voting_enabled = true;
} else {
debug_bus_voting_enabled = false;
msm_otg_bus_vote(motg, USB_MIN_PERF_VOTE);
}
return count;
}
static int msm_otg_dbg_buff_show(struct seq_file *s, void *unused)
{
struct msm_otg *motg = s->private;
unsigned long flags;
unsigned i;
read_lock_irqsave(&motg->dbg_lock, flags);
i = motg->dbg_idx;
if (strnlen(motg->buf[i], DEBUG_MSG_LEN))
seq_printf(s, "%s\n", motg->buf[i]);
for (dbg_inc(&i); i != motg->dbg_idx; dbg_inc(&i)) {
if (!strnlen(motg->buf[i], DEBUG_MSG_LEN))
continue;
seq_printf(s, "%s\n", motg->buf[i]);
}
read_unlock_irqrestore(&motg->dbg_lock, flags);
return 0;
}
static int msm_otg_dbg_buff_open(struct inode *inode, struct file *file)
{
return single_open(file, msm_otg_dbg_buff_show, inode->i_private);
}
const struct file_operations msm_otg_dbg_buff_fops = {
.open = msm_otg_dbg_buff_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int
otg_get_prop_usbin_voltage_now(struct msm_otg *motg)
{
int rc = 0;
struct qpnp_vadc_result results;
if (IS_ERR_OR_NULL(motg->vadc_dev)) {
motg->vadc_dev = qpnp_get_vadc(motg->phy.dev, "usbin");
if (IS_ERR(motg->vadc_dev))
return PTR_ERR(motg->vadc_dev);
}
rc = qpnp_vadc_read(motg->vadc_dev, USBIN, &results);
if (rc) {
pr_err("Unable to read usbin rc=%d\n", rc);
return 0;
} else {
return results.physical;
}
}
static int msm_otg_pmic_dp_dm(struct msm_otg *motg, int value)
{
int ret = 0;
switch (value) {
case POWER_SUPPLY_DP_DM_DPF_DMF:
if (!motg->rm_pulldown) {
ret = msm_hsusb_ldo_enable(motg, USB_PHY_REG_3P3_ON);
if (!ret) {
motg->rm_pulldown = true;
msm_otg_dbg_log_event(&motg->phy, "RM Pulldown",
motg->rm_pulldown, 0);
}
}
break;
case POWER_SUPPLY_DP_DM_DPR_DMR:
if (motg->rm_pulldown) {
ret = msm_hsusb_ldo_enable(motg, USB_PHY_REG_3P3_OFF);
if (!ret) {
motg->rm_pulldown = false;
msm_otg_dbg_log_event(&motg->phy, "RM Pulldown",
motg->rm_pulldown, 0);
}
}
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int otg_power_get_property_usb(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct msm_otg *motg = container_of(psy, struct msm_otg, usb_psy);
switch (psp) {
case POWER_SUPPLY_PROP_SCOPE:
if (motg->host_mode)
val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
else
val->intval = POWER_SUPPLY_SCOPE_DEVICE;
break;
case POWER_SUPPLY_PROP_VOLTAGE_MAX:
val->intval = motg->voltage_max;
break;
case POWER_SUPPLY_PROP_CURRENT_MAX:
val->intval = motg->current_max;
break;
case POWER_SUPPLY_PROP_INPUT_CURRENT_MAX:
val->intval = motg->typec_current_max;
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = !!test_bit(B_SESS_VLD, &motg->inputs);
break;
case POWER_SUPPLY_PROP_DP_DM:
val->intval = motg->rm_pulldown;
break;
/* Reflect USB enumeration */
case POWER_SUPPLY_PROP_ONLINE:
val->intval = motg->online;
break;
case POWER_SUPPLY_PROP_TYPE:
val->intval = psy->type;
break;
case POWER_SUPPLY_PROP_HEALTH:
val->intval = motg->usbin_health;
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = otg_get_prop_usbin_voltage_now(motg);
break;
case POWER_SUPPLY_PROP_USB_OTG:
val->intval = !motg->id_state;
break;
default:
return -EINVAL;
}
return 0;
}
static int otg_power_set_property_usb(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct msm_otg *motg = container_of(psy, struct msm_otg, usb_psy);
struct msm_otg_platform_data *pdata = motg->pdata;
msm_otg_dbg_log_event(&motg->phy, "SET PWR PROPERTY", psp, psy->type);
switch (psp) {
case POWER_SUPPLY_PROP_USB_OTG:
motg->id_state = val->intval ? USB_ID_GROUND : USB_ID_FLOAT;
queue_delayed_work(motg->otg_wq, &motg->id_status_work, 0);
break;
/* PMIC notification for DP DM state */
case POWER_SUPPLY_PROP_DP_DM:
msm_otg_pmic_dp_dm(motg, val->intval);
break;
/* Process PMIC notification in PRESENT prop */
case POWER_SUPPLY_PROP_PRESENT:
msm_otg_set_vbus_state(val->intval);
break;
/* The ONLINE property reflects if usb has enumerated */
case POWER_SUPPLY_PROP_ONLINE:
motg->online = val->intval;
break;
case POWER_SUPPLY_PROP_VOLTAGE_MAX:
motg->voltage_max = val->intval;
break;
case POWER_SUPPLY_PROP_CURRENT_MAX:
motg->current_max = val->intval;
break;
case POWER_SUPPLY_PROP_INPUT_CURRENT_MAX:
/*
* Limit type-c charger current to 500 for SDP charger
* to avoid more current drawn than 500 with legacy Hosts.
*/
if (pdata->enable_sdp_typec_current_limit &&
(motg->chg_type == USB_SDP_CHARGER)
&& val->intval > 500)
motg->typec_current_max = 500;
else
motg->typec_current_max = val->intval;
msm_otg_dbg_log_event(&motg->phy, "type-c charger",
val->intval, motg->bc1p2_current_max);
/* Update chg_current as per type-c charger detection on VBUS */
if (motg->chg_type != USB_INVALID_CHARGER) {
dev_dbg(motg->phy.dev, "update type-c charger\n");
msm_otg_notify_charger(motg, motg->bc1p2_current_max);
}
break;
case POWER_SUPPLY_PROP_TYPE:
psy->type = val->intval;
/*
* If charger detection is done by the USB driver,
* motg->chg_type is already assigned in the
* charger detection work.
*
* There is a possibility of overriding the
* actual charger type with power supply type
* charger. For example USB PROPRIETARY charger
* does not exist in power supply enum and it
* gets overridden as DCP.
*/
if (motg->chg_state == USB_CHG_STATE_DETECTED)
break;
switch (psy->type) {
case POWER_SUPPLY_TYPE_USB:
motg->chg_type = USB_SDP_CHARGER;
break;
case POWER_SUPPLY_TYPE_USB_DCP:
motg->chg_type = USB_DCP_CHARGER;
break;
case POWER_SUPPLY_TYPE_USB_HVDCP:
motg->chg_type = USB_DCP_CHARGER;
msm_otg_notify_charger(motg, hvdcp_max_current);
break;
case POWER_SUPPLY_TYPE_USB_CDP:
motg->chg_type = USB_CDP_CHARGER;
break;
case POWER_SUPPLY_TYPE_USB_ACA:
motg->chg_type = USB_PROPRIETARY_CHARGER;
break;
default:
motg->chg_type = USB_INVALID_CHARGER;
break;
}
if (motg->chg_type != USB_INVALID_CHARGER) {
if (motg->chg_type == USB_DCP_CHARGER)
motg->is_ext_chg_dcp = true;
motg->chg_state = USB_CHG_STATE_DETECTED;
}
dev_dbg(motg->phy.dev, "%s: charger type = %s\n", __func__,
chg_to_string(motg->chg_type));
msm_otg_dbg_log_event(&motg->phy, "SET CHARGER TYPE ",
motg->chg_type, psy->type);
break;
case POWER_SUPPLY_PROP_HEALTH:
motg->usbin_health = val->intval;
break;
default:
return -EINVAL;
}
power_supply_changed(&motg->usb_psy);
return 0;
}
static int otg_power_property_is_writeable_usb(struct power_supply *psy,
enum power_supply_property psp)
{
switch (psp) {
case POWER_SUPPLY_PROP_HEALTH:
case POWER_SUPPLY_PROP_PRESENT:
case POWER_SUPPLY_PROP_ONLINE:
case POWER_SUPPLY_PROP_VOLTAGE_MAX:
case POWER_SUPPLY_PROP_CURRENT_MAX:
case POWER_SUPPLY_PROP_DP_DM:
case POWER_SUPPLY_PROP_INPUT_CURRENT_MAX:
case POWER_SUPPLY_PROP_USB_OTG:
return 1;
default:
break;
}
return 0;
}
static char *otg_pm_power_supplied_to[] = {
"battery",
};
static enum power_supply_property otg_pm_power_props_usb[] = {
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_ONLINE,
POWER_SUPPLY_PROP_VOLTAGE_MAX,
POWER_SUPPLY_PROP_CURRENT_MAX,
POWER_SUPPLY_PROP_INPUT_CURRENT_MAX,
POWER_SUPPLY_PROP_SCOPE,
POWER_SUPPLY_PROP_TYPE,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_DP_DM,
POWER_SUPPLY_PROP_USB_OTG,
};
const struct file_operations msm_otg_bus_fops = {
.open = msm_otg_bus_open,
.read = seq_read,
.write = msm_otg_bus_write,
.llseek = seq_lseek,
.release = single_release,
};
static struct dentry *msm_otg_dbg_root;
static int msm_otg_debugfs_init(struct msm_otg *motg)
{
struct dentry *msm_otg_dentry;
struct msm_otg_platform_data *pdata = motg->pdata;
msm_otg_dbg_root = debugfs_create_dir("msm_otg", NULL);
if (!msm_otg_dbg_root || IS_ERR(msm_otg_dbg_root))
return -ENODEV;
if ((pdata->mode == USB_OTG || pdata->mode == USB_PERIPHERAL) &&
pdata->otg_control == OTG_USER_CONTROL) {
msm_otg_dentry = debugfs_create_file("mode", S_IRUGO |
S_IWUSR, msm_otg_dbg_root, motg,
&msm_otg_mode_fops);
if (!msm_otg_dentry) {
debugfs_remove(msm_otg_dbg_root);
msm_otg_dbg_root = NULL;
return -ENODEV;
}
}
msm_otg_dentry = debugfs_create_file("chg_type", S_IRUGO,
msm_otg_dbg_root, motg,
&msm_otg_chg_fops);
if (!msm_otg_dentry) {
debugfs_remove_recursive(msm_otg_dbg_root);
return -ENODEV;
}
msm_otg_dentry = debugfs_create_file("bus_voting", S_IRUGO | S_IWUSR,
msm_otg_dbg_root, motg,
&msm_otg_bus_fops);
if (!msm_otg_dentry) {
debugfs_remove_recursive(msm_otg_dbg_root);
return -ENODEV;
}
msm_otg_dentry = debugfs_create_file("otg_state", S_IRUGO,
msm_otg_dbg_root, motg, &msm_otg_state_fops);
if (!msm_otg_dentry) {
debugfs_remove_recursive(msm_otg_dbg_root);
return -ENODEV;
}
msm_otg_dentry = debugfs_create_file("dbg_buff", S_IRUGO,
msm_otg_dbg_root, motg, &msm_otg_dbg_buff_fops);
if (!msm_otg_dentry) {
debugfs_remove_recursive(msm_otg_dbg_root);
return -ENODEV;
}
return 0;
}
static void msm_otg_debugfs_cleanup(void)
{
debugfs_remove_recursive(msm_otg_dbg_root);
}
static ssize_t
set_msm_otg_perf_mode(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct msm_otg *motg = the_msm_otg;
int ret;
long clk_rate;
pr_debug("%s: enable:%d\n", __func__, !strnicmp(buf, "enable", 6));
if (!strnicmp(buf, "enable", 6)) {
clk_rate = motg->core_clk_nominal_rate;
msm_otg_bus_freq_set(motg, USB_NOC_NOM_VOTE);
} else {
clk_rate = motg->core_clk_svs_rate;
msm_otg_bus_freq_set(motg, USB_NOC_SVS_VOTE);
}
if (clk_rate) {
pr_debug("Set usb sys_clk rate:%ld\n", clk_rate);
ret = clk_set_rate(motg->core_clk, clk_rate);
if (ret)
pr_err("sys_clk set_rate fail:%d %ld\n", ret, clk_rate);
} else {
pr_err("usb sys_clk rate is undefined\n");
}
msm_otg_dbg_log_event(&motg->phy, "OTG PERF SET", clk_rate, ret);
return count;
}
static DEVICE_ATTR(perf_mode, S_IWUSR, NULL, set_msm_otg_perf_mode);
#define MSM_OTG_CMD_ID 0x09
#define MSM_OTG_DEVICE_ID 0x04
#define MSM_OTG_VMID_IDX 0xFF
#define MSM_OTG_MEM_TYPE 0x02
struct msm_otg_scm_cmd_buf {
unsigned int device_id;
unsigned int vmid_idx;
unsigned int mem_type;
} __attribute__ ((__packed__));
static void msm_otg_pnoc_errata_fix(struct msm_otg *motg)
{
int ret;
struct msm_otg_platform_data *pdata = motg->pdata;
struct msm_otg_scm_cmd_buf cmd_buf;
if (!pdata->pnoc_errata_fix)
return;
dev_dbg(motg->phy.dev, "applying fix for pnoc h/w issue\n");
cmd_buf.device_id = MSM_OTG_DEVICE_ID;
cmd_buf.vmid_idx = MSM_OTG_VMID_IDX;
cmd_buf.mem_type = MSM_OTG_MEM_TYPE;
ret = scm_call(SCM_SVC_MP, MSM_OTG_CMD_ID, &cmd_buf,
sizeof(cmd_buf), NULL, 0);
if (ret)
dev_err(motg->phy.dev, "scm command failed to update VMIDMT\n");
}
static u64 msm_otg_dma_mask = DMA_BIT_MASK(32);
static struct platform_device *msm_otg_add_pdev(
struct platform_device *ofdev, const char *name)
{
struct platform_device *pdev;
const struct resource *res = ofdev->resource;
unsigned int num = ofdev->num_resources;
int retval;
struct ci13xxx_platform_data ci_pdata;
struct msm_otg_platform_data *otg_pdata;
struct msm_otg *motg;
pdev = platform_device_alloc(name, -1);
if (!pdev) {
retval = -ENOMEM;
goto error;
}
pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
pdev->dev.dma_mask = &msm_otg_dma_mask;
pdev->dev.parent = &ofdev->dev;
if (num) {
retval = platform_device_add_resources(pdev, res, num);
if (retval)
goto error;
}
if (!strcmp(name, "msm_hsusb")) {
otg_pdata =
(struct msm_otg_platform_data *)
ofdev->dev.platform_data;
motg = platform_get_drvdata(ofdev);
ci_pdata.log2_itc = otg_pdata->log2_itc;
ci_pdata.usb_core_id = 0;
ci_pdata.l1_supported = otg_pdata->l1_supported;
ci_pdata.enable_ahb2ahb_bypass =
otg_pdata->enable_ahb2ahb_bypass;
ci_pdata.enable_streaming = otg_pdata->enable_streaming;
ci_pdata.enable_axi_prefetch = otg_pdata->enable_axi_prefetch;
retval = platform_device_add_data(pdev, &ci_pdata,
sizeof(ci_pdata));
if (retval)
goto error;
}
retval = platform_device_add(pdev);
if (retval)
goto error;
return pdev;
error:
platform_device_put(pdev);
return ERR_PTR(retval);
}
static int msm_otg_setup_devices(struct platform_device *ofdev,
enum usb_mode_type mode, bool init)
{
const char *gadget_name = "msm_hsusb";
const char *host_name = "msm_hsusb_host";
static struct platform_device *gadget_pdev;
static struct platform_device *host_pdev;
int retval = 0;
if (!init) {
if (gadget_pdev) {
platform_device_unregister(gadget_pdev);
device_remove_file(&gadget_pdev->dev,
&dev_attr_perf_mode);
}
if (host_pdev)
platform_device_unregister(host_pdev);
return 0;
}
switch (mode) {
case USB_OTG:
/* fall through */
case USB_PERIPHERAL:
gadget_pdev = msm_otg_add_pdev(ofdev, gadget_name);
if (IS_ERR(gadget_pdev)) {
retval = PTR_ERR(gadget_pdev);
break;
}
if (device_create_file(&gadget_pdev->dev, &dev_attr_perf_mode))
dev_err(&gadget_pdev->dev, "perf_mode file failed\n");
if (mode == USB_PERIPHERAL)
break;
/* fall through */
case USB_HOST:
host_pdev = msm_otg_add_pdev(ofdev, host_name);
if (IS_ERR(host_pdev)) {
retval = PTR_ERR(host_pdev);
if (mode == USB_OTG) {
platform_device_unregister(gadget_pdev);
device_remove_file(&gadget_pdev->dev,
&dev_attr_perf_mode);
}
}
break;
default:
break;
}
return retval;
}
static int msm_otg_register_power_supply(struct platform_device *pdev,
struct msm_otg *motg)
{
int ret;
ret = power_supply_register(&pdev->dev, &motg->usb_psy);
if (ret < 0) {
dev_err(motg->phy.dev,
"%s:power_supply_register usb failed\n",
__func__);
return ret;
}
return 0;
}
static int msm_otg_ext_chg_open(struct inode *inode, struct file *file)
{
struct msm_otg *motg = the_msm_otg;
pr_debug("msm_otg ext chg open\n");
msm_otg_dbg_log_event(&motg->phy, "EXT CHG: OPEN",
motg->inputs, motg->phy.state);
motg->ext_chg_opened = true;
file->private_data = (void *)motg;
return 0;
}
static long
msm_otg_ext_chg_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct msm_otg *motg = file->private_data;
struct msm_usb_chg_info info = {0};
int ret = 0, val;
msm_otg_dbg_log_event(&motg->phy, "EXT CHG: IOCTL", cmd, 0);
switch (cmd) {
case MSM_USB_EXT_CHG_INFO:
info.chg_block_type = USB_CHG_BLOCK_ULPI;
info.page_offset = motg->io_res->start & ~PAGE_MASK;
/* mmap() works on PAGE granularity */
info.length = PAGE_SIZE;
if (copy_to_user((void __user *)arg, &info, sizeof(info))) {
pr_err("%s: copy to user failed\n\n", __func__);
ret = -EFAULT;
}
break;
case MSM_USB_EXT_CHG_BLOCK_LPM:
if (get_user(val, (int __user *)arg)) {
pr_err("%s: get_user failed\n\n", __func__);
ret = -EFAULT;
break;
}
pr_debug("%s: LPM block request %d\n", __func__, val);
msm_otg_dbg_log_event(&motg->phy, "LPM BLOCK REQ", val, 0);
if (val) { /* block LPM */
if (motg->chg_type == USB_DCP_CHARGER) {
motg->ext_chg_active = ACTIVE;
msm_otg_dbg_log_event(&motg->phy,
"PM RUNTIME: EXT_CHG GET",
get_pm_runtime_counter(motg->phy.dev), 0);
pm_runtime_get_sync(motg->phy.dev);
} else {
motg->ext_chg_active = INACTIVE;
complete(&motg->ext_chg_wait);
ret = -ENODEV;
}
} else {
motg->ext_chg_active = INACTIVE;
complete(&motg->ext_chg_wait);
/*
* If usb cable is disconnected and then userspace
* calls ioctl to unblock low power mode, make sure
* otg_sm work for usb disconnect is processed first
* followed by decrementing the PM usage counters.
*/
flush_work(&motg->sm_work);
msm_otg_dbg_log_event(&motg->phy,
"PM RUNTIME: EXT_CHG PUT",
get_pm_runtime_counter(motg->phy.dev), 0);
pm_runtime_put_sync(motg->phy.dev);
}
break;
case MSM_USB_EXT_CHG_VOLTAGE_INFO:
if (get_user(val, (int __user *)arg)) {
pr_err("%s: get_user failed\n\n", __func__);
ret = -EFAULT;
break;
}
msm_otg_dbg_log_event(&motg->phy, "EXT CHG: VOL REQ", cmd, val);
if (val == USB_REQUEST_5V)
pr_debug("%s:voting 5V voltage request\n", __func__);
else if (val == USB_REQUEST_9V)
pr_debug("%s:voting 9V voltage request\n", __func__);
break;
case MSM_USB_EXT_CHG_RESULT:
if (get_user(val, (int __user *)arg)) {
pr_err("%s: get_user failed\n\n", __func__);
ret = -EFAULT;
break;
}
msm_otg_dbg_log_event(&motg->phy, "EXT CHG: VOL REQ", cmd, val);
if (!val)
pr_debug("%s:voltage request successful\n", __func__);
else
pr_debug("%s:voltage request failed\n", __func__);
break;
case MSM_USB_EXT_CHG_TYPE:
if (get_user(val, (int __user *)arg)) {
pr_err("%s: get_user failed\n\n", __func__);
ret = -EFAULT;
break;
}
msm_otg_dbg_log_event(&motg->phy, "EXT CHG: VOL REQ", cmd, val);
if (val)
pr_debug("%s:charger is external charger\n", __func__);
else
pr_debug("%s:charger is not ext charger\n", __func__);
break;
default:
ret = -EINVAL;
}
return ret;
}
static int msm_otg_ext_chg_mmap(struct file *file, struct vm_area_struct *vma)
{
struct msm_otg *motg = file->private_data;
unsigned long vsize = vma->vm_end - vma->vm_start;
int ret;
if (vma->vm_pgoff || vsize > PAGE_SIZE)
return -EINVAL;
vma->vm_pgoff = __phys_to_pfn(motg->io_res->start);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
ret = io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
vsize, vma->vm_page_prot);
if (ret < 0) {
pr_err("%s: failed with return val %d\n", __func__, ret);
return ret;
}
return 0;
}
static int msm_otg_ext_chg_release(struct inode *inode, struct file *file)
{
struct msm_otg *motg = file->private_data;
pr_debug("msm_otg ext chg release\n");
msm_otg_dbg_log_event(&motg->phy, "EXT CHG: RELEASE",
motg->inputs, motg->phy.state);
motg->ext_chg_opened = false;
return 0;
}
static const struct file_operations msm_otg_ext_chg_fops = {
.owner = THIS_MODULE,
.open = msm_otg_ext_chg_open,
.unlocked_ioctl = msm_otg_ext_chg_ioctl,
.mmap = msm_otg_ext_chg_mmap,
.release = msm_otg_ext_chg_release,
};
static int msm_otg_setup_ext_chg_cdev(struct msm_otg *motg)
{
int ret;
if (motg->pdata->enable_sec_phy || motg->pdata->mode == USB_HOST ||
motg->pdata->otg_control != OTG_PMIC_CONTROL ||
psy != &motg->usb_psy) {
pr_debug("usb ext chg is not supported by msm otg\n");
return -ENODEV;
}
ret = alloc_chrdev_region(&motg->ext_chg_dev, 0, 1, "usb_ext_chg");
if (ret < 0) {
pr_err("Fail to allocate usb ext char dev region\n");
return ret;
}
motg->ext_chg_class = class_create(THIS_MODULE, "msm_ext_chg");
if (ret < 0) {
pr_err("Fail to create usb ext chg class\n");
goto unreg_chrdev;
}
cdev_init(&motg->ext_chg_cdev, &msm_otg_ext_chg_fops);
motg->ext_chg_cdev.owner = THIS_MODULE;
ret = cdev_add(&motg->ext_chg_cdev, motg->ext_chg_dev, 1);
if (ret < 0) {
pr_err("Fail to add usb ext chg cdev\n");
goto destroy_class;
}
motg->ext_chg_device = device_create(motg->ext_chg_class,
NULL, motg->ext_chg_dev, NULL,
"usb_ext_chg");
if (IS_ERR(motg->ext_chg_device)) {
pr_err("Fail to create usb ext chg device\n");
ret = PTR_ERR(motg->ext_chg_device);
motg->ext_chg_device = NULL;
goto del_cdev;
}
init_completion(&motg->ext_chg_wait);
pr_debug("msm otg ext chg cdev setup success\n");
return 0;
del_cdev:
cdev_del(&motg->ext_chg_cdev);
destroy_class:
class_destroy(motg->ext_chg_class);
unreg_chrdev:
unregister_chrdev_region(motg->ext_chg_dev, 1);
return ret;
}
static ssize_t dpdm_pulldown_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct msm_otg *motg = the_msm_otg;
struct msm_otg_platform_data *pdata = motg->pdata;
return snprintf(buf, PAGE_SIZE, "%s\n", pdata->dpdm_pulldown_added ?
"enabled" : "disabled");
}
static ssize_t dpdm_pulldown_enable_store(struct device *dev,
struct device_attribute *attr, const char
*buf, size_t size)
{
struct msm_otg *motg = the_msm_otg;
struct msm_otg_platform_data *pdata = motg->pdata;
if (!strnicmp(buf, "enable", 6)) {
pdata->dpdm_pulldown_added = true;
return size;
} else if (!strnicmp(buf, "disable", 7)) {
pdata->dpdm_pulldown_added = false;
return size;
}
return -EINVAL;
}
static DEVICE_ATTR(dpdm_pulldown_enable, S_IRUGO | S_IWUSR,
dpdm_pulldown_enable_show, dpdm_pulldown_enable_store);
struct msm_otg_platform_data *msm_otg_dt_to_pdata(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct msm_otg_platform_data *pdata;
int len = 0;
int res_gpio;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
pr_err("unable to allocate platform data\n");
return NULL;
}
of_get_property(node, "qcom,hsusb-otg-phy-init-seq", &len);
if (len) {
pdata->phy_init_seq = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!pdata->phy_init_seq)
return NULL;
of_property_read_u32_array(node, "qcom,hsusb-otg-phy-init-seq",
pdata->phy_init_seq,
len/sizeof(*pdata->phy_init_seq));
}
of_property_read_u32(node, "qcom,hsusb-otg-power-budget",
&pdata->power_budget);
of_property_read_u32(node, "qcom,hsusb-otg-mode",
&pdata->mode);
of_property_read_u32(node, "qcom,hsusb-otg-otg-control",
&pdata->otg_control);
of_property_read_u32(node, "qcom,hsusb-otg-default-mode",
&pdata->default_mode);
of_property_read_u32(node, "qcom,hsusb-otg-phy-type",
&pdata->phy_type);
pdata->disable_reset_on_disconnect = of_property_read_bool(node,
"qcom,hsusb-otg-disable-reset");
pdata->pnoc_errata_fix = of_property_read_bool(node,
"qcom,hsusb-otg-pnoc-errata-fix");
pdata->enable_lpm_on_dev_suspend = of_property_read_bool(node,
"qcom,hsusb-otg-lpm-on-dev-suspend");
pdata->core_clk_always_on_workaround = of_property_read_bool(node,
"qcom,hsusb-otg-clk-always-on-workaround");
pdata->delay_lpm_on_disconnect = of_property_read_bool(node,
"qcom,hsusb-otg-delay-lpm");
pdata->dp_manual_pullup = of_property_read_bool(node,
"qcom,dp-manual-pullup");
pdata->enable_sec_phy = of_property_read_bool(node,
"qcom,usb2-enable-hsphy2");
of_property_read_u32(node, "qcom,hsusb-log2-itc",
&pdata->log2_itc);
of_property_read_u32(node, "qcom,hsusb-otg-mpm-dpsehv-int",
&pdata->mpm_dpshv_int);
of_property_read_u32(node, "qcom,hsusb-otg-mpm-dmsehv-int",
&pdata->mpm_dmshv_int);
pdata->pmic_id_irq = platform_get_irq_byname(pdev, "pmic_id_irq");
if (pdata->pmic_id_irq < 0)
pdata->pmic_id_irq = 0;
pdata->hub_reset_gpio = of_get_named_gpio(
node, "qcom,hub-reset-gpio", 0);
if (pdata->hub_reset_gpio < 0)
pr_debug("hub_reset_gpio is not available\n");
pdata->switch_sel_gpio =
of_get_named_gpio(node, "qcom,sw-sel-gpio", 0);
if (pdata->switch_sel_gpio < 0)
pr_debug("switch_sel_gpio is not available\n");
pdata->usb_id_gpio =
of_get_named_gpio(node, "qcom,usbid-gpio", 0);
if (pdata->usb_id_gpio < 0)
pr_debug("usb_id_gpio is not available\n");
pdata->l1_supported = of_property_read_bool(node,
"qcom,hsusb-l1-supported");
pdata->enable_ahb2ahb_bypass = of_property_read_bool(node,
"qcom,ahb-async-bridge-bypass");
pdata->disable_retention_with_vdd_min = of_property_read_bool(node,
"qcom,disable-retention-with-vdd-min");
pdata->enable_phy_id_pullup = of_property_read_bool(node,
"qcom,enable-phy-id-pullup");
pdata->phy_dvdd_always_on = of_property_read_bool(node,
"qcom,phy-dvdd-always-on");
res_gpio = of_get_named_gpio(node, "qcom,hsusb-otg-vddmin-gpio", 0);
if (res_gpio < 0)
res_gpio = 0;
pdata->vddmin_gpio = res_gpio;
pdata->emulation = of_property_read_bool(node,
"qcom,emulation");
pdata->enable_streaming = of_property_read_bool(node,
"qcom,boost-sysclk-with-streaming");
pdata->enable_axi_prefetch = of_property_read_bool(node,
"qcom,axi-prefetch-enable");
pdata->enable_sdp_typec_current_limit = of_property_read_bool(node,
"qcom,enable-sdp-typec-current-limit");
return pdata;
}
static int msm_otg_probe(struct platform_device *pdev)
{
int ret = 0;
int len = 0;
u32 tmp[3];
struct resource *res;
struct msm_otg *motg;
struct usb_phy *phy;
struct msm_otg_platform_data *pdata;
void __iomem *tcsr;
int id_irq = 0;
dev_info(&pdev->dev, "msm_otg probe\n");
motg = kzalloc(sizeof(struct msm_otg), GFP_KERNEL);
if (!motg) {
dev_err(&pdev->dev, "unable to allocate msm_otg\n");
ret = -ENOMEM;
return ret;
}
/*
* USB Core is running its protocol engine based on CORE CLK,
* CORE CLK must be running at >55Mhz for correct HSUSB
* operation and USB core cannot tolerate frequency changes on
* CORE CLK. For such USB cores, vote for maximum clk frequency
* on pclk source
*/
motg->core_clk = clk_get(&pdev->dev, "core_clk");
if (IS_ERR(motg->core_clk)) {
ret = PTR_ERR(motg->core_clk);
motg->core_clk = NULL;
if (ret != -EPROBE_DEFER)
dev_err(&pdev->dev, "failed to get core_clk\n");
goto free_motg;
}
/*
* USB Core CLK can run at max freq if streaming is enabled. Hence,
* get Max supported clk frequency for USB Core CLK and request to set
* the same. Otherwise set USB Core CLK to defined default value.
*/
if (of_property_read_u32(pdev->dev.of_node,
"qcom,max-nominal-sysclk-rate", &ret)) {
ret = -EINVAL;
goto put_core_clk;
} else {
motg->core_clk_nominal_rate = clk_round_rate(motg->core_clk,
ret);
}
if (of_property_read_u32(pdev->dev.of_node,
"qcom,max-svs-sysclk-rate", &ret)) {
dev_dbg(&pdev->dev, "core_clk svs freq not specified\n");
} else {
motg->core_clk_svs_rate = clk_round_rate(motg->core_clk, ret);
}
motg->default_noc_mode = USB_NOC_NOM_VOTE;
if (of_property_read_bool(pdev->dev.of_node, "qcom,default-mode-svs")) {
motg->core_clk_rate = motg->core_clk_svs_rate;
motg->default_noc_mode = USB_NOC_SVS_VOTE;
} else if (of_property_read_bool(pdev->dev.of_node,
"qcom,boost-sysclk-with-streaming")) {
motg->core_clk_rate = motg->core_clk_nominal_rate;
} else {
motg->core_clk_rate = clk_round_rate(motg->core_clk,
USB_DEFAULT_SYSTEM_CLOCK);
}
if (IS_ERR_VALUE(motg->core_clk_rate)) {
dev_err(&pdev->dev, "fail to get core clk max freq.\n");
} else {
ret = clk_set_rate(motg->core_clk, motg->core_clk_rate);
if (ret)
dev_err(&pdev->dev, "fail to set core_clk freq:%d\n",
ret);
}
motg->pclk = clk_get(&pdev->dev, "iface_clk");
if (IS_ERR(motg->pclk)) {
ret = PTR_ERR(motg->pclk);
motg->pclk = NULL;
if (ret != -EPROBE_DEFER)
dev_err(&pdev->dev, "failed to get iface_clk\n");
goto put_core_clk;
}
motg->xo_clk = clk_get(&pdev->dev, "xo");
if (IS_ERR(motg->xo_clk)) {
ret = PTR_ERR(motg->xo_clk);
motg->xo_clk = NULL;
if (ret == -EPROBE_DEFER)
goto put_pclk;
}
/*
* On few platforms USB PHY is fed with sleep clk.
* Hence don't fail probe.
*/
motg->sleep_clk = devm_clk_get(&pdev->dev, "sleep_clk");
if (IS_ERR(motg->sleep_clk)) {
ret = PTR_ERR(motg->sleep_clk);
motg->sleep_clk = NULL;
if (ret == -EPROBE_DEFER)
goto put_xo_clk;
else
dev_dbg(&pdev->dev, "failed to get sleep_clk\n");
} else {
ret = clk_prepare_enable(motg->sleep_clk);
if (ret) {
dev_err(&pdev->dev, "%s failed to vote sleep_clk%d\n",
__func__, ret);
goto put_xo_clk;
}
}
/*
* If present, phy_reset_clk is used to reset the PHY, ULPI bridge
* and CSR Wrapper. This is a reset only clock.
*/
if (of_property_match_string(pdev->dev.of_node,
"clock-names", "phy_reset_clk") >= 0) {
motg->phy_reset_clk = devm_clk_get(&pdev->dev, "phy_reset_clk");
if (IS_ERR(motg->phy_reset_clk)) {
ret = PTR_ERR(motg->phy_reset_clk);
goto disable_sleep_clk;
}
}
/*
* If present, phy_por_clk is used to assert/de-assert phy POR
* input. This is a reset only clock. phy POR must be asserted
* after overriding the parameter registers via CSR wrapper or
* ULPI bridge.
*/
if (of_property_match_string(pdev->dev.of_node,
"clock-names", "phy_por_clk") >= 0) {
motg->phy_por_clk = devm_clk_get(&pdev->dev, "phy_por_clk");
if (IS_ERR(motg->phy_por_clk)) {
ret = PTR_ERR(motg->phy_por_clk);
goto disable_sleep_clk;
}
}
/*
* If present, phy_csr_clk is required for accessing PHY
* CSR registers via AHB2PHY interface.
*/
if (of_property_match_string(pdev->dev.of_node,
"clock-names", "phy_csr_clk") >= 0) {
motg->phy_csr_clk = devm_clk_get(&pdev->dev, "phy_csr_clk");
if (IS_ERR(motg->phy_csr_clk)) {
ret = PTR_ERR(motg->phy_csr_clk);
goto disable_sleep_clk;
} else {
ret = clk_prepare_enable(motg->phy_csr_clk);
if (ret) {
dev_err(&pdev->dev,
"fail to enable phy csr clk %d\n", ret);
goto disable_sleep_clk;
}
}
}
of_property_read_u32(pdev->dev.of_node, "qcom,pm-qos-latency",
&motg->pm_qos_latency);
pdata = msm_otg_dt_to_pdata(pdev);
if (!pdata) {
ret = -ENOMEM;
goto disable_phy_csr_clk;
}
pdev->dev.platform_data = pdata;
pdata->bus_scale_table = msm_bus_cl_get_pdata(pdev);
if (!pdata->bus_scale_table)
dev_dbg(&pdev->dev, "bus scaling is disabled\n");
if (pdata->phy_type == QUSB_ULPI_PHY) {
if (of_property_match_string(pdev->dev.of_node,
"clock-names", "phy_ref_clk") >= 0) {
motg->phy_ref_clk = devm_clk_get(&pdev->dev,
"phy_ref_clk");
if (IS_ERR(motg->phy_ref_clk)) {
ret = PTR_ERR(motg->phy_ref_clk);
goto disable_phy_csr_clk;
} else {
ret = clk_prepare_enable(motg->phy_ref_clk);
if (ret) {
dev_err(&pdev->dev,
"fail to enable phy ref clk %d\n",
ret);
goto disable_phy_csr_clk;
}
}
}
}
motg->phy.otg = devm_kzalloc(&pdev->dev, sizeof(struct usb_otg),
GFP_KERNEL);
if (!motg->phy.otg) {
dev_err(&pdev->dev, "unable to allocate usb_otg\n");
ret = -ENOMEM;
goto otg_remove_devices;
}
the_msm_otg = motg;
motg->pdata = pdata;
phy = &motg->phy;
phy->dev = &pdev->dev;
motg->pdev = pdev;
motg->dbg_idx = 0;
motg->dbg_lock = __RW_LOCK_UNLOCKED(lck);
if (motg->pdata->bus_scale_table) {
motg->bus_perf_client =
msm_bus_scale_register_client(motg->pdata->bus_scale_table);
if (!motg->bus_perf_client) {
dev_err(motg->phy.dev, "%s: Failed to register BUS\n"
"scaling client!!\n", __func__);
} else {
debug_bus_voting_enabled = true;
/* Some platforms require BUS vote to control clocks */
msm_otg_bus_vote(motg, USB_MIN_PERF_VOTE);
}
}
ret = msm_otg_bus_freq_get(motg);
if (ret) {
pr_err("failed to get noc clocks: %d\n", ret);
} else {
ret = msm_otg_bus_freq_set(motg, motg->default_noc_mode);
if (ret)
pr_err("failed to vote explicit noc rates: %d\n", ret);
}
/* initialize reset counter */
motg->reset_counter = 0;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "core");
if (!res) {
dev_err(&pdev->dev, "failed to get core iomem resource\n");
ret = -ENODEV;
goto devote_bus_bw;
}
motg->io_res = res;
motg->regs = ioremap(res->start, resource_size(res));
if (!motg->regs) {
dev_err(&pdev->dev, "core iomem ioremap failed\n");
ret = -ENOMEM;
goto devote_bus_bw;
}
dev_info(&pdev->dev, "OTG regs = %p\n", motg->regs);
if (pdata->enable_sec_phy) {
res = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "tcsr");
if (!res) {
dev_dbg(&pdev->dev, "missing TCSR memory resource\n");
} else {
tcsr = devm_ioremap_nocache(&pdev->dev, res->start,
resource_size(res));
if (!tcsr) {
dev_dbg(&pdev->dev, "tcsr ioremap failed\n");
} else {
/* Enable USB2 on secondary HSPHY. */
writel_relaxed(0x1, tcsr);
/*
* Ensure that TCSR write is completed before
* USB registers initialization.
*/
mb();
}
}
}
if (pdata->enable_sec_phy)
motg->usb_phy_ctrl_reg = USB_PHY_CTRL2;
else
motg->usb_phy_ctrl_reg = USB_PHY_CTRL;
/*
* The USB PHY wrapper provides a register interface
* through AHB2PHY for performing PHY related operations
* like retention, HV interrupts and overriding parameter
* registers etc. The registers start at 4 byte boundary
* but only the first byte is valid and remaining are not
* used. Relaxed versions of readl/writel should be used.
*
* The link does not have any PHY specific registers.
* Hence set motg->usb_phy_ctrl_reg to.
*/
if (motg->pdata->phy_type == SNPS_FEMTO_PHY ||
pdata->phy_type == QUSB_ULPI_PHY) {
res = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "phy_csr");
if (!res) {
dev_err(&pdev->dev, "PHY CSR IOMEM missing!\n");
ret = -ENODEV;
goto free_regs;
}
motg->phy_csr_regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(motg->phy_csr_regs)) {
ret = PTR_ERR(motg->phy_csr_regs);
dev_err(&pdev->dev, "PHY CSR ioremap failed!\n");
goto free_regs;
}
motg->usb_phy_ctrl_reg = 0;
}
motg->irq = platform_get_irq(pdev, 0);
if (!motg->irq) {
dev_err(&pdev->dev, "platform_get_irq failed\n");
ret = -ENODEV;
goto free_regs;
}
motg->async_irq = platform_get_irq_byname(pdev, "async_irq");
if (motg->async_irq < 0) {
dev_err(&pdev->dev, "platform_get_irq for async_int failed\n");
motg->async_irq = 0;
goto free_regs;
}
if (motg->xo_clk) {
ret = clk_prepare_enable(motg->xo_clk);
if (ret) {
dev_err(&pdev->dev,
"%s failed to vote for TCXO %d\n",
__func__, ret);
goto free_xo_handle;
}
}
clk_prepare_enable(motg->pclk);
hsusb_vdd = devm_regulator_get(motg->phy.dev, "hsusb_vdd_dig");
if (IS_ERR(hsusb_vdd)) {
hsusb_vdd = devm_regulator_get(motg->phy.dev, "HSUSB_VDDCX");
if (IS_ERR(hsusb_vdd)) {
dev_err(motg->phy.dev, "unable to get hsusb vddcx\n");
ret = PTR_ERR(hsusb_vdd);
goto devote_xo_handle;
}
}
if (of_get_property(pdev->dev.of_node,
"qcom,vdd-voltage-level",
&len)){
if (len == sizeof(tmp)) {
of_property_read_u32_array(pdev->dev.of_node,
"qcom,vdd-voltage-level",
tmp, len/sizeof(*tmp));
vdd_val[0] = tmp[0];
vdd_val[1] = tmp[1];
vdd_val[2] = tmp[2];
} else {
dev_dbg(&pdev->dev,
"Using default hsusb vdd config.\n");
goto devote_xo_handle;
}
} else {
goto devote_xo_handle;
}
ret = msm_hsusb_config_vddcx(1);
if (ret) {
dev_err(&pdev->dev, "hsusb vddcx configuration failed\n");
goto devote_xo_handle;
}
ret = regulator_enable(hsusb_vdd);
if (ret) {
dev_err(&pdev->dev, "unable to enable the hsusb vddcx\n");
goto free_config_vddcx;
}
ret = msm_hsusb_ldo_init(motg, 1);
if (ret) {
dev_err(&pdev->dev, "hsusb vreg configuration failed\n");
goto free_hsusb_vdd;
}
/* Get pinctrl if target uses pinctrl */
motg->phy_pinctrl = devm_pinctrl_get(&pdev->dev);
if (IS_ERR(motg->phy_pinctrl)) {
if (of_property_read_bool(pdev->dev.of_node, "pinctrl-names")) {
dev_err(&pdev->dev, "Error encountered while getting pinctrl");
ret = PTR_ERR(motg->phy_pinctrl);
goto free_ldo_init;
}
dev_dbg(&pdev->dev, "Target does not use pinctrl\n");
motg->phy_pinctrl = NULL;
}
ret = msm_hsusb_ldo_enable(motg, USB_PHY_REG_ON);
if (ret) {
dev_err(&pdev->dev, "hsusb vreg enable failed\n");
goto free_ldo_init;
}
clk_prepare_enable(motg->core_clk);
/* Check if USB mem_type change is needed to workaround PNOC hw issue */
msm_otg_pnoc_errata_fix(motg);
writel_relaxed(0, USB_USBINTR);
writel_relaxed(0, USB_OTGSC);
/* Ensure that above STOREs are completed before enabling interrupts */
mb();
motg->id_state = USB_ID_FLOAT;
wake_lock_init(&motg->wlock, WAKE_LOCK_SUSPEND, "msm_otg");
INIT_WORK(&motg->sm_work, msm_otg_sm_work);
INIT_DELAYED_WORK(&motg->chg_work, msm_chg_detect_work);
INIT_DELAYED_WORK(&motg->id_status_work, msm_id_status_w);
INIT_DELAYED_WORK(&motg->perf_vote_work, msm_otg_perf_vote_work);
setup_timer(&motg->chg_check_timer, msm_otg_chg_check_timer_func,
(unsigned long) motg);
motg->otg_wq = alloc_ordered_workqueue("k_otg", 0);
if (!motg->otg_wq) {
pr_err("%s: Unable to create workqueue otg_wq\n",
__func__);
goto destroy_wlock;
}
ret = request_irq(motg->irq, msm_otg_irq, IRQF_SHARED,
"msm_otg", motg);
if (ret) {
dev_err(&pdev->dev, "request irq failed\n");
goto destroy_wq;
}
motg->phy_irq = platform_get_irq_byname(pdev, "phy_irq");
if (motg->phy_irq < 0) {
dev_dbg(&pdev->dev, "phy_irq is not present\n");
motg->phy_irq = 0;
} else {
/* clear all interrupts before enabling the IRQ */
writeb_relaxed(0xFF, USB2_PHY_USB_PHY_INTERRUPT_CLEAR0);
writeb_relaxed(0xFF, USB2_PHY_USB_PHY_INTERRUPT_CLEAR1);
writeb_relaxed(0x1, USB2_PHY_USB_PHY_IRQ_CMD);
/*
* Databook says 200 usec delay is required for
* clearing the interrupts.
*/
udelay(200);
writeb_relaxed(0x0, USB2_PHY_USB_PHY_IRQ_CMD);
ret = request_irq(motg->phy_irq, msm_otg_phy_irq_handler,
IRQF_TRIGGER_RISING, "msm_otg_phy_irq", motg);
if (ret < 0) {
dev_err(&pdev->dev, "phy_irq request fail %d\n", ret);
goto free_irq;
}
}
ret = request_irq(motg->async_irq, msm_otg_irq,
IRQF_TRIGGER_RISING, "msm_otg", motg);
if (ret) {
dev_err(&pdev->dev, "request irq failed (ASYNC INT)\n");
goto free_phy_irq;
}
disable_irq(motg->async_irq);
if (pdata->otg_control == OTG_PHY_CONTROL && pdata->mpm_otgsessvld_int)
msm_mpm_enable_pin(pdata->mpm_otgsessvld_int, 1);
if (pdata->mpm_dpshv_int)
msm_mpm_enable_pin(pdata->mpm_dpshv_int, 1);
if (pdata->mpm_dmshv_int)
msm_mpm_enable_pin(pdata->mpm_dmshv_int, 1);
phy->init = msm_otg_reset;
phy->set_power = msm_otg_set_power;
phy->set_suspend = msm_otg_set_suspend;
phy->dbg_event = msm_otg_dbg_log_event;
phy->io_ops = &msm_otg_io_ops;
phy->otg->phy = &motg->phy;
phy->otg->set_host = msm_otg_set_host;
phy->otg->set_peripheral = msm_otg_set_peripheral;
if (pdata->dp_manual_pullup)
phy->flags |= ENABLE_DP_MANUAL_PULLUP;
if (pdata->enable_sec_phy)
phy->flags |= ENABLE_SECONDARY_PHY;
ret = usb_add_phy(&motg->phy, USB_PHY_TYPE_USB2);
if (ret) {
dev_err(&pdev->dev, "usb_add_phy failed\n");
goto free_async_irq;
}
if (motg->pdata->mode == USB_OTG &&
motg->pdata->otg_control == OTG_PMIC_CONTROL &&
!motg->phy_irq) {
if (gpio_is_valid(motg->pdata->usb_id_gpio)) {
/* usb_id_gpio request */
ret = gpio_request(motg->pdata->usb_id_gpio,
"USB_ID_GPIO");
if (ret < 0) {
dev_err(&pdev->dev, "gpio req failed for id\n");
motg->pdata->usb_id_gpio = 0;
goto remove_phy;
}
/* The following code implements switch between the HOST
* mode to device mode when used diferent HW components
* on the same port: USB HUB and the usb jack type B
* for device mode In this case HUB should be gone
* only once out of reset at the boot time and after
* that always stay on*/
if (gpio_is_valid(motg->pdata->hub_reset_gpio)) {
ret = devm_gpio_request(&pdev->dev,
motg->pdata->hub_reset_gpio,
"qcom,hub-reset-gpio");
if (ret < 0) {
dev_err(&pdev->dev, "gpio req failed for hub reset\n");
goto remove_phy;
}
gpio_direction_output(
motg->pdata->hub_reset_gpio, 1);
}
if (gpio_is_valid(motg->pdata->switch_sel_gpio)) {
ret = devm_gpio_request(&pdev->dev,
motg->pdata->switch_sel_gpio,
"qcom,sw-sel-gpio");
if (ret < 0) {
dev_err(&pdev->dev, "gpio req failed for switch sel\n");
goto remove_phy;
}
if (gpio_get_value(motg->pdata->usb_id_gpio))
gpio_direction_input(
motg->pdata->switch_sel_gpio);
else
gpio_direction_output(
motg->pdata->switch_sel_gpio,
1);
}
/* usb_id_gpio to irq */
id_irq = gpio_to_irq(motg->pdata->usb_id_gpio);
motg->ext_id_irq = id_irq;
} else if (motg->pdata->pmic_id_irq) {
id_irq = motg->pdata->pmic_id_irq;
}
if (id_irq) {
ret = request_irq(id_irq,
msm_id_irq,
IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING,
"msm_otg", motg);
if (ret) {
dev_err(&pdev->dev, "request irq failed for ID\n");
goto remove_phy;
}
} else {
/* PMIC does USB ID detection and notifies through
* USB_OTG property of USB powersupply.
*/
dev_dbg(&pdev->dev, "PMIC does ID detection\n");
}
}
platform_set_drvdata(pdev, motg);
device_init_wakeup(&pdev->dev, 1);
ret = msm_otg_debugfs_init(motg);
if (ret)
dev_dbg(&pdev->dev, "mode debugfs file is"
"not available\n");
if (motg->pdata->otg_control == OTG_PMIC_CONTROL &&
(!(motg->pdata->mode == USB_OTG) ||
motg->pdata->pmic_id_irq || motg->ext_id_irq ||
!motg->phy_irq))
motg->caps = ALLOW_PHY_POWER_COLLAPSE | ALLOW_PHY_RETENTION;
if (motg->pdata->otg_control == OTG_PHY_CONTROL || motg->phy_irq ||
motg->pdata->enable_phy_id_pullup)
motg->caps = ALLOW_PHY_RETENTION | ALLOW_PHY_REGULATORS_LPM;
if (motg->pdata->mpm_dpshv_int || motg->pdata->mpm_dmshv_int)
motg->caps |= ALLOW_HOST_PHY_RETENTION;
device_create_file(&pdev->dev, &dev_attr_dpdm_pulldown_enable);
if (motg->pdata->enable_lpm_on_dev_suspend)
motg->caps |= ALLOW_LPM_ON_DEV_SUSPEND;
if (motg->pdata->disable_retention_with_vdd_min)
motg->caps |= ALLOW_VDD_MIN_WITH_RETENTION_DISABLED;
/*
* PHY DVDD is supplied by a always on PMIC LDO (unlike
* vddcx/vddmx). PHY can keep D+ pull-up and D+/D-
* pull-down during suspend without any additional
* hardware re-work.
*/
if (motg->pdata->phy_type == SNPS_FEMTO_PHY)
motg->caps |= ALLOW_BUS_SUSPEND_WITHOUT_REWORK;
wake_lock(&motg->wlock);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
if (motg->pdata->delay_lpm_on_disconnect) {
pm_runtime_set_autosuspend_delay(&pdev->dev,
lpm_disconnect_thresh);
pm_runtime_use_autosuspend(&pdev->dev);
}
motg->usb_psy.name = "usb";
motg->usb_psy.type = POWER_SUPPLY_TYPE_USB;
motg->usb_psy.supplied_to = otg_pm_power_supplied_to;
motg->usb_psy.num_supplicants = ARRAY_SIZE(otg_pm_power_supplied_to);
motg->usb_psy.properties = otg_pm_power_props_usb;
motg->usb_psy.num_properties = ARRAY_SIZE(otg_pm_power_props_usb);
motg->usb_psy.get_property = otg_power_get_property_usb;
motg->usb_psy.set_property = otg_power_set_property_usb;
motg->usb_psy.property_is_writeable
= otg_power_property_is_writeable_usb;
if (!msm_otg_register_power_supply(pdev, motg))
psy = &motg->usb_psy;
ret = msm_otg_setup_ext_chg_cdev(motg);
if (ret)
dev_dbg(&pdev->dev, "fail to setup cdev\n");
if (pdev->dev.of_node) {
ret = msm_otg_setup_devices(pdev, pdata->mode, true);
if (ret) {
dev_err(&pdev->dev, "devices setup failed\n");
goto remove_cdev;
}
}
motg->pm_notify.notifier_call = msm_otg_pm_notify;
register_pm_notifier(&motg->pm_notify);
msm_otg_dbg_log_event(phy, "OTG PROBE", motg->caps, motg->lpm_flags);
return 0;
remove_cdev:
if (!motg->ext_chg_device) {
device_destroy(motg->ext_chg_class, motg->ext_chg_dev);
cdev_del(&motg->ext_chg_cdev);
class_destroy(motg->ext_chg_class);
unregister_chrdev_region(motg->ext_chg_dev, 1);
}
if (psy)
power_supply_unregister(psy);
remove_phy:
usb_remove_phy(&motg->phy);
free_async_irq:
free_irq(motg->async_irq, motg);
free_phy_irq:
if (motg->phy_irq)
free_irq(motg->phy_irq, motg);
free_irq:
free_irq(motg->irq, motg);
destroy_wq:
destroy_workqueue(motg->otg_wq);
destroy_wlock:
wake_lock_destroy(&motg->wlock);
clk_disable_unprepare(motg->core_clk);
msm_hsusb_ldo_enable(motg, USB_PHY_REG_OFF);
free_ldo_init:
msm_hsusb_ldo_init(motg, 0);
free_hsusb_vdd:
regulator_disable(hsusb_vdd);
free_config_vddcx:
regulator_set_voltage(hsusb_vdd,
vdd_val[VDD_NONE],
vdd_val[VDD_MAX]);
devote_xo_handle:
clk_disable_unprepare(motg->pclk);
if (motg->xo_clk)
clk_disable_unprepare(motg->xo_clk);
free_xo_handle:
if (motg->xo_clk) {
clk_put(motg->xo_clk);
motg->xo_clk = NULL;
}
free_regs:
iounmap(motg->regs);
devote_bus_bw:
if (motg->bus_perf_client) {
msm_otg_bus_vote(motg, USB_NO_PERF_VOTE);
msm_bus_scale_unregister_client(motg->bus_perf_client);
}
otg_remove_devices:
if (pdev->dev.of_node)
msm_otg_setup_devices(pdev, motg->pdata->mode, false);
disable_phy_csr_clk:
if (motg->phy_csr_clk)
clk_disable_unprepare(motg->phy_csr_clk);
disable_sleep_clk:
if (motg->sleep_clk)
clk_disable_unprepare(motg->sleep_clk);
put_xo_clk:
if (motg->xo_clk)
clk_put(motg->xo_clk);
put_pclk:
if (motg->pclk)
clk_put(motg->pclk);
put_core_clk:
if (motg->core_clk)
clk_put(motg->core_clk);
free_motg:
kfree(motg);
return ret;
}
static int msm_otg_remove(struct platform_device *pdev)
{
struct msm_otg *motg = platform_get_drvdata(pdev);
struct usb_phy *phy = &motg->phy;
int cnt = 0;
if (phy->otg->host || phy->otg->gadget)
return -EBUSY;
unregister_pm_notifier(&motg->pm_notify);
if (!motg->ext_chg_device) {
device_destroy(motg->ext_chg_class, motg->ext_chg_dev);
cdev_del(&motg->ext_chg_cdev);
class_destroy(motg->ext_chg_class);
unregister_chrdev_region(motg->ext_chg_dev, 1);
}
if (pdev->dev.of_node)
msm_otg_setup_devices(pdev, motg->pdata->mode, false);
if (psy)
power_supply_unregister(psy);
msm_otg_debugfs_cleanup();
cancel_delayed_work_sync(&motg->chg_work);
cancel_delayed_work_sync(&motg->id_status_work);
cancel_delayed_work_sync(&motg->perf_vote_work);
msm_otg_perf_vote_update(motg, false);
cancel_work_sync(&motg->sm_work);
destroy_workqueue(motg->otg_wq);
pm_runtime_resume(&pdev->dev);
device_init_wakeup(&pdev->dev, 0);
pm_runtime_disable(&pdev->dev);
wake_lock_destroy(&motg->wlock);
if (motg->phy_irq)
free_irq(motg->phy_irq, motg);
if (motg->pdata->pmic_id_irq)
free_irq(motg->pdata->pmic_id_irq, motg);
usb_remove_phy(phy);
free_irq(motg->irq, motg);
if (motg->pdata->mpm_dpshv_int || motg->pdata->mpm_dmshv_int)
device_remove_file(&pdev->dev,
&dev_attr_dpdm_pulldown_enable);
if (motg->pdata->otg_control == OTG_PHY_CONTROL &&
motg->pdata->mpm_otgsessvld_int)
msm_mpm_enable_pin(motg->pdata->mpm_otgsessvld_int, 0);
if (motg->pdata->mpm_dpshv_int)
msm_mpm_enable_pin(motg->pdata->mpm_dpshv_int, 0);
if (motg->pdata->mpm_dmshv_int)
msm_mpm_enable_pin(motg->pdata->mpm_dmshv_int, 0);
/*
* Put PHY in low power mode.
*/
ulpi_read(phy, 0x14);
ulpi_write(phy, 0x08, 0x09);
writel_relaxed(readl_relaxed(USB_PORTSC) | PORTSC_PHCD, USB_PORTSC);
while (cnt < PHY_SUSPEND_TIMEOUT_USEC) {
if (readl_relaxed(USB_PORTSC) & PORTSC_PHCD)
break;
udelay(1);
cnt++;
}
if (cnt >= PHY_SUSPEND_TIMEOUT_USEC)
dev_err(phy->dev, "Unable to suspend PHY\n");
clk_disable_unprepare(motg->pclk);
clk_disable_unprepare(motg->core_clk);
if (motg->phy_csr_clk)
clk_disable_unprepare(motg->phy_csr_clk);
if (motg->xo_clk) {
clk_disable_unprepare(motg->xo_clk);
clk_put(motg->xo_clk);
}
if (!IS_ERR(motg->sleep_clk))
clk_disable_unprepare(motg->sleep_clk);
msm_hsusb_ldo_enable(motg, USB_PHY_REG_OFF);
msm_hsusb_ldo_init(motg, 0);
regulator_disable(hsusb_vdd);
regulator_set_voltage(hsusb_vdd,
vdd_val[VDD_NONE],
vdd_val[VDD_MAX]);
iounmap(motg->regs);
pm_runtime_set_suspended(&pdev->dev);
clk_put(motg->pclk);
clk_put(motg->core_clk);
if (motg->bus_perf_client) {
msm_otg_bus_vote(motg, USB_NO_PERF_VOTE);
msm_bus_scale_unregister_client(motg->bus_perf_client);
}
return 0;
}
static void msm_otg_shutdown(struct platform_device *pdev)
{
struct msm_otg *motg = platform_get_drvdata(pdev);
dev_dbg(&pdev->dev, "OTG shutdown\n");
msm_hsusb_vbus_power(motg, 0);
}
#ifdef CONFIG_PM_RUNTIME
static int msm_otg_runtime_idle(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
struct usb_phy *phy = &motg->phy;
dev_dbg(dev, "OTG runtime idle\n");
msm_otg_dbg_log_event(phy, "RUNTIME IDLE",
phy->state, motg->ext_chg_active);
if (phy->state == OTG_STATE_UNDEFINED)
return -EAGAIN;
if (motg->ext_chg_active == DEFAULT) {
dev_dbg(dev, "Deferring LPM\n");
/*
* Charger detection may happen in user space.
* Delay entering LPM by 3 sec. Otherwise we
* have to exit LPM when user space begins
* charger detection.
*
* This timer will be canceled when user space
* votes against LPM by incrementing PM usage
* counter. We enter low power mode when
* PM usage counter is decremented.
*/
pm_schedule_suspend(dev, 3000);
return -EAGAIN;
}
return 0;
}
static int msm_otg_runtime_suspend(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
dev_dbg(dev, "OTG runtime suspend\n");
msm_otg_dbg_log_event(&motg->phy, "RUNTIME SUSPEND",
get_pm_runtime_counter(dev), 0);
return msm_otg_suspend(motg);
}
static int msm_otg_runtime_resume(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
dev_dbg(dev, "OTG runtime resume\n");
msm_otg_dbg_log_event(&motg->phy, "RUNTIME RESUME",
get_pm_runtime_counter(dev), 0);
return msm_otg_resume(motg);
}
#endif
#ifdef CONFIG_PM_SLEEP
static int msm_otg_pm_suspend(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
dev_dbg(dev, "OTG PM suspend\n");
msm_otg_dbg_log_event(&motg->phy, "PM SUSPEND START",
get_pm_runtime_counter(dev),
atomic_read(&motg->pm_suspended));
/* flush any pending sm_work first */
flush_work(&motg->sm_work);
if (!atomic_read(&motg->in_lpm)) {
dev_err(dev, "Abort PM suspend!! (USB is outside LPM)\n");
return -EBUSY;
}
atomic_set(&motg->pm_suspended, 1);
return 0;
}
static int msm_otg_pm_resume(struct device *dev)
{
int ret = 0;
struct msm_otg *motg = dev_get_drvdata(dev);
dev_dbg(dev, "OTG PM resume\n");
msm_otg_dbg_log_event(&motg->phy, "PM RESUME START",
get_pm_runtime_counter(dev), pm_runtime_suspended(dev));
if (motg->resume_pending || motg->phy_irq_pending) {
msm_otg_dbg_log_event(&motg->phy, "PM RESUME BY USB",
motg->async_int, motg->resume_pending);
/* Bring hardware out of LPM asap, sm_work can handle the rest*/
msm_otg_resume(motg);
/* sm work will start in pm notify */
}
msm_otg_dbg_log_event(&motg->phy, "PM RESUME DONE",
get_pm_runtime_counter(dev), motg->async_int);
return ret;
}
#endif
#ifdef CONFIG_PM
static const struct dev_pm_ops msm_otg_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(msm_otg_pm_suspend, msm_otg_pm_resume)
SET_RUNTIME_PM_OPS(msm_otg_runtime_suspend, msm_otg_runtime_resume,
msm_otg_runtime_idle)
};
#endif
static struct of_device_id msm_otg_dt_match[] = {
{ .compatible = "qcom,hsusb-otg",
},
{}
};
static struct platform_driver msm_otg_driver = {
.probe = msm_otg_probe,
.remove = msm_otg_remove,
.shutdown = msm_otg_shutdown,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &msm_otg_dev_pm_ops,
#endif
.of_match_table = msm_otg_dt_match,
},
};
module_platform_driver(msm_otg_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MSM USB transceiver driver");