blob: fd1aacdfe97c27efa49dd158df1625d07df0b5c2 [file] [log] [blame]
/* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "AXI: %s(): " fmt, __func__
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/module.h>
#include <mach/msm_bus.h>
#include <mach/msm_bus_board.h>
#include <mach/board.h>
#include <mach/rpm.h>
#include "msm_bus_core.h"
#include "../rpm_resources.h"
void msm_bus_rpm_set_mt_mask()
{
#ifdef CONFIG_MSM_BUS_RPM_MULTI_TIER_ENABLED
struct msm_rpm_iv_pair mt[1];
int mask = MSM_RPMRS_MASK_RPM_CTL_MULTI_TIER;
mt[0].id = MSM_RPM_ID_RPM_CTL;
mt[0].value = 2;
msm_rpmrs_set_bits_noirq(MSM_RPM_CTX_SET_0, mt, 1,
&mask);
#endif
}
bool msm_bus_rpm_is_mem_interleaved(void)
{
int status = 0;
struct msm_rpm_iv_pair il[2];
uint16_t id[2];
il[0].value = 0;
il[1].value = 0;
status = msm_bus_board_rpm_get_il_ids(id);
if (status) {
MSM_BUS_DBG("Dynamic check not supported, "
"default: Interleaved memory\n");
goto inter;
}
il[0].id = id[0];
il[1].id = id[1];
status = msm_rpm_get_status(il, ARRAY_SIZE(il));
if (status) {
MSM_BUS_ERR("Status read for interleaving returned: %d\n"
"Using interleaved memory by default\n",
status);
goto inter;
}
/*
* If the start address of EBI1-CH0 is the same as
* the start address of EBI1-CH1, the memory is interleaved.
* The start addresses are stored in the 16 MSBs of the status
* register
*/
if ((il[0].value & 0xFFFF0000) != (il[1].value & 0xFFFF0000)) {
MSM_BUS_DBG("Non-interleaved memory\n");
return false;
}
inter:
MSM_BUS_DBG("Interleaved memory\n");
return true;
}
#ifndef CONFIG_MSM_BUS_RPM_MULTI_TIER_ENABLED
struct commit_data {
uint16_t *bwsum;
uint16_t *arb;
unsigned long *actarb;
};
/*
* The following macros are used for various operations on commit data.
* Commit data is an array of 32 bit integers. The size of arrays is unique
* to the fabric. Commit arrays are allocated at run-time based on the number
* of masters, slaves and tiered-slaves registered.
*/
#define MSM_BUS_GET_BW_INFO(val, type, bw) \
do { \
(type) = MSM_BUS_GET_BW_TYPE(val); \
(bw) = MSM_BUS_GET_BW(val); \
} while (0)
#define MSM_BUS_GET_BW_INFO_BYTES (val, type, bw) \
do { \
(type) = MSM_BUS_GET_BW_TYPE(val); \
(bw) = msm_bus_get_bw_bytes(val); \
} while (0)
#define ROUNDED_BW_VAL_FROM_BYTES(bw) \
((((bw) >> 17) + 1) & 0x8000 ? 0x7FFF : (((bw) >> 17) + 1))
#define BW_VAL_FROM_BYTES(bw) \
((((bw) >> 17) & 0x8000) ? 0x7FFF : ((bw) >> 17))
static uint32_t msm_bus_set_bw_bytes(unsigned long bw)
{
return ((((bw) & 0x1FFFF) && (((bw) >> 17) == 0)) ?
ROUNDED_BW_VAL_FROM_BYTES(bw) : BW_VAL_FROM_BYTES(bw));
}
uint64_t msm_bus_get_bw_bytes(unsigned long val)
{
return ((val) & 0x7FFF) << 17;
}
uint16_t msm_bus_get_bw(unsigned long val)
{
return (val)&0x7FFF;
}
static uint16_t msm_bus_create_bw_tier_pair_bytes(uint8_t type,
unsigned long bw)
{
return ((((type) == MSM_BUS_BW_TIER1 ? 1 : 0) << 15) |
(msm_bus_set_bw_bytes(bw)));
};
uint16_t msm_bus_create_bw_tier_pair(uint8_t type, unsigned long bw)
{
return (((type) == MSM_BUS_BW_TIER1 ? 1 : 0) << 15) | ((bw) & 0x7FFF);
}
void msm_bus_rpm_fill_cdata_buffer(int *curr, char *buf, const int max_size,
void *cdata, int nmasters, int nslaves, int ntslaves)
{
int j, c;
struct commit_data *cd = (struct commit_data *)cdata;
*curr += scnprintf(buf + *curr, max_size - *curr, "BWSum:\n");
for (c = 0; c < nslaves; c++)
*curr += scnprintf(buf + *curr, max_size - *curr,
"0x%x\t", cd->bwsum[c]);
*curr += scnprintf(buf + *curr, max_size - *curr, "\nArb:");
for (c = 0; c < ntslaves; c++) {
*curr += scnprintf(buf + *curr, max_size - *curr,
"\nTSlave %d:\n", c);
for (j = 0; j < nmasters; j++)
*curr += scnprintf(buf + *curr, max_size - *curr,
" 0x%x\t", cd->arb[(c * nmasters) + j]);
}
}
/**
* allocate_commit_data() - Allocate the data for commit array in the
* format specified by RPM
* @fabric: Fabric device for which commit data is allocated
*/
static int msm_bus_rpm_allocate_commit_data(struct msm_bus_fabric_registration
*fab_pdata, void **cdata, int ctx)
{
struct commit_data **cd = (struct commit_data **)cdata;
*cd = kzalloc(sizeof(struct commit_data), GFP_KERNEL);
if (!*cd) {
MSM_BUS_DBG("Couldn't alloc mem for cdata\n");
return -ENOMEM;
}
(*cd)->bwsum = kzalloc((sizeof(uint16_t) * fab_pdata->nslaves),
GFP_KERNEL);
if (!(*cd)->bwsum) {
MSM_BUS_DBG("Couldn't alloc mem for slaves\n");
kfree(*cd);
return -ENOMEM;
}
(*cd)->arb = kzalloc(((sizeof(uint16_t *)) *
(fab_pdata->ntieredslaves * fab_pdata->nmasters) + 1),
GFP_KERNEL);
if (!(*cd)->arb) {
MSM_BUS_DBG("Couldn't alloc memory for"
" slaves\n");
kfree((*cd)->bwsum);
kfree(*cd);
return -ENOMEM;
}
(*cd)->actarb = kzalloc(((sizeof(unsigned long *)) *
(fab_pdata->ntieredslaves * fab_pdata->nmasters) + 1),
GFP_KERNEL);
if (!(*cd)->actarb) {
MSM_BUS_DBG("Couldn't alloc memory for"
" slaves\n");
kfree((*cd)->bwsum);
kfree((*cd)->arb);
kfree(*cd);
return -ENOMEM;
}
return 0;
}
static void free_commit_data(void *cdata)
{
struct commit_data *cd = (struct commit_data *)cdata;
kfree(cd->bwsum);
kfree(cd->arb);
kfree(cd->actarb);
kfree(cd);
}
/**
* allocate_rpm_data() - Allocate the id-value pairs to be
* sent to RPM
*/
static void *msm_bus_rpm_allocate_rpm_data(struct platform_device *pdev,
struct msm_bus_fabric_registration *fab_pdata)
{
struct msm_rpm_iv_pair *rpm_data;
uint16_t count = ((fab_pdata->nmasters * fab_pdata->ntieredslaves) +
fab_pdata->nslaves + 1)/2;
rpm_data = kmalloc((sizeof(struct msm_rpm_iv_pair) * count),
GFP_KERNEL);
return (void *)rpm_data;
}
#define BWMASK 0x7FFF
#define TIERMASK 0x8000
#define GET_TIER(n) (((n) & TIERMASK) >> 15)
static void msm_bus_rpm_update_bw(struct msm_bus_inode_info *hop,
struct msm_bus_inode_info *info,
struct msm_bus_fabric_registration *fab_pdata,
void *sel_cdata, int *master_tiers,
int64_t add_bw)
{
int index, i, j, tiers, ports;
struct commit_data *sel_cd = (struct commit_data *)sel_cdata;
add_bw = INTERLEAVED_BW(fab_pdata, add_bw, info->node_info->num_mports);
ports = INTERLEAVED_VAL(fab_pdata, info->node_info->num_mports);
tiers = INTERLEAVED_VAL(fab_pdata, hop->node_info->num_tiers);
for (i = 0; i < tiers; i++) {
for (j = 0; j < ports; j++) {
uint16_t hop_tier;
/*
* For interleaved gateway ports and slave ports,
* there is one-one mapping between gateway port and
* the slave port
*/
if (info->node_info->gateway && i != j &&
(hop->node_info->num_sports > 1))
continue;
if (!hop->node_info->tier)
hop_tier = MSM_BUS_BW_TIER2 - 1;
else
hop_tier = hop->node_info->tier[i] - 1;
index = ((hop_tier * fab_pdata->nmasters) +
(info->node_info->masterp[j]));
/* If there is tier, calculate arb for commit */
if (hop->node_info->tier) {
uint16_t tier;
unsigned long tieredbw = sel_cd->actarb[index];
if (GET_TIER(sel_cd->arb[index]))
tier = MSM_BUS_BW_TIER1;
else if (master_tiers)
/*
* By default master is only in the
* tier specified by default.
* To change the default tier, client
* needs to explicitly request for a
* different supported tier */
tier = master_tiers[0];
else
tier = MSM_BUS_BW_TIER2;
/*
* Make sure gateway to slave port bandwidth
* is not divided when slave is interleaved
*/
if (info->node_info->gateway
&& hop->node_info->num_sports > 1)
tieredbw += add_bw;
else
tieredbw += INTERLEAVED_BW(fab_pdata,
add_bw, hop->node_info->
num_sports);
/* If bw is 0, update tier to default */
if (!tieredbw)
tier = MSM_BUS_BW_TIER2;
/* Update Arb for fab,get HW Mport from enum */
sel_cd->arb[index] =
msm_bus_create_bw_tier_pair_bytes(tier,
tieredbw);
sel_cd->actarb[index] = tieredbw;
MSM_BUS_DBG("tr:%d mpor:%d tbw:%ld bws: %lld\n",
hop_tier, info->node_info->masterp[i],
tieredbw, *hop->link_info.sel_bw);
}
}
}
/* Update bwsum for slaves on fabric */
ports = INTERLEAVED_VAL(fab_pdata, hop->node_info->num_sports);
for (i = 0; i < ports; i++) {
sel_cd->bwsum[hop->node_info->slavep[i]]
= (uint16_t)msm_bus_create_bw_tier_pair_bytes(0,
(uint32_t)msm_bus_div64(hop->node_info->num_sports,
*hop->link_info.sel_bw));
MSM_BUS_DBG("slavep:%d, link_bw: %u\n",
hop->node_info->slavep[i], (uint32_t)
msm_bus_div64(hop->node_info->num_sports,
*hop->link_info.sel_bw));
}
}
#define RPM_SHIFT_VAL 16
#define RPM_SHIFT(n) ((n) << RPM_SHIFT_VAL)
static int msm_bus_rpm_compare_cdata(
struct msm_bus_fabric_registration *fab_pdata,
struct commit_data *cd1, struct commit_data *cd2)
{
size_t n;
int ret;
n = sizeof(uint16_t) * fab_pdata->nslaves;
ret = memcmp(cd1->bwsum, cd2->bwsum, n);
if (ret) {
MSM_BUS_DBG("Commit Data bwsum not equal\n");
return ret;
}
n = sizeof(uint16_t *) * ((fab_pdata->ntieredslaves *
fab_pdata->nmasters) + 1);
ret = memcmp(cd1->arb, cd2->arb, n);
if (ret) {
MSM_BUS_DBG("Commit Data arb[%d] not equal\n", n);
return ret;
}
return 0;
}
static int msm_bus_rpm_commit_arb(struct msm_bus_fabric_registration
*fab_pdata, int ctx, struct msm_rpm_iv_pair *rpm_data,
struct commit_data *cd, bool valid)
{
int i, j, offset = 0, status = 0, count, index = 0;
/*
* count is the number of 2-byte words required to commit the
* data to rpm. This is calculated by the following formula.
* Commit data is split into two arrays:
* 1. arb[nmasters * ntieredslaves]
* 2. bwsum[nslaves]
*/
count = ((fab_pdata->nmasters * fab_pdata->ntieredslaves)
+ (fab_pdata->nslaves) + 1)/2;
offset = fab_pdata->offset;
/*
* Copy bwsum to rpm data
* Since bwsum is uint16, the values need to be adjusted to
* be copied to value field of rpm-data, which is 32 bits.
*/
for (i = 0; i < (fab_pdata->nslaves - 1); i += 2) {
rpm_data[index].id = offset + index;
rpm_data[index].value = RPM_SHIFT(*(cd->bwsum + i + 1)) |
*(cd->bwsum + i);
index++;
}
/* Account for odd number of slaves */
if (fab_pdata->nslaves & 1) {
rpm_data[index].id = offset + index;
rpm_data[index].value = *(cd->arb);
rpm_data[index].value = RPM_SHIFT(rpm_data[index].value) |
*(cd->bwsum + i);
index++;
i = 1;
} else
i = 0;
/* Copy arb values to rpm data */
for (; i < (fab_pdata->ntieredslaves * fab_pdata->nmasters);
i += 2) {
rpm_data[index].id = offset + index;
rpm_data[index].value = RPM_SHIFT(*(cd->arb + i + 1)) |
*(cd->arb + i);
index++;
}
MSM_BUS_DBG("rpm data for fab: %d\n", fab_pdata->id);
for (i = 0; i < count; i++)
MSM_BUS_DBG("%d %x\n", rpm_data[i].id, rpm_data[i].value);
MSM_BUS_DBG("Commit Data: Fab: %d BWSum:\n", fab_pdata->id);
for (i = 0; i < fab_pdata->nslaves; i++)
MSM_BUS_DBG("fab_slaves:0x%x\n", cd->bwsum[i]);
MSM_BUS_DBG("Commit Data: Fab: %d Arb:\n", fab_pdata->id);
for (i = 0; i < fab_pdata->ntieredslaves; i++) {
MSM_BUS_DBG("tiered-slave: %d\n", i);
for (j = 0; j < fab_pdata->nmasters; j++)
MSM_BUS_DBG(" 0x%x\n",
cd->arb[(i * fab_pdata->nmasters) + j]);
}
MSM_BUS_DBG("calling msm_rpm_set: %d\n", status);
msm_bus_dbg_commit_data(fab_pdata->name, cd, fab_pdata->
nmasters, fab_pdata->nslaves, fab_pdata->ntieredslaves,
MSM_BUS_DBG_OP);
if (fab_pdata->rpm_enabled) {
if (valid) {
if (ctx == ACTIVE_CTX) {
status = msm_rpm_set(MSM_RPM_CTX_SET_0,
rpm_data, count);
MSM_BUS_DBG("msm_rpm_set returned: %d\n",
status);
} else if (ctx == DUAL_CTX) {
status = msm_rpm_set(MSM_RPM_CTX_SET_SLEEP,
rpm_data, count);
MSM_BUS_DBG("msm_rpm_set returned: %d\n",
status);
}
} else {
if (ctx == ACTIVE_CTX) {
status = msm_rpm_clear(MSM_RPM_CTX_SET_0,
rpm_data, count);
MSM_BUS_DBG("msm_rpm_clear returned: %d\n",
status);
} else if (ctx == DUAL_CTX) {
status = msm_rpm_clear(MSM_RPM_CTX_SET_SLEEP,
rpm_data, count);
MSM_BUS_DBG("msm_rpm_clear returned: %d\n",
status);
}
}
}
return status;
}
#else
#define NUM_TIERS 2
#define RPM_SHIFT24(n) ((n) << 24)
#define RPM_SHIFT16(n) ((n) << 16)
#define RPM_SHIFT8(n) ((n) << 8)
struct commit_data {
uint16_t *bwsum;
uint8_t *arb[NUM_TIERS];
unsigned long *actarb[NUM_TIERS];
};
#define MODE_BIT(val) ((val) & 0x80)
#define MODE0_IMM(val) ((val) & 0xF)
#define MODE0_SHIFT(val) (((val) & 0x70) >> 4)
#define MODE1_STEP 48 /* 48 MB */
#define MODE1_OFFSET 512 /* 512 MB */
#define MODE1_IMM(val) ((val) & 0x7F)
#define __CLZ(x) ((8 * sizeof(uint32_t)) - 1 - __fls(x))
static uint8_t msm_bus_set_bw_bytes(unsigned long val)
{
unsigned int shift;
unsigned int intVal;
unsigned char result;
/* Convert to MB */
intVal = (unsigned int)((val + ((1 << 20) - 1)) >> 20);
/**
* Divide by 2^20 and round up
* A value graeter than 0x1E0 will round up to 512 and overflow
* Mode 0 so it should be made Mode 1
*/
if (0x1E0 > intVal) {
/**
* MODE 0
* Compute the shift value
* Shift value is 32 - the number of leading zeroes -
* 4 to save the most significant 4 bits of the value
*/
shift = 32 - 4 - min((uint8_t)28, (uint8_t)__CLZ(intVal));
/* Add min value - 1 to force a round up when shifting right */
intVal += (1 << shift) - 1;
/* Recompute the shift value in case there was an overflow */
shift = 32 - 4 - min((uint8_t)28, (uint8_t)__CLZ(intVal));
/* Clear the mode bit (msb) and fill in the fields */
result = ((0x70 & (shift << 4)) |
(0x0F & (intVal >> shift)));
} else {
/* MODE 1 */
result = (unsigned char)(0x80 |
((intVal - MODE1_OFFSET + MODE1_STEP - 1) /
MODE1_STEP));
}
return result;
}
uint64_t msm_bus_get_bw(unsigned long val)
{
return MODE_BIT(val) ?
/* Mode 1 */
(MODE1_IMM(val) * MODE1_STEP + MODE1_OFFSET) :
/* Mode 0 */
(MODE0_IMM(val) << MODE0_SHIFT(val));
}
uint64_t msm_bus_get_bw_bytes(unsigned long val)
{
return msm_bus_get_bw(val) << 20;
}
static uint8_t msm_bus_create_bw_tier_pair_bytes(uint8_t type,
unsigned long bw)
{
return msm_bus_set_bw_bytes(bw);
};
uint8_t msm_bus_create_bw_tier_pair(uint8_t type, unsigned long bw)
{
return msm_bus_create_bw_tier_pair_bytes(type, bw);
};
static int msm_bus_rpm_allocate_commit_data(struct msm_bus_fabric_registration
*fab_pdata, void **cdata, int ctx)
{
struct commit_data **cd = (struct commit_data **)cdata;
int i;
*cd = kzalloc(sizeof(struct commit_data), GFP_KERNEL);
if (!*cd) {
MSM_BUS_DBG("Couldn't alloc mem for cdata\n");
goto cdata_err;
}
(*cd)->bwsum = kzalloc((sizeof(uint16_t) * fab_pdata->nslaves),
GFP_KERNEL);
if (!(*cd)->bwsum) {
MSM_BUS_DBG("Couldn't alloc mem for slaves\n");
goto bwsum_err;
}
for (i = 0; i < NUM_TIERS; i++) {
(*cd)->arb[i] = kzalloc(((sizeof(uint8_t *)) *
(fab_pdata->ntieredslaves * fab_pdata->nmasters) + 1),
GFP_KERNEL);
if (!(*cd)->arb[i]) {
MSM_BUS_DBG("Couldn't alloc memory for"
" slaves\n");
goto arb_err;
}
(*cd)->actarb[i] = kzalloc(((sizeof(unsigned long *)) *
(fab_pdata->ntieredslaves * fab_pdata->nmasters) + 1),
GFP_KERNEL);
if (!(*cd)->actarb[i]) {
MSM_BUS_DBG("Couldn't alloc memory for"
" slaves\n");
kfree((*cd)->arb[i]);
goto arb_err;
}
}
return 0;
arb_err:
for (i = i - 1; i >= 0; i--) {
kfree((*cd)->arb[i]);
kfree((*cd)->actarb[i]);
}
bwsum_err:
kfree((*cd)->bwsum);
cdata_err:
kfree(*cd);
return -ENOMEM;
}
static void free_commit_data(void *cdata)
{
int i;
struct commit_data *cd = (struct commit_data *)cdata;
kfree(cd->bwsum);
for (i = 0; i < NUM_TIERS; i++) {
kfree(cd->arb[i]);
kfree(cd->actarb[i]);
}
kfree(cd);
}
static void *msm_bus_rpm_allocate_rpm_data(struct platform_device *pdev,
struct msm_bus_fabric_registration *fab_pdata)
{
struct msm_rpm_iv_pair *rpm_data;
uint16_t count = (((fab_pdata->nmasters * fab_pdata->ntieredslaves *
NUM_TIERS)/2) + fab_pdata->nslaves + 1)/2;
rpm_data = kmalloc((sizeof(struct msm_rpm_iv_pair) * count),
GFP_KERNEL);
return (void *)rpm_data;
}
static int msm_bus_rpm_compare_cdata(
struct msm_bus_fabric_registration *fab_pdata,
struct commit_data *cd1, struct commit_data *cd2)
{
size_t n;
int i, ret;
n = sizeof(uint16_t) * fab_pdata->nslaves;
ret = memcmp(cd1->bwsum, cd2->bwsum, n);
if (ret) {
MSM_BUS_DBG("Commit Data bwsum not equal\n");
return ret;
}
n = sizeof(uint8_t *) * ((fab_pdata->ntieredslaves *
fab_pdata->nmasters) + 1);
for (i = 0; i < NUM_TIERS; i++) {
ret = memcmp(cd1->arb[i], cd2->arb[i], n);
if (ret) {
MSM_BUS_DBG("Commit Data arb[%d] not equal\n", i);
return ret;
}
}
return 0;
}
static int msm_bus_rpm_commit_arb(struct msm_bus_fabric_registration
*fab_pdata, int ctx, struct msm_rpm_iv_pair *rpm_data,
struct commit_data *cd, bool valid)
{
int i, j, k, offset = 0, status = 0, count, index = 0;
/*
* count is the number of 2-byte words required to commit the
* data to rpm. This is calculated by the following formula.
* Commit data is split into two arrays:
* 1. arb[nmasters * ntieredslaves][num_tiers]
* 2. bwsum[nslaves]
*/
count = (((fab_pdata->nmasters * fab_pdata->ntieredslaves * NUM_TIERS)
/2) + fab_pdata->nslaves + 1)/2;
offset = fab_pdata->offset;
/*
* Copy bwsum to rpm data
* Since bwsum is uint16, the values need to be adjusted to
* be copied to value field of rpm-data, which is 32 bits.
*/
for (i = 0; i < (fab_pdata->nslaves - 1); i += 2) {
rpm_data[index].id = offset + index;
rpm_data[index].value = RPM_SHIFT16(*(cd->bwsum + i + 1)) |
*(cd->bwsum + i);
index++;
}
/* Account for odd number of slaves */
if (fab_pdata->nslaves & 1) {
rpm_data[index].id = offset + index;
rpm_data[index].value = RPM_SHIFT8(*cd->arb[1]) |
*(cd->arb[0]);
rpm_data[index].value = RPM_SHIFT16(rpm_data[index].value) |
*(cd->bwsum + i);
index++;
i = 1;
} else
i = 0;
/* Copy arb values to rpm data */
for (; i < (fab_pdata->ntieredslaves * fab_pdata->nmasters);
i += 2) {
uint16_t tv1, tv0;
rpm_data[index].id = offset + index;
tv0 = RPM_SHIFT8(*(cd->arb[1] + i)) | (*(cd->arb[0] + i));
tv1 = RPM_SHIFT8(*(cd->arb[1] + i + 1)) | (*(cd->arb[0] + i
+ 1));
rpm_data[index].value = RPM_SHIFT16(tv1) | tv0;
index++;
}
MSM_BUS_DBG("rpm data for fab: %d\n", fab_pdata->id);
for (i = 0; i < count; i++)
MSM_BUS_DBG("%d %x\n", rpm_data[i].id, rpm_data[i].value);
MSM_BUS_DBG("Commit Data: Fab: %d BWSum:\n", fab_pdata->id);
for (i = 0; i < fab_pdata->nslaves; i++)
MSM_BUS_DBG("fab_slaves:0x%x\n", cd->bwsum[i]);
MSM_BUS_DBG("Commit Data: Fab: %d Arb:\n", fab_pdata->id);
for (k = 0; k < NUM_TIERS; k++) {
MSM_BUS_DBG("Tier: %d\n", k);
for (i = 0; i < fab_pdata->ntieredslaves; i++) {
MSM_BUS_DBG("tiered-slave: %d\n", i);
for (j = 0; j < fab_pdata->nmasters; j++)
MSM_BUS_DBG(" 0x%x\n",
cd->arb[k][(i * fab_pdata->nmasters)
+ j]);
}
}
MSM_BUS_DBG("calling msm_rpm_set: %d\n", status);
msm_bus_dbg_commit_data(fab_pdata->name, (void *)cd, fab_pdata->
nmasters, fab_pdata->nslaves, fab_pdata->ntieredslaves,
MSM_BUS_DBG_OP);
if (fab_pdata->rpm_enabled) {
if (valid) {
if (ctx == ACTIVE_CTX) {
status = msm_rpm_set(MSM_RPM_CTX_SET_0,
rpm_data, count);
MSM_BUS_DBG("msm_rpm_set returned: %d\n",
status);
} else if (ctx == DUAL_CTX) {
status = msm_rpm_set(MSM_RPM_CTX_SET_SLEEP,
rpm_data, count);
MSM_BUS_DBG("msm_rpm_set returned: %d\n",
status);
}
} else {
if (ctx == ACTIVE_CTX) {
status = msm_rpm_clear(MSM_RPM_CTX_SET_0,
rpm_data, count);
MSM_BUS_DBG("msm_rpm_clear returned: %d\n",
status);
} else if (ctx == DUAL_CTX) {
status = msm_rpm_clear(MSM_RPM_CTX_SET_SLEEP,
rpm_data, count);
MSM_BUS_DBG("msm_rpm_clear returned: %d\n",
status);
}
}
}
return status;
}
#define FORMAT_BW(x) \
((x < 0) ? \
-(msm_bus_get_bw_bytes(msm_bus_create_bw_tier_pair_bytes(0, -(x)))) : \
(msm_bus_get_bw_bytes(msm_bus_create_bw_tier_pair_bytes(0, x))))
static uint16_t msm_bus_pack_bwsum_bytes(unsigned long bw)
{
return (bw + ((1 << 20) - 1)) >> 20;
};
static void msm_bus_rpm_update_bw(struct msm_bus_inode_info *hop,
struct msm_bus_inode_info *info,
struct msm_bus_fabric_registration *fab_pdata,
void *sel_cdata, int *master_tiers,
int64_t add_bw)
{
int index, i, j, tiers, ports;
struct commit_data *sel_cd = (struct commit_data *)sel_cdata;
add_bw = INTERLEAVED_BW(fab_pdata, add_bw, info->node_info->num_mports);
ports = INTERLEAVED_VAL(fab_pdata, info->node_info->num_mports);
tiers = INTERLEAVED_VAL(fab_pdata, hop->node_info->num_tiers);
for (i = 0; i < tiers; i++) {
for (j = 0; j < ports; j++) {
uint16_t hop_tier;
/*
* For interleaved gateway ports and slave ports,
* there is one-one mapping between gateway port and
* the slave port
*/
if (info->node_info->gateway && i != j
&& hop->node_info->num_sports > 1)
continue;
if (!hop->node_info->tier)
hop_tier = MSM_BUS_BW_TIER2 - 1;
else
hop_tier = hop->node_info->tier[i] - 1;
index = ((hop_tier * fab_pdata->nmasters) +
(info->node_info->masterp[j]));
/* If there is tier, calculate arb for commit */
if (hop->node_info->tier) {
uint16_t tier;
unsigned long tieredbw;
if (master_tiers)
tier = master_tiers[0] - 1;
else
tier = MSM_BUS_BW_TIER2 - 1;
tieredbw = sel_cd->actarb[tier][index];
/*
* Make sure gateway to slave port bandwidth
* is not divided when slave is interleaved
*/
if (info->node_info->gateway
&& hop->node_info->num_sports > 1)
tieredbw += add_bw;
else
tieredbw += INTERLEAVED_BW(fab_pdata,
add_bw, hop->node_info->
num_sports);
/* Update Arb for fab,get HW Mport from enum */
sel_cd->arb[tier][index] =
msm_bus_create_bw_tier_pair_bytes(0, tieredbw);
sel_cd->actarb[tier][index] = tieredbw;
MSM_BUS_DBG("tr:%d mpor:%d tbw:%lu bws: %lld\n",
hop_tier, info->node_info->masterp[i], tieredbw,
*hop->link_info.sel_bw);
}
}
}
/* Update bwsum for slaves on fabric */
ports = INTERLEAVED_VAL(fab_pdata, hop->node_info->num_sports);
for (i = 0; i < ports; i++) {
sel_cd->bwsum[hop->node_info->slavep[i]]
= msm_bus_pack_bwsum_bytes((uint32_t)
msm_bus_div64(hop->node_info->num_sports,
*hop->link_info.sel_bw));
MSM_BUS_DBG("slavep:%d, link_bw: %lld\n",
hop->node_info->slavep[i],
msm_bus_div64(hop->node_info->num_sports,
*hop->link_info.sel_bw));
}
}
void msm_bus_rpm_fill_cdata_buffer(int *curr, char *buf, const int max_size,
void *cdata, int nmasters, int nslaves, int ntslaves)
{
int j, k, c;
struct commit_data *cd = (struct commit_data *)cdata;
*curr += scnprintf(buf + *curr, max_size - *curr, "BWSum:\n");
for (c = 0; c < nslaves; c++)
*curr += scnprintf(buf + *curr, max_size - *curr,
"0x%x\t", cd->bwsum[c]);
*curr += scnprintf(buf + *curr, max_size - *curr, "\nArb:");
for (k = 0; k < NUM_TIERS; k++) {
*curr += scnprintf(buf + *curr, max_size - *curr,
"\nTier %d:\n", k);
for (c = 0; c < ntslaves; c++) {
*curr += scnprintf(buf + *curr, max_size - *curr,
"TSlave %d:\n", c);
for (j = 0; j < nmasters; j++)
*curr += scnprintf(buf + *curr, max_size -
*curr, " 0x%x\t",
cd->arb[k][(c * nmasters) + j]);
}
}
}
#endif
/**
* msm_bus_rpm_commit() - Commit the arbitration data to RPM
* @fabric: Fabric for which the data should be committed
**/
static int msm_bus_rpm_commit(struct msm_bus_fabric_registration
*fab_pdata, void *hw_data, void **cdata)
{
int ret;
bool valid;
struct commit_data *dual_cd, *act_cd;
struct msm_rpm_iv_pair *rpm_data = (struct msm_rpm_iv_pair *)hw_data;
dual_cd = (struct commit_data *)cdata[DUAL_CTX];
act_cd = (struct commit_data *)cdata[ACTIVE_CTX];
/*
* If the arb data for active set and sleep set is
* different, commit both sets.
* If the arb data for active set and sleep set is
* the same, invalidate the sleep set.
*/
ret = msm_bus_rpm_compare_cdata(fab_pdata, act_cd, dual_cd);
if (!ret)
/* Invalidate sleep set.*/
valid = false;
else
valid = true;
ret = msm_bus_rpm_commit_arb(fab_pdata, DUAL_CTX, rpm_data,
dual_cd, valid);
if (ret)
MSM_BUS_ERR("Error comiting fabric:%d in %d ctx\n",
fab_pdata->id, DUAL_CTX);
valid = true;
ret = msm_bus_rpm_commit_arb(fab_pdata, ACTIVE_CTX, rpm_data, act_cd,
valid);
if (ret)
MSM_BUS_ERR("Error comiting fabric:%d in %d ctx\n",
fab_pdata->id, ACTIVE_CTX);
return ret;
}
static int msm_bus_rpm_port_halt(uint32_t haltid, uint8_t mport)
{
int status = 0;
struct msm_bus_halt_vector hvector = {0, 0};
struct msm_rpm_iv_pair rpm_data[2];
MSM_BUS_MASTER_HALT(hvector.haltmask, hvector.haltval, mport);
rpm_data[0].id = haltid;
rpm_data[0].value = hvector.haltval;
rpm_data[1].id = haltid + 1;
rpm_data[1].value = hvector.haltmask;
MSM_BUS_DBG("ctx: %d, id: %d, value: %d\n",
MSM_RPM_CTX_SET_0, rpm_data[0].id, rpm_data[0].value);
MSM_BUS_DBG("ctx: %d, id: %d, value: %d\n",
MSM_RPM_CTX_SET_0, rpm_data[1].id, rpm_data[1].value);
status = msm_rpm_set(MSM_RPM_CTX_SET_0, rpm_data, 2);
if (status)
MSM_BUS_DBG("msm_rpm_set returned: %d\n", status);
return status;
}
static int msm_bus_rpm_port_unhalt(uint32_t haltid, uint8_t mport)
{
int status = 0;
struct msm_bus_halt_vector hvector = {0, 0};
struct msm_rpm_iv_pair rpm_data[2];
MSM_BUS_MASTER_UNHALT(hvector.haltmask, hvector.haltval,
mport);
rpm_data[0].id = haltid;
rpm_data[0].value = hvector.haltval;
rpm_data[1].id = haltid + 1;
rpm_data[1].value = hvector.haltmask;
MSM_BUS_DBG("unalt: ctx: %d, id: %d, value: %d\n",
MSM_RPM_CTX_SET_SLEEP, rpm_data[0].id, rpm_data[0].value);
MSM_BUS_DBG("unhalt: ctx: %d, id: %d, value: %d\n",
MSM_RPM_CTX_SET_SLEEP, rpm_data[1].id, rpm_data[1].value);
status = msm_rpm_set(MSM_RPM_CTX_SET_0, rpm_data, 2);
if (status)
MSM_BUS_DBG("msm_rpm_set returned: %d\n", status);
return status;
}
int msm_bus_remote_hw_commit(struct msm_bus_fabric_registration
*fab_pdata, void *hw_data, void **cdata)
{
return 0;
}
int msm_bus_rpm_hw_init(struct msm_bus_fabric_registration *pdata,
struct msm_bus_hw_algorithm *hw_algo)
{
pdata->il_flag = msm_bus_rpm_is_mem_interleaved();
hw_algo->allocate_commit_data = msm_bus_rpm_allocate_commit_data;
hw_algo->allocate_hw_data = msm_bus_rpm_allocate_rpm_data;
hw_algo->node_init = NULL;
hw_algo->free_commit_data = free_commit_data;
hw_algo->update_bw = msm_bus_rpm_update_bw;
hw_algo->commit = msm_bus_rpm_commit;
hw_algo->port_halt = msm_bus_rpm_port_halt;
hw_algo->port_unhalt = msm_bus_rpm_port_unhalt;
if (!pdata->ahb)
pdata->rpm_enabled = 1;
return 0;
}