blob: ca37e0ec6201b2a0db0bc55c660d259361e7b7b6 [file] [log] [blame]
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
/* Register Offsets for RB-CPR and Bit Definitions */
/* RBCPR Version Register */
#define REG_RBCPR_VERSION 0
#define RBCPR_VER_2 0x02
/* RBCPR Gate Count and Target Registers */
#define REG_RBCPR_GCNT_TARGET(n) (0x60 + 4 * n)
#define RBCPR_GCNT_TARGET_GCNT_BITS 10
#define RBCPR_GCNT_TARGET_GCNT_SHIFT 12
#define RBCPR_GCNT_TARGET_GCNT_MASK ((1<<RBCPR_GCNT_TARGET_GCNT_BITS)-1)
/* RBCPR Timer Control */
#define REG_RBCPR_TIMER_INTERVAL 0x44
#define REG_RBIF_TIMER_ADJUST 0x4C
#define RBIF_TIMER_ADJ_CONS_UP_BITS 4
#define RBIF_TIMER_ADJ_CONS_UP_MASK ((1<<RBIF_TIMER_ADJ_CONS_UP_BITS)-1)
#define RBIF_TIMER_ADJ_CONS_DOWN_BITS 4
#define RBIF_TIMER_ADJ_CONS_DOWN_MASK ((1<<RBIF_TIMER_ADJ_CONS_DOWN_BITS)-1)
#define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4
/* RBCPR Config Register */
#define REG_RBIF_LIMIT 0x48
#define REG_RBCPR_STEP_QUOT 0x80
#define REG_RBIF_SW_VLEVEL 0x94
#define RBIF_LIMIT_CEILING_BITS 6
#define RBIF_LIMIT_CEILING_MASK ((1<<RBIF_LIMIT_CEILING_BITS)-1)
#define RBIF_LIMIT_CEILING_SHIFT 6
#define RBIF_LIMIT_FLOOR_BITS 6
#define RBIF_LIMIT_FLOOR_MASK ((1<<RBIF_LIMIT_FLOOR_BITS)-1)
#define RBIF_LIMIT_CEILING_DEFAULT RBIF_LIMIT_CEILING_MASK
#define RBIF_LIMIT_FLOOR_DEFAULT 0
#define RBIF_SW_VLEVEL_DEFAULT 0x20
#define RBCPR_STEP_QUOT_STEPQUOT_BITS 8
#define RBCPR_STEP_QUOT_STEPQUOT_MASK ((1<<RBCPR_STEP_QUOT_STEPQUOT_BITS)-1)
#define RBCPR_STEP_QUOT_IDLE_CLK_BITS 4
#define RBCPR_STEP_QUOT_IDLE_CLK_MASK ((1<<RBCPR_STEP_QUOT_IDLE_CLK_BITS)-1)
#define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8
/* RBCPR Control Register */
#define REG_RBCPR_CTL 0x90
#define RBCPR_CTL_LOOP_EN BIT(0)
#define RBCPR_CTL_TIMER_EN BIT(3)
#define RBCPR_CTL_SW_AUTO_CONT_ACK_EN BIT(5)
#define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN BIT(6)
#define RBCPR_CTL_COUNT_MODE BIT(10)
#define RBCPR_CTL_UP_THRESHOLD_BITS 4
#define RBCPR_CTL_UP_THRESHOLD_MASK ((1<<RBCPR_CTL_UP_THRESHOLD_BITS)-1)
#define RBCPR_CTL_UP_THRESHOLD_SHIFT 24
#define RBCPR_CTL_DN_THRESHOLD_BITS 4
#define RBCPR_CTL_DN_THRESHOLD_MASK ((1<<RBCPR_CTL_DN_THRESHOLD_BITS)-1)
#define RBCPR_CTL_DN_THRESHOLD_SHIFT 28
/* RBCPR Ack/Nack Response */
#define REG_RBIF_CONT_ACK_CMD 0x98
#define REG_RBIF_CONT_NACK_CMD 0x9C
/* RBCPR Result status Register */
#define REG_RBCPR_RESULT_0 0xA0
#define RBCPR_RESULT0_BUSY_SHIFT 19
#define RBCPR_RESULT0_BUSY_MASK BIT(RBCPR_RESULT0_BUSY_SHIFT)
#define RBCPR_RESULT0_ERROR_LT0_SHIFT 18
#define RBCPR_RESULT0_ERROR_SHIFT 6
#define RBCPR_RESULT0_ERROR_BITS 12
#define RBCPR_RESULT0_ERROR_MASK ((1<<RBCPR_RESULT0_ERROR_BITS)-1)
#define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2
#define RBCPR_RESULT0_ERROR_STEPS_BITS 4
#define RBCPR_RESULT0_ERROR_STEPS_MASK ((1<<RBCPR_RESULT0_ERROR_STEPS_BITS)-1)
#define RBCPR_RESULT0_STEP_UP_SHIFT 1
/* RBCPR Interrupt Control Register */
#define REG_RBIF_IRQ_EN(n) (0x100 + 4 * n)
#define REG_RBIF_IRQ_CLEAR 0x110
#define REG_RBIF_IRQ_STATUS 0x114
#define CPR_INT_DONE BIT(0)
#define CPR_INT_MIN BIT(1)
#define CPR_INT_DOWN BIT(2)
#define CPR_INT_MID BIT(3)
#define CPR_INT_UP BIT(4)
#define CPR_INT_MAX BIT(5)
#define CPR_INT_CLAMP BIT(6)
#define CPR_INT_ALL (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
#define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN)
#define BYTES_PER_FUSE_ROW 8
#define FLAGS_IGNORE_1ST_IRQ_STATUS BIT(0)
#define FUSE_REVISION_UNKNOWN (-1)
#define FUSE_MAP_NO_MATCH (-1)
#define FUSE_PARAM_MATCH_ANY 0xFFFFFFFF
#define CPR_CORNER_MIN 1
/*
* This is an arbitrary upper limit which is used in a sanity check in order to
* avoid excessive memory allocation due to bad device tree data.
*/
#define CPR_CORNER_LIMIT 100
enum voltage_change_dir {
NO_CHANGE,
DOWN,
UP,
};
struct cpr2_gfx_regulator {
struct list_head list;
struct regulator_desc rdesc;
struct regulator_dev *rdev;
struct device *dev;
struct clk *core_clk;
struct clk *iface_clk;
bool vreg_enabled;
int corner;
int ceiling_max;
struct dentry *debugfs;
/* eFuse parameters */
phys_addr_t efuse_addr;
void __iomem *efuse_base;
/* Process voltage parameters */
int *open_loop_volt;
/* Process voltage variables */
u32 process_id;
u32 foundry_id;
/* GPU voltage regulator */
struct regulator *vdd_gfx;
/* Dependency parameters */
struct regulator *vdd_mx;
int vdd_mx_vmin;
int *vdd_mx_corner_map;
/* mem-acc regulator */
struct regulator *mem_acc_vreg;
/* CPR parameters */
bool cpr_fuse_disable;
int cpr_fuse_revision;
int cpr_fuse_map_count;
int cpr_fuse_map_match;
int **cpr_target_quot;
int gcnt;
unsigned int cpr_irq;
void __iomem *rbcpr_base;
struct mutex cpr_mutex;
int *ceiling_volt;
int *floor_volt;
int *last_volt;
int step_volt;
int *save_ctl;
int *save_irq;
/* Config parameters */
bool enable;
u32 ref_clk_khz;
u32 timer_delay_us;
u32 timer_cons_up;
u32 timer_cons_down;
u32 irq_line;
u32 step_quotient;
u32 up_threshold;
u32 down_threshold;
u32 idle_clocks;
u32 gcnt_time_us;
u32 vdd_gfx_step_up_limit;
u32 vdd_gfx_step_down_limit;
u32 flags;
u32 ro_count;
u32 num_corners;
bool is_cpr_suspended;
bool ctrl_enable;
};
#define CPR_DEBUG_MASK_IRQ BIT(0)
#define CPR_DEBUG_MASK_API BIT(1)
static int cpr_debug_enable;
static struct dentry *cpr2_gfx_debugfs_base;
static DEFINE_MUTEX(cpr2_gfx_regulator_list_mutex);
static LIST_HEAD(cpr2_gfx_regulator_list);
module_param_named(debug_enable, cpr_debug_enable, int, S_IRUGO | S_IWUSR);
#define cpr_debug(cpr_vreg, message, ...) \
do { \
if (cpr_debug_enable & CPR_DEBUG_MASK_API) \
pr_info("%s: " message, (cpr_vreg)->rdesc.name, \
##__VA_ARGS__); \
} while (0)
#define cpr_debug_irq(cpr_vreg, message, ...) \
do { \
if (cpr_debug_enable & CPR_DEBUG_MASK_IRQ) \
pr_info("%s: " message, (cpr_vreg)->rdesc.name, \
##__VA_ARGS__); \
else \
pr_debug("%s: " message, (cpr_vreg)->rdesc.name, \
##__VA_ARGS__); \
} while (0)
#define cpr_info(cpr_vreg, message, ...) \
pr_info("%s: " message, (cpr_vreg)->rdesc.name, ##__VA_ARGS__)
#define cpr_err(cpr_vreg, message, ...) \
pr_err("%s: " message, (cpr_vreg)->rdesc.name, ##__VA_ARGS__)
static u64 cpr_read_efuse_row(struct cpr2_gfx_regulator *cpr_vreg, u32 row_num)
{
u64 efuse_bits;
efuse_bits = readq_relaxed(cpr_vreg->efuse_base
+ row_num * BYTES_PER_FUSE_ROW);
return efuse_bits;
}
/**
* cpr_read_efuse_param() - read a parameter from one or two eFuse rows
* @cpr_vreg: Pointer to cpr2_gfx_regulator struct for this regulator.
* @row_start: Fuse row number to start reading from.
* @bit_start: The LSB of the parameter to read from the fuse.
* @bit_len: The length of the parameter in bits.
*
* This function reads a parameter of specified offset and bit size out of one
* or two consecutive eFuse rows. This allows for the reading of parameters
* that happen to be split between two eFuse rows.
*
* Returns the fuse parameter on success or 0 on failure.
*/
static u64 cpr_read_efuse_param(struct cpr2_gfx_regulator *cpr_vreg,
int row_start, int bit_start, int bit_len)
{
u64 fuse[2];
u64 param = 0;
int bits_first, bits_second;
if (bit_start < 0) {
cpr_err(cpr_vreg, "Invalid LSB = %d specified\n", bit_start);
return 0;
}
if (bit_len < 0 || bit_len > 64) {
cpr_err(cpr_vreg, "Invalid bit length = %d specified\n",
bit_len);
return 0;
}
/* Allow bit indexing to start beyond the end of the start row. */
if (bit_start >= 64) {
row_start += bit_start >> 6; /* equivalent to bit_start / 64 */
bit_start &= 0x3F;
}
fuse[0] = cpr_read_efuse_row(cpr_vreg, row_start);
if (bit_start == 0 && bit_len == 64) {
param = fuse[0];
} else if (bit_start + bit_len <= 64) {
param = (fuse[0] >> bit_start) & ((1ULL << bit_len) - 1);
} else {
fuse[1] = cpr_read_efuse_row(cpr_vreg, row_start + 1);
bits_first = 64 - bit_start;
bits_second = bit_len - bits_first;
param = (fuse[0] >> bit_start) & ((1ULL << bits_first) - 1);
param |= (fuse[1] & ((1ULL << bits_second) - 1)) << bits_first;
}
return param;
}
static bool cpr_is_allowed(struct cpr2_gfx_regulator *cpr_vreg)
{
if (cpr_vreg->cpr_fuse_disable || !cpr_vreg->enable)
return false;
else
return true;
}
static void cpr_write(struct cpr2_gfx_regulator *cpr_vreg, u32 offset,
u32 value)
{
writel_relaxed(value, cpr_vreg->rbcpr_base + offset);
}
static u32 cpr_read(struct cpr2_gfx_regulator *cpr_vreg, u32 offset)
{
return readl_relaxed(cpr_vreg->rbcpr_base + offset);
}
static void cpr_masked_write(struct cpr2_gfx_regulator *cpr_vreg, u32 offset,
u32 mask, u32 value)
{
u32 reg_val;
reg_val = readl_relaxed(cpr_vreg->rbcpr_base + offset);
reg_val &= ~mask;
reg_val |= value & mask;
writel_relaxed(reg_val, cpr_vreg->rbcpr_base + offset);
}
static void cpr_irq_clr(struct cpr2_gfx_regulator *cpr_vreg)
{
if (cpr_vreg->ctrl_enable)
cpr_write(cpr_vreg, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
}
static void cpr_irq_clr_nack(struct cpr2_gfx_regulator *cpr_vreg)
{
cpr_irq_clr(cpr_vreg);
cpr_write(cpr_vreg, REG_RBIF_CONT_NACK_CMD, 1);
}
static void cpr_irq_clr_ack(struct cpr2_gfx_regulator *cpr_vreg)
{
cpr_irq_clr(cpr_vreg);
cpr_write(cpr_vreg, REG_RBIF_CONT_ACK_CMD, 1);
}
static void cpr_irq_set(struct cpr2_gfx_regulator *cpr_vreg, u32 int_bits)
{
if (cpr_vreg->ctrl_enable)
cpr_write(cpr_vreg, REG_RBIF_IRQ_EN(cpr_vreg->irq_line),
int_bits);
}
static void cpr_ctl_modify(struct cpr2_gfx_regulator *cpr_vreg, u32 mask,
u32 value)
{
cpr_masked_write(cpr_vreg, REG_RBCPR_CTL, mask, value);
}
static void cpr_ctl_enable(struct cpr2_gfx_regulator *cpr_vreg, int corner)
{
u32 val;
if (cpr_vreg->is_cpr_suspended || !cpr_vreg->ctrl_enable)
return;
/* Program Consecutive Up & Down */
val = ((cpr_vreg->timer_cons_down & RBIF_TIMER_ADJ_CONS_DOWN_MASK)
<< RBIF_TIMER_ADJ_CONS_DOWN_SHIFT) |
(cpr_vreg->timer_cons_up & RBIF_TIMER_ADJ_CONS_UP_MASK);
cpr_masked_write(cpr_vreg, REG_RBIF_TIMER_ADJUST,
RBIF_TIMER_ADJ_CONS_UP_MASK |
RBIF_TIMER_ADJ_CONS_DOWN_MASK, val);
cpr_masked_write(cpr_vreg, REG_RBCPR_CTL,
RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
cpr_vreg->save_ctl[corner]);
cpr_irq_set(cpr_vreg, cpr_vreg->save_irq[corner]);
if (cpr_vreg->ceiling_volt[corner] > cpr_vreg->floor_volt[corner])
val = RBCPR_CTL_LOOP_EN;
else
val = 0;
cpr_ctl_modify(cpr_vreg, RBCPR_CTL_LOOP_EN, val);
}
static void cpr_ctl_disable(struct cpr2_gfx_regulator *cpr_vreg)
{
if (cpr_vreg->is_cpr_suspended || !cpr_vreg->ctrl_enable)
return;
cpr_irq_set(cpr_vreg, 0);
cpr_ctl_modify(cpr_vreg, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
cpr_masked_write(cpr_vreg, REG_RBIF_TIMER_ADJUST,
RBIF_TIMER_ADJ_CONS_UP_MASK |
RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
cpr_irq_clr(cpr_vreg);
cpr_write(cpr_vreg, REG_RBIF_CONT_ACK_CMD, 1);
cpr_write(cpr_vreg, REG_RBIF_CONT_NACK_CMD, 1);
cpr_ctl_modify(cpr_vreg, RBCPR_CTL_LOOP_EN, 0);
}
static bool cpr_ctl_is_enabled(struct cpr2_gfx_regulator *cpr_vreg)
{
u32 reg_val;
reg_val = cpr_read(cpr_vreg, REG_RBCPR_CTL);
return reg_val & RBCPR_CTL_LOOP_EN;
}
static bool cpr_ctl_is_busy(struct cpr2_gfx_regulator *cpr_vreg)
{
u32 reg_val;
reg_val = cpr_read(cpr_vreg, REG_RBCPR_RESULT_0);
return reg_val & RBCPR_RESULT0_BUSY_MASK;
}
static void cpr_corner_save(struct cpr2_gfx_regulator *cpr_vreg, int corner)
{
cpr_vreg->save_ctl[corner] = cpr_read(cpr_vreg, REG_RBCPR_CTL);
cpr_vreg->save_irq[corner] =
cpr_read(cpr_vreg, REG_RBIF_IRQ_EN(cpr_vreg->irq_line));
}
#define MAX_CHARS_PER_INT 10
static void cpr_corner_restore(struct cpr2_gfx_regulator *cpr_vreg, int corner)
{
u32 gcnt, ctl, irq, step_quot;
int i;
if (!cpr_vreg->ctrl_enable)
return;
/* Program the step quotient and idle clocks */
step_quot = ((cpr_vreg->idle_clocks & RBCPR_STEP_QUOT_IDLE_CLK_MASK)
<< RBCPR_STEP_QUOT_IDLE_CLK_SHIFT) |
(cpr_vreg->step_quotient & RBCPR_STEP_QUOT_STEPQUOT_MASK);
cpr_write(cpr_vreg, REG_RBCPR_STEP_QUOT, step_quot);
/* Program the target quotient value and gate count of all ROs */
for (i = 0; i < cpr_vreg->ro_count; i++) {
gcnt = cpr_vreg->gcnt
| (cpr_vreg->cpr_target_quot[corner][i]);
cpr_write(cpr_vreg, REG_RBCPR_GCNT_TARGET(i), gcnt);
}
ctl = cpr_vreg->save_ctl[corner];
cpr_write(cpr_vreg, REG_RBCPR_CTL, ctl);
irq = cpr_vreg->save_irq[corner];
cpr_irq_set(cpr_vreg, irq);
cpr_debug(cpr_vreg, "ctl = 0x%08x, irq = 0x%08x\n", ctl, irq);
}
static void cpr_corner_switch(struct cpr2_gfx_regulator *cpr_vreg, int corner)
{
if (cpr_vreg->corner == corner)
return;
cpr_corner_restore(cpr_vreg, corner);
}
static int cpr_gfx_set(struct cpr2_gfx_regulator *cpr_vreg, u32 new_volt)
{
int max_volt, rc;
max_volt = cpr_vreg->ceiling_max;
rc = regulator_set_voltage(cpr_vreg->vdd_gfx, new_volt, max_volt);
if (rc)
cpr_err(cpr_vreg, "set: vdd_gfx = %d uV: rc=%d\n",
new_volt, rc);
return rc;
}
static int cpr_mx_set(struct cpr2_gfx_regulator *cpr_vreg, int corner,
int vdd_mx_vmin)
{
int rc, max_uV = INT_MAX;
rc = regulator_set_voltage(cpr_vreg->vdd_mx, vdd_mx_vmin, max_uV);
cpr_debug(cpr_vreg, "[corner:%d] %d uV\n", corner, vdd_mx_vmin);
if (!rc)
cpr_vreg->vdd_mx_vmin = vdd_mx_vmin;
else
cpr_err(cpr_vreg, "set: vdd_mx [corner:%d] = %d uV failed: rc=%d\n",
corner, vdd_mx_vmin, rc);
return rc;
}
static int cpr2_gfx_scale_voltage(struct cpr2_gfx_regulator *cpr_vreg,
int corner, int new_gfx_volt,
enum voltage_change_dir dir)
{
int rc = 0, vdd_mx_vmin = 0;
/* Determine the vdd_mx voltage */
if (dir != NO_CHANGE && cpr_vreg->vdd_mx != NULL)
vdd_mx_vmin = cpr_vreg->vdd_mx_corner_map[corner];
if (cpr_vreg->mem_acc_vreg && dir == DOWN) {
rc = regulator_set_voltage(cpr_vreg->mem_acc_vreg,
corner, corner);
if (rc)
cpr_err(cpr_vreg, "set: mem_acc corner:%d failed: rc=%d\n",
corner, rc);
}
if (!rc && vdd_mx_vmin && dir == UP) {
if (vdd_mx_vmin != cpr_vreg->vdd_mx_vmin)
rc = cpr_mx_set(cpr_vreg, corner, vdd_mx_vmin);
}
if (!rc)
rc = cpr_gfx_set(cpr_vreg, new_gfx_volt);
if (!rc && cpr_vreg->mem_acc_vreg && dir == UP) {
rc = regulator_set_voltage(cpr_vreg->mem_acc_vreg, corner,
corner);
if (rc)
cpr_err(cpr_vreg, "set: mem_acc corner:%d failed: rc=%d\n",
corner, rc);
}
if (!rc && vdd_mx_vmin && dir == DOWN) {
if (vdd_mx_vmin != cpr_vreg->vdd_mx_vmin)
rc = cpr_mx_set(cpr_vreg, corner, vdd_mx_vmin);
}
return rc;
}
static void cpr2_gfx_scale(struct cpr2_gfx_regulator *cpr_vreg,
enum voltage_change_dir dir)
{
u32 reg_val, error_steps, reg_mask, gcnt;
int last_volt, new_volt, corner, i, pos;
size_t buf_len;
char *buf;
corner = cpr_vreg->corner;
reg_val = cpr_read(cpr_vreg, REG_RBCPR_RESULT_0);
error_steps = (reg_val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
& RBCPR_RESULT0_ERROR_STEPS_MASK;
last_volt = cpr_vreg->last_volt[corner];
cpr_debug_irq(cpr_vreg, "last_volt[corner:%d] = %d uV\n", corner,
last_volt);
buf_len = cpr_vreg->ro_count * (MAX_CHARS_PER_INT + 2) * sizeof(*buf);
buf = kzalloc(buf_len, GFP_KERNEL);
if (buf == NULL) {
cpr_err(cpr_vreg, "Could not allocate memory for target register logging\n");
return;
}
for (i = 0, pos = 0; i < cpr_vreg->ro_count; i++) {
gcnt = cpr_read(cpr_vreg, REG_RBCPR_GCNT_TARGET(i));
pos += scnprintf(buf + pos, buf_len - pos, "%u%s", gcnt,
i < cpr_vreg->ro_count - 1 ? " " : "");
}
if (dir == UP) {
cpr_debug_irq(cpr_vreg,
"Up: cpr status = 0x%08x (error_steps=%d)\n",
reg_val, error_steps);
if (last_volt >= cpr_vreg->ceiling_volt[corner]) {
cpr_debug_irq(cpr_vreg,
"[corn:%d] @ ceiling: %d >= %d: NACK\n",
corner, last_volt,
cpr_vreg->ceiling_volt[corner]);
cpr_irq_clr_nack(cpr_vreg);
cpr_debug_irq(cpr_vreg, "gcnt target dump: [%s]\n",
buf);
/* Maximize the UP threshold */
reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK <<
RBCPR_CTL_UP_THRESHOLD_SHIFT;
reg_val = reg_mask;
cpr_ctl_modify(cpr_vreg, reg_mask, reg_val);
/* Disable UP interrupt */
cpr_irq_set(cpr_vreg, CPR_INT_DEFAULT & ~CPR_INT_UP);
goto _exit;
}
if (error_steps > cpr_vreg->vdd_gfx_step_up_limit) {
cpr_debug_irq(cpr_vreg,
"%d is over up-limit(%d): Clamp\n",
error_steps,
cpr_vreg->vdd_gfx_step_up_limit);
error_steps = cpr_vreg->vdd_gfx_step_up_limit;
}
/* Calculate new voltage */
new_volt = last_volt + (error_steps * cpr_vreg->step_volt);
if (new_volt > cpr_vreg->ceiling_volt[corner]) {
cpr_debug_irq(cpr_vreg,
"new_volt(%d) >= ceiling(%d): Clamp\n",
new_volt,
cpr_vreg->ceiling_volt[corner]);
new_volt = cpr_vreg->ceiling_volt[corner];
}
if (cpr2_gfx_scale_voltage(cpr_vreg, corner, new_volt, dir)) {
cpr_irq_clr_nack(cpr_vreg);
goto _exit;
}
cpr_vreg->last_volt[corner] = new_volt;
/* Disable auto nack down */
reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
reg_val = 0;
cpr_ctl_modify(cpr_vreg, reg_mask, reg_val);
/* Re-enable default interrupts */
cpr_irq_set(cpr_vreg, CPR_INT_DEFAULT);
/* Ack */
cpr_irq_clr_ack(cpr_vreg);
cpr_debug_irq(cpr_vreg, "UP: -> new_volt[corner:%d] = %d uV\n",
corner, new_volt);
} else if (dir == DOWN) {
cpr_debug_irq(cpr_vreg,
"Down: cpr status = 0x%08x (error_steps=%d)\n",
reg_val, error_steps);
if (last_volt <= cpr_vreg->floor_volt[corner]) {
cpr_debug_irq(cpr_vreg,
"[corn:%d] @ floor: %d <= %d: NACK\n",
corner, last_volt,
cpr_vreg->floor_volt[corner]);
cpr_irq_clr_nack(cpr_vreg);
cpr_debug_irq(cpr_vreg, "gcnt target dump: [%s]\n",
buf);
/* Enable auto nack down */
reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
reg_val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
cpr_ctl_modify(cpr_vreg, reg_mask, reg_val);
/* Disable DOWN interrupt */
cpr_irq_set(cpr_vreg, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
goto _exit;
}
if (error_steps > cpr_vreg->vdd_gfx_step_down_limit) {
cpr_debug_irq(cpr_vreg,
"%d is over down-limit(%d): Clamp\n",
error_steps,
cpr_vreg->vdd_gfx_step_down_limit);
error_steps = cpr_vreg->vdd_gfx_step_down_limit;
}
/* Calculte new voltage */
new_volt = last_volt - (error_steps * cpr_vreg->step_volt);
if (new_volt < cpr_vreg->floor_volt[corner]) {
cpr_debug_irq(cpr_vreg,
"new_volt(%d) < floor(%d): Clamp\n",
new_volt, cpr_vreg->floor_volt[corner]);
new_volt = cpr_vreg->floor_volt[corner];
}
if (cpr2_gfx_scale_voltage(cpr_vreg, corner, new_volt, dir)) {
cpr_irq_clr_nack(cpr_vreg);
goto _exit;
}
cpr_vreg->last_volt[corner] = new_volt;
/* Restore default threshold for UP */
reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK <<
RBCPR_CTL_UP_THRESHOLD_SHIFT;
reg_val = cpr_vreg->up_threshold <<
RBCPR_CTL_UP_THRESHOLD_SHIFT;
cpr_ctl_modify(cpr_vreg, reg_mask, reg_val);
/* Re-enable default interrupts */
cpr_irq_set(cpr_vreg, CPR_INT_DEFAULT);
/* Ack */
cpr_irq_clr_ack(cpr_vreg);
cpr_debug_irq(cpr_vreg,
"DOWN: -> new_volt[corner:%d] = %d uV\n",
corner, new_volt);
}
_exit:
kfree(buf);
}
static irqreturn_t cpr2_gfx_irq_handler(int irq, void *dev)
{
struct cpr2_gfx_regulator *cpr_vreg = dev;
u32 reg_val;
mutex_lock(&cpr_vreg->cpr_mutex);
reg_val = cpr_read(cpr_vreg, REG_RBIF_IRQ_STATUS);
if (cpr_vreg->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
reg_val = cpr_read(cpr_vreg, REG_RBIF_IRQ_STATUS);
cpr_debug_irq(cpr_vreg, "IRQ_STATUS = 0x%02X\n", reg_val);
if (!cpr_ctl_is_enabled(cpr_vreg)) {
cpr_debug_irq(cpr_vreg, "CPR is disabled\n");
goto _exit;
} else if (cpr_ctl_is_busy(cpr_vreg)) {
cpr_debug_irq(cpr_vreg, "CPR measurement is not ready\n");
goto _exit;
} else if (!cpr_is_allowed(cpr_vreg)) {
reg_val = cpr_read(cpr_vreg, REG_RBCPR_CTL);
cpr_err(cpr_vreg, "Interrupt broken? RBCPR_CTL = 0x%02X\n",
reg_val);
goto _exit;
}
/* Following sequence of handling is as per each IRQ's priority */
if (reg_val & CPR_INT_UP) {
cpr2_gfx_scale(cpr_vreg, UP);
} else if (reg_val & CPR_INT_DOWN) {
cpr2_gfx_scale(cpr_vreg, DOWN);
} else if (reg_val & CPR_INT_MIN) {
cpr_irq_clr_nack(cpr_vreg);
} else if (reg_val & CPR_INT_MAX) {
cpr_irq_clr_nack(cpr_vreg);
} else if (reg_val & CPR_INT_MID) {
/* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
cpr_debug_irq(cpr_vreg, "IRQ occurred for Mid Flag\n");
} else {
cpr_debug_irq(cpr_vreg,
"IRQ occurred for unknown flag (0x%08x)\n", reg_val);
}
/* Save register values for the corner */
cpr_corner_save(cpr_vreg, cpr_vreg->corner);
_exit:
mutex_unlock(&cpr_vreg->cpr_mutex);
return IRQ_HANDLED;
}
/**
* cpr2_gfx_clock_enable() - prepare and enable all clocks used by this CPR GFX
* controller
* @cpr_verg: Pointer to the cpr2 gfx controller
*
* Return: 0 on success, errno on failure
*/
static int cpr2_gfx_clock_enable(struct cpr2_gfx_regulator *cpr_vreg)
{
int rc;
if (cpr_vreg->iface_clk) {
rc = clk_prepare_enable(cpr_vreg->iface_clk);
if (rc) {
cpr_err(cpr_vreg, "failed to enable interface clock, rc=%d\n",
rc);
return rc;
}
}
if (cpr_vreg->core_clk) {
rc = clk_prepare_enable(cpr_vreg->core_clk);
if (rc) {
cpr_err(cpr_vreg, "failed to enable core clock, rc=%d\n",
rc);
clk_disable_unprepare(cpr_vreg->iface_clk);
return rc;
}
}
return 0;
}
/**
* cpr2_gfx_clock_disable() - disable and unprepare all clocks used by this CPR
* GFX controller
* @cpr_vreg: Pointer to the CPR2 controller
*
* Return: none
*/
static void cpr2_gfx_clock_disable(struct cpr2_gfx_regulator *cpr_vreg)
{
if (cpr_vreg->core_clk)
clk_disable_unprepare(cpr_vreg->core_clk);
if (cpr_vreg->iface_clk)
clk_disable_unprepare(cpr_vreg->iface_clk);
}
static int cpr2_gfx_regulator_is_enabled(struct regulator_dev *rdev)
{
struct cpr2_gfx_regulator *cpr_vreg = rdev_get_drvdata(rdev);
return cpr_vreg->vreg_enabled;
}
/**
* cpr2_gfx_closed_loop_enable() - enable logical CPR closed-loop operation
* @cpr_vreg: Pointer to the cpr2 gfx regulator
*
* Return: 0 on success, error on failure
*/
static inline int cpr2_gfx_closed_loop_enable(struct cpr2_gfx_regulator
*cpr_vreg)
{
int rc = 0;
if (!cpr_is_allowed(cpr_vreg)) {
return -EPERM;
} else if (cpr_vreg->ctrl_enable) {
/* Already enabled */
return 0;
} else if (cpr_vreg->is_cpr_suspended) {
/* CPR must remain disabled as the system is entering suspend */
return 0;
}
rc = cpr2_gfx_clock_enable(cpr_vreg);
if (rc) {
cpr_err(cpr_vreg, "unable to enable CPR clocks, rc=%d\n",
rc);
return rc;
}
cpr_vreg->ctrl_enable = true;
cpr_debug(cpr_vreg, "CPR closed-loop operation enabled\n");
return 0;
}
/**
* cpr2_gfx_closed_loop_disable() - disable logical CPR closed-loop operation
* @cpr_vreg: Pointer to the cpr2 gfx regulator
*
* Return: 0 on success, error on failure
*/
static inline int cpr2_gfx_closed_loop_disable(struct cpr2_gfx_regulator
*cpr_vreg)
{
if (!cpr_vreg->ctrl_enable) {
/* Already disabled */
return 0;
}
cpr2_gfx_clock_disable(cpr_vreg);
cpr_vreg->ctrl_enable = false;
cpr_debug(cpr_vreg, "CPR closed-loop operation disabled\n");
return 0;
}
static int cpr2_gfx_regulator_enable(struct regulator_dev *rdev)
{
struct cpr2_gfx_regulator *cpr_vreg = rdev_get_drvdata(rdev);
int rc = 0;
/* Enable dependency power before vdd_gfx */
if (cpr_vreg->vdd_mx) {
rc = regulator_enable(cpr_vreg->vdd_mx);
if (rc) {
cpr_err(cpr_vreg, "regulator_enable: vdd_mx: rc=%d\n",
rc);
return rc;
}
}
rc = regulator_enable(cpr_vreg->vdd_gfx);
if (rc) {
cpr_err(cpr_vreg, "regulator_enable: vdd_gfx: rc=%d\n", rc);
return rc;
}
mutex_lock(&cpr_vreg->cpr_mutex);
cpr_vreg->vreg_enabled = true;
if (cpr_is_allowed(cpr_vreg)) {
rc = cpr2_gfx_closed_loop_enable(cpr_vreg);
if (rc) {
cpr_err(cpr_vreg, "could not enable CPR, rc=%d\n", rc);
goto _exit;
}
if (cpr_vreg->corner) {
cpr_irq_clr(cpr_vreg);
cpr_corner_restore(cpr_vreg, cpr_vreg->corner);
cpr_ctl_enable(cpr_vreg, cpr_vreg->corner);
}
}
cpr_debug(cpr_vreg, "cpr_enable = %s cpr_corner = %d\n",
cpr_vreg->enable ? "enabled" : "disabled",
cpr_vreg->corner);
_exit:
mutex_unlock(&cpr_vreg->cpr_mutex);
return 0;
}
static int cpr2_gfx_regulator_disable(struct regulator_dev *rdev)
{
struct cpr2_gfx_regulator *cpr_vreg = rdev_get_drvdata(rdev);
int rc;
rc = regulator_disable(cpr_vreg->vdd_gfx);
if (!rc) {
if (cpr_vreg->vdd_mx) {
rc = regulator_disable(cpr_vreg->vdd_mx);
if (rc) {
cpr_err(cpr_vreg, "regulator_disable: vdd_mx: rc=%d\n",
rc);
return rc;
}
}
mutex_lock(&cpr_vreg->cpr_mutex);
cpr_vreg->vreg_enabled = false;
if (cpr_is_allowed(cpr_vreg)) {
cpr_ctl_disable(cpr_vreg);
cpr2_gfx_closed_loop_disable(cpr_vreg);
}
mutex_unlock(&cpr_vreg->cpr_mutex);
} else {
cpr_err(cpr_vreg, "regulator_disable: vdd_gfx: rc=%d\n", rc);
}
cpr_debug(cpr_vreg, "cpr_enable = %s\n",
cpr_vreg->enable ? "enabled" : "disabled");
return rc;
}
static int cpr2_gfx_regulator_set_voltage(struct regulator_dev *rdev,
int corner, int corner_max, unsigned *selector)
{
struct cpr2_gfx_regulator *cpr_vreg = rdev_get_drvdata(rdev);
int rc = 0;
int new_volt;
enum voltage_change_dir change_dir = NO_CHANGE;
mutex_lock(&cpr_vreg->cpr_mutex);
if (cpr_vreg->ctrl_enable) {
cpr_ctl_disable(cpr_vreg);
new_volt = cpr_vreg->last_volt[corner];
} else {
new_volt = cpr_vreg->open_loop_volt[corner];
}
cpr_debug(cpr_vreg, "[corner:%d] = %d uV\n", corner, new_volt);
if (corner > cpr_vreg->corner)
change_dir = UP;
else if (corner < cpr_vreg->corner)
change_dir = DOWN;
rc = cpr2_gfx_scale_voltage(cpr_vreg, corner, new_volt, change_dir);
if (rc)
goto _exit;
if (cpr_vreg->ctrl_enable) {
cpr_irq_clr(cpr_vreg);
cpr_corner_switch(cpr_vreg, corner);
cpr_ctl_enable(cpr_vreg, corner);
}
cpr_vreg->corner = corner;
_exit:
mutex_unlock(&cpr_vreg->cpr_mutex);
return rc;
}
static int cpr2_gfx_regulator_get_voltage(struct regulator_dev *rdev)
{
struct cpr2_gfx_regulator *cpr_vreg = rdev_get_drvdata(rdev);
return cpr_vreg->corner;
}
static struct regulator_ops cpr_corner_ops = {
.enable = cpr2_gfx_regulator_enable,
.disable = cpr2_gfx_regulator_disable,
.is_enabled = cpr2_gfx_regulator_is_enabled,
.set_voltage = cpr2_gfx_regulator_set_voltage,
.get_voltage = cpr2_gfx_regulator_get_voltage,
};
static int cpr2_gfx_regulator_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct cpr2_gfx_regulator *cpr_vreg = platform_get_drvdata(pdev);
mutex_lock(&cpr_vreg->cpr_mutex);
cpr_debug(cpr_vreg, "suspend\n");
if (cpr_vreg->vreg_enabled && cpr_is_allowed(cpr_vreg)) {
cpr_ctl_disable(cpr_vreg);
cpr_irq_clr(cpr_vreg);
cpr2_gfx_closed_loop_disable(cpr_vreg);
}
cpr_vreg->is_cpr_suspended = true;
mutex_unlock(&cpr_vreg->cpr_mutex);
return 0;
}
static int cpr2_gfx_regulator_resume(struct platform_device *pdev)
{
struct cpr2_gfx_regulator *cpr_vreg = platform_get_drvdata(pdev);
int rc = 0;
mutex_lock(&cpr_vreg->cpr_mutex);
cpr_vreg->is_cpr_suspended = false;
cpr_debug(cpr_vreg, "resume\n");
if (cpr_vreg->vreg_enabled && cpr_is_allowed(cpr_vreg)) {
rc = cpr2_gfx_closed_loop_enable(cpr_vreg);
if (rc)
cpr_err(cpr_vreg, "could not enable CPR, rc=%d\n", rc);
cpr_irq_clr(cpr_vreg);
cpr_ctl_enable(cpr_vreg, cpr_vreg->corner);
}
mutex_unlock(&cpr_vreg->cpr_mutex);
return 0;
}
static int cpr2_gfx_allocate_memory(struct cpr2_gfx_regulator *cpr_vreg)
{
struct device *dev = cpr_vreg->dev;
int rc, i;
size_t len;
rc = of_property_read_u32(dev->of_node, "qcom,cpr-corners",
&cpr_vreg->num_corners);
if (rc < 0) {
cpr_err(cpr_vreg, "qcom,cpr-corners missing: rc=%d\n", rc);
return rc;
}
if (cpr_vreg->num_corners < CPR_CORNER_MIN
|| cpr_vreg->num_corners > CPR_CORNER_LIMIT) {
cpr_err(cpr_vreg, "corner count=%d is invalid\n",
cpr_vreg->num_corners);
return -EINVAL;
}
rc = of_property_read_u32(dev->of_node, "qcom,cpr-ro-count",
&cpr_vreg->ro_count);
if (rc < 0) {
cpr_err(cpr_vreg, "qcom,cpr-ro-count missing or read failed: rc=%d\n",
rc);
return rc;
}
cpr_info(cpr_vreg, "ro_count = %d\n", cpr_vreg->ro_count);
/*
* The arrays sized based on the corner count ignore element 0
* in order to simplify indexing throughout the driver since min_uV = 0
* cannot be passed into a set_voltage() callback.
*/
len = cpr_vreg->num_corners + 1;
cpr_vreg->open_loop_volt = devm_kzalloc(dev,
len * sizeof(*cpr_vreg->open_loop_volt), GFP_KERNEL);
cpr_vreg->cpr_target_quot = devm_kzalloc(dev,
len * sizeof(int *), GFP_KERNEL);
cpr_vreg->ceiling_volt = devm_kzalloc(dev,
len * (sizeof(*cpr_vreg->ceiling_volt)), GFP_KERNEL);
cpr_vreg->floor_volt = devm_kzalloc(dev,
len * (sizeof(*cpr_vreg->floor_volt)), GFP_KERNEL);
if (cpr_vreg->open_loop_volt == NULL
|| cpr_vreg->cpr_target_quot == NULL
|| cpr_vreg->ceiling_volt == NULL
|| cpr_vreg->floor_volt == NULL) {
cpr_err(cpr_vreg, "Could not allocate memory for CPR arrays\n");
return -ENOMEM;
}
for (i = CPR_CORNER_MIN; i <= cpr_vreg->num_corners; i++) {
cpr_vreg->cpr_target_quot[i] = devm_kzalloc(dev,
cpr_vreg->ro_count * sizeof(*cpr_vreg->cpr_target_quot),
GFP_KERNEL);
if (!cpr_vreg->cpr_target_quot[i]) {
cpr_err(cpr_vreg, "Could not allocate memory\n");
return -ENOMEM;
}
}
return 0;
}
static int cpr_mem_acc_init(struct cpr2_gfx_regulator *cpr_vreg)
{
struct device *dev = cpr_vreg->dev;
int rc;
if (of_find_property(dev->of_node, "mem-acc-supply", NULL)) {
cpr_vreg->mem_acc_vreg = devm_regulator_get(dev, "mem-acc");
if (IS_ERR_OR_NULL(cpr_vreg->mem_acc_vreg)) {
rc = PTR_RET(cpr_vreg->mem_acc_vreg);
if (rc != -EPROBE_DEFER)
cpr_err(cpr_vreg,
"devm_regulator_get: mem-acc: rc=%d\n",
rc);
return rc;
}
}
return 0;
}
static int cpr_efuse_init(struct platform_device *pdev,
struct cpr2_gfx_regulator *cpr_vreg)
{
struct resource *res;
int len;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "efuse_addr");
if (!res || !res->start) {
cpr_err(cpr_vreg, "efuse_addr missing: res=%p\n", res);
return -EINVAL;
}
cpr_vreg->efuse_addr = res->start;
len = res->end - res->start + 1;
cpr_info(cpr_vreg, "efuse_addr = %pa (len=0x%x)\n", &res->start, len);
cpr_vreg->efuse_base = ioremap(cpr_vreg->efuse_addr, len);
if (!cpr_vreg->efuse_base) {
cpr_err(cpr_vreg, "Unable to map efuse_addr %pa\n",
&cpr_vreg->efuse_addr);
return -EINVAL;
}
return 0;
}
static int cpr_parse_fuse_parameters(struct cpr2_gfx_regulator *cpr_vreg)
{
struct device *dev = cpr_vreg->dev;
u32 fuse_sel[3];
int rc;
rc = of_property_read_u32_array(dev->of_node, "qcom,cpr-fuse-revision",
fuse_sel, 3);
if (rc < 0) {
if (rc != -EINVAL) {
cpr_err(cpr_vreg, "qcom,cpr-fuse-revision read failed: rc=%d\n",
rc);
return rc;
} else {
/* Property not exist; Assigning a wild card value */
cpr_vreg->cpr_fuse_revision = FUSE_REVISION_UNKNOWN;
}
} else {
cpr_vreg->cpr_fuse_revision = cpr_read_efuse_param(cpr_vreg,
fuse_sel[0], fuse_sel[1], fuse_sel[2]);
cpr_info(cpr_vreg, "fuse revision = %d\n",
cpr_vreg->cpr_fuse_revision);
}
rc = of_property_read_u32_array(dev->of_node, "qcom,process-id-fuse",
fuse_sel, 3);
if (rc < 0) {
if (rc != -EINVAL) {
cpr_err(cpr_vreg, "qcom,process-id-fuse read failed: rc=%d\n",
rc);
return rc;
} else {
/* Property not exist; Assigning a wild card value */
cpr_vreg->process_id = (INT_MAX - 1);
}
} else {
cpr_vreg->process_id = cpr_read_efuse_param(cpr_vreg,
fuse_sel[0], fuse_sel[1], fuse_sel[2]);
cpr_info(cpr_vreg, "process id = %d\n", cpr_vreg->process_id);
}
rc = of_property_read_u32_array(dev->of_node, "qcom,foundry-id-fuse",
fuse_sel, 3);
if (rc < 0) {
if (rc != -EINVAL) {
cpr_err(cpr_vreg, "qcom,foundry-id-fuse read failed: rc=%d\n",
rc);
return rc;
} else {
/* Property not exist; Assigning a wild card value */
cpr_vreg->foundry_id = (INT_MAX - 1);
}
} else {
cpr_vreg->foundry_id
= cpr_read_efuse_param(cpr_vreg, fuse_sel[0],
fuse_sel[1], fuse_sel[2]);
cpr_info(cpr_vreg, "foundry_id = %d\n", cpr_vreg->foundry_id);
}
return 0;
}
static int cpr_find_fuse_map_match(struct cpr2_gfx_regulator *cpr_vreg)
{
struct device_node *of_node = cpr_vreg->dev->of_node;
int i, rc, tuple_size;
int len = 0;
u32 *tmp;
/* Specify default no match case. */
cpr_vreg->cpr_fuse_map_match = FUSE_MAP_NO_MATCH;
cpr_vreg->cpr_fuse_map_count = 0;
if (!of_find_property(of_node, "qcom,cpr-fuse-version-map", &len)) {
/* No mapping present. */
return 0;
}
tuple_size = 3; /* <foundry_id> <cpr_fuse_revision> <process_id> */
cpr_vreg->cpr_fuse_map_count = len / (sizeof(u32) * tuple_size);
if (len == 0 || len % (sizeof(u32) * tuple_size)) {
cpr_err(cpr_vreg, "qcom,cpr-fuse-version-map length=%d is invalid\n",
len);
return -EINVAL;
}
tmp = kzalloc(len, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
rc = of_property_read_u32_array(of_node, "qcom,cpr-fuse-version-map",
tmp, cpr_vreg->cpr_fuse_map_count * tuple_size);
if (rc) {
cpr_err(cpr_vreg, "could not read qcom,cpr-fuse-version-map, rc=%d\n",
rc);
goto done;
}
/*
* qcom,cpr-fuse-version-map tuple format:
* <foundry_id, cpr_fuse_revision process_id>
*/
for (i = 0; i < cpr_vreg->cpr_fuse_map_count; i++) {
if (tmp[i * tuple_size] != cpr_vreg->foundry_id
&& tmp[i * tuple_size] != FUSE_PARAM_MATCH_ANY)
continue;
if (tmp[i * tuple_size + 1] != cpr_vreg->cpr_fuse_revision
&& tmp[i * tuple_size + 1] != FUSE_PARAM_MATCH_ANY)
continue;
if (tmp[i * tuple_size + 1] != cpr_vreg->process_id
&& tmp[i * tuple_size + 1] != FUSE_PARAM_MATCH_ANY)
continue;
cpr_vreg->cpr_fuse_map_match = i;
break;
}
if (cpr_vreg->cpr_fuse_map_match != FUSE_MAP_NO_MATCH)
cpr_debug(cpr_vreg, "qcom,cpr-fuse-version-map tuple match found: %d\n",
cpr_vreg->cpr_fuse_map_match);
else
cpr_debug(cpr_vreg, "qcom,cpr-fuse-version-map tuple match not found\n");
done:
kfree(tmp);
return rc;
}
static int cpr_voltage_plan_init(struct cpr2_gfx_regulator *cpr_vreg)
{
struct device_node *of_node = cpr_vreg->dev->of_node;
int highest_corner = cpr_vreg->num_corners;
int rc;
rc = of_property_read_u32_array(of_node, "qcom,cpr-voltage-ceiling",
&cpr_vreg->ceiling_volt[CPR_CORNER_MIN], cpr_vreg->num_corners);
if (rc < 0) {
cpr_err(cpr_vreg, "cpr-voltage-ceiling missing: rc=%d\n", rc);
return rc;
}
rc = of_property_read_u32_array(of_node, "qcom,cpr-voltage-floor",
&cpr_vreg->floor_volt[CPR_CORNER_MIN],
cpr_vreg->num_corners);
if (rc < 0) {
cpr_err(cpr_vreg, "cpr-voltage-floor missing: rc=%d\n", rc);
return rc;
}
cpr_vreg->ceiling_max
= cpr_vreg->ceiling_volt[highest_corner];
return 0;
}
static int cpr_adjust_init_voltages(struct cpr2_gfx_regulator *cpr_vreg)
{
struct device_node *of_node = cpr_vreg->dev->of_node;
int tuple_count, tuple_match, i;
u32 index;
u32 volt_adjust = 0;
int len = 0;
int rc = 0;
if (!of_find_property(of_node, "qcom,cpr-init-voltage-adjustment",
&len)) {
/* No initial voltage adjustment needed. */
return 0;
}
if (cpr_vreg->cpr_fuse_map_count) {
if (cpr_vreg->cpr_fuse_map_match == FUSE_MAP_NO_MATCH) {
/*
* No matching index to use for initial voltage
* adjustment.
*/
return 0;
}
tuple_count = cpr_vreg->cpr_fuse_map_count;
tuple_match = cpr_vreg->cpr_fuse_map_match;
} else {
tuple_count = 1;
tuple_match = 0;
}
if (len != cpr_vreg->num_corners * tuple_count * sizeof(u32)) {
cpr_err(cpr_vreg, "qcom,cpr-init-voltage-adjustment length=%d is invalid\n",
len);
return -EINVAL;
}
for (i = CPR_CORNER_MIN; i <= cpr_vreg->num_corners; i++) {
index = tuple_match * cpr_vreg->num_corners
+ i - CPR_CORNER_MIN;
rc = of_property_read_u32_index(of_node,
"qcom,cpr-init-voltage-adjustment", index,
&volt_adjust);
if (rc) {
cpr_err(cpr_vreg, "could not read qcom,cpr-init-voltage-adjustment index %u, rc=%d\n",
index, rc);
return rc;
}
if (volt_adjust) {
cpr_vreg->open_loop_volt[i] += volt_adjust;
cpr_info(cpr_vreg, "adjusted initial voltage[%d]: %d -> %d uV\n",
i, cpr_vreg->open_loop_volt[i] - volt_adjust,
cpr_vreg->open_loop_volt[i]);
}
}
return rc;
}
static int cpr_pvs_init(struct cpr2_gfx_regulator *cpr_vreg)
{
struct device_node *of_node = cpr_vreg->dev->of_node;
u64 efuse_bits;
int i, size, sign, steps, step_size_uv, rc, pos;
u32 *fuse_sel, *tmp, *ref_uv;
struct property *prop;
size_t buflen;
char *buf;
rc = of_property_read_u32(of_node, "qcom,cpr-gfx-volt-step",
&cpr_vreg->step_volt);
if (rc < 0) {
cpr_err(cpr_vreg, "read cpr-gfx-volt-step failed, rc = %d\n",
rc);
return rc;
} else if (cpr_vreg->step_volt == 0) {
cpr_err(cpr_vreg, "gfx voltage step size can't be set to 0.\n");
return -EINVAL;
}
prop = of_find_property(of_node, "qcom,cpr-fuse-init-voltage", NULL);
if (!prop) {
cpr_err(cpr_vreg, "qcom,cpr-fuse-init-voltage is missing\n");
return -EINVAL;
}
size = prop->length / sizeof(u32);
if (size != cpr_vreg->num_corners * 3) {
cpr_err(cpr_vreg,
"fuse position for init voltages is invalid\n");
return -EINVAL;
}
fuse_sel = kcalloc(size, sizeof(u32), GFP_KERNEL);
if (!fuse_sel)
return -ENOMEM;
rc = of_property_read_u32_array(of_node, "qcom,cpr-fuse-init-voltage",
fuse_sel, size);
if (rc < 0) {
cpr_err(cpr_vreg,
"read cpr-fuse-init-voltage failed, rc = %d\n", rc);
kfree(fuse_sel);
return rc;
}
rc = of_property_read_u32(of_node, "qcom,cpr-init-voltage-step",
&step_size_uv);
if (rc < 0) {
cpr_err(cpr_vreg,
"read cpr-init-voltage-step failed, rc = %d\n", rc);
kfree(fuse_sel);
return rc;
}
ref_uv = kcalloc((cpr_vreg->num_corners + 1), sizeof(*ref_uv),
GFP_KERNEL);
if (!ref_uv) {
kfree(fuse_sel);
return -ENOMEM;
}
rc = of_property_read_u32_array(of_node, "qcom,cpr-init-voltage-ref",
&ref_uv[CPR_CORNER_MIN], cpr_vreg->num_corners);
if (rc < 0) {
cpr_err(cpr_vreg,
"read qcom,cpr-init-voltage-ref failed, rc = %d\n", rc);
goto done;
}
tmp = fuse_sel;
for (i = CPR_CORNER_MIN; i <= cpr_vreg->num_corners; i++) {
efuse_bits = cpr_read_efuse_param(cpr_vreg, fuse_sel[0],
fuse_sel[1], fuse_sel[2]);
sign = (efuse_bits & (1 << (fuse_sel[2] - 1))) ? -1 : 1;
steps = efuse_bits & ((1 << (fuse_sel[2] - 1)) - 1);
cpr_vreg->open_loop_volt[i] =
ref_uv[i] + sign * steps * step_size_uv;
cpr_vreg->open_loop_volt[i] = DIV_ROUND_UP(
cpr_vreg->open_loop_volt[i],
cpr_vreg->step_volt) *
cpr_vreg->step_volt;
cpr_debug(cpr_vreg, "corner %d: sign = %d, steps = %d, volt = %d uV\n",
i, sign, steps, cpr_vreg->open_loop_volt[i]);
fuse_sel += 3;
}
rc = cpr_adjust_init_voltages(cpr_vreg);
if (rc)
goto done;
for (i = CPR_CORNER_MIN; i <= cpr_vreg->num_corners; i++) {
if (cpr_vreg->open_loop_volt[i]
> cpr_vreg->ceiling_volt[i]) {
cpr_info(cpr_vreg, "Warning: initial voltage[%d] %d above ceiling %d\n",
i, cpr_vreg->open_loop_volt[i],
cpr_vreg->ceiling_volt[i]);
cpr_vreg->open_loop_volt[i]
= cpr_vreg->ceiling_volt[i];
} else if (cpr_vreg->open_loop_volt[i] <
cpr_vreg->floor_volt[i]) {
cpr_info(cpr_vreg, "Warning: initial voltage[%d] %d below floor %d\n",
i, cpr_vreg->open_loop_volt[i],
cpr_vreg->floor_volt[i]);
cpr_vreg->open_loop_volt[i]
= cpr_vreg->floor_volt[i];
}
}
/*
* Log ceiling, floor, and initial voltages since they are critical for
* all CPR debugging.
*/
buflen = cpr_vreg->num_corners * (MAX_CHARS_PER_INT + 2)
* sizeof(*buf);
buf = kzalloc(buflen, GFP_KERNEL);
if (buf == NULL) {
cpr_err(cpr_vreg, "Could not allocate memory for corner voltage logging\n");
rc = -ENOMEM;
goto done;
}
for (i = CPR_CORNER_MIN, pos = 0; i <= cpr_vreg->num_corners; i++)
pos += scnprintf(buf + pos, buflen - pos, "%u%s",
cpr_vreg->open_loop_volt[i],
i < cpr_vreg->num_corners ? " " : "");
cpr_info(cpr_vreg, "pvs voltage: [%s] uV\n", buf);
for (i = CPR_CORNER_MIN, pos = 0; i <= cpr_vreg->num_corners; i++)
pos += scnprintf(buf + pos, buflen - pos, "%d%s",
cpr_vreg->ceiling_volt[i],
i < cpr_vreg->num_corners ? " " : "");
cpr_info(cpr_vreg, "ceiling voltage: [%s] uV\n", buf);
for (i = CPR_CORNER_MIN, pos = 0; i <= cpr_vreg->num_corners; i++)
pos += scnprintf(buf + pos, buflen - pos, "%d%s",
cpr_vreg->floor_volt[i],
i < cpr_vreg->num_corners ? " " : "");
cpr_info(cpr_vreg, "floor voltage: [%s] uV\n", buf);
kfree(buf);
done:
kfree(tmp);
kfree(ref_uv);
return rc;
}
static int cpr_parse_vdd_mx_parameters(struct cpr2_gfx_regulator *cpr_vreg)
{
struct device_node *of_node = cpr_vreg->dev->of_node;
int rc, len, size;
if (!of_find_property(of_node, "qcom,vdd-mx-corner-map", &len)) {
cpr_err(cpr_vreg, "qcom,vdd-mx-corner-map missing");
return -EINVAL;
}
size = len / sizeof(u32);
if (size != cpr_vreg->num_corners) {
cpr_err(cpr_vreg,
"qcom,vdd-mx-corner-map length=%d is invalid: required:%u\n",
size, cpr_vreg->num_corners);
return -EINVAL;
}
cpr_vreg->vdd_mx_corner_map = devm_kzalloc(cpr_vreg->dev,
(size + 1) * sizeof(*cpr_vreg->vdd_mx_corner_map),
GFP_KERNEL);
if (!cpr_vreg->vdd_mx_corner_map) {
cpr_err(cpr_vreg,
"Can't allocate memory for cpr_vreg->vdd_mx_corner_map\n");
return -ENOMEM;
}
rc = of_property_read_u32_array(of_node,
"qcom,vdd-mx-corner-map",
&cpr_vreg->vdd_mx_corner_map[1],
cpr_vreg->num_corners);
if (rc)
cpr_err(cpr_vreg,
"read qcom,vdd-mx-corner-map failed, rc = %d\n", rc);
return rc;
}
static int cpr_gfx_init(struct cpr2_gfx_regulator *cpr_vreg)
{
struct device_node *of_node = cpr_vreg->dev->of_node;
int rc = 0;
cpr_vreg->vdd_gfx = devm_regulator_get(cpr_vreg->dev, "vdd-gfx");
rc = PTR_RET(cpr_vreg->vdd_gfx);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr_err(cpr_vreg, "devm_regulator_get: rc=%d\n", rc);
return rc;
}
/* Check dependencies */
if (of_find_property(of_node, "vdd-mx-supply", NULL)) {
cpr_vreg->vdd_mx = devm_regulator_get(cpr_vreg->dev, "vdd-mx");
if (IS_ERR_OR_NULL(cpr_vreg->vdd_mx)) {
rc = PTR_RET(cpr_vreg->vdd_mx);
if (rc != -EPROBE_DEFER)
cpr_err(cpr_vreg, "devm_regulator_get: vdd_mx: rc=%d\n",
rc);
return rc;
}
rc = cpr_parse_vdd_mx_parameters(cpr_vreg);
if (rc) {
cpr_err(cpr_vreg, "parsing vdd_mx parameters failed: rc=%d\n",
rc);
return rc;
}
}
return 0;
}
static int cpr_get_clock_handles(struct cpr2_gfx_regulator *cpr_vreg)
{
int rc;
cpr_vreg->core_clk = devm_clk_get(cpr_vreg->dev, "core_clk");
if (IS_ERR(cpr_vreg->core_clk)) {
rc = PTR_RET(cpr_vreg->core_clk);
if (rc != -EPROBE_DEFER)
cpr_err(cpr_vreg, "unable to request core clock, rc=%d\n",
rc);
return rc;
}
cpr_vreg->iface_clk = devm_clk_get(cpr_vreg->dev, "iface_clk");
if (IS_ERR(cpr_vreg->iface_clk)) {
rc = PTR_RET(cpr_vreg->iface_clk);
if (rc != -EPROBE_DEFER)
cpr_err(cpr_vreg, "unable to request interface clock, rc=%d\n",
rc);
return rc;
}
return 0;
}
static int cpr_init_target_quotients(struct cpr2_gfx_regulator *cpr_vreg)
{
struct device_node *of_node = cpr_vreg->dev->of_node;
int rc, len, size, tuple_count, tuple_match, pos, i, j, k;
char *buf, *target_quot_str = "qcom,cpr-target-quotients";
size_t buflen;
u32 index;
int *temp;
if (!of_find_property(of_node, target_quot_str, &len)) {
cpr_err(cpr_vreg, "%s missing\n", target_quot_str);
return -EINVAL;
}
if (cpr_vreg->cpr_fuse_map_count) {
if (cpr_vreg->cpr_fuse_map_match == FUSE_MAP_NO_MATCH) {
/*
* No matching index to use for initial voltage
* adjustment.
*/
return 0;
}
tuple_count = cpr_vreg->cpr_fuse_map_count;
tuple_match = cpr_vreg->cpr_fuse_map_match;
} else {
tuple_count = 1;
tuple_match = 0;
}
size = len / sizeof(u32);
if (size != tuple_count * cpr_vreg->ro_count * cpr_vreg->num_corners) {
cpr_err(cpr_vreg, "%s length=%d is invalid\n", target_quot_str,
size);
return -EINVAL;
}
temp = kcalloc(size, sizeof(int), GFP_KERNEL);
if (!temp)
return -ENOMEM;
rc = of_property_read_u32_array(of_node, target_quot_str, temp, size);
if (rc) {
cpr_err(cpr_vreg, "failed to read %s, rc=%d\n",
target_quot_str, rc);
kfree(temp);
return rc;
}
for (i = CPR_CORNER_MIN; i <= cpr_vreg->num_corners; i++) {
index = tuple_match * cpr_vreg->num_corners
* cpr_vreg->ro_count + i - CPR_CORNER_MIN;
for (j = 0; j < cpr_vreg->ro_count; j++) {
k = index * cpr_vreg->ro_count + j;
cpr_vreg->cpr_target_quot[i][j] = temp[k];
}
}
kfree(temp);
/*
* Log per-virtual corner target quotients since they are useful for
* baseline CPR logging.
*/
buflen = cpr_vreg->ro_count * (MAX_CHARS_PER_INT + 2) * sizeof(*buf);
buf = kzalloc(buflen, GFP_KERNEL);
if (buf == NULL) {
cpr_err(cpr_vreg, "Could not allocate memory for target quotient logging\n");
return 0;
}
for (i = CPR_CORNER_MIN; i <= cpr_vreg->num_corners; i++) {
pos = 0;
for (j = 0; j < cpr_vreg->ro_count; j++)
pos += scnprintf(buf + pos, buflen - pos, "%d%s",
cpr_vreg->cpr_target_quot[i][j],
j < cpr_vreg->ro_count ? " " : "\0");
cpr_info(cpr_vreg, "Corner[%d]: Target quotients: %s\n",
i, buf);
}
kfree(buf);
for (j = 0; j < cpr_vreg->ro_count; j++) {
for (i = CPR_CORNER_MIN + 1; i <= cpr_vreg->num_corners; i++) {
if (cpr_vreg->cpr_target_quot[i][j]
< cpr_vreg->cpr_target_quot[i - 1][j]) {
cpr_vreg->cpr_fuse_disable = true;
cpr_err(cpr_vreg, "invalid quotient values; permanently disabling CPR\n");
}
}
}
return rc;
}
/*
* Conditionally reduce the per-virtual-corner ceiling voltages if certain
* device tree flags are present.
*/
static int cpr_reduce_ceiling_voltage(struct cpr2_gfx_regulator *cpr_vreg)
{
int i;
if (!of_property_read_bool(cpr_vreg->dev->of_node,
"qcom,cpr-init-voltage-as-ceiling"))
return 0;
for (i = CPR_CORNER_MIN; i <= cpr_vreg->num_corners; i++) {
cpr_vreg->ceiling_volt[i] = cpr_vreg->open_loop_volt[i];
cpr_debug(cpr_vreg, "lowered ceiling[%d] = %d uV\n",
i, cpr_vreg->ceiling_volt[i]);
}
return 0;
}
static int cpr_init_cpr_voltages(struct cpr2_gfx_regulator *cpr_vreg)
{
int i;
int size = cpr_vreg->num_corners + 1;
cpr_vreg->last_volt = devm_kzalloc(cpr_vreg->dev, sizeof(int) * size,
GFP_KERNEL);
if (!cpr_vreg->last_volt)
return -EINVAL;
for (i = CPR_CORNER_MIN; i <= cpr_vreg->num_corners; i++)
cpr_vreg->last_volt[i] = cpr_vreg->open_loop_volt[i];
return 0;
}
#define CPR_PROP_READ_U32(cpr_vreg, of_node, cpr_property, cpr_config, rc) \
do { \
if (!rc) { \
rc = of_property_read_u32(of_node, cpr_property, \
cpr_config); \
if (rc) { \
cpr_err(cpr_vreg, "Missing " #cpr_property \
": rc = %d\n", rc); \
} \
} \
} while (0)
static int cpr_init_cpr_parameters(struct cpr2_gfx_regulator *cpr_vreg)
{
struct device_node *of_node = cpr_vreg->dev->of_node;
int rc = 0;
CPR_PROP_READ_U32(cpr_vreg, of_node, "qcom,cpr-ref-clk",
&cpr_vreg->ref_clk_khz, rc);
if (rc)
return rc;
CPR_PROP_READ_U32(cpr_vreg, of_node, "qcom,cpr-timer-delay",
&cpr_vreg->timer_delay_us, rc);
if (rc)
return rc;
CPR_PROP_READ_U32(cpr_vreg, of_node, "qcom,cpr-timer-cons-up",
&cpr_vreg->timer_cons_up, rc);
if (rc)
return rc;
CPR_PROP_READ_U32(cpr_vreg, of_node, "qcom,cpr-timer-cons-down",
&cpr_vreg->timer_cons_down, rc);
if (rc)
return rc;
CPR_PROP_READ_U32(cpr_vreg, of_node, "qcom,cpr-irq-line",
&cpr_vreg->irq_line, rc);
if (rc)
return rc;
CPR_PROP_READ_U32(cpr_vreg, of_node, "qcom,cpr-step-quotient",
&cpr_vreg->step_quotient, rc);
if (rc)
return rc;
cpr_info(cpr_vreg, "step_quotient = %u\n", cpr_vreg->step_quotient);
CPR_PROP_READ_U32(cpr_vreg, of_node, "qcom,cpr-up-threshold",
&cpr_vreg->up_threshold, rc);
if (rc)
return rc;
CPR_PROP_READ_U32(cpr_vreg, of_node, "qcom,cpr-down-threshold",
&cpr_vreg->down_threshold, rc);
if (rc)
return rc;
cpr_info(cpr_vreg, "up threshold = %u, down threshold = %u\n",
cpr_vreg->up_threshold, cpr_vreg->down_threshold);
CPR_PROP_READ_U32(cpr_vreg, of_node, "qcom,cpr-idle-clocks",
&cpr_vreg->idle_clocks, rc);
if (rc)
return rc;
CPR_PROP_READ_U32(cpr_vreg, of_node, "qcom,cpr-gcnt-time",
&cpr_vreg->gcnt_time_us, rc);
if (rc)
return rc;
CPR_PROP_READ_U32(cpr_vreg, of_node, "qcom,vdd-gfx-step-up-limit",
&cpr_vreg->vdd_gfx_step_up_limit, rc);
if (rc)
return rc;
CPR_PROP_READ_U32(cpr_vreg, of_node, "qcom,vdd-gfx-step-down-limit",
&cpr_vreg->vdd_gfx_step_down_limit, rc);
if (rc)
return rc;
/* Init module parameter with the DT value */
cpr_vreg->enable = of_property_read_bool(of_node, "qcom,cpr-enable");
cpr_info(cpr_vreg, "CPR is %s by default.\n",
cpr_vreg->enable ? "enabled" : "disabled");
return 0;
}
static int cpr_config(struct cpr2_gfx_regulator *cpr_vreg)
{
int i, rc;
u32 val, gcnt;
int size;
rc = clk_set_rate(cpr_vreg->core_clk, cpr_vreg->ref_clk_khz * 1000);
if (rc) {
cpr_err(cpr_vreg, "clk_set_rate(core_clk, %u) failed, rc=%d\n",
cpr_vreg->ref_clk_khz, rc);
return rc;
}
rc = cpr2_gfx_clock_enable(cpr_vreg);
if (rc) {
cpr_err(cpr_vreg, "unable to enable CPR clocks, rc=%d\n", rc);
return rc;
}
/* Disable interrupt and CPR */
cpr_write(cpr_vreg, REG_RBIF_IRQ_EN(cpr_vreg->irq_line), 0);
cpr_write(cpr_vreg, REG_RBCPR_CTL, 0);
/* Program the default HW Ceiling, Floor and vlevel */
val = ((RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
<< RBIF_LIMIT_CEILING_SHIFT)
| (RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK);
cpr_write(cpr_vreg, REG_RBIF_LIMIT, val);
cpr_write(cpr_vreg, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
/* Clear the target quotient value and gate count of all ROs */
for (i = 0; i < cpr_vreg->ro_count; i++)
cpr_write(cpr_vreg, REG_RBCPR_GCNT_TARGET(i), 0);
/* Init and save gcnt */
gcnt = (cpr_vreg->ref_clk_khz * cpr_vreg->gcnt_time_us) / 1000;
gcnt = (gcnt & RBCPR_GCNT_TARGET_GCNT_MASK) <<
RBCPR_GCNT_TARGET_GCNT_SHIFT;
cpr_vreg->gcnt = gcnt;
/* Program the delay count for the timer */
val = (cpr_vreg->ref_clk_khz * cpr_vreg->timer_delay_us) / 1000;
cpr_write(cpr_vreg, REG_RBCPR_TIMER_INTERVAL, val);
cpr_info(cpr_vreg, "Timer count: 0x%0x (for %d us)\n", val,
cpr_vreg->timer_delay_us);
/* Program Consecutive Up & Down */
val = ((cpr_vreg->timer_cons_down & RBIF_TIMER_ADJ_CONS_DOWN_MASK)
<< RBIF_TIMER_ADJ_CONS_DOWN_SHIFT) |
(cpr_vreg->timer_cons_up & RBIF_TIMER_ADJ_CONS_UP_MASK);
cpr_write(cpr_vreg, REG_RBIF_TIMER_ADJUST, val);
/* Program the control register */
cpr_vreg->up_threshold &= RBCPR_CTL_UP_THRESHOLD_MASK;
cpr_vreg->down_threshold &= RBCPR_CTL_DN_THRESHOLD_MASK;
val = (cpr_vreg->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT)
| (cpr_vreg->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT);
val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
cpr_write(cpr_vreg, REG_RBCPR_CTL, val);
cpr_irq_set(cpr_vreg, CPR_INT_DEFAULT);
val = cpr_read(cpr_vreg, REG_RBCPR_VERSION);
if (val <= RBCPR_VER_2)
cpr_vreg->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
size = cpr_vreg->num_corners + 1;
cpr_vreg->save_ctl = devm_kzalloc(cpr_vreg->dev, sizeof(int) * size,
GFP_KERNEL);
cpr_vreg->save_irq = devm_kzalloc(cpr_vreg->dev, sizeof(int) * size,
GFP_KERNEL);
if (!cpr_vreg->save_ctl || !cpr_vreg->save_irq) {
rc = -ENOMEM;
goto _exit;
}
for (i = 1; i < size; i++)
cpr_corner_save(cpr_vreg, i);
_exit:
cpr2_gfx_clock_disable(cpr_vreg);
return rc;
}
static int cpr_init_cpr(struct platform_device *pdev,
struct cpr2_gfx_regulator *cpr_vreg)
{
struct resource *res;
int rc;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rbcpr");
if (!res || !res->start) {
cpr_err(cpr_vreg, "missing rbcpr address: res=%p\n", res);
return -EINVAL;
}
cpr_vreg->rbcpr_base = devm_ioremap(&pdev->dev, res->start, GFP_KERNEL);
if (!cpr_vreg->rbcpr_base) {
cpr_err(cpr_vreg, "ioremap rbcpr address=%p failed\n", res);
return -ENXIO;
}
rc = cpr_get_clock_handles(cpr_vreg);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr_err(cpr_vreg, "clocks read failed, rc=%d\n", rc);
return rc;
}
/*
* Read target quotients from global target-quotient table passed
* through device node.
*/
rc = cpr_init_target_quotients(cpr_vreg);
if (rc) {
cpr_err(cpr_vreg, "target quotient table read failed, rc=%d\n",
rc);
return rc;
}
/* Reduce the ceiling voltage if allowed. */
rc = cpr_reduce_ceiling_voltage(cpr_vreg);
if (rc)
return rc;
/* Init all voltage set points of GFX regulator for CPR */
rc = cpr_init_cpr_voltages(cpr_vreg);
if (rc) {
cpr_err(cpr_vreg, "init closed loop voltages failed, rc=%d\n",
rc);
return rc;
}
/* Init CPR configuration parameters */
rc = cpr_init_cpr_parameters(cpr_vreg);
if (rc) {
cpr_err(cpr_vreg, "init cpr configuration parameters failed, rc=%d\n",
rc);
return rc;
}
/* Get and Init interrupt */
cpr_vreg->cpr_irq = platform_get_irq(pdev, 0);
if (!cpr_vreg->cpr_irq) {
cpr_err(cpr_vreg, "missing CPR IRQ\n");
return -EINVAL;
}
/* Configure CPR HW but keep it disabled */
rc = cpr_config(cpr_vreg);
if (rc) {
cpr_err(cpr_vreg, "configure CPR HW failed, rc=%d\n", rc);
return rc;
}
rc = devm_request_threaded_irq(&pdev->dev, cpr_vreg->cpr_irq, NULL,
cpr2_gfx_irq_handler,
IRQF_ONESHOT | IRQF_TRIGGER_RISING,
"cpr", cpr_vreg);
if (rc)
cpr_err(cpr_vreg, "CPR: request irq failed for IRQ %d\n",
cpr_vreg->cpr_irq);
return rc;
}
static void cpr_gfx_exit(struct cpr2_gfx_regulator *cpr_vreg)
{
if (cpr_vreg->vreg_enabled) {
regulator_disable(cpr_vreg->vdd_gfx);
if (cpr_vreg->vdd_mx)
regulator_disable(cpr_vreg->vdd_mx);
}
}
static void cpr_efuse_free(struct cpr2_gfx_regulator *cpr_vreg)
{
iounmap(cpr_vreg->efuse_base);
}
static int cpr_enable_set(void *data, u64 val)
{
struct cpr2_gfx_regulator *cpr_vreg = data;
bool old_cpr_enable;
int rc = 0;
mutex_lock(&cpr_vreg->cpr_mutex);
old_cpr_enable = cpr_vreg->enable;
cpr_vreg->enable = val;
if (old_cpr_enable == cpr_vreg->enable)
goto _exit;
if (cpr_vreg->enable && cpr_vreg->cpr_fuse_disable) {
cpr_info(cpr_vreg,
"CPR permanently disabled due to fuse values\n");
cpr_vreg->enable = false;
goto _exit;
}
cpr_debug(cpr_vreg, "%s CPR [corner=%d]\n",
cpr_vreg->enable ? "enabling" : "disabling", cpr_vreg->corner);
if (cpr_vreg->corner) {
if (cpr_vreg->enable) {
rc = cpr2_gfx_closed_loop_enable(cpr_vreg);
if (rc) {
cpr_err(cpr_vreg, "could not enable CPR, rc=%d\n",
rc);
goto _exit;
}
cpr_ctl_disable(cpr_vreg);
cpr_irq_clr(cpr_vreg);
cpr_corner_restore(cpr_vreg, cpr_vreg->corner);
cpr_ctl_enable(cpr_vreg, cpr_vreg->corner);
} else {
cpr_ctl_disable(cpr_vreg);
cpr_irq_set(cpr_vreg, 0);
cpr2_gfx_closed_loop_disable(cpr_vreg);
}
}
_exit:
mutex_unlock(&cpr_vreg->cpr_mutex);
return 0;
}
static int cpr_enable_get(void *data, u64 *val)
{
struct cpr2_gfx_regulator *cpr_vreg = data;
*val = cpr_vreg->enable;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(cpr_enable_fops, cpr_enable_get, cpr_enable_set,
"%llu\n");
static int cpr_get_cpr_ceiling(void *data, u64 *val)
{
struct cpr2_gfx_regulator *cpr_vreg = data;
*val = cpr_vreg->ceiling_volt[cpr_vreg->corner];
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(cpr_ceiling_fops, cpr_get_cpr_ceiling, NULL,
"%llu\n");
static int cpr_get_cpr_floor(void *data, u64 *val)
{
struct cpr2_gfx_regulator *cpr_vreg = data;
*val = cpr_vreg->floor_volt[cpr_vreg->corner];
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(cpr_floor_fops, cpr_get_cpr_floor, NULL,
"%llu\n");
static int cpr2_gfx_debug_info_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static ssize_t cpr2_gfx_debug_info_read(struct file *file, char __user *buff,
size_t count, loff_t *ppos)
{
struct cpr2_gfx_regulator *cpr_vreg = file->private_data;
char *debugfs_buf;
ssize_t len, ret = 0;
u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
u32 step_dn, step_up, error, error_lt0, busy;
debugfs_buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!debugfs_buf)
return -ENOMEM;
mutex_lock(&cpr_vreg->cpr_mutex);
len = snprintf(debugfs_buf + ret, PAGE_SIZE - ret,
"corner = %d, current_volt = %d uV\n",
cpr_vreg->corner, cpr_vreg->last_volt[cpr_vreg->corner]);
ret += len;
for (ro_sel = 0; ro_sel < cpr_vreg->ro_count; ro_sel++) {
gcnt = cpr_read(cpr_vreg, REG_RBCPR_GCNT_TARGET(ro_sel));
len = snprintf(debugfs_buf + ret, PAGE_SIZE - ret,
"rbcpr_gcnt_target (%u) = 0x%02X\n",
ro_sel, gcnt);
ret += len;
}
ctl = cpr_read(cpr_vreg, REG_RBCPR_CTL);
len = snprintf(debugfs_buf + ret, PAGE_SIZE - ret,
"rbcpr_ctl = 0x%02X\n", ctl);
ret += len;
irq_status = cpr_read(cpr_vreg, REG_RBIF_IRQ_STATUS);
len = snprintf(debugfs_buf + ret, PAGE_SIZE - ret,
"rbcpr_irq_status = 0x%02X\n", irq_status);
ret += len;
reg = cpr_read(cpr_vreg, REG_RBCPR_RESULT_0);
len = snprintf(debugfs_buf + ret, PAGE_SIZE - ret,
"rbcpr_result_0 = 0x%02X\n", reg);
ret += len;
step_dn = reg & 0x01;
step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
len = snprintf(debugfs_buf + ret, PAGE_SIZE - ret,
" [step_dn = %u", step_dn);
ret += len;
len = snprintf(debugfs_buf + ret, PAGE_SIZE - ret,
", step_up = %u", step_up);
ret += len;
error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
& RBCPR_RESULT0_ERROR_STEPS_MASK;
len = snprintf(debugfs_buf + ret, PAGE_SIZE - ret,
", error_steps = %u", error_steps);
ret += len;
error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
len = snprintf(debugfs_buf + ret, PAGE_SIZE - ret,
", error = %u", error);
ret += len;
error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
len = snprintf(debugfs_buf + ret, PAGE_SIZE - ret,
", error_lt_0 = %u", error_lt0);
ret += len;
busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
len = snprintf(debugfs_buf + ret, PAGE_SIZE - ret,
", busy = %u]\n", busy);
ret += len;
mutex_unlock(&cpr_vreg->cpr_mutex);
ret = simple_read_from_buffer(buff, count, ppos, debugfs_buf, ret);
kfree(debugfs_buf);
return ret;
}
static const struct file_operations cpr2_gfx_debug_info_fops = {
.open = cpr2_gfx_debug_info_open,
.read = cpr2_gfx_debug_info_read,
};
static void cpr2_gfx_debugfs_init(struct cpr2_gfx_regulator *cpr_vreg)
{
struct dentry *temp;
if (IS_ERR_OR_NULL(cpr2_gfx_debugfs_base)) {
cpr_err(cpr_vreg, "Could not create debugfs nodes since base directory is missing\n");
return;
}
cpr_vreg->debugfs = debugfs_create_dir(cpr_vreg->rdesc.name,
cpr2_gfx_debugfs_base);
if (IS_ERR_OR_NULL(cpr_vreg->debugfs)) {
cpr_err(cpr_vreg, "debugfs directory creation failed\n");
return;
}
temp = debugfs_create_file("debug_info", S_IRUGO, cpr_vreg->debugfs,
cpr_vreg, &cpr2_gfx_debug_info_fops);
if (IS_ERR_OR_NULL(temp)) {
cpr_err(cpr_vreg, "debug_info node creation failed\n");
return;
}
temp = debugfs_create_file("cpr_enable", S_IRUGO | S_IWUSR,
cpr_vreg->debugfs, cpr_vreg, &cpr_enable_fops);
if (IS_ERR_OR_NULL(temp)) {
cpr_err(cpr_vreg, "cpr_enable node creation failed\n");
return;
}
temp = debugfs_create_file("cpr_ceiling", S_IRUGO,
cpr_vreg->debugfs, cpr_vreg, &cpr_ceiling_fops);
if (IS_ERR_OR_NULL(temp)) {
cpr_err(cpr_vreg, "cpr_ceiling node creation failed\n");
return;
}
temp = debugfs_create_file("cpr_floor", S_IRUGO,
cpr_vreg->debugfs, cpr_vreg, &cpr_floor_fops);
if (IS_ERR_OR_NULL(temp)) {
cpr_err(cpr_vreg, "cpr_floor node creation failed\n");
return;
}
}
static void cpr2_gfx_debugfs_remove(struct cpr2_gfx_regulator *cpr_vreg)
{
debugfs_remove_recursive(cpr_vreg->debugfs);
}
static void cpr2_gfx_debugfs_base_init(void)
{
cpr2_gfx_debugfs_base = debugfs_create_dir("cpr2-gfx-regulator",
NULL);
if (IS_ERR_OR_NULL(cpr2_gfx_debugfs_base))
pr_err("cpr2-gfx-regulator debugfs base directory creation failed\n");
}
static void cpr2_gfx_debugfs_base_remove(void)
{
debugfs_remove_recursive(cpr2_gfx_debugfs_base);
}
static int cpr2_gfx_regulator_probe(struct platform_device *pdev)
{
struct regulator_config reg_config = {};
struct cpr2_gfx_regulator *cpr_vreg;
struct regulator_desc *rdesc;
struct device *dev = &pdev->dev;
struct regulator_init_data *init_data = pdev->dev.platform_data;
int rc;
if (!dev->of_node) {
dev_err(dev, "Device tree node is missing\n");
return -EINVAL;
}
init_data = of_get_regulator_init_data(dev, dev->of_node);
if (!init_data) {
dev_err(dev, "regulator init data is missing\n");
return -EINVAL;
}
init_data->constraints.input_uV = init_data->constraints.max_uV;
init_data->constraints.valid_ops_mask
|= REGULATOR_CHANGE_VOLTAGE | REGULATOR_CHANGE_STATUS;
cpr_vreg = devm_kzalloc(dev, sizeof(*cpr_vreg), GFP_KERNEL);
if (!cpr_vreg)
return -ENOMEM;
cpr_vreg->dev = dev;
mutex_init(&cpr_vreg->cpr_mutex);
cpr_vreg->rdesc.name = init_data->constraints.name;
if (cpr_vreg->rdesc.name == NULL) {
dev_err(dev, "regulator-name missing\n");
return -EINVAL;
}
rc = cpr2_gfx_allocate_memory(cpr_vreg);
if (rc)
return rc;
rc = cpr_mem_acc_init(cpr_vreg);
if (rc) {
cpr_err(cpr_vreg, "mem_acc initialization error: rc=%d\n", rc);
return rc;
}
rc = cpr_efuse_init(pdev, cpr_vreg);
if (rc) {
cpr_err(cpr_vreg, "Wrong eFuse address specified: rc=%d\n", rc);
return rc;
}
rc = cpr_parse_fuse_parameters(cpr_vreg);
if (rc) {
cpr_err(cpr_vreg, "Failed to parse fuse parameters: rc=%d\n",
rc);
goto err_out;
}
rc = cpr_find_fuse_map_match(cpr_vreg);
if (rc) {
cpr_err(cpr_vreg, "Could not determine fuse mapping match: rc=%d\n",
rc);
goto err_out;
}
rc = cpr_voltage_plan_init(cpr_vreg);
if (rc) {
cpr_err(cpr_vreg, "Wrong DT parameter specified: rc=%d\n", rc);
goto err_out;
}
rc = cpr_pvs_init(cpr_vreg);
if (rc) {
cpr_err(cpr_vreg, "Initialize PVS wrong: rc=%d\n", rc);
goto err_out;
}
rc = cpr_gfx_init(cpr_vreg);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr_err(cpr_vreg, "Initialize GFX wrong: rc=%d\n", rc);
goto err_out;
}
rc = cpr_init_cpr(pdev, cpr_vreg);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr_err(cpr_vreg, "Initialize CPR failed: rc=%d\n", rc);
goto err_out;
}
/*
* Ensure that enable state accurately reflects the case in which CPR
* is permanently disabled.
*/
cpr_vreg->enable &= !cpr_vreg->cpr_fuse_disable;
platform_set_drvdata(pdev, cpr_vreg);
rdesc = &cpr_vreg->rdesc;
rdesc->owner = THIS_MODULE;
rdesc->type = REGULATOR_VOLTAGE;
rdesc->ops = &cpr_corner_ops;
reg_config.dev = &pdev->dev;
reg_config.init_data = init_data;
reg_config.driver_data = cpr_vreg;
reg_config.of_node = pdev->dev.of_node;
cpr_vreg->rdev = regulator_register(rdesc, &reg_config);
if (IS_ERR(cpr_vreg->rdev)) {
rc = PTR_ERR(cpr_vreg->rdev);
cpr_err(cpr_vreg, "regulator_register failed: rc=%d\n", rc);
cpr_gfx_exit(cpr_vreg);
goto err_out;
}
cpr2_gfx_debugfs_init(cpr_vreg);
mutex_lock(&cpr2_gfx_regulator_list_mutex);
list_add(&cpr_vreg->list, &cpr2_gfx_regulator_list);
mutex_unlock(&cpr2_gfx_regulator_list_mutex);
err_out:
cpr_efuse_free(cpr_vreg);
return rc;
}
static int cpr2_gfx_regulator_remove(struct platform_device *pdev)
{
struct cpr2_gfx_regulator *cpr_vreg = platform_get_drvdata(pdev);
if (cpr_vreg) {
/* Disable CPR */
if (cpr_vreg->ctrl_enable) {
cpr_ctl_disable(cpr_vreg);
cpr_irq_set(cpr_vreg, 0);
cpr2_gfx_closed_loop_disable(cpr_vreg);
}
mutex_lock(&cpr2_gfx_regulator_list_mutex);
list_del(&cpr_vreg->list);
mutex_unlock(&cpr2_gfx_regulator_list_mutex);
cpr_gfx_exit(cpr_vreg);
cpr2_gfx_debugfs_remove(cpr_vreg);
regulator_unregister(cpr_vreg->rdev);
}
return 0;
}
static struct of_device_id cpr2_gfx_regulator_match_table[] = {
{ .compatible = "qcom,cpr2-gfx-regulator", },
{}
};
static struct platform_driver cpr2_gfx_regulator_driver = {
.driver = {
.name = "qcom,cpr2-gfx-regulator",
.of_match_table = cpr2_gfx_regulator_match_table,
.owner = THIS_MODULE,
},
.probe = cpr2_gfx_regulator_probe,
.remove = cpr2_gfx_regulator_remove,
.suspend = cpr2_gfx_regulator_suspend,
.resume = cpr2_gfx_regulator_resume,
};
static int cpr2_gfx_regulator_init(void)
{
cpr2_gfx_debugfs_base_init();
return platform_driver_register(&cpr2_gfx_regulator_driver);
}
arch_initcall(cpr2_gfx_regulator_init);
static void cpr2_gfx_regulator_exit(void)
{
cpr2_gfx_debugfs_base_remove();
platform_driver_unregister(&cpr2_gfx_regulator_driver);
}
module_exit(cpr2_gfx_regulator_exit);
MODULE_DESCRIPTION("CPR2 GFX regulator driver");
MODULE_LICENSE("GPL v2");