blob: cfbd7a9c671657b36b94628064f1fe4735ca30f6 [file] [log] [blame]
/* Qualcomm CE device driver.
*
* Copyright (c) 2010-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/mman.h>
#include <linux/types.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/kernel.h>
#include <linux/dmapool.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/debugfs.h>
#include <linux/scatterlist.h>
#include <linux/crypto.h>
#include <linux/platform_data/qcom_crypto_device.h>
#include <linux/msm-bus.h>
#include <linux/qcedev.h>
#include <crypto/hash.h>
#include "qcedevi.h"
#include "qce.h"
#ifdef CONFIG_COMPAT
#include <linux/compat.h>
#include <linux/compat_qcedev.h>
#endif
#define U32_MAX ((u32)~0U)
#define CACHE_LINE_SIZE 32
#define CE_SHA_BLOCK_SIZE SHA256_BLOCK_SIZE
/* are FIPS integrity tests done ?? */
bool is_fips_qcedev_integritytest_done;
static uint8_t _std_init_vector_sha1_uint8[] = {
0x67, 0x45, 0x23, 0x01, 0xEF, 0xCD, 0xAB, 0x89,
0x98, 0xBA, 0xDC, 0xFE, 0x10, 0x32, 0x54, 0x76,
0xC3, 0xD2, 0xE1, 0xF0
};
/* standard initialization vector for SHA-256, source: FIPS 180-2 */
static uint8_t _std_init_vector_sha256_uint8[] = {
0x6A, 0x09, 0xE6, 0x67, 0xBB, 0x67, 0xAE, 0x85,
0x3C, 0x6E, 0xF3, 0x72, 0xA5, 0x4F, 0xF5, 0x3A,
0x51, 0x0E, 0x52, 0x7F, 0x9B, 0x05, 0x68, 0x8C,
0x1F, 0x83, 0xD9, 0xAB, 0x5B, 0xE0, 0xCD, 0x19
};
static DEFINE_MUTEX(send_cmd_lock);
static DEFINE_MUTEX(qcedev_sent_bw_req);
static DEFINE_MUTEX(hash_access_lock);
static void qcedev_ce_high_bw_req(struct qcedev_control *podev,
bool high_bw_req)
{
int ret = 0;
mutex_lock(&qcedev_sent_bw_req);
if (high_bw_req) {
if (podev->high_bw_req_count == 0) {
ret = qce_enable_clk(podev->qce);
if (ret) {
pr_err("%s Unable enable clk\n", __func__);
mutex_unlock(&qcedev_sent_bw_req);
return;
}
ret = msm_bus_scale_client_update_request(
podev->bus_scale_handle, 1);
if (ret) {
pr_err("%s Unable to set to high bandwidth\n",
__func__);
ret = qce_disable_clk(podev->qce);
mutex_unlock(&qcedev_sent_bw_req);
return;
}
}
podev->high_bw_req_count++;
} else {
if (podev->high_bw_req_count == 1) {
ret = msm_bus_scale_client_update_request(
podev->bus_scale_handle, 0);
if (ret) {
pr_err("%s Unable to set to low bandwidth\n",
__func__);
mutex_unlock(&qcedev_sent_bw_req);
return;
}
ret = qce_disable_clk(podev->qce);
if (ret) {
pr_err("%s Unable disable clk\n", __func__);
ret = msm_bus_scale_client_update_request(
podev->bus_scale_handle, 1);
if (ret)
pr_err("%s Unable to set to high bandwidth\n",
__func__);
mutex_unlock(&qcedev_sent_bw_req);
return;
}
}
podev->high_bw_req_count--;
}
mutex_unlock(&qcedev_sent_bw_req);
}
#define QCEDEV_MAGIC 0x56434544 /* "qced" */
static int qcedev_open(struct inode *inode, struct file *file);
static int qcedev_release(struct inode *inode, struct file *file);
static int start_cipher_req(struct qcedev_control *podev);
static int start_sha_req(struct qcedev_control *podev);
static const struct file_operations qcedev_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = qcedev_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = compat_qcedev_ioctl,
#endif
.open = qcedev_open,
.release = qcedev_release,
};
static struct qcedev_control qce_dev[] = {
{
.miscdevice = {
.minor = MISC_DYNAMIC_MINOR,
.name = "qce",
.fops = &qcedev_fops,
},
.magic = QCEDEV_MAGIC,
},
};
#define MAX_QCE_DEVICE ARRAY_SIZE(qce_dev)
#define DEBUG_MAX_FNAME 16
#define DEBUG_MAX_RW_BUF 1024
struct qcedev_stat {
u32 qcedev_dec_success;
u32 qcedev_dec_fail;
u32 qcedev_enc_success;
u32 qcedev_enc_fail;
u32 qcedev_sha_success;
u32 qcedev_sha_fail;
};
static struct qcedev_stat _qcedev_stat;
static struct dentry *_debug_dent;
static char _debug_read_buf[DEBUG_MAX_RW_BUF];
static int _debug_qcedev;
static struct qcedev_control *qcedev_minor_to_control(unsigned n)
{
int i;
for (i = 0; i < MAX_QCE_DEVICE; i++) {
if (qce_dev[i].miscdevice.minor == n)
return &qce_dev[i];
}
return NULL;
}
static int qcedev_open(struct inode *inode, struct file *file)
{
struct qcedev_handle *handle;
struct qcedev_control *podev;
/* IF FIPS tests not passed, return error */
if (((g_fips140_status == FIPS140_STATUS_FAIL) ||
(g_fips140_status == FIPS140_STATUS_PASS_CRYPTO)) &&
is_fips_qcedev_integritytest_done)
return -ENXIO;
podev = qcedev_minor_to_control(MINOR(inode->i_rdev));
if (podev == NULL) {
pr_err("%s: no such device %d\n", __func__,
MINOR(inode->i_rdev));
return -ENOENT;
}
handle = kzalloc(sizeof(struct qcedev_handle), GFP_KERNEL);
if (handle == NULL) {
pr_err("Failed to allocate memory %ld\n",
PTR_ERR(handle));
return -ENOMEM;
}
handle->cntl = podev;
file->private_data = handle;
if (podev->platform_support.bus_scale_table != NULL)
qcedev_ce_high_bw_req(podev, true);
return 0;
}
static int qcedev_release(struct inode *inode, struct file *file)
{
struct qcedev_control *podev;
struct qcedev_handle *handle;
handle = file->private_data;
podev = handle->cntl;
if (podev != NULL && podev->magic != QCEDEV_MAGIC) {
pr_err("%s: invalid handle %p\n",
__func__, podev);
}
kzfree(handle);
file->private_data = NULL;
if (podev != NULL && podev->platform_support.bus_scale_table != NULL)
qcedev_ce_high_bw_req(podev, false);
return 0;
}
static void req_done(unsigned long data)
{
struct qcedev_control *podev = (struct qcedev_control *)data;
struct qcedev_async_req *areq;
unsigned long flags = 0;
struct qcedev_async_req *new_req = NULL;
int ret = 0;
spin_lock_irqsave(&podev->lock, flags);
areq = podev->active_command;
podev->active_command = NULL;
again:
if (!list_empty(&podev->ready_commands)) {
new_req = container_of(podev->ready_commands.next,
struct qcedev_async_req, list);
list_del(&new_req->list);
podev->active_command = new_req;
new_req->err = 0;
if (new_req->op_type == QCEDEV_CRYPTO_OPER_CIPHER)
ret = start_cipher_req(podev);
else
ret = start_sha_req(podev);
}
spin_unlock_irqrestore(&podev->lock, flags);
if (areq)
complete(&areq->complete);
if (new_req && ret) {
complete(&new_req->complete);
spin_lock_irqsave(&podev->lock, flags);
podev->active_command = NULL;
areq = NULL;
ret = 0;
new_req = NULL;
goto again;
}
return;
}
void qcedev_sha_req_cb(void *cookie, unsigned char *digest,
unsigned char *authdata, int ret)
{
struct qcedev_sha_req *areq;
struct qcedev_control *pdev;
struct qcedev_handle *handle;
uint32_t *auth32 = (uint32_t *)authdata;
areq = (struct qcedev_sha_req *) cookie;
handle = (struct qcedev_handle *) areq->cookie;
pdev = handle->cntl;
if (digest)
memcpy(&handle->sha_ctxt.digest[0], digest, 32);
if (authdata) {
handle->sha_ctxt.auth_data[0] = auth32[0];
handle->sha_ctxt.auth_data[1] = auth32[1];
handle->sha_ctxt.auth_data[2] = auth32[2];
handle->sha_ctxt.auth_data[3] = auth32[3];
}
tasklet_schedule(&pdev->done_tasklet);
};
void qcedev_cipher_req_cb(void *cookie, unsigned char *icv,
unsigned char *iv, int ret)
{
struct qcedev_cipher_req *areq;
struct qcedev_handle *handle;
struct qcedev_control *podev;
struct qcedev_async_req *qcedev_areq;
areq = (struct qcedev_cipher_req *) cookie;
handle = (struct qcedev_handle *) areq->cookie;
podev = handle->cntl;
qcedev_areq = podev->active_command;
if (iv)
memcpy(&qcedev_areq->cipher_op_req.iv[0], iv,
qcedev_areq->cipher_op_req.ivlen);
tasklet_schedule(&podev->done_tasklet);
};
static int start_cipher_req(struct qcedev_control *podev)
{
struct qcedev_async_req *qcedev_areq;
struct qce_req creq;
int ret = 0;
/* start the command on the podev->active_command */
qcedev_areq = podev->active_command;
qcedev_areq->cipher_req.cookie = qcedev_areq->handle;
if (qcedev_areq->cipher_op_req.use_pmem == QCEDEV_USE_PMEM) {
pr_err("%s: Use of PMEM is not supported\n", __func__);
goto unsupported;
}
creq.pmem = NULL;
switch (qcedev_areq->cipher_op_req.alg) {
case QCEDEV_ALG_DES:
creq.alg = CIPHER_ALG_DES;
break;
case QCEDEV_ALG_3DES:
creq.alg = CIPHER_ALG_3DES;
break;
case QCEDEV_ALG_AES:
creq.alg = CIPHER_ALG_AES;
break;
default:
return -EINVAL;
};
switch (qcedev_areq->cipher_op_req.mode) {
case QCEDEV_AES_MODE_CBC:
case QCEDEV_DES_MODE_CBC:
creq.mode = QCE_MODE_CBC;
break;
case QCEDEV_AES_MODE_ECB:
case QCEDEV_DES_MODE_ECB:
creq.mode = QCE_MODE_ECB;
break;
case QCEDEV_AES_MODE_CTR:
creq.mode = QCE_MODE_CTR;
break;
case QCEDEV_AES_MODE_XTS:
creq.mode = QCE_MODE_XTS;
break;
default:
return -EINVAL;
};
if ((creq.alg == CIPHER_ALG_AES) &&
(creq.mode == QCE_MODE_CTR)) {
creq.dir = QCE_ENCRYPT;
} else {
if (QCEDEV_OPER_ENC == qcedev_areq->cipher_op_req.op)
creq.dir = QCE_ENCRYPT;
else
creq.dir = QCE_DECRYPT;
}
creq.iv = &qcedev_areq->cipher_op_req.iv[0];
creq.ivsize = qcedev_areq->cipher_op_req.ivlen;
creq.enckey = &qcedev_areq->cipher_op_req.enckey[0];
creq.encklen = qcedev_areq->cipher_op_req.encklen;
creq.cryptlen = qcedev_areq->cipher_op_req.data_len;
if (qcedev_areq->cipher_op_req.encklen == 0) {
if ((qcedev_areq->cipher_op_req.op == QCEDEV_OPER_ENC_NO_KEY)
|| (qcedev_areq->cipher_op_req.op ==
QCEDEV_OPER_DEC_NO_KEY))
creq.op = QCE_REQ_ABLK_CIPHER_NO_KEY;
else {
int i;
for (i = 0; i < QCEDEV_MAX_KEY_SIZE; i++) {
if (qcedev_areq->cipher_op_req.enckey[i] != 0)
break;
}
if ((podev->platform_support.hw_key_support == 1) &&
(i == QCEDEV_MAX_KEY_SIZE))
creq.op = QCE_REQ_ABLK_CIPHER;
else {
ret = -EINVAL;
goto unsupported;
}
}
} else {
creq.op = QCE_REQ_ABLK_CIPHER;
}
creq.qce_cb = qcedev_cipher_req_cb;
creq.areq = (void *)&qcedev_areq->cipher_req;
creq.flags = 0;
ret = qce_ablk_cipher_req(podev->qce, &creq);
unsupported:
if (ret)
qcedev_areq->err = -ENXIO;
else
qcedev_areq->err = 0;
return ret;
};
static int start_sha_req(struct qcedev_control *podev)
{
struct qcedev_async_req *qcedev_areq;
struct qce_sha_req sreq;
int ret = 0;
struct qcedev_handle *handle;
/* start the command on the podev->active_command */
qcedev_areq = podev->active_command;
handle = qcedev_areq->handle;
switch (qcedev_areq->sha_op_req.alg) {
case QCEDEV_ALG_SHA1:
sreq.alg = QCE_HASH_SHA1;
break;
case QCEDEV_ALG_SHA256:
sreq.alg = QCE_HASH_SHA256;
break;
case QCEDEV_ALG_SHA1_HMAC:
if (podev->ce_support.sha_hmac) {
sreq.alg = QCE_HASH_SHA1_HMAC;
sreq.authkey = &handle->sha_ctxt.authkey[0];
sreq.authklen = QCEDEV_MAX_SHA_BLOCK_SIZE;
} else {
sreq.alg = QCE_HASH_SHA1;
sreq.authkey = NULL;
}
break;
case QCEDEV_ALG_SHA256_HMAC:
if (podev->ce_support.sha_hmac) {
sreq.alg = QCE_HASH_SHA256_HMAC;
sreq.authkey = &handle->sha_ctxt.authkey[0];
sreq.authklen = QCEDEV_MAX_SHA_BLOCK_SIZE;
} else {
sreq.alg = QCE_HASH_SHA256;
sreq.authkey = NULL;
}
break;
case QCEDEV_ALG_AES_CMAC:
sreq.alg = QCE_HASH_AES_CMAC;
sreq.authkey = &handle->sha_ctxt.authkey[0];
sreq.authklen = qcedev_areq->sha_op_req.authklen;
break;
default:
pr_err("Algorithm %d not supported, exiting\n",
qcedev_areq->sha_op_req.alg);
return -EINVAL;
break;
};
qcedev_areq->sha_req.cookie = handle;
sreq.qce_cb = qcedev_sha_req_cb;
if (qcedev_areq->sha_op_req.alg != QCEDEV_ALG_AES_CMAC) {
sreq.auth_data[0] = handle->sha_ctxt.auth_data[0];
sreq.auth_data[1] = handle->sha_ctxt.auth_data[1];
sreq.auth_data[2] = handle->sha_ctxt.auth_data[2];
sreq.auth_data[3] = handle->sha_ctxt.auth_data[3];
sreq.digest = &handle->sha_ctxt.digest[0];
sreq.first_blk = handle->sha_ctxt.first_blk;
sreq.last_blk = handle->sha_ctxt.last_blk;
}
sreq.size = qcedev_areq->sha_req.sreq.nbytes;
sreq.src = qcedev_areq->sha_req.sreq.src;
sreq.areq = (void *)&qcedev_areq->sha_req;
sreq.flags = 0;
ret = qce_process_sha_req(podev->qce, &sreq);
if (ret)
qcedev_areq->err = -ENXIO;
else
qcedev_areq->err = 0;
return ret;
};
static int submit_req(struct qcedev_async_req *qcedev_areq,
struct qcedev_handle *handle)
{
struct qcedev_control *podev;
unsigned long flags = 0;
int ret = 0;
struct qcedev_stat *pstat;
qcedev_areq->err = 0;
podev = handle->cntl;
spin_lock_irqsave(&podev->lock, flags);
if (podev->active_command == NULL) {
podev->active_command = qcedev_areq;
if (qcedev_areq->op_type == QCEDEV_CRYPTO_OPER_CIPHER)
ret = start_cipher_req(podev);
else
ret = start_sha_req(podev);
} else {
list_add_tail(&qcedev_areq->list, &podev->ready_commands);
}
if (ret != 0)
podev->active_command = NULL;
spin_unlock_irqrestore(&podev->lock, flags);
if (ret == 0)
wait_for_completion(&qcedev_areq->complete);
if (ret)
qcedev_areq->err = -EIO;
pstat = &_qcedev_stat;
if (qcedev_areq->op_type == QCEDEV_CRYPTO_OPER_CIPHER) {
switch (qcedev_areq->cipher_op_req.op) {
case QCEDEV_OPER_DEC:
if (qcedev_areq->err)
pstat->qcedev_dec_fail++;
else
pstat->qcedev_dec_success++;
break;
case QCEDEV_OPER_ENC:
if (qcedev_areq->err)
pstat->qcedev_enc_fail++;
else
pstat->qcedev_enc_success++;
break;
default:
break;
};
} else {
if (qcedev_areq->err)
pstat->qcedev_sha_fail++;
else
pstat->qcedev_sha_success++;
}
return qcedev_areq->err;
}
static int qcedev_sha_init(struct qcedev_async_req *areq,
struct qcedev_handle *handle)
{
struct qcedev_sha_ctxt *sha_ctxt = &handle->sha_ctxt;
memset(sha_ctxt, 0, sizeof(struct qcedev_sha_ctxt));
sha_ctxt->first_blk = 1;
if ((areq->sha_op_req.alg == QCEDEV_ALG_SHA1) ||
(areq->sha_op_req.alg == QCEDEV_ALG_SHA1_HMAC)) {
memcpy(&sha_ctxt->digest[0],
&_std_init_vector_sha1_uint8[0], SHA1_DIGEST_SIZE);
sha_ctxt->diglen = SHA1_DIGEST_SIZE;
} else {
if ((areq->sha_op_req.alg == QCEDEV_ALG_SHA256) ||
(areq->sha_op_req.alg == QCEDEV_ALG_SHA256_HMAC)) {
memcpy(&sha_ctxt->digest[0],
&_std_init_vector_sha256_uint8[0],
SHA256_DIGEST_SIZE);
sha_ctxt->diglen = SHA256_DIGEST_SIZE;
}
}
sha_ctxt->init_done = true;
return 0;
}
static int qcedev_sha_update_max_xfer(struct qcedev_async_req *qcedev_areq,
struct qcedev_handle *handle,
struct scatterlist *sg_src)
{
int err = 0;
int i = 0;
uint32_t total;
uint8_t *user_src = NULL;
uint8_t *k_src = NULL;
uint8_t *k_buf_src = NULL;
uint8_t *k_align_src = NULL;
uint32_t sha_pad_len = 0;
uint32_t trailing_buf_len = 0;
uint32_t t_buf = handle->sha_ctxt.trailing_buf_len;
uint32_t sha_block_size;
total = qcedev_areq->sha_op_req.data_len + t_buf;
if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_SHA1)
sha_block_size = SHA1_BLOCK_SIZE;
else
sha_block_size = SHA256_BLOCK_SIZE;
if (total <= sha_block_size) {
uint32_t len = qcedev_areq->sha_op_req.data_len;
i = 0;
k_src = &handle->sha_ctxt.trailing_buf[t_buf];
/* Copy data from user src(s) */
while (len > 0) {
user_src =
(void __user *)qcedev_areq->sha_op_req.data[i].vaddr;
if (user_src && copy_from_user(k_src,
(void __user *)user_src,
qcedev_areq->sha_op_req.data[i].len))
return -EFAULT;
len -= qcedev_areq->sha_op_req.data[i].len;
k_src += qcedev_areq->sha_op_req.data[i].len;
i++;
}
handle->sha_ctxt.trailing_buf_len = total;
return 0;
}
k_buf_src = kmalloc(total + CACHE_LINE_SIZE * 2,
GFP_KERNEL);
if (k_buf_src == NULL) {
pr_err("%s: Can't Allocate memory: k_buf_src 0x%lx\n",
__func__, (uintptr_t)k_buf_src);
return -ENOMEM;
}
k_align_src = (uint8_t *)ALIGN(((uintptr_t)k_buf_src),
CACHE_LINE_SIZE);
k_src = k_align_src;
/* check for trailing buffer from previous updates and append it */
if (t_buf > 0) {
memcpy(k_src, &handle->sha_ctxt.trailing_buf[0],
t_buf);
k_src += t_buf;
}
/* Copy data from user src(s) */
user_src = (void __user *)qcedev_areq->sha_op_req.data[0].vaddr;
if (user_src && copy_from_user(k_src,
(void __user *)user_src,
qcedev_areq->sha_op_req.data[0].len)) {
kzfree(k_buf_src);
return -EFAULT;
}
k_src += qcedev_areq->sha_op_req.data[0].len;
for (i = 1; i < qcedev_areq->sha_op_req.entries; i++) {
user_src = (void __user *)qcedev_areq->sha_op_req.data[i].vaddr;
if (user_src && copy_from_user(k_src,
(void __user *)user_src,
qcedev_areq->sha_op_req.data[i].len)) {
kzfree(k_buf_src);
return -EFAULT;
}
k_src += qcedev_areq->sha_op_req.data[i].len;
}
/* get new trailing buffer */
sha_pad_len = ALIGN(total, CE_SHA_BLOCK_SIZE) - total;
trailing_buf_len = CE_SHA_BLOCK_SIZE - sha_pad_len;
qcedev_areq->sha_req.sreq.src = sg_src;
sg_set_buf(qcedev_areq->sha_req.sreq.src, k_align_src,
total-trailing_buf_len);
sg_mark_end(qcedev_areq->sha_req.sreq.src);
qcedev_areq->sha_req.sreq.nbytes = total - trailing_buf_len;
/* update sha_ctxt trailing buf content to new trailing buf */
if (trailing_buf_len > 0) {
memset(&handle->sha_ctxt.trailing_buf[0], 0, 64);
memcpy(&handle->sha_ctxt.trailing_buf[0],
(k_src - trailing_buf_len),
trailing_buf_len);
}
handle->sha_ctxt.trailing_buf_len = trailing_buf_len;
err = submit_req(qcedev_areq, handle);
handle->sha_ctxt.last_blk = 0;
handle->sha_ctxt.first_blk = 0;
kzfree(k_buf_src);
return err;
}
static int qcedev_sha_update(struct qcedev_async_req *qcedev_areq,
struct qcedev_handle *handle,
struct scatterlist *sg_src)
{
int err = 0;
int i = 0;
int j = 0;
int k = 0;
int num_entries = 0;
uint32_t total = 0;
if (handle->sha_ctxt.init_done == false) {
pr_err("%s Init was not called\n", __func__);
return -EINVAL;
}
if (qcedev_areq->sha_op_req.data_len > QCE_MAX_OPER_DATA) {
struct qcedev_sha_op_req *saved_req;
struct qcedev_sha_op_req req;
struct qcedev_sha_op_req *sreq = &qcedev_areq->sha_op_req;
/* save the original req structure */
saved_req =
kmalloc(sizeof(struct qcedev_sha_op_req), GFP_KERNEL);
if (saved_req == NULL) {
pr_err("%s:Can't Allocate mem:saved_req 0x%lx\n",
__func__, (uintptr_t)saved_req);
return -ENOMEM;
}
memcpy(&req, sreq, sizeof(struct qcedev_sha_op_req));
memcpy(saved_req, sreq, sizeof(struct qcedev_sha_op_req));
i = 0;
/* Address 32 KB at a time */
while ((i < req.entries) && (err == 0)) {
if (sreq->data[i].len > QCE_MAX_OPER_DATA) {
sreq->data[0].len = QCE_MAX_OPER_DATA;
if (i > 0) {
sreq->data[0].vaddr =
sreq->data[i].vaddr;
}
sreq->data_len = QCE_MAX_OPER_DATA;
sreq->entries = 1;
err = qcedev_sha_update_max_xfer(qcedev_areq,
handle, sg_src);
sreq->data[i].len = req.data[i].len -
QCE_MAX_OPER_DATA;
sreq->data[i].vaddr = req.data[i].vaddr +
QCE_MAX_OPER_DATA;
req.data[i].vaddr = sreq->data[i].vaddr;
req.data[i].len = sreq->data[i].len;
} else {
total = 0;
for (j = i; j < req.entries; j++) {
num_entries++;
if ((total + sreq->data[j].len) >=
QCE_MAX_OPER_DATA) {
sreq->data[j].len =
(QCE_MAX_OPER_DATA - total);
total = QCE_MAX_OPER_DATA;
break;
}
total += sreq->data[j].len;
}
sreq->data_len = total;
if (i > 0)
for (k = 0; k < num_entries; k++) {
sreq->data[k].len =
sreq->data[i+k].len;
sreq->data[k].vaddr =
sreq->data[i+k].vaddr;
}
sreq->entries = num_entries;
i = j;
err = qcedev_sha_update_max_xfer(qcedev_areq,
handle, sg_src);
num_entries = 0;
sreq->data[i].vaddr = req.data[i].vaddr +
sreq->data[i].len;
sreq->data[i].len = req.data[i].len -
sreq->data[i].len;
req.data[i].vaddr = sreq->data[i].vaddr;
req.data[i].len = sreq->data[i].len;
if (sreq->data[i].len == 0)
i++;
}
} /* end of while ((i < req.entries) && (err == 0)) */
/* Restore the original req structure */
for (i = 0; i < saved_req->entries; i++) {
sreq->data[i].len = saved_req->data[i].len;
sreq->data[i].vaddr = saved_req->data[i].vaddr;
}
sreq->entries = saved_req->entries;
sreq->data_len = saved_req->data_len;
kzfree(saved_req);
} else
err = qcedev_sha_update_max_xfer(qcedev_areq, handle, sg_src);
return err;
}
static int qcedev_sha_final(struct qcedev_async_req *qcedev_areq,
struct qcedev_handle *handle)
{
int err = 0;
struct scatterlist sg_src;
uint32_t total;
uint8_t *k_buf_src = NULL;
uint8_t *k_align_src = NULL;
if (handle->sha_ctxt.init_done == false) {
pr_err("%s Init was not called\n", __func__);
return -EINVAL;
}
handle->sha_ctxt.last_blk = 1;
total = handle->sha_ctxt.trailing_buf_len;
if (total) {
k_buf_src = kmalloc(total + CACHE_LINE_SIZE * 2,
GFP_KERNEL);
if (k_buf_src == NULL) {
pr_err("%s: Can't Allocate memory: k_buf_src 0x%lx\n",
__func__, (uintptr_t)k_buf_src);
return -ENOMEM;
}
k_align_src = (uint8_t *)ALIGN(((uintptr_t)k_buf_src),
CACHE_LINE_SIZE);
memcpy(k_align_src, &handle->sha_ctxt.trailing_buf[0], total);
}
qcedev_areq->sha_req.sreq.src = (struct scatterlist *) &sg_src;
sg_set_buf(qcedev_areq->sha_req.sreq.src, k_align_src, total);
sg_mark_end(qcedev_areq->sha_req.sreq.src);
qcedev_areq->sha_req.sreq.nbytes = total;
err = submit_req(qcedev_areq, handle);
handle->sha_ctxt.first_blk = 0;
handle->sha_ctxt.last_blk = 0;
handle->sha_ctxt.auth_data[0] = 0;
handle->sha_ctxt.auth_data[1] = 0;
handle->sha_ctxt.trailing_buf_len = 0;
handle->sha_ctxt.init_done = false;
memset(&handle->sha_ctxt.trailing_buf[0], 0, 64);
kzfree(k_buf_src);
return err;
}
static int qcedev_hash_cmac(struct qcedev_async_req *qcedev_areq,
struct qcedev_handle *handle,
struct scatterlist *sg_src)
{
int err = 0;
int i = 0;
uint32_t total;
uint8_t *user_src = NULL;
uint8_t *k_src = NULL;
uint8_t *k_buf_src = NULL;
total = qcedev_areq->sha_op_req.data_len;
if (copy_from_user(&handle->sha_ctxt.authkey[0],
(void __user *)qcedev_areq->sha_op_req.authkey,
qcedev_areq->sha_op_req.authklen))
return -EFAULT;
k_buf_src = kmalloc(total, GFP_KERNEL);
if (k_buf_src == NULL) {
pr_err("%s: Can't Allocate memory: k_buf_src 0x%lx\n",
__func__, (uintptr_t)k_buf_src);
return -ENOMEM;
}
k_src = k_buf_src;
/* Copy data from user src(s) */
user_src = (void __user *)qcedev_areq->sha_op_req.data[0].vaddr;
for (i = 0; i < qcedev_areq->sha_op_req.entries; i++) {
user_src =
(void __user *)qcedev_areq->sha_op_req.data[i].vaddr;
if (user_src && copy_from_user(k_src, (void __user *)user_src,
qcedev_areq->sha_op_req.data[i].len)) {
kzfree(k_buf_src);
return -EFAULT;
}
k_src += qcedev_areq->sha_op_req.data[i].len;
}
qcedev_areq->sha_req.sreq.src = sg_src;
sg_set_buf(qcedev_areq->sha_req.sreq.src, k_buf_src, total);
sg_mark_end(qcedev_areq->sha_req.sreq.src);
qcedev_areq->sha_req.sreq.nbytes = total;
handle->sha_ctxt.diglen = qcedev_areq->sha_op_req.diglen;
err = submit_req(qcedev_areq, handle);
kzfree(k_buf_src);
return err;
}
static int qcedev_set_hmac_auth_key(struct qcedev_async_req *areq,
struct qcedev_handle *handle,
struct scatterlist *sg_src)
{
int err = 0;
if (areq->sha_op_req.authklen <= QCEDEV_MAX_KEY_SIZE) {
qcedev_sha_init(areq, handle);
if (copy_from_user(&handle->sha_ctxt.authkey[0],
(void __user *)areq->sha_op_req.authkey,
areq->sha_op_req.authklen))
return -EFAULT;
} else {
struct qcedev_async_req authkey_areq;
uint8_t authkey[QCEDEV_MAX_SHA_BLOCK_SIZE];
init_completion(&authkey_areq.complete);
authkey_areq.sha_op_req.entries = 1;
authkey_areq.sha_op_req.data[0].vaddr =
areq->sha_op_req.authkey;
authkey_areq.sha_op_req.data[0].len = areq->sha_op_req.authklen;
authkey_areq.sha_op_req.data_len = areq->sha_op_req.authklen;
authkey_areq.sha_op_req.diglen = 0;
authkey_areq.handle = handle;
memset(&authkey_areq.sha_op_req.digest[0], 0,
QCEDEV_MAX_SHA_DIGEST);
if (areq->sha_op_req.alg == QCEDEV_ALG_SHA1_HMAC)
authkey_areq.sha_op_req.alg = QCEDEV_ALG_SHA1;
if (areq->sha_op_req.alg == QCEDEV_ALG_SHA256_HMAC)
authkey_areq.sha_op_req.alg = QCEDEV_ALG_SHA256;
authkey_areq.op_type = QCEDEV_CRYPTO_OPER_SHA;
qcedev_sha_init(&authkey_areq, handle);
err = qcedev_sha_update(&authkey_areq, handle, sg_src);
if (!err)
err = qcedev_sha_final(&authkey_areq, handle);
else
return err;
memcpy(&authkey[0], &handle->sha_ctxt.digest[0],
handle->sha_ctxt.diglen);
qcedev_sha_init(areq, handle);
memcpy(&handle->sha_ctxt.authkey[0], &authkey[0],
handle->sha_ctxt.diglen);
}
return err;
}
static int qcedev_hmac_get_ohash(struct qcedev_async_req *qcedev_areq,
struct qcedev_handle *handle)
{
int err = 0;
struct scatterlist sg_src;
uint8_t *k_src = NULL;
uint32_t sha_block_size = 0;
uint32_t sha_digest_size = 0;
if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_SHA1_HMAC) {
sha_digest_size = SHA1_DIGEST_SIZE;
sha_block_size = SHA1_BLOCK_SIZE;
} else {
if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_SHA256_HMAC) {
sha_digest_size = SHA256_DIGEST_SIZE;
sha_block_size = SHA256_BLOCK_SIZE;
}
}
k_src = kmalloc(sha_block_size, GFP_KERNEL);
if (k_src == NULL) {
pr_err("%s: Can't Allocate memory: k_src 0x%lx\n",
__func__, (uintptr_t)k_src);
return -ENOMEM;
}
/* check for trailing buffer from previous updates and append it */
memcpy(k_src, &handle->sha_ctxt.trailing_buf[0],
handle->sha_ctxt.trailing_buf_len);
qcedev_areq->sha_req.sreq.src = (struct scatterlist *) &sg_src;
sg_set_buf(qcedev_areq->sha_req.sreq.src, k_src, sha_block_size);
sg_mark_end(qcedev_areq->sha_req.sreq.src);
qcedev_areq->sha_req.sreq.nbytes = sha_block_size;
memset(&handle->sha_ctxt.trailing_buf[0], 0, sha_block_size);
memcpy(&handle->sha_ctxt.trailing_buf[0], &handle->sha_ctxt.digest[0],
sha_digest_size);
handle->sha_ctxt.trailing_buf_len = sha_digest_size;
handle->sha_ctxt.first_blk = 1;
handle->sha_ctxt.last_blk = 0;
handle->sha_ctxt.auth_data[0] = 0;
handle->sha_ctxt.auth_data[1] = 0;
if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_SHA1_HMAC) {
memcpy(&handle->sha_ctxt.digest[0],
&_std_init_vector_sha1_uint8[0], SHA1_DIGEST_SIZE);
handle->sha_ctxt.diglen = SHA1_DIGEST_SIZE;
}
if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_SHA256_HMAC) {
memcpy(&handle->sha_ctxt.digest[0],
&_std_init_vector_sha256_uint8[0], SHA256_DIGEST_SIZE);
handle->sha_ctxt.diglen = SHA256_DIGEST_SIZE;
}
err = submit_req(qcedev_areq, handle);
handle->sha_ctxt.last_blk = 0;
handle->sha_ctxt.first_blk = 0;
kzfree(k_src);
return err;
}
static int qcedev_hmac_update_iokey(struct qcedev_async_req *areq,
struct qcedev_handle *handle, bool ikey)
{
int i;
uint32_t constant;
uint32_t sha_block_size;
if (ikey)
constant = 0x36;
else
constant = 0x5c;
if (areq->sha_op_req.alg == QCEDEV_ALG_SHA1_HMAC)
sha_block_size = SHA1_BLOCK_SIZE;
else
sha_block_size = SHA256_BLOCK_SIZE;
memset(&handle->sha_ctxt.trailing_buf[0], 0, sha_block_size);
for (i = 0; i < sha_block_size; i++)
handle->sha_ctxt.trailing_buf[i] =
(handle->sha_ctxt.authkey[i] ^ constant);
handle->sha_ctxt.trailing_buf_len = sha_block_size;
return 0;
}
static int qcedev_hmac_init(struct qcedev_async_req *areq,
struct qcedev_handle *handle,
struct scatterlist *sg_src)
{
int err;
struct qcedev_control *podev = handle->cntl;
err = qcedev_set_hmac_auth_key(areq, handle, sg_src);
if (err)
return err;
if (!podev->ce_support.sha_hmac)
qcedev_hmac_update_iokey(areq, handle, true);
return 0;
}
static int qcedev_hmac_final(struct qcedev_async_req *areq,
struct qcedev_handle *handle)
{
int err;
struct qcedev_control *podev = handle->cntl;
err = qcedev_sha_final(areq, handle);
if (podev->ce_support.sha_hmac)
return err;
qcedev_hmac_update_iokey(areq, handle, false);
err = qcedev_hmac_get_ohash(areq, handle);
if (err)
return err;
err = qcedev_sha_final(areq, handle);
return err;
}
static int qcedev_hash_init(struct qcedev_async_req *areq,
struct qcedev_handle *handle,
struct scatterlist *sg_src)
{
if ((areq->sha_op_req.alg == QCEDEV_ALG_SHA1) ||
(areq->sha_op_req.alg == QCEDEV_ALG_SHA256))
return qcedev_sha_init(areq, handle);
else
return qcedev_hmac_init(areq, handle, sg_src);
}
static int qcedev_hash_update(struct qcedev_async_req *qcedev_areq,
struct qcedev_handle *handle,
struct scatterlist *sg_src)
{
return qcedev_sha_update(qcedev_areq, handle, sg_src);
}
static int qcedev_hash_final(struct qcedev_async_req *areq,
struct qcedev_handle *handle)
{
if ((areq->sha_op_req.alg == QCEDEV_ALG_SHA1) ||
(areq->sha_op_req.alg == QCEDEV_ALG_SHA256))
return qcedev_sha_final(areq, handle);
else
return qcedev_hmac_final(areq, handle);
}
static int qcedev_vbuf_ablk_cipher_max_xfer(struct qcedev_async_req *areq,
int *di, struct qcedev_handle *handle,
uint8_t *k_align_src)
{
int err = 0;
int i = 0;
int dst_i = *di;
struct scatterlist sg_src;
uint32_t byteoffset = 0;
uint8_t *user_src = NULL;
uint8_t *k_align_dst = k_align_src;
struct qcedev_cipher_op_req *creq = &areq->cipher_op_req;
if (areq->cipher_op_req.mode == QCEDEV_AES_MODE_CTR)
byteoffset = areq->cipher_op_req.byteoffset;
user_src = (void __user *)areq->cipher_op_req.vbuf.src[0].vaddr;
if (user_src && copy_from_user((k_align_src + byteoffset),
(void __user *)user_src,
areq->cipher_op_req.vbuf.src[0].len))
return -EFAULT;
k_align_src += byteoffset + areq->cipher_op_req.vbuf.src[0].len;
for (i = 1; i < areq->cipher_op_req.entries; i++) {
user_src =
(void __user *)areq->cipher_op_req.vbuf.src[i].vaddr;
if (user_src && copy_from_user(k_align_src,
(void __user *)user_src,
areq->cipher_op_req.vbuf.src[i].len)) {
return -EFAULT;
}
k_align_src += areq->cipher_op_req.vbuf.src[i].len;
}
/* restore src beginning */
k_align_src = k_align_dst;
areq->cipher_op_req.data_len += byteoffset;
areq->cipher_req.creq.src = (struct scatterlist *) &sg_src;
areq->cipher_req.creq.dst = (struct scatterlist *) &sg_src;
/* In place encryption/decryption */
sg_set_buf(areq->cipher_req.creq.src,
k_align_dst,
areq->cipher_op_req.data_len);
sg_mark_end(areq->cipher_req.creq.src);
areq->cipher_req.creq.nbytes = areq->cipher_op_req.data_len;
areq->cipher_req.creq.info = areq->cipher_op_req.iv;
areq->cipher_op_req.entries = 1;
err = submit_req(areq, handle);
/* copy data to destination buffer*/
creq->data_len -= byteoffset;
while (creq->data_len > 0) {
if (creq->vbuf.dst[dst_i].len <= creq->data_len) {
if (err == 0 && copy_to_user(
(void __user *)creq->vbuf.dst[dst_i].vaddr,
(k_align_dst + byteoffset),
creq->vbuf.dst[dst_i].len))
return -EFAULT;
k_align_dst += creq->vbuf.dst[dst_i].len +
byteoffset;
creq->data_len -= creq->vbuf.dst[dst_i].len;
dst_i++;
} else {
if (err == 0 && copy_to_user(
(void __user *)creq->vbuf.dst[dst_i].vaddr,
(k_align_dst + byteoffset),
creq->data_len))
return -EFAULT;
k_align_dst += creq->data_len;
creq->vbuf.dst[dst_i].len -= creq->data_len;
creq->vbuf.dst[dst_i].vaddr += creq->data_len;
creq->data_len = 0;
}
}
*di = dst_i;
return err;
};
static int qcedev_vbuf_ablk_cipher(struct qcedev_async_req *areq,
struct qcedev_handle *handle)
{
int err = 0;
int di = 0;
int i = 0;
int j = 0;
int k = 0;
uint32_t byteoffset = 0;
int num_entries = 0;
uint32_t total = 0;
uint32_t len;
uint8_t *k_buf_src = NULL;
uint8_t *k_align_src = NULL;
uint32_t max_data_xfer;
struct qcedev_cipher_op_req *saved_req;
struct qcedev_cipher_op_req *creq = &areq->cipher_op_req;
total = 0;
if (areq->cipher_op_req.mode == QCEDEV_AES_MODE_CTR)
byteoffset = areq->cipher_op_req.byteoffset;
k_buf_src = kmalloc(QCE_MAX_OPER_DATA + CACHE_LINE_SIZE * 2,
GFP_KERNEL);
if (k_buf_src == NULL) {
pr_err("%s: Can't Allocate memory: k_buf_src 0x%lx\n",
__func__, (uintptr_t)k_buf_src);
return -ENOMEM;
}
k_align_src = (uint8_t *)ALIGN(((uintptr_t)k_buf_src),
CACHE_LINE_SIZE);
max_data_xfer = QCE_MAX_OPER_DATA - byteoffset;
saved_req = kmalloc(sizeof(struct qcedev_cipher_op_req), GFP_KERNEL);
if (saved_req == NULL) {
pr_err("%s: Can't Allocate memory:saved_req 0x%lx\n",
__func__, (uintptr_t)saved_req);
kzfree(k_buf_src);
return -ENOMEM;
}
memcpy(saved_req, creq, sizeof(struct qcedev_cipher_op_req));
if (areq->cipher_op_req.data_len > max_data_xfer) {
struct qcedev_cipher_op_req req;
/* save the original req structure */
memcpy(&req, creq, sizeof(struct qcedev_cipher_op_req));
i = 0;
/* Address 32 KB at a time */
while ((i < req.entries) && (err == 0)) {
if (creq->vbuf.src[i].len > max_data_xfer) {
creq->vbuf.src[0].len = max_data_xfer;
if (i > 0) {
creq->vbuf.src[0].vaddr =
creq->vbuf.src[i].vaddr;
}
creq->data_len = max_data_xfer;
creq->entries = 1;
err = qcedev_vbuf_ablk_cipher_max_xfer(areq,
&di, handle, k_align_src);
if (err < 0) {
kzfree(k_buf_src);
kzfree(saved_req);
return err;
}
creq->vbuf.src[i].len = req.vbuf.src[i].len -
max_data_xfer;
creq->vbuf.src[i].vaddr =
req.vbuf.src[i].vaddr +
max_data_xfer;
req.vbuf.src[i].vaddr =
creq->vbuf.src[i].vaddr;
req.vbuf.src[i].len = creq->vbuf.src[i].len;
} else {
total = areq->cipher_op_req.byteoffset;
for (j = i; j < req.entries; j++) {
num_entries++;
if ((total + creq->vbuf.src[j].len)
>= max_data_xfer) {
creq->vbuf.src[j].len =
max_data_xfer - total;
total = max_data_xfer;
break;
}
total += creq->vbuf.src[j].len;
}
creq->data_len = total;
if (i > 0)
for (k = 0; k < num_entries; k++) {
creq->vbuf.src[k].len =
creq->vbuf.src[i+k].len;
creq->vbuf.src[k].vaddr =
creq->vbuf.src[i+k].vaddr;
}
creq->entries = num_entries;
i = j;
err = qcedev_vbuf_ablk_cipher_max_xfer(areq,
&di, handle, k_align_src);
if (err < 0) {
kzfree(k_buf_src);
kzfree(saved_req);
return err;
}
num_entries = 0;
areq->cipher_op_req.byteoffset = 0;
creq->vbuf.src[i].vaddr = req.vbuf.src[i].vaddr
+ creq->vbuf.src[i].len;
creq->vbuf.src[i].len = req.vbuf.src[i].len -
creq->vbuf.src[i].len;
req.vbuf.src[i].vaddr =
creq->vbuf.src[i].vaddr;
req.vbuf.src[i].len = creq->vbuf.src[i].len;
if (creq->vbuf.src[i].len == 0)
i++;
}
areq->cipher_op_req.byteoffset = 0;
max_data_xfer = QCE_MAX_OPER_DATA;
byteoffset = 0;
} /* end of while ((i < req.entries) && (err == 0)) */
} else
err = qcedev_vbuf_ablk_cipher_max_xfer(areq, &di, handle,
k_align_src);
/* Restore the original req structure */
for (i = 0; i < saved_req->entries; i++) {
creq->vbuf.src[i].len = saved_req->vbuf.src[i].len;
creq->vbuf.src[i].vaddr = saved_req->vbuf.src[i].vaddr;
}
for (len = 0, i = 0; len < saved_req->data_len; i++) {
creq->vbuf.dst[i].len = saved_req->vbuf.dst[i].len;
creq->vbuf.dst[i].vaddr = saved_req->vbuf.dst[i].vaddr;
len += saved_req->vbuf.dst[i].len;
}
creq->entries = saved_req->entries;
creq->data_len = saved_req->data_len;
creq->byteoffset = saved_req->byteoffset;
kzfree(saved_req);
kzfree(k_buf_src);
return err;
}
static int qcedev_check_cipher_key(struct qcedev_cipher_op_req *req,
struct qcedev_control *podev)
{
/* if intending to use HW key make sure key fields are set
* correctly and HW key is indeed supported in target
*/
if (req->encklen == 0) {
int i;
for (i = 0; i < QCEDEV_MAX_KEY_SIZE; i++) {
if (req->enckey[i]) {
pr_err("%s: Invalid key: non-zero key input\n",
__func__);
goto error;
}
}
if ((req->op != QCEDEV_OPER_ENC_NO_KEY) &&
(req->op != QCEDEV_OPER_DEC_NO_KEY))
if (!podev->platform_support.hw_key_support) {
pr_err("%s: Invalid op %d\n", __func__,
(uint32_t)req->op);
goto error;
}
} else {
if (req->encklen == QCEDEV_AES_KEY_192) {
if (!podev->ce_support.aes_key_192) {
pr_err("%s: AES-192 not supported\n", __func__);
goto error;
}
} else {
/* if not using HW key make sure key
* length is valid
*/
if ((req->mode == QCEDEV_AES_MODE_XTS)) {
if ((req->encklen != QCEDEV_AES_KEY_128*2) &&
(req->encklen != QCEDEV_AES_KEY_256*2)) {
pr_err("%s: unsupported key size: %d\n",
__func__, req->encklen);
goto error;
}
} else {
if ((req->encklen != QCEDEV_AES_KEY_128) &&
(req->encklen != QCEDEV_AES_KEY_256)) {
pr_err("%s: unsupported key size %d\n",
__func__, req->encklen);
goto error;
}
}
}
}
return 0;
error:
return -EINVAL;
}
static int qcedev_check_cipher_params(struct qcedev_cipher_op_req *req,
struct qcedev_control *podev)
{
uint32_t total = 0;
uint32_t i;
if (req->use_pmem) {
pr_err("%s: Use of PMEM is not supported\n", __func__);
goto error;
}
if ((req->entries == 0) || (req->data_len == 0) ||
(req->entries > QCEDEV_MAX_BUFFERS)) {
pr_err("%s: Invalid cipher length/entries\n", __func__);
goto error;
}
if ((req->alg >= QCEDEV_ALG_LAST) ||
(req->mode >= QCEDEV_AES_DES_MODE_LAST)) {
pr_err("%s: Invalid algorithm %d\n", __func__,
(uint32_t)req->alg);
goto error;
}
if ((req->mode == QCEDEV_AES_MODE_XTS) &&
(!podev->ce_support.aes_xts)) {
pr_err("%s: XTS algorithm is not supported\n", __func__);
goto error;
}
if (req->alg == QCEDEV_ALG_AES) {
if (qcedev_check_cipher_key(req, podev))
goto error;
}
/* if using a byteoffset, make sure it is CTR mode using vbuf */
if (req->byteoffset) {
if (req->mode != QCEDEV_AES_MODE_CTR) {
pr_err("%s: Operation on byte offset not supported\n",
__func__);
goto error;
}
if (req->byteoffset >= AES_CE_BLOCK_SIZE) {
pr_err("%s: Invalid byte offset\n", __func__);
goto error;
}
total = req->byteoffset;
for (i = 0; i < req->entries; i++) {
if (total > U32_MAX - req->vbuf.src[i].len) {
pr_err("%s:Integer overflow on total src len\n",
__func__);
goto error;
}
total += req->vbuf.src[i].len;
}
}
if (req->data_len < req->byteoffset) {
pr_err("%s: req data length %u is less than byteoffset %u\n",
__func__, req->data_len, req->byteoffset);
goto error;
}
/* Ensure IV size */
if (req->ivlen > QCEDEV_MAX_IV_SIZE) {
pr_err("%s: ivlen is not correct: %u\n", __func__, req->ivlen);
goto error;
}
/* Ensure Key size */
if (req->encklen > QCEDEV_MAX_KEY_SIZE) {
pr_err("%s: Klen is not correct: %u\n", __func__, req->encklen);
goto error;
}
/* Ensure zer ivlen for ECB mode */
if (req->ivlen > 0) {
if ((req->mode == QCEDEV_AES_MODE_ECB) ||
(req->mode == QCEDEV_DES_MODE_ECB)) {
pr_err("%s: Expecting a zero length IV\n", __func__);
goto error;
}
} else {
if ((req->mode != QCEDEV_AES_MODE_ECB) &&
(req->mode != QCEDEV_DES_MODE_ECB)) {
pr_err("%s: Expecting a non-zero ength IV\n", __func__);
goto error;
}
}
/* Check for sum of all dst length is equal to data_len */
for (i = 0, total = 0; i < req->entries; i++) {
if (req->vbuf.dst[i].len >= U32_MAX - total) {
pr_err("%s: Integer overflow on total req dst vbuf length\n",
__func__);
goto error;
}
total += req->vbuf.dst[i].len;
}
if (total != req->data_len) {
pr_err("%s: Total (i=%d) dst(%d) buf size != data_len (%d)\n",
__func__, i, total, req->data_len);
goto error;
}
/* Check for sum of all src length is equal to data_len */
for (i = 0, total = 0; i < req->entries; i++) {
if (req->vbuf.src[i].len > U32_MAX - total) {
pr_err("%s: Integer overflow on total req src vbuf length\n",
__func__);
goto error;
}
total += req->vbuf.src[i].len;
}
if (total != req->data_len) {
pr_err("%s: Total src(%d) buf size != data_len (%d)\n",
__func__, total, req->data_len);
goto error;
}
return 0;
error:
return -EINVAL;
}
static int qcedev_check_sha_params(struct qcedev_sha_op_req *req,
struct qcedev_control *podev)
{
uint32_t total = 0;
uint32_t i;
if ((req->alg == QCEDEV_ALG_AES_CMAC) &&
(!podev->ce_support.cmac)) {
pr_err("%s: CMAC not supported\n", __func__);
goto sha_error;
}
if ((!req->entries) || (req->entries > QCEDEV_MAX_BUFFERS)) {
pr_err("%s: Invalid num entries (%d)\n",
__func__, req->entries);
goto sha_error;
}
if (req->alg >= QCEDEV_ALG_SHA_ALG_LAST) {
pr_err("%s: Invalid algorithm (%d)\n", __func__, req->alg);
goto sha_error;
}
if ((req->alg == QCEDEV_ALG_SHA1_HMAC) ||
(req->alg == QCEDEV_ALG_SHA1_HMAC)) {
if (req->authkey == NULL) {
pr_err("%s: Invalid authkey pointer\n", __func__);
goto sha_error;
}
if (req->authklen <= 0) {
pr_err("%s: Invalid authkey length (%d)\n",
__func__, req->authklen);
goto sha_error;
}
}
if (req->alg == QCEDEV_ALG_AES_CMAC) {
if ((req->authklen != QCEDEV_AES_KEY_128) &&
(req->authklen != QCEDEV_AES_KEY_256)) {
pr_err("%s: unsupported key length\n", __func__);
goto sha_error;
}
}
/* Check for sum of all src length is equal to data_len */
for (i = 0, total = 0; i < req->entries; i++) {
if (req->data[i].len > U32_MAX - total) {
pr_err("%s: Integer overflow on total req buf length\n",
__func__);
goto sha_error;
}
total += req->data[i].len;
}
if (total != req->data_len) {
pr_err("%s: Total src(%d) buf size != data_len (%d)\n",
__func__, total, req->data_len);
goto sha_error;
}
return 0;
sha_error:
return -EINVAL;
}
long qcedev_ioctl(struct file *file, unsigned cmd, unsigned long arg)
{
int err = 0;
struct qcedev_handle *handle;
struct qcedev_control *podev;
struct qcedev_async_req qcedev_areq;
struct qcedev_stat *pstat;
handle = file->private_data;
podev = handle->cntl;
qcedev_areq.handle = handle;
if (podev == NULL || podev->magic != QCEDEV_MAGIC) {
pr_err("%s: invalid handle %p\n",
__func__, podev);
return -ENOENT;
}
/* Verify user arguments. */
if (_IOC_TYPE(cmd) != QCEDEV_IOC_MAGIC)
return -ENOTTY;
init_completion(&qcedev_areq.complete);
pstat = &_qcedev_stat;
switch (cmd) {
case QCEDEV_IOCTL_ENC_REQ:
case QCEDEV_IOCTL_DEC_REQ:
if (copy_from_user(&qcedev_areq.cipher_op_req,
(void __user *)arg,
sizeof(struct qcedev_cipher_op_req)))
return -EFAULT;
qcedev_areq.op_type = QCEDEV_CRYPTO_OPER_CIPHER;
if (qcedev_check_cipher_params(&qcedev_areq.cipher_op_req,
podev))
return -EINVAL;
err = qcedev_vbuf_ablk_cipher(&qcedev_areq, handle);
if (err)
return err;
if (copy_to_user((void __user *)arg,
&qcedev_areq.cipher_op_req,
sizeof(struct qcedev_cipher_op_req)))
return -EFAULT;
break;
case QCEDEV_IOCTL_SHA_INIT_REQ:
{
struct scatterlist sg_src;
if (copy_from_user(&qcedev_areq.sha_op_req,
(void __user *)arg,
sizeof(struct qcedev_sha_op_req)))
return -EFAULT;
mutex_lock(&hash_access_lock);
if (qcedev_check_sha_params(&qcedev_areq.sha_op_req, podev)) {
mutex_unlock(&hash_access_lock);
return -EINVAL;
}
qcedev_areq.op_type = QCEDEV_CRYPTO_OPER_SHA;
err = qcedev_hash_init(&qcedev_areq, handle, &sg_src);
if (err) {
mutex_unlock(&hash_access_lock);
return err;
}
mutex_unlock(&hash_access_lock);
if (copy_to_user((void __user *)arg, &qcedev_areq.sha_op_req,
sizeof(struct qcedev_sha_op_req)))
return -EFAULT;
}
handle->sha_ctxt.init_done = true;
break;
case QCEDEV_IOCTL_GET_CMAC_REQ:
if (!podev->ce_support.cmac)
return -ENOTTY;
case QCEDEV_IOCTL_SHA_UPDATE_REQ:
{
struct scatterlist sg_src;
if (copy_from_user(&qcedev_areq.sha_op_req,
(void __user *)arg,
sizeof(struct qcedev_sha_op_req)))
return -EFAULT;
mutex_lock(&hash_access_lock);
if (qcedev_check_sha_params(&qcedev_areq.sha_op_req, podev)) {
mutex_unlock(&hash_access_lock);
return -EINVAL;
}
qcedev_areq.op_type = QCEDEV_CRYPTO_OPER_SHA;
if (qcedev_areq.sha_op_req.alg == QCEDEV_ALG_AES_CMAC) {
err = qcedev_hash_cmac(&qcedev_areq, handle, &sg_src);
if (err) {
mutex_unlock(&hash_access_lock);
return err;
}
} else {
if (handle->sha_ctxt.init_done == false) {
pr_err("%s Init was not called\n", __func__);
mutex_unlock(&hash_access_lock);
return -EINVAL;
}
err = qcedev_hash_update(&qcedev_areq, handle, &sg_src);
if (err) {
mutex_unlock(&hash_access_lock);
return err;
}
}
if (handle->sha_ctxt.diglen > QCEDEV_MAX_SHA_DIGEST) {
pr_err("Invalid sha_ctxt.diglen %d\n",
handle->sha_ctxt.diglen);
mutex_unlock(&hash_access_lock);
return -EINVAL;
}
memcpy(&qcedev_areq.sha_op_req.digest[0],
&handle->sha_ctxt.digest[0],
handle->sha_ctxt.diglen);
mutex_unlock(&hash_access_lock);
if (copy_to_user((void __user *)arg, &qcedev_areq.sha_op_req,
sizeof(struct qcedev_sha_op_req)))
return -EFAULT;
}
break;
case QCEDEV_IOCTL_SHA_FINAL_REQ:
if (handle->sha_ctxt.init_done == false) {
pr_err("%s Init was not called\n", __func__);
return -EINVAL;
}
if (copy_from_user(&qcedev_areq.sha_op_req,
(void __user *)arg,
sizeof(struct qcedev_sha_op_req)))
return -EFAULT;
mutex_lock(&hash_access_lock);
if (qcedev_check_sha_params(&qcedev_areq.sha_op_req, podev)) {
mutex_unlock(&hash_access_lock);
return -EINVAL;
}
qcedev_areq.op_type = QCEDEV_CRYPTO_OPER_SHA;
err = qcedev_hash_final(&qcedev_areq, handle);
if (err) {
mutex_unlock(&hash_access_lock);
return err;
}
if (handle->sha_ctxt.diglen > QCEDEV_MAX_SHA_DIGEST) {
pr_err("Invalid sha_ctxt.diglen %d\n",
handle->sha_ctxt.diglen);
mutex_unlock(&hash_access_lock);
return -EINVAL;
}
qcedev_areq.sha_op_req.diglen = handle->sha_ctxt.diglen;
memcpy(&qcedev_areq.sha_op_req.digest[0],
&handle->sha_ctxt.digest[0],
handle->sha_ctxt.diglen);
mutex_unlock(&hash_access_lock);
if (copy_to_user((void __user *)arg, &qcedev_areq.sha_op_req,
sizeof(struct qcedev_sha_op_req)))
return -EFAULT;
handle->sha_ctxt.init_done = false;
break;
case QCEDEV_IOCTL_GET_SHA_REQ:
{
struct scatterlist sg_src;
if (copy_from_user(&qcedev_areq.sha_op_req,
(void __user *)arg,
sizeof(struct qcedev_sha_op_req)))
return -EFAULT;
mutex_lock(&hash_access_lock);
if (qcedev_check_sha_params(&qcedev_areq.sha_op_req, podev)) {
mutex_unlock(&hash_access_lock);
return -EINVAL;
}
qcedev_areq.op_type = QCEDEV_CRYPTO_OPER_SHA;
qcedev_hash_init(&qcedev_areq, handle, &sg_src);
err = qcedev_hash_update(&qcedev_areq, handle, &sg_src);
if (err) {
mutex_unlock(&hash_access_lock);
return err;
}
err = qcedev_hash_final(&qcedev_areq, handle);
if (err) {
mutex_unlock(&hash_access_lock);
return err;
}
if (handle->sha_ctxt.diglen > QCEDEV_MAX_SHA_DIGEST) {
pr_err("Invalid sha_ctxt.diglen %d\n",
handle->sha_ctxt.diglen);
mutex_unlock(&hash_access_lock);
return -EINVAL;
}
qcedev_areq.sha_op_req.diglen = handle->sha_ctxt.diglen;
memcpy(&qcedev_areq.sha_op_req.digest[0],
&handle->sha_ctxt.digest[0],
handle->sha_ctxt.diglen);
mutex_unlock(&hash_access_lock);
if (copy_to_user((void __user *)arg, &qcedev_areq.sha_op_req,
sizeof(struct qcedev_sha_op_req)))
return -EFAULT;
}
break;
/* This IOCTL call can be called only once
by FIPS Integrity test */
case QCEDEV_IOCTL_UPDATE_FIPS_STATUS:
{
enum fips_status status;
if (is_fips_qcedev_integritytest_done)
return -EPERM;
if (!access_ok(VERIFY_WRITE, (void __user *)arg,
sizeof(enum fips_status)))
return -EFAULT;
if (__copy_from_user(&status, (void __user *)arg,
sizeof(enum fips_status)))
return -EFAULT;
g_fips140_status = _fips_update_status(status);
pr_info("qcedev: FIPS140-2 Global status flag: %d\n",
g_fips140_status);
is_fips_qcedev_integritytest_done = true;
if (g_fips140_status == FIPS140_STATUS_FAIL) {
pr_info("qcedev: FIPS140-2 Integrity test failed\n");
break;
}
if (!(_do_msm_fips_drbg_init(drbg_call_back)) &&
(g_fips140_status != FIPS140_STATUS_NA))
g_fips140_status = FIPS140_STATUS_PASS;
}
pr_info("qcedev: FIPS140-2 Global status flag: %d\n",
g_fips140_status);
break;
/* Read only IOCTL call to read the
current FIPS140-2 Status */
case QCEDEV_IOCTL_QUERY_FIPS_STATUS:
{
enum fips_status status;
if (!access_ok(VERIFY_WRITE, (void __user *)arg,
sizeof(enum fips_status)))
return -EFAULT;
status = g_fips140_status;
if (__copy_to_user((void __user *)arg, &status,
sizeof(enum fips_status)))
return -EFAULT;
}
break;
default:
return -ENOTTY;
}
return err;
}
EXPORT_SYMBOL(qcedev_ioctl);
static int qcedev_probe(struct platform_device *pdev)
{
void *handle = NULL;
int rc = 0;
struct qcedev_control *podev;
struct msm_ce_hw_support *platform_support;
podev = &qce_dev[0];
podev->high_bw_req_count = 0;
INIT_LIST_HEAD(&podev->ready_commands);
podev->active_command = NULL;
spin_lock_init(&podev->lock);
tasklet_init(&podev->done_tasklet, req_done, (unsigned long)podev);
/* open qce */
handle = qce_open(pdev, &rc);
if (handle == NULL) {
platform_set_drvdata(pdev, NULL);
return rc;
}
podev->qce = handle;
podev->pdev = pdev;
platform_set_drvdata(pdev, podev);
rc = misc_register(&podev->miscdevice);
qce_hw_support(podev->qce, &podev->ce_support);
if (podev->ce_support.bam) {
podev->platform_support.ce_shared = 0;
podev->platform_support.shared_ce_resource = 0;
podev->platform_support.hw_key_support =
podev->ce_support.hw_key;
podev->platform_support.bus_scale_table = NULL;
podev->platform_support.sha_hmac = 1;
podev->platform_support.bus_scale_table =
(struct msm_bus_scale_pdata *)
msm_bus_cl_get_pdata(pdev);
if (!podev->platform_support.bus_scale_table)
pr_err("bus_scale_table is NULL\n");
} else {
platform_support =
(struct msm_ce_hw_support *)pdev->dev.platform_data;
podev->platform_support.ce_shared = platform_support->ce_shared;
podev->platform_support.shared_ce_resource =
platform_support->shared_ce_resource;
podev->platform_support.hw_key_support =
platform_support->hw_key_support;
podev->platform_support.bus_scale_table =
platform_support->bus_scale_table;
podev->platform_support.sha_hmac = platform_support->sha_hmac;
}
if (podev->platform_support.bus_scale_table != NULL) {
podev->bus_scale_handle =
msm_bus_scale_register_client(
(struct msm_bus_scale_pdata *)
podev->platform_support.bus_scale_table);
if (!podev->bus_scale_handle) {
pr_err("%s not able to get bus scale\n",
__func__);
rc = -ENOMEM;
goto err;
}
}
/*
* FIPS140-2 Known Answer Tests:
* IN case of any failure, do not Init the module
*/
is_fips_qcedev_integritytest_done = false;
if (g_fips140_status != FIPS140_STATUS_NA) {
if (_fips_qcedev_cipher_selftest(&qce_dev[0]) ||
_fips_qcedev_sha_selftest(&qce_dev[0])) {
pr_err("qcedev: FIPS140-2 Known Answer Tests : Failed\n");
panic("SYSTEM CAN NOT BOOT !!!");
rc = -1;
} else {
pr_info("qcedev: FIPS140-2 Known Answer Tests : Successful\n");
rc = 0;
}
} else
pr_info("qcedev: FIPS140-2 Known Answer Tests : Skipped\n");
if (rc >= 0)
return 0;
else
if (podev->platform_support.bus_scale_table != NULL)
msm_bus_scale_unregister_client(
podev->bus_scale_handle);
err:
if (handle)
qce_close(handle);
platform_set_drvdata(pdev, NULL);
podev->qce = NULL;
podev->pdev = NULL;
return rc;
};
static int qcedev_remove(struct platform_device *pdev)
{
struct qcedev_control *podev;
podev = platform_get_drvdata(pdev);
if (!podev)
return 0;
if (podev->qce)
qce_close(podev->qce);
if (podev->platform_support.bus_scale_table != NULL)
msm_bus_scale_unregister_client(podev->bus_scale_handle);
if (podev->miscdevice.minor != MISC_DYNAMIC_MINOR)
misc_deregister(&podev->miscdevice);
tasklet_kill(&podev->done_tasklet);
return 0;
};
static int qcedev_suspend(struct platform_device *pdev, pm_message_t state)
{
struct qcedev_control *podev;
int ret;
podev = platform_get_drvdata(pdev);
if (!podev || !podev->platform_support.bus_scale_table)
return 0;
mutex_lock(&qcedev_sent_bw_req);
if (podev->high_bw_req_count) {
ret = msm_bus_scale_client_update_request(
podev->bus_scale_handle, 0);
if (ret) {
pr_err("%s Unable to set to low bandwidth\n",
__func__);
goto suspend_exit;
}
ret = qce_disable_clk(podev->qce);
if (ret) {
pr_err("%s Unable disable clk\n", __func__);
ret = msm_bus_scale_client_update_request(
podev->bus_scale_handle, 1);
if (ret)
pr_err("%s Unable to set to high bandwidth\n",
__func__);
goto suspend_exit;
}
}
suspend_exit:
mutex_unlock(&qcedev_sent_bw_req);
return 0;
}
static int qcedev_resume(struct platform_device *pdev)
{
struct qcedev_control *podev;
int ret;
podev = platform_get_drvdata(pdev);
if (!podev || !podev->platform_support.bus_scale_table)
return 0;
mutex_lock(&qcedev_sent_bw_req);
if (podev->high_bw_req_count) {
ret = qce_enable_clk(podev->qce);
if (ret) {
pr_err("%s Unable enable clk\n", __func__);
goto resume_exit;
}
ret = msm_bus_scale_client_update_request(
podev->bus_scale_handle, 1);
if (ret) {
pr_err("%s Unable to set to high bandwidth\n",
__func__);
ret = qce_disable_clk(podev->qce);
if (ret)
pr_err("%s Unable enable clk\n",
__func__);
goto resume_exit;
}
}
resume_exit:
mutex_unlock(&qcedev_sent_bw_req);
return 0;
}
static struct of_device_id qcedev_match[] = {
{ .compatible = "qcom,qcedev",
},
{}
};
static struct platform_driver qcedev_plat_driver = {
.probe = qcedev_probe,
.remove = qcedev_remove,
.suspend = qcedev_suspend,
.resume = qcedev_resume,
.driver = {
.name = "qce",
.owner = THIS_MODULE,
.of_match_table = qcedev_match,
},
};
static int _disp_stats(int id)
{
struct qcedev_stat *pstat;
int len = 0;
pstat = &_qcedev_stat;
len = scnprintf(_debug_read_buf, DEBUG_MAX_RW_BUF - 1,
"\nQualcomm QCE dev driver %d Statistics:\n",
id + 1);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" Encryption operation success : %d\n",
pstat->qcedev_enc_success);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" Encryption operation fail : %d\n",
pstat->qcedev_enc_fail);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" Decryption operation success : %d\n",
pstat->qcedev_dec_success);
len += scnprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1,
" Encryption operation fail : %d\n",
pstat->qcedev_dec_fail);
return len;
}
static int _debug_stats_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static ssize_t _debug_stats_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
ssize_t rc = -EINVAL;
int qcedev = *((int *) file->private_data);
int len;
len = _disp_stats(qcedev);
if (len <= count)
rc = simple_read_from_buffer((void __user *) buf, len,
ppos, (void *) _debug_read_buf, len);
return rc;
}
static ssize_t _debug_stats_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
memset((char *)&_qcedev_stat, 0, sizeof(struct qcedev_stat));
return count;
};
static const struct file_operations _debug_stats_ops = {
.open = _debug_stats_open,
.read = _debug_stats_read,
.write = _debug_stats_write,
};
static int _qcedev_debug_init(void)
{
int rc;
char name[DEBUG_MAX_FNAME];
struct dentry *dent;
_debug_dent = debugfs_create_dir("qcedev", NULL);
if (IS_ERR(_debug_dent)) {
pr_err("qcedev debugfs_create_dir fail, error %ld\n",
PTR_ERR(_debug_dent));
return PTR_ERR(_debug_dent);
}
snprintf(name, DEBUG_MAX_FNAME-1, "stats-%d", 1);
_debug_qcedev = 0;
dent = debugfs_create_file(name, 0644, _debug_dent,
&_debug_qcedev, &_debug_stats_ops);
if (dent == NULL) {
pr_err("qcedev debugfs_create_file fail, error %ld\n",
PTR_ERR(dent));
rc = PTR_ERR(dent);
goto err;
}
return 0;
err:
debugfs_remove_recursive(_debug_dent);
return rc;
}
static int qcedev_init(void)
{
int rc;
rc = _qcedev_debug_init();
if (rc)
return rc;
return platform_driver_register(&qcedev_plat_driver);
}
static void qcedev_exit(void)
{
debugfs_remove_recursive(_debug_dent);
platform_driver_unregister(&qcedev_plat_driver);
}
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Qualcomm DEV Crypto driver");
module_init(qcedev_init);
module_exit(qcedev_exit);